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Electromagnetics and  Differential Forms 
GEORGES A. DESCHAMPS, FELLOW, IEEE 

Invited Paper 

Abstmct-Differential  forms  of  various  degrees go hand in hand with 
multiple  integrals.  They  obviously  constitute  an essential tool  in  ex- 
pressing the laws  of  physics. Some of  their structures, however  (ex- 
terior  algebra,  exterior  differential  operators, and others),  are  not 
widely known or used. This article  concentrates on the  relevance  of 
the  “exterior  calculus” to electromagnetics. It is shown that  the 
association  of  differentid  forms  with  electromagnetic  quantities is 
quite  natural.  The  basic  relations  between t h k  quantities,  displayed 
in  flow dingrams, make use of  a  single operator “d”  (exterior  dif- 
ferential)  in  place  of the familiar  cud, grad and div operators of  vector 
calculus.  Their  covariance  properties  (behavior  under  change  of vari- 
ables) are discussed. These  formulas  in  space-time  have  a  strikingly 
concise  and  elegant  expression.  Furthemore,  they are also invariant 
under  any  change  of  coordinntes  involving  both  space  and  time. 
Physical dimensions of the electromagnetic  forms  are such that only 
two units (coulomb  and  weber, or e andg) are  needed. 

A few  sample  applications  of  the  exterior  calculus  are discussed, 
mostly to fnmiliarize  the  reader  with  the  aspect of equations written 
in this manner.  The  transition  ftom dfierential to integral  formulas 
is uniformly  performed  by  means  of  Stokes’  theorem  (concisely  ex- 
pressed  in  terms  of  forms).  When  integrations  over  moving  domains 
are  involved,  the  concepts  of  flow  and  Lie  derivative  come into play. 
The  relation  of the topology  of  a  region to the existence of potentials 
valid in  that  region is illustrated  by  two  examples:  the  magnetic  field 
due to a  steady  electric  current and the vector  potential of theB-fEld 
due to a  Dirac  magnetic  monopole. 

An extensive  appendix  reviews most results  needed  in the main text. 

I .  INTRODUCTION 

D IFFERENTIAL  forms are  expressions on which integra- 
tion operates.  They obviously constitute  an essential 
tool in expressing the laws  of  physics. Some of their 

properties, however,  came to  light  only  after the work of E. 
Cartan at  the beginning  of the  century.  They were applied 
mostly to differential  geometry  and  they  are not  yet widely 
known  or  appreciated. A key property is that differential 
forms possess a  natural algebraic structure which  was first  con- 
sidered by H. Grassmann to  deal with the calculus of  “exten- 
sions”  (Ausdehnung)  and is now  known as exterior  algebra. 
Furthermore, an operation designated by  “d”  and called ex- 
terior  derivative (or  exterior  differential)  operates on differen- 
tial  forms to produce  forms of one degree  higher. The  operation 
d replaces, and  does generalize, the familiar curl,  grad,  and div 
operations of vector calculus. It obeys simple rules that are 
easy to memorize and  leads to  a  most elegant formulation of 
Stokes’  theorem. 

The  applications of the calculus  of differential  forms (also 
called exterior  differential calculus to emphasize the role of 
exterior algebra and  exterior  derivation) go far  beyond differ- 
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entia1 geometry.  Exterior  differential  forms  are  considered an 
essential tool  for classical mechanics [ 11, [ 21, geometrical 
optics, semiclassical quantum mechanics, a d  ~~ofe-- 
the  theory of  gauge fields. 

The main purpose of this article is to introduce  the applica- 
tions of exterior  differential  forms to  electromagnetics. This 
formulation is not  new;  it does  appear  in  a  few  recent  texts 
in mathematics  and  in [ 3 1 4  51 addressed to physicists, and  in 
a short expos6  by the present author [ 6 ,  ch. 31. The  differen- 
tial form  approach  has  not  yet  had  any  impact on engineering 
in  spite of its convenience, compactness,  and many other 
qualities. The main  reason for  this is, of course, the lack  of 
exposure  in engineering publications: the  entire  literature  on 
the subject of electromagnetics is written  in  vector calculus 
notation.  It is hoped that  this  article will help remove this 
obstacle to a wider use of these  techniques,  and  demonstrate 
some of the real advantages  of this  new  notation. 

