Classical Collisions
Elastic and Inelastic
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The coefficient of restitution

type

perfectly inelastic

inelastic

partially elastic or
nearly elastic

elastic

superelastic

Energy in Collisions

total

kinetic energy

decreases to a
minimum

decreases by
any amount

“nearly
conserved”

absolutely
conserved

increases

comments

objects stick together

all collisions between macroscopic bodies,
high energy collisions between subatomic

particles

billiard balls, bowling balls, steel bearings
and other objects made from resilient
materials

low energy collisions between atoms,
molecules, subatomic particles

contrived collisions between objects that
release potential energy on contact,
fictional superelastic materials like flubber
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The coefficient of restitution

Equation [edit]

Picture a one-dimensional collision. Velocity in an arbitrary direction is labeled "positive" and the
opposite direction "negative".

The coefficient of restitution is given by

Up — U
Ug — Up
for two colliding objects, where
v, is the final velocity of the first object after impact

v, is the final velocity of the second object after impact

b
u, is the initial velocity of the first object before impact

u, is the initial velocity of the second object before impact
Even though the equation does not reference mass, it is important to note that it still relates to
momentum since the final velocities are dependent on mass.

For an object bouncing off a stationary object, such as a floor:

v
C'r = —, where
u

v is the scalar velocity of the object after impact
u is the scalar velocity of the object before impact
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The coefficient of restitution

Speeds after impact [edit]

The equations for collisions between elastic particles can be modified to use the COR, thus
becoming applicable to inelastic collisions as well, and every possibility in between.

Matty + Mptiy + MpCr(up — ug)

Vg =
Mg + My,
and
Matly + Myty + MaCr(ty — up)
Ty =
Mg + My
where

v, is the final velocity of the first object after impact

vy is the final velocity of the second object after impact

u, is the initial velocity of the first object before impact
u, is the initial velocity of the second object before impact
m, is the mass of the first object

m, is the mass of the second object
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The coefficient of restitution

Sports equipment [edit]

The coefficient of restitution entered the common vocabulary, among golfers at least, when golf
club manufacturers began making thin-faced drivers with a so-called "trampoline effect" that
creates drives of a greater distance as a result of an extra bounce off the clubface. The USGA
(America's governing golfing body) has started testing drivers for COR and has placed the upper
limit at 0.83, golf balls typically have a COR of about 0.78.° According to one article (addressing
COR in tennis racquets), "[flor the Benchmark Conditions, the coefficient of restitution used is 0.85
for all racquets, eliminating the variables of string tension and frame stiffness which could add or
subtract from the coefficient of restitution."”’

The International Table Tennis Federation specifies that the ball must have a coefficient of
restitution of 0.94.°!
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The coefficient of restitution

object H (cm) |hy (em) (h, (em) [hy (em) |hg (em) |hg (em) [hg,. (cm) |c.o.r.
range golf ball 92 67 66 68 68 70 67.8 |0.858
tennis ball 92 47 46 45 48 47 466 ||0.712
billiard ball 92 60 55 61 59 62 594 |0.804
hand ball 92 51 51 52 53 53 52.0 0.752
wooden ball 92 31 38 36 32 30 33.4 0.603
steel ball bearing 92 32 33 34 32 33 32.8 0.597
glass marble 92 37 40 43 39 40 39.8 0.658
ball of rubber bands 92 62 63 64 62 64 63.0 0.828
hollow, hard plastic ball | 92 47 44 43 42 42 43.6 0.688
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Classical 1d elastic collisions

One-dimensional Newtonian [edit]
Consider two particles, denoted by subscripts 1 and 2. Let m. be the masses, u the velocities
before collision and v, the velocities after collision.

The conservation of the total momentum demands that the total momentum before the collision is
the same as the total momentum after the collision, and is expressed by the equation

MUy + Moty = MMV + Maylsy.
Likewise, the conservation of the total kinetic energy is expressed by the equation

maud mpus omgvd o movl

5 T3 T3 T3

These equations may be solved directly to find V. when u.are known or vice versa. However, the

algebra[” can get messy. A cleaner solution is to first change the frame of reference such that one
of the known velocities is zero. The unknown velocities in the new frame of reference can then be
determined and followed by a conversion back to the original frame of reference to reach the same
result. Once one of the unknown velocities is determined, the other can be found by symmetry.

