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Collision Applets

https://www.msu.edu/~brechtjo/physics/airTrack/airTrack.html

http://surendranath.org/Applets/Dynamics/Collisions/CollisionApplet.html

http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/Collision/jarapplet.html

http://burro.cwru.edu/JavaLab/GalCrashWeb/

http://demonstrations.wolfram.com/ElasticCollisionsOfTwoSpheres/

http://demonstrations.wolfram.com/InelasticCollisionsOfTwoSpheres/

http://demonstrations.wolfram.com/InelasticCollisionsOfTwoRoughSpheres/

https://www.msu.edu/~brechtjo/physics/airTrack/airTrack.html
http://surendranath.org/Applets/Dynamics/Collisions/CollisionApplet.html
http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/Collision/jarapplet.html
http://burro.cwru.edu/JavaLab/GalCrashWeb/
http://demonstrations.wolfram.com/ElasticCollisionsOfTwoSpheres/
http://demonstrations.wolfram.com/InelasticCollisionsOfTwoSpheres/
http://demonstrations.wolfram.com/InelasticCollisionsOfTwoRoughSpheres/
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Solution

Week 69 (1/5/04)

Compton scattering

We will solve this problem by making use of 4-momenta. The 4-momentum of a
particle is given by

P ≡ (P0, P1, P2, P3) ≡ (E, pxc, pyc, pzc) ≡ (E,pc). (1)

In general, the inner-product of two 4-vectors is given by

A · B ≡ A0B0 −A1B1 −A2B2 −A3B3. (2)

The square of a 4-momentum (that is, the inner product of a 4-momentum with
itself) is therefore

P 2 ≡ P · P = E2 − |p|2c2 = m2c4. (3)

Let’s now apply these idea to the problem at hand. We will actually be doing
nothing here other than applying conservation of energy and momentum. It’s just
that the language of 4-vectors makes the whole procedure surprisingly simple. Note
that conservation of E and p during the collision can be succinctly written as

Pbefore = Pafter. (4)

Referring to the figure below, the 4-momenta before the collision are

Pγ =
�

hc

λ
,
hc

λ
, 0, 0

�
, Pm = (mc2, 0, 0, 0). (5)

And the 4-momenta after the collision are

P �
γ =

�
hc

λ� ,
hc

λ� cos θ,
hc

λ� sin θ, 0
�

, P �
m = (we won�t need this). (6)

m

m

θ
λ

λ

'
x

y

If we wanted to, we could write P �
m in terms of its momentum and scattering angle.

But the nice thing about this 4-momentum method is that we don’t need to introduce
any quantities that we’re not interested in.
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Conservation of energy and momentum give Pγ + Pm = P �
γ + P �

m. Therefore,

(Pγ + Pm − P �
γ)2 = P �2

m

=⇒ P 2
γ + P 2

m + P �2
γ + 2Pm(Pγ − P �

γ)− 2PγP �
γ = P �2

m

=⇒ 0 + m2c4 + 0 + 2mc2
�

hc

λ
− hc

λ�

�
− 2

hc

λ

hc

λ� (1− cos θ) = m2c4. (7)

Multiplying through by λλ�/(2hmc3) gives the desired result,

λ� = λ +
h

mc
(1− cos θ). (8)

The ease of this solution arose from the fact that all the unknown garbage in P �
m

disappeared when we squared it.

Remarks:

1. If θ ≈ 0 (that is, not much scattering), then λ� ≈ λ, as expected.

2. If θ = π (that is, backward scattering) and additionally λ � h/mc (that is, mc2 �
hc/λ = Eγ), then λ� ≈ 2h/mc, so

E�
γ =

hc

λ� ≈
hc
2h
mc

=
1
2
mc2. (9)

Therefore, the photon bounces back with an essentially fixed E�
γ , independent of the

initial Eγ (as long as Eγ is large enough). This isn’t all that obvious.
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Evening MS Projects

Independent Study Project 
with a physics professor or with  
a suitable* professor and topic 
in another department

min 6 credits of Physics 600
max 18 credits of Physics 600

Procedure
Do your research
Write your project paper 
Make your project presentation
Answer questions from your 
exam committee

*Prof. Wilkes defines suitable



Project Categories

(1) With a campus research group
physics, applied physics lab, 
geophysics, medical physics,
biophysics, astronomy, ... 

(2) Related to employer
Boeing, Synrad, Microvision, ... 

(3) Related to EMS Lab classes
SPR, EPR, Chaos, The Lamb Shift, ... 

(3) Related to teaching
virtual books, new labs, software

(4) Purely curiosity driven
Tokamaks, Virtual Photons, Sprinklers
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Light for Head-up Display
Applications
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Shielding Effectiveness Evaluation of an Electrically Large, 
Complex Cavity Using Various Mode-stir Measurements and 

Numerical Calculations 
 
 
 
 

Nathan Horton 
June 7, 2005 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Submitted in Partial Fulfillment of the Requirements for the Masters of 
Science Degree in Physics 

 
 

Advisor:  Dr. Larry Sorensen 
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Quantum by Example
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Diffraction 
Optical Crystals and the Seventeen Space Groups 

 

“The goddess of learning is fabled to have sprung full-grown from the brain of Zeus, but  

it is seldom that a scientific conception is born in its final form, or owns a single parent.”  

–George Thompson, Nobel Lecture, 1938 
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Positron Emission Tomography

Joanne Kang
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A New Classification of Neurons
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curves. This behavior is generated by neuronal dynamical systems with fixed points that remain stable 
regardless of input mean. Thus, these neurons never fire repetitively at steady state in response to 
noiseless input. We focus in this work on Type B+ neurons whose firing rates are sensitive to input 
fluctuations throughout the dynamic range and which fire repetitively at steady state to noiseless input. 
 