To make the article  self-contained,  a  short review of the 
main properties of exterior calculus is presented in the 
appendices.  Those  familiar with  this  topic will  need only  a 
cursory glance at  this section,  mostly to  get acquainted  with 
the particular  notations used in  the  text. Others will  find 
there all the results necessary to  follow the main text. Refer- 
ences  should  be  consulted for proofs  and  complementary 
information. 

The main body of this  article is organized as follows. First, 
the  representation of electromagnetic  quantities by differential 
forms  (Section I) is introduced  by relying on  the familiarity of 
most  readers  with the  notation of multiple integrals: a  differen- 
tial  form is the  complete  integrand  appearing  under  an  integral 
sign. For less-known properties of these  forms,  such  as  their 
algebraic structure  and  the definition of exterior  differential, 
as well as  for  a precise definition of a  differential  form  as  a 
field of multicovectors, the appendix must  be consulted. 

Next  in  Section I1 the  equations  relating  electromagnetic 
quantities  are  presented in the  form of flow diagrams. The 
single operator  “d”  (exterior derivative,. or  differential) re- 
places the usual curl, grad and div operations. Its properties, 
discussed in  Appendix H, show,  in  particular, the following 
covariance property:  the  form of the  equations is independent 
of the variables used.  In  space-timethe field quantities pair up 
to  produce new differential  forms whose relations  are  strik- 
ingly  simpler. Those  relations also enjoy the covariance 
property.  Consideration of the physical dimensions of the 
differential  forms  and  their invariance under  the  operator  d 
show that only  two basic units  are  needed:  that of electric 
charge and  that of magnetic  charge.  These  may  be coulomb 
and weber in SI units, or e (the electron charge) and g (twice 
the magnetic  pole charge). In  Section IV, some familiar re- 
sults about  reciprocity  (Section IV-A), Huygens’  principle 

0018-9219/81/0600-0676$00.75 0 1981  IEEE 



DESCHAMPS:  ELECTROMAGNETICS AND DIFFERENTIAL FORMS 611 

(Section IV-B) and the Kirchhoff approximation  (Section 
IV-C) are  presented in terms of differential  forms to acquaint 
the  reader  with  the aspect of differential  form  equations.  The 
integral  formulations of electromagnetics are deduced  from 
the  differential  equations  by means of Stokes’  theorem 
(Section IV-D) and  are generalized to moving domains of 
integration  (Section IV-D) by using  Lie derivatives (Appen- 
dix L). Finally (Section IV-E), the  existence of potentials is 
discussed for simple examples and is shown to be related to 
PoincarB’s  lem-ma. 

11. REPRESENTATION OF ELECTROMAGNETIC 
QUANTITIES BY DIFFERENTIAL FORMS 

Differential  forms  are expressions on which  integration 
operates.  Forms of  degree p,  or p-forms, are expressions that 
occur in p-fold integrals, i.e., integrals over domains  (or 
chains) of dimension p. It is not surprising that  these  forms 
occur widely in physics and in particular in  electromagnetics. 
We shall introduce  forms of various degrees (1,2, 3, and 0) by 
describing some  electromagnetic  quantities  that  they  represent 
quite naturally. 