Solving these simultaneous equations for v.we get:

wy (my — my) + 2mous (Mg — my) + 2myuy
my + Mo my + Ny

OR
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Classical 1d elastic collisions

in the center of momentum frame

Classical Mechanics is only a good approximation. It will give accurate results when it deals with
the object which is macroscopic and running with much lower speed than the speed of light.
Beyond the classical limits, it will give a wrong result. Total momentum of the two colliding bodies is
frame-dependent. In the center of momentum frame, according to Classical Mechanics,

MUy + Moty = MU + Moty = 0

2 2 2 2

(mous)? N (maus)? _ (mavy)? N (mavs)?

2my 2ms 2my 2m2
(my + mg)(mqu) (my + m2)(m2v2)
=> Uy = —19
(myuy)? n (myuy)? _ (myv1)? n (myvy)?
2my 2ms 2my 2m2
(my + m?)(mlul) (my + m2)(m1vl)

=> U1 = —1
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Classical 2d elastic collisions

in the center of momentum frame

In a center of momentum frame at any time the velocities of the two bodies are in opposite
directions, with magnitudes inversely proportional to the masses. In an elastic collision these
magnitudes do not change. The directions may change depending on the shapes of the bodies and
the point of impact. For example, in the case of spheres the angle depends on the distance
between the (parallel) paths of the centers of the two bodies. Any non-zero change of direction is
possible: if this distance is zero the velocities are reversed in the collision; if it is close to the sum of
the radii of the spheres the two bodies are only slightly deflected.

Assuming that the second particle is at rest before the collision, the angles of deflection of the two

particles, 1_91 and 192, are related to the angle of deflection 8 in the system of the center of mass by
[2]

| My sin 0 | Ly
t.al'l'ﬂ1 — q 7)2 = — — 0.
my + mey cost 2
The velocities of the particles after the collision are:
\/m1 + m3 + 2mymy cos 0 , 2m, . 6
Ll — l‘ N L‘Q — 1‘1 Slll .

my + My ' my + My 2
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Collision Applets

https://www.msu.edu/~brechtjo/physics/airTrack/airTrack.html
http://surendranath.org/Applets/Dynamics/Collisions/CollisionApplet.html
http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/Collision/jarapplet.htmli
http://burro.cwru.edu/JavalLab/GalCrashWeb/
http:/demonstrations.wolfram.com/ElasticCollisionsOfTwoSpheres/
http://demonstrations.wolfram.com/InelasticCollisionsOfTwoSpheres/

http://demonstrations.wolfram.com/InelasticCollisionsOfTwoRoughSpheres/


https://www.msu.edu/~brechtjo/physics/airTrack/airTrack.html
http://surendranath.org/Applets/Dynamics/Collisions/CollisionApplet.html
http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/Collision/jarapplet.html
http://burro.cwru.edu/JavaLab/GalCrashWeb/
http://demonstrations.wolfram.com/ElasticCollisionsOfTwoSpheres/
http://demonstrations.wolfram.com/InelasticCollisionsOfTwoSpheres/
http://demonstrations.wolfram.com/InelasticCollisionsOfTwoRoughSpheres/

Relativistic 1d Elastic Collisions in the

Center of Momentum Frame

One-dimensional relativistic [edit]

According to Special Relativity,
mv

Where p denotes momentum of any massive particle, v denotes velocity, ¢ denotes the speed of
light.

in the center of momentum frame where the total momentum equals zero,
Pi=7P,
Py = P
\/m%c“ + pic? + \/mgc“ +p3c2 =F
. VE* = 2E?mict — 2E2m3c* + mic® — 2mimic® + mic®
cE

P1

ul=—v

1
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It is shown that U, =-v, remains true in relativistic calculation despite other differences| One of

the postulates in Special Relativity states that the Laws of Physics should be invariant in all inertial
frames of reference. That is, if total momentum is conserved in a particular inertial frame of
reference, total momentum will also be conserved in any inertial frame of reference, although the
amount of total momentum is frame-dependent. Therefore, by transforming from an inertial frame
of reference to another, we will be able to get the desired results. In a particular frame of reference
where the total momentum could be any,

my Uy ma Up my Uy my Vg

+ -+ =
\/1—11.%/62 \/l—ug/c2 \/l—vf/c2 \/1_1;3/&’
myc? mac? myc? moc® E

\/1 —u?/c? " \/l —u/c? \/l —vi/c? " \/l —v2/c?