2D model demonstrating three types of f-I curves 
We begin with a 2D model, similar to the Hodgkin-Huxley neuron, that can demonstrate three types of 
f-I curves: Type A, B+, and B- (Figure 2). We wish to identify the specific characteristics of the 
differential equations describing the neuronal dynamics that lead to the generation of Type A vs. B+ 
behavior.  For two-dimensional dynamical systems, these characteristics can be explored geometrically 
using phase portraits. To do this, we reduced the standard 4D HH model to two dimensions by 
eliminating the time dependence of m and letting h linearly depend on n (Izhikevich, 2007); we slightly 
altered the kinetics and conductances. We then examined 2D model trajectories in the phase plane for 
each of the neuron types.  

 
Figure 2: A two-dimensional modified and reduced Hodgkin-Huxley (HH) model neuron can 
show the three classes of behavior. Type A is similar to the standard HH model and is insensitive to 
input SD for high currents. In contrast, Type B+ is sensitive to input SD throughout the dynamic range 
but still fires repetitively to inputs with SD = 0. Type B- models never fire repetitively when input SD 
= 0 and never undergo a bifurcation from stable fixed point to limit cycle. For the three models, GNa 
and τ were [50 50 15] mS/cm2 and [5 100 5] msec, respectively. Other parameters were as given in the 
Methods section. 
 
Two-dimensional dynamical systems can be analyzed by examining a phase portrait, which is a plot of 
one dynamical variable against the other (Strogatz, 1994; Gerstner and Kistler, 2002; Izhikevich, 
2007). In this case, the model has a “fast” activation variable V and a “slow” inactivation variable n. V 
is the model’s membrane voltage, while n is a combined variable, called the inactivation variable, 
representing sodium channel inactivation as well as potassium activation. As the membrane voltage V 
spikes in time, the neuron’s trajectory travels counter-clockwise around the phase plane (Figure 3). The 
upswing and downswing of the action potential (dashed lines) correspond to the left-to-right and right-
to-left trajectory jumps, respectively, between the V-nullcline (curvy, solid line). The V-nullcline and 
n-nullcline (straight, solid line) correspond to points on the phase plane where dV/dt = 0 and dn/dt = 0, 
respectively. 
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Figure 5: Input fluctuations do not change the mean firing rate when τ  is small, but increase 
firing rate when τ  is large. (a) When τ is small (5 msec), input fluctuations (SD = 10 µA/cm2) 
increase the variance of n during the up- and downswings of the action potential, but do not alter the 
mean value of n. Histograms are shown at right during action potential upswing (V = -20 mV) and 
downswing (V= -40 mV), as indicated by the vertical black lines on the phase portraits. The dashed 
lines represent the value of n when input SD = 0 mV, while the solid lines show the mean values of the 
data. The dashed and solid lines are nearly the same; the neuron’s firing rate does not change with 
increased input SD, but spiking becomes irregular. (b) When τ is large (100 msec), increasing input 
SD leads to an increasing mean firing rate. Although the mean value of n during the action potential 
downswing does not appreciably change, during the upswing <n> increases, since on average the input 
SD causes the neuron to spike sooner, i.e. before n has returned to the minimum. The input current I 
had a mean of 100 µA/cm2. 
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Defining an effective potential barrier 
Since noise causes the trajectory to jump across the threshold sooner, this implies that there is a barrier 
that prevents crossing in the absence of noise. To gain insight into how noise drives spiking, we 
examined how noise-driven trajectories escape over a barrier.  Consider a simple 1D model as in 
Figure 6a, where input fluctuations of typical scale σ cause trajectories to move in the voltage V 
dimension, such that sometimes the trajectory can overcome an effective potential barrier ΔU located 
at a threshold for spiking. This picture is reminiscent of problems in physics and chemistry wherein the 
activation rate is determined by the size of an energy barrier and the temperature and is given by the 
Arrhenius rate equation, r ~ exp(-ΔU/kT). In our case, thermal energy kT is replaced by a factor 
proportional to the variance of the driving current fluctuations, σ2.  
 

 
Figure 6: Input fluctuations can shorten interspike intervals by causing the neuron’s trajectory 
to cross an effective potential barrier. (a) A simple 1D model relates spike initiation to crossing an 
energy barrier and suggests an exponential relation between barrier height and the inactivation time 
constant for a given level of input fluctuations. (b) An effective potential landscape can be found by 
integrating dV/dt (solid, blue line) with respect to V for constant n. The result of the integral is 
represented by the dashed, green line. (c) The effective potential landscape changes as n changes, and 
potentials are shown for three specific values of n, which represent three different slices through the 
inset of (b).  The action potential upswing and downswing occur at approximately n = 0.56 and n = 
0.66, respectively. The middle hump is the barrier related to the spiking threshold. Units are defined up 
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A Phenomenological Interpretation of the 

Aharonov-Bohm Effect in terms of Virtual
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A Survey of Quantum Computing Algorithms

Tad Lisman

‘These ‘‘bras’’ and ‘‘kets’’—they’re just vectors!
Newly enlightened computer scientist’

“From Cbits to Qbits: Teaching Computer 
Scientists Quantum Mechanics” 
by N. David Mermin    AJP 71, 23 (2003)
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Inside the Magnetic Hysteresis Loop
Paul Unwin

Soft Magnet +Disorder = Hard Magnet
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