Consider first the electric  field,  conventionally  represented, 
in  rectangular  coordinates,  by  a  vector 

Z ( r ) = X 9 +  Y p + B  (1) 

where 9, 9 ,2  are  unit  vectors,  and (X, Y, 2) are  functions of 
r = (x,  y, z). (In  rectangular  coordinates  the unit vectors P,p, 
and 2 are also represent$  by a,, a,, a, as described in 
Appendix G.) The  vector E is interpreted as the  force  acting 
on  a  unit electric charge, at rest at  point r. It serves to com- 
pute  the work done  on  this  test charge when it is moved along 
a  path’ 

This work is represented  by  the  line  integral 

w = l T X d x + Y d y + Z d z .  (3) 

The quantity  under  the integral sign is precisely a differential 
form of degree one,  a  one-form,  that we shall designate by  E 
without  the  arrow. At some  point I ,  the  form  E(r) may be 
considered as a linear operator which applied to  a displacement 
vector 6r  gives the work done by E  on  a  unit charge. Thus, 
E(r) is a  covector,  element of the  dual of the space of vectors 
with origin at r.  The  work is the  duality  product  EISr (see 
Appendices B and G). The  integral (3) may be regarded as the 
limit of a Riemann  sum: 

Z(Ei 160) = Z(XjSiX + Yj6 jy + ZjSiZ) (4) 

where the arc of  curve 7 is approximated  by  a polygon de- 
fined  by  the  points (rl ,r2, * * * ,  r ~ ) ,  Sir= ri+l - ri  (with 
components  Six,  Siy,  Siz),  and El = E(rj). The limit is taken 
as the largest 16iyl approaches  zero.  The  integral (3), called 
the circulation of E along 7, will be written Elr. The  vertical 
bar is unnecessary if one pays attention to the  nature of the 
factors: (one-form 1 curve) = scalar. 

The  replacement of the  vector field E’ by the  one-form  E and 
writing ts instead of E * 6r may  seem insignificant at this  point. 

into  set E,  carrying element a of A into  element b of E .  
’ The notation f : A  + E x  t+ b means that the function f maps set A 

However, it  must be noted  that in the second expression one 
needs to give meaning to  the scalar product, which requires a 
metric,  such as the Euclidean metric implied by rectangular 
coordinates.  In  contrast,  the  one-form E can  be written  in  the 
same manner  in  any system of coordinates.  For  example,  in 
spherical  coordinates ( r ,  8, @) 

E = R d r + @ d B + @ d G  (5) 

where (R, 0, @) are  functions of ( r ,  e,@). The  integral E 17 in 
that case is calculated in  exactly  the same manner as  pre- 
viously, by Riemanxn sum,  or  better by pullback (see Appen- 
dix I). The  vector E can still be deduced  from  the  form E, but 
not  anymore  by replacing (dr, dB, d@)  by (?,#, &. Metrical 
coefficients  become involved, which should, in fact, be irrele- 
vant since they  occur also in forming  the scalar product 
3 Sr in  such  a  manner  that  they cancel. 

An example of a  two-form  and  its  interpretation is provided 
by the electric  current. Conventionally represented by a cur- 
rent  density  vector 

-. 
I =  a+ V9+ Iv2 (6) 

it serves to express the  current  through  an  oriented surface S 
by means of the integral 

where n’ is a  unit  vector normal to  the surface S. The  quantity 
under  the two-fold integral (7) is a  two-form,  that can be 
written 

J=Udydz+Vdzdx+Wdxdy .  (8) 

The  current  through S is then JsJ, which we shall also write 
JIS, as it can be interpreted as the limit of a Riemann sum 

JIS = lim Z Jj16iS (9) 

where each  term is the duality  product of Jj  (two-form J at 
point  ri  on  the  surface)  by a two-vector 6$ which  represents 
an  element of a  polyhedral  surface  that  approximates S. The 
actual  computation of (7) is better carried out by means of the 
pullback of some  parameterization of S (see App5ndix I). 

In  rectangular  coordinates, J is deduced  from I by replacing 
(a,O,P) by  (dxdz, dzdx, dxdy). In curvilinear coordinates, 
the expression I involves the  metric (in  integral (7) one needs 
a scalar product  and  the  notions of unit  vector  and of vector 
normal to  a surface), while J does not. This can be of advan- 
tage when evaluating J l S  the flux of J through  some surface S. 