We can look at the two moving bodies as one system of which the total momentum is Pp the total

Pr

energy is E and its velocity v, is the velocity of its center of mass. Relative to the center of

momentum frame the total momentum equals zero. It can be shown that v, is given by:

_PT<32
- F

Now the velocities before the collision in the center of momentum frame ul' and u2' are:

, U —

Ue

Uy, = ————
1 uiv
1
ur Uy =T,
2 U
-
Ve gy !
Y1 ¥
b g, !
V2 Uy
i+
Ul — 'L"l'l-‘c
1+ ==
g+
UQ — _vaUC
1+ =

Whenul<<candu2<<c,
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Momentum in relativistic mechanics [edit]
In relativistic mechanics, in order to be conserved, the momentum of an object must be defined as

P ="7moVv,
where m_ is the invariant mass of the object and y is the Lorentz factor, given by

0
. 1

1=/

where v is the speed of the object and cis the speed of light. The inverse relation is given by:

c*p c*p

v = —_— y

V(pe)* + (moc®)> B

where p = \/ P2+ pg + p? is the magnitude of the momentum.

[18]

Relativistic momentum can also be written as invariant mass times the object's proper velocity, defined as the rate of
change of object position in the observer frame with respect to time elapsed on object clocks (i.e. object proper time).
Within the domain of classical mechanics, relativistic momentum closely approximates Newtonian momentum: at low
velocity, ymv is approximately equal to myv, the Newtonian expression for momentum.

The total energy E of a body is
related to the relativistic E = m, E+K
momentum p by

2
m, c”

2 2 2 2 4
E =pc+mc
A graphical representation of the interrelation of relativistic energy E, invariant mass &
my; relativistic momentum p, and relativistic mass m = ymy.

2 2 2\2
E® = (pc)” + (moc”)”,
where p denotes the magnitude of p. This relativistic energy-momentum relationship holds even for massless particles
such as photons; by setting m, = 0 it follows that

E = pc.
For both massive and massless objects, relativistic momentum is related to the de Broglie wavelength A by
p="h/X\,

where h is the Planck constant.



Four-vector formulation [edit]

Relativistic four-momentum as proposed by Albert Einstein arises from the invariance of four-vectors under Lorentzian
translation. The four-momentum P is defined as:

P = (E/C,'pl‘apy!pl)v

where E = ymoc2 is the total relativistic energy of the system, and p » and P, represent the x-, y-, and z-components

p
Y
of the relativistic momentum, respectively.

The magnitude IIPIl of the momentum four-vector is equal to m_c, since

0
2 __ 2 2 __ 2
IP[[" = (E/c)” — p° = (moc)”.
which is invariant across all reference frames. For a closed system, the total four-momentum is conserved, which

effectively combines the conservation of both momentum and energy into a single equation. For example, in the

radiationless collision of two particles with rest masses m, and m, with initial velocities V| and V9, the respective final

velocities V3 and V4 may be found from the conservation of four-momentum which states that:
P, +P; =Pz + Py,
where
P.i — My;7; (C, V-i) .
For elastic collisions, the rest masses remain the same (ml =m, and m,=m 4), while for inelastic collisions, the rest
masses will increase after collision due to an increase in their heat energy content. The conservation of four-momentum

can be shown to be the result of the homogeneity of space—time.
Generalization of momentum [edit]

Momentum is the Noether charge of translational invariance. As such, not just particles, but fields and other things can
have momentum. However, where space-time is curved there is no Noether charge for translational invariance.