An example of a  three-form is provided by the electric 
charge. Conventionally represented  by  a  density q, a scalar 
function of position,  it serves to express the charge inside a 
volume V by the integral 

The  quantity  integrated is a  three-form 

p = q dxdydz. (1 1) 

The content of V in  electric charge is Jvp, denoted p I V. It is 
the limit of a Riemann sum of duality  products pi I& V. 

Finally, scalar functions of position, such as the potential 
H r ) ,  are considered as zero-forms. They  “integrate” over 
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regions of dimension zero, e.g., a point or a set of points. At 
point A the integral 

+=+I f4  (12) 

is taken  to  be  the value of @ at  point  A.  The  points may be 
“oriented,” i.e.,  given a sign. Then, 

@l(-A)= -+1A = -@(A). (13) 

Other  quantities occurring in  the equation of electromagnetics, 
H ,  D, A,  B ,  etc., can  all be made into differential forms of ap- 
propriate degrees. This is done  by looking at  the dimension of 
the domain over  which they  are  integrated:  the degree of the 
form equals the dimension of the domain. 

Conventional notations have been preserved by using the 
same letters  for  the corresponding forms. Their degree can be 
read from the Tables I, 11, and 111. 

The correspondence with conventional  representations can 
all be expressed by means of the  overbs and %e star  operators 
defined in Appendices E and F. Thus, E = r, J =  3, q = *p .  

111. EQUATIONS OF ELECTROMAGNETICS 
The equations that  relate  the electromagnetics quantities 

will now be presented. Their proper introduction,  in a text- 
book  manner, should start with a description of the basic 
experiments  (Coulomb, Ampire, Faraday,  etc.): leading step 
by step  to  the final result using differential forms all  along. 
This article does not allow enough space to do  this  properly. 
Therefore, we shall state  the  equations without other justifica- 
tion  than  their  internal consistency and  their agreement with 
the familiar vector calculus expressions. The task of translating 
these equations back and  forth between the  two formalisms 
and checking their agreement will be left to  the reader. 

A. Flow Diagrams 
The  equations of electromagnetics are displayed in Tables 

I, 11, and 111. All quantities are represented by forms 
of various degrees, and they are designated by  the  letters con- 
ventionally used in  the  vector  representation.  The  vector cor- 
responding to a one;form is obtained by means of the overbar 
operator (e.g., E + E  = E), while a vector corresponding to a 
two-form results irom  the  star operator composed with the 
overbar (e.g., J -+ I = 4 ) .  Note that  vectors corresponding to 
one-forms and two-forms are sometimes called polar and axial, 
respectively. This indicates  different behavior under  reflection 
which are obvious for differential forms  submitted to a pull- 
back under  this  operation. 

The equations  decompose into  two sets displayed in Table I 
(Maxwell-Faraday) and Table I1  (Maxwell-Ampire). In  the 
upper  part of these tables, and also in Table 111, diagonal 
arrows represent  the  operator d (with respect to space vari- 
ables) and  horizontal arrows the time derivative a,, or,  for 
fields at frequency a, the product by -io (e- iuf  convention). 
(The arrows for d go down in Table I,  up  in Table 11, only to  
facilitate  putting  the  two  tables  together in Table 111.) A bar 
across an  arrow means a negative  sign. The quantity in any cir- 
cle is the sum of those  contributed  by  the arrows leading to it. 
Thus, B =  aA, O =  dE+ a t B ,  E = -d@- dA, etc. Since 
d * d = 0, dB = 0 follows from B = dA. Conversely (Poincari 
lemma), if dB = 0 within a ball or a domain homeomorphic to 

- 
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TABLE I 
MAXWELL-FARADAY EQUATIONS 

3-form 

SPACE-TIME FORMLATION 

I A-&l B+Edi 

I I-form 2-form S f o r m  

TABLE I1 
MAXWELL-AMPBRE EQUATIONS 

I-form d 
SPACE-TIM FORMULATION 

1 1 

it, there exists an A in that domain  such that dA = B (see 
Appendix K). 

The  equations in Tables I and I1 have the same expression in 
any  system of coordinates (see Appendix I). This ceases to  be 
true when the  relations between the  two  tables  are considered. 
With vector  notations, this relation is expressed by 

D = e O E  s=&z (14) 
where eo ,  p,, are the material constants,  permittivity,  and 
permeability. 

In-these  :quations, E’ and 2 correspond to one-forms E and 
H, D and B to two-forms D and B .  The  relation  between  the 
forms becomes 

+ - a  

D = E ~   * E  B = , L L ~  * H  (1 5) 

where * is the  star  operator  in R 3  defined in Appendix F, 
equation (F.8). We shall write 

D = E E  B = p H  (1 6) 

making E and p into  operators eo *, p,, *, that  include  the  star. 
In Table 111, the vertical arrows represent E when they  point 

upward, p when they  point downward. They indicate a relation 
only  between the  two elements that  they connect,  and  their 
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0 - t o m  

TABLE I11 
ELECTXOMAGNLTICS FLOW DIAGRAM 

- 3-form 

contribution is not to be added to others. Thus, B equals to 
dA and to p H ,  but  not  to  their sum. 

On the  left of the Table 111, the small circles inside @ and 
A represent  quantities - 8 4  and dA that can be added to 4 and 
A without changing the fields (Appendix K). This is called a 
gauge transformation of the  potential. A gauge transformation 
exists which  ensures the  condition 

a,(€@) + db-1 A )  = o (17) 

called the  Lorentz gauge condition. This, in  turn, implies the 
relations indicated by curved  arrows: G and L are inverse 
operators.  For  harmonic fields L = -(A + k2) and C is con- 
volution  by eikr/4nr. 

To  any  differential  equation  (in  three  or  four  dimensions)  in 
Tables I, 11, and 111, there  corresponds an integral relation that 
results from  Stokes’  theorem. For instance,  Faraday’s  law 

dE+ arB= 0 (18) 

implies  for  a  surface S bounded  by  the  area r = as, 
( d E + a , ~ ) l S = E l r + ( a , B ) l S = O .  (19) 

The  flow diagrams  may also be used as they  stand to discuss 
the  equations  in vector  notation.  The  diagonal  arrows  then 
represent  grad, curl, or div in  an  obvious  manner. 

B .  Space-Time  Representation 
The  lower  parts of  Tables I  and I1 show  how  quantities  in 

each  column of the  upper  parts can be combined into  a dif- 
ferential form  in  the four-dimensional  space R4. If d now 
indicates  a  differential  with  respect to space  and  time, 

d = d + d t a , .  (20) 

The  quantities 

a = A - @ d t  
@ = B + E d t  (21) 

are related by 

a @ 0 (Table I) (22) 

while 

*= D -  Hdt  
y = p  - Jdt  (23) 

are related by 

\k 7 5 0 (Table 11). (24) 

Equations (21)  and  (23)  illustrate d - d = 0 and the Po inwi  
lemma.  Each triplet of arrows that relates one  column to  the 
next in the  upper  parts of Tables I and I1 represent  the 
operator d .  Material constants  represented  by  operators E, p 
can  be combined into a single star  operator *4 such that 

\k = *@. (25) 

In  vacuum  this  star  operator is precisely the  star  operator 
characteristic of the Minkowski metric (see Appendix  F, 
equation  (F.15)). 

The  correspondence  between three- and  four-dimensional 
formalism is summarized  in  Table IV. 

The  simplification that results from passing to a  four- 
dimensional  formalism  led  Sommerfeld [ 7, p.  2121 to exclaim, 
“I wish to create the impression  in my readers that  the  true 
mathematical structure of these  entities will appear  only  now, 
as in  a  mountain  landscape  when  the  fog lifts.” With differen- 
tial forms,  this  landscape is even more striking: all the equa- 
tions are consequences of 

d @ = O   d * @ = 7  (26) 

where *is the  star  operator  for  the Minkowski metric. 