3.4 The Geometry of the Energy-Momentum Four-Vector 45

P
m
P
M )
ass Figure 3.3. Finite mass hyperbola.
pO
Sheels
P,
P
Figure 3.4. Zero mass hyperbola.

mass zero. Their mass hyperbola is the cone depicted in Figure 3.4.
Conversely, particles with zero invariant mass travel with the speed of
light. One can easily show (see Exercise 1) that, if the four-momenta
of two particles are added (i.e., if the corresponding components are
added to obtain the components of the sum), the resulting four-
momentum is timelike, the invariant being greater than zero, or light
like, the invariant being zero. It is lightlike only if the two original
four-momentum vectors are themselves lightlike, with their space
momenta parallel. It follows that in adding the four-momenta of any
number of particles, one always obtains a timelike four-vector (unless,
of course, all the particles’ four-momenta that are added are lightlike
with all three-momentum vectors parallel). This four-momentum has
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does not *‘soft land,”’ that is, we assume that y’(7(8)) < 0,
where T(6) is the impact time. From (2) and the definitions
of f, and f,, we have

y'(t)=v sin Of3(t)—gfs(t)=e N (v sin 6~ gf3(1))

and hence the impact assumption is
v
f3(T(6))>§ sin 6. )

In terms of the function
R(0
p(0)= ;—ggs—);
we have by (1),
R(8)=x(T(6))=v cos 0f,(T(6))
and hence
T(6)=f; '(p(6)).

The impact assumption (9) is therefore equivalent to

fg(f;’(p<a)>)>§ sin 6. (10)

Now, R(#8) is differentiable if and only if p(6) is differen-
tiable. By (3), p(8) is defined by P(p(8), 6)=0, where

P(p,8)=v sin 6p—gfs(f3 '(p)).

Finally, at p = p( ),

P o
2, =0 Sin 6=efi/2 (o) (p)

=v sin 6—gf3(f; '(p))<0

by (10), and hence p(6) is differentiable by the Implicit
Function Theorem.

1G. Galilei, Two New Sciences (Elzevirs, Leyden, 1638), translated with a
new introduction and notes, by Stillman Drake (Wall and Thompson, Tor-
onto, 1989), 2nd ed., p. 245.
2S. Drake and 1. Drabkin, Mechanics in Sixteenth-Century Italy (University
of Wisconsin Press, Madison, 1969), p. 91.
3K. Symon, Mechanics (Addison-Wesley, Reading, MA, 1953), p. 38.
“H. Erlichson, ‘‘Maximum projectile range with drag and lift, with particu-
lar application to golf,”” Am. J. Phys. 51, 357-361 (1983).
5T. de Alwis, “Projectile motion with arbitrary resistance,”” Coll. Math. J.
26, 361-366 (1995).
6], Lekner, ‘“What goes up must come down; will air resistance make it
return sooner, or later?,”” Math. Mag. 55, 26-28 (1982).
"R. Courant, Differential and Integral Calculus (Interscience, New York,
1961), Vol. I, p. 114.

Minkowski diagrams in momentum space

Eugene J. Saletan

Physics Department, Northeasten University, Boston, Massachusetts 02115
(Received 3 February 1997; accepted 12 February 1997)

I. INTRODUCTION

Minkowski diagrams in configuration space, with points
representing events, are often used in undergraduate courses
on special relativity. Similar diagrams in momentum space
are seldom shown, and the object of this note is to demon-
strate their pedagogical usefulness in discussing particle in-
teractions. In configuration space each point has coordinates
(t,x); in momentum space the coordinates are (E,p). Two
examples should be sufficient to show how such diagrams
can be used.

II. EXAMPLES

A. Fission

In this example there is just one space dimension:
Minkowski space is two dimensional. A particle of mass m is
represented by its mass shell, a hyperbola opening in the
positive E direction, given by

2 f
(E) —p2?=(mc)>.

c

799 Am. J. Phys. 65 (8), August 1997

Figure 1 shows two such mass shells belonging to masses
m and M>m, each labeled by its mass. The scale on the
energy axis is chosen as E/c rather than E, so the two mass
shells cross the E/c axis at mc and Mc, respectively. Each
point on an m mass shell represents a state of a particle of
mass m, i.e., possible values of its energy and momentum. A
vector from the origin to such a point represents the energy—
momentum (E—p) vector of that state.

Consider a particle of mass M at rest, say a uranium
nucleus, that undergoes fission to two particles of equal mass
m. The vertical arrow in Fig. 1 represents the original ura-
nium E—p vector. E~p conservation implies that the E-p
vectors of the two fission fragments add up to the original
one, and since the total momentum is zero, the momenta of
the two fission fragments must be negatives: their E—p vec-
tors have opposite p components. Symmetry of the m mass
shell about the E/c¢ axis then implies that their E/c compo-
nents are equal, and conservation then implies than each
E/c component is equal to Mc/2. It is clear from the dia-

© 1997 American Association of Physics Teachers 799



Fig. 1. Fission.

gram that each E/c¢ component is higher than the point at
which the m mass shell crosses the E/c axis, i.e., greater
than mc, so m<iM,

Mc—2mc=Amc>0.

As the fission fragments interact with their surroundings,
they slow down and eventually come to rest. Then their total
E/c is 2mc, so the energy they give up to their surroundings
is just AE=Amc?. This is the real content of the famous
equation E=mc?, involving measurable energy changes
rather than absolute values relative to some more or less
arbitrarily chosen zero of energy. Note that the mass of the
fission fragments is not determined. But because their ener-
gies are both 1M c?, the mass m and momentum p are related
by

(%Mc)z—p2=(mc)2.

The logical order in which to present this in class is first to
draw the M mass shell, then the two E—p vectors of the
fission fragments, and only then to draw in the m mass shell.

This example is easily generalized to fission fragments of
unequal masses. Also, a similar diagram can be used to il-

¥

Fig. 2. Compton scattering.

|
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D

Fig. 3. Compton scattering (detail).

lustrate fusion or the binding energy of the deuteron. Then
M is less than 2m, and the M mass shell crosses the E/c
axis below 2mc.

B. Compton scattering

Now take Minkowski space to be three dimensional, as in
Fig. 2. The mass shell is now a hyperboloid of revolution. In
the figure the intersection of the (E/c,p,) plane with the
electron mass shell is the hyperbola labeled m,, and the
intersection with the light cone consists of the two lines la-
beled y. The light cone is the mass shell of the photon,
whose equation is

5] =0

c

The vertical arrow in Fig. 2 is the E-p vector of an elec-
tron at rest, and the other arrow represents an incident pho-
ton. The system’s total E—p vector is represented by the
point labeled A (the vector to A is not drawn to avoid con-
fusion). After scattering, the electron E—p vector (again on
the electron mass shell) plus the scattered photon E-p vec-
tor (again on the light cone) must add up to A. A way to
draw this is to construct an inverted light cone L with its
vertex at A. The E—p vectors of all possible scattered pho-
tons arrive at A from the closed curve, almost a circle, at
which L intersects m, in this three-dimensional space~time
(in four dimensions this would be a closed surface, almost a
sphere).

Figure 3 is an enlargement of part of Fig. 2. One possible
combination of scattered electron and photon E—p vectors is
indicated with arrows. The direction of the scattered photon
is obtained by projecting its E—~p vector onto the (p;.p3)
plane, so the different lines on the cone represent photons
moving in different directions. It is immediately evident that
the photon energy E, and hence its frequency v and wave-
length A, are determined by its direction.

ITI. CONCLUSION

Other particle interactions can also be visualized on simi-
lar Minkowski diagrams. The goal of this note is to show
how the dynamics can be visualized, not to perform the cal-
culations. The equations of the mass shells can be used, how-
ever, as a starting point for going on to the calculations.

Notes and Discussions 800
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Compton Scattering Algebra

Solution
Week 69 (1/5/04)

Compton scattering

We will solve this problem by making use of 4-momenta. The 4-momentum of a
particle is given by

PE(P07P17P27P3)E(EupIcapycapzc)E(E7pc)' (1)
In general, the inner-product of two 4-vectors is given by
A-B= AoBO — AlBl — A2B2 — A3B3. (2)

The square of a 4-momentum (that is, the inner product of a 4-momentum with
itself) is therefore
P =pP.P=F?—|p*? =m’" (3)

Let’s now apply these idea to the problem at hand. We will actually be doing
nothing here other than applying conservation of energy and momentum. It’s just
that the language of 4-vectors makes the whole procedure surprisingly simple. Note
that conservation of F and p during the collision can be succinctly written as

Pbefore = Pafter- (4)

Referring to the figure below, the 4-momenta before the collision are

he h
P, = (AC ;,0,0> . Py =(mc2,0,0,0). (5)

And the 4-momenta after the collision are

he hc he
P/ = (X,XCOSG,X

“ sin 6, O> , P! = (we won't need this). (6)

If we wanted to, we could write P/, in terms of its momentum and scattering angle.
But the nice thing about this 4-momentum method is that we don’t need to introduce
any quantities that we’re not interested in.
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Compton Scattering Algebra

Conservation of energy and momentum give P, + Py, = P, + Py,. Therefore,

(Pv‘*‘Pm_P«;)Q = Pg
= P2+ P + P?+ 2P, (P, — P)) - 2P,P, = D}
he  hc he he 9 4

2 4 2
= 0+ m“c" + 0+ 2mc (7—7)—277(1—0059) = m°c. (7)

Multiplying through by AN /(2hmc?) gives the desired result,

X:)\—i-i(l—cos@). (8)

mc

The ease of this solution arose from the fact that all the unknown garbage in P/,
disappeared when we squared it.

REMARKS:

1.
2.

If 6 ~ 0 (that is, not much scattering), then X' ~ )\, as expected.

If @ = 7 (that is, backward scattering) and additionally A < h/mc (that is, mc? <
he/\ = E,), then ' =~ 2h/me, so

he he 1
Efyzyzzzﬁmc. (9)

mc

Therefore, the photon bounces back with an essentially fixed Efy, independent of the
initial F, (as long as E. is large enough). This isn’t all that obvious.
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Evening MS Projects

Independent Study Project

with a physics professor or with
a suitable” professor and topic
in another department

min 6 credits of Physics 600
max 18 credits of Physics 600

Procedure

Do your research

Write your project paper

Make your project presentation
Answer questions from your
exam committee

*Prof. Wilkes defines suitable



Project Categories

(1) With a campus research group
physics, applied physics lab,
geophysics, medical physics,
biophysics, astronomy, ...

(2) Related to employer
Boeing, Synrad, Microvision, ...

(3) Related to EMS Lab classes
SPR, EPR, Chaos, The Lamb Shift, ...

(3) Related to teaching
virtual books, new labs, software

(4) Purely curiosity driven
Tokamaks, Virtual Photons, Sprinklers



Project Title

Electrodynamics and Riemannian Gravitational Interaction

Investigating in-service teacher, college student, and high school

student conceptions of Newton's Second Law: A comparative
analysis

A Computer Simulation of the X-ray Fluorescence Holographic
Technigue in Crystallography
EPR Correlations in Annihilation Photon Experiments

Measurement of Tip-Sample Forces in Tapping Atomic Force
Microscopy

The Effect of the Scattering Phase Shift Delta on Atomic
Resolution Internal Source X-ray Heolography

Ultrasound Reflection from Specular Targets in Homogeneous
and Inhomogeneous Media

Automatic Pattern Recognition of Farticle Beam Tracks using
Clustering Methods and User-Interactive Mode

Neural Networks: A Back-propagation Network for Particle
Identification in a Neutrine Detector

Chirp Sonar System Development and Testing

Physics Faculty
Superviser
M. Baker

L. McDermott

L. Sorensen

L. Sorensen

3. Famn

L. Sorensen

R. Ingalls

J. Wilkes

J. Wilkes

J. Wilkes
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curves. This behavior is generated by neuronal dynamical systems with fixed points that remain stable
regardless of input mean. Thus, these neurons never fire repetitively at steady state in response to
noiseless input. We focus in this work on Type B+ neurons whose firing rates are sensitive to input
fluctuations throughout the dynamic range and which fire repetitively at steady state to noiseless input.

2D model demonstrating three types of f-I curves

We begin with a 2D model, similar to the Hodgkin-Huxley neuron, that can demonstrate three types of
f-I curves: Type A, B+, and B- (Figure 2). We wish to identify the specific characteristics of the
differential equations describing the neuronal dynamics that lead to the generation of Type A vs. B+
behavior. For two-dimensional dynamical systems, these characteristics can be explored geometrically
using phase portraits. To do this, we reduced the standard 4D HH model to two dimensions by
eliminating the time dependence of m and letting 4 linearly depend on n (Izhikevich, 2007); we slightly
altered the kinetics and conductances. We then examined 2D model trajectories in the phase plane for
each of the neuron types.

Type A Type B+ Type B-
150
—~ 200
E 30
5 75
if
0
0 60 120 0 60 120 0 60 120
uA/cm2 pA/cm2 pA/cm2

Figure 2: A two-dimensional modified and reduced Hodgkin-Huxley (HH) model neuron can
show the three classes of behavior. Type A is similar to the standard HH model and is insensitive to
input SD for high currents. In contrast, Type B+ is sensitive to input SD throughout the dynamic range
but still fires repetitively to inputs with SD = 0. Type B- models never fire repetitively when input SD
= 0 and never undergo a bifurcation from stable fixed point to limit cycle. For the three models, Gy,
and T were [50 50 15] mS/cm?* and [5 100 5] msec, respectively. Other parameters were as given in the
Methods section.

Two-dimensional dynamical systems can be analyzed by examining a phase portrait, which is a plot of
one dynamical variable against the other (Strogatz, 1994; Gerstner and Kistler, 2002; Izhikevich,
2007). In this case, the model has a “fast” activation variable V and a “slow” inactivation variable n. V
is the model’s membrane voltage, while n is a combined variable, called the inactivation variable,
representing sodium channel inactivation as well as potassium activation. As the membrane voltage V
spikes in time, the neuron’s trajectory travels counter-clockwise around the phase plane (Figure 3). The
upswing and downswing of the action potential (dashed lines) correspond to the left-to-right and right-
to-left trajectory jumps, respectively, between the V-nullcline (curvy, solid line). The V-nullcline and
n-nullcline (straight, solid line) correspond to points on the phase plane where dV/dt = 0 and dn/dt = 0,
respectively.
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Figure 5: Input fluctuations do not change the mean firing rate when t is small, but increase
firing rate when 7T is large. (a) When 7 is small (5 msec), input fluctuations (SD = 10 puA/cm?)
increase the variance of n during the up- and downswings of the action potential, but do not alter the
mean value of n. Histograms are shown at right during action potential upswing (V = -20 mV) and
downswing (V= -40 mV), as indicated by the vertical black lines on the phase portraits. The dashed
lines represent the value of n when input SD = 0 mV, while the solid lines show the mean values of the
data. The dashed and solid lines are nearly the same; the neuron’s firing rate does not change with
increased input SD, but spiking becomes irregular. (b) When 7t is large (100 msec), increasing input
SD leads to an increasing mean firing rate. Although the mean value of n during the action potential
downswing does not appreciably change, during the upswing <n> increases, since on average the input
SD causes the neuron to spike sooner, i.e. before n has returned to the minimum. The input current /

had a mean of 100 pA/cm’.



Defining an effective potential barrier

Since noise causes the trajectory to jump across the threshold sooner, this implies that there is a barrier
that prevents crossing in the absence of noise. To gain insight into how noise drives spiking, we
examined how noise-driven trajectories escape over a barrier. Consider a simple 1D model as in
Figure 6a, where input fluctuations of typical scale ¢ cause trajectories to move in the voltage V
dimension, such that sometimes the trajectory can overcome an effective potential barrier AU located
at a threshold for spiking. This picture is reminiscent of problems in physics and chemistry wherein the
activation rate is determined by the size of an energy barrier and the temperature and is given by the
Arrhenius rate equation, r ~ exp(-AU/kT). In our case, thermal energy kT is replaced by a factor
proportional to the variance of the driving current fluctuations, 6°.
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Figure 6: Input fluctuations can shorten interspike intervals by causing the neuron’s trajectory
to cross an effective potential barrier. (a) A simple 1D model relates spike initiation to crossing an
energy barrier and suggests an exponential relation between barrier height and the inactivation time
constant for a given level of input fluctuations. (b) An effective potential landscape can be found by
integrating dV/dt (solid, blue line) with respect to V for constant n. The result of the integral is
represented by the dashed, green line. (¢) The effective potential landscape changes as n changes, and
potentials are shown for three specific values of n, which represent three different slices through the
inset of (b). The action potential upswing and downswing occur at approximately n = 0.56 and n =
0.66, respectively. The middle hump is the barrier related to the spiking threshold. Units are defined up
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