C. Lorentz Force Equation 
The  equations discussed in Sections 111-A and €11-B permit 

the  determination of fields due to known sources  (currents  and 
charges). They have to be  completed  by  equations that tell 
the  effect of a field on charges at rest or  in  motion. For  a 
point  charge q ,  this is given  by the  Lorentz  force  equation. 

Its relativistic expression involves the field 

@ =  B +   E d t  (27) 
which  for  this  reason  could be  called the force-field, distin- 
guishing it  from  the source-field 9 = D - Hdt .  (The fields @ 
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TABLE IV 
RELATIONS BET-N THE T ~ E E -  AND FOUR-DIMENSIONAL  FORMULATIONS 

OF THE EQUATIONS OF ELBCTROMAGNETICS 

Formulation  in  Formulation  in 
SpaceTime  R3*  Correspondence  Space R 

First  set of equations:  Maxwell-Faraday 01 # 4 0 

Potential  One-Form 
Ci 

EM Force-Field # 
(two-form) #=Edt+B (E, B) 

E = E l d x + E z d y + E 3 &  
B=Bl&dx+Bz&dx+B3dxdy  B=dA # = d u  

(Unit: Weber  or 
I I E = -d+ -A 

magnetic  charge 
g = 137e) dcr=dA-(A+d@)dt 

d#=O  d#=(dE+h)dt+dB 

Gauge  Transformation 
a-+a+df df = df + j d t  

Second  set of equations:  Maxwell-Amp6re \k --+ 7 4 0 d d  

EM Source-Field * 
(two-form) * = D - H d t  (D, H) 

d\k=7 

Charge  Current 7 

(Unit:  Coulomb  or 

D = D 1 d y d ~ + D z d ~ d ~ + D 3 d x d y   d D = p  
H=HI  dX+Hz d y + H ~  dx dH-D=J  

(three-form) 7 = p  - J d t  ( P ,  J )  

t P = q  dx dy dz 
electron  charge e) J = J 1 d y d z + J z d ~ d x + J g d ~ d y  

Continuity eq. 
dy = 0 dT=-G+dJ)dt  d J + j  = 0 

The  differential  d  applies only to space coordinatp,  while d applies also to  time.  The  dot  means a 
time  derivative. 

and \k have been called FARADAY and MAXWELL by 
Misner et  al. [ 31-[ 51 .) 

The  motion of the charge is a trajectory in R 4 .  The  arc 
along this  trajectory, measured with the Minkowski metric, is 
the proper  time s. The velocity drlds = u is a unit  vector 
tangent to the  trajectory. If m is the rest mass, the  momentum 
is the one-form p = mS (overbar relative to Minkowski metric), 
and the equation of motion is 

The product a l u  is a one-form duality  product  (contraction) 
of the two-form and the one-vector u (see Appendix E). 
Equation (28) may be deduced from  an  action principle which 
makes the  trajectory an  extremal for  the integral of the  action 
one-form p + e& [ 6 ,  p. 5 11, where a = A - q5 d t  is  the  potential 
onaform  in R 4 .  

D. Covariance of the  Equations of Electromagnetics 
One advantage, among  others, of  using differential  forms is 

that  the laws  of electromagnetics, expressed by  the  two  sets of 
equations, Maxwell-Ampire and Maxwell-Faraday,  have the 
same form in any system of coordinates. They are valid with- 
out modification  whether (x, y ,  z) represent rectangular or 
curvilinear coordinates. 

To emphasize and  illustrate  this  point, consider the equation 

d A = B  (29) 

which relates the  potential one-form A and the magnetic field 
two-form B in a system of Cartesian coordinates ( x , y ,  z). If 
we express these  coordinates in terms of curvilinear coordi- 
nates, say the spherical coordinates ( r ,  8 ,  $), by a function 

f : ( r , e , o > ~ ( x , ~ , z ) = ( ~ s i n e c o s ~ , r s i n e s i n q 5 , r c 0 s e )  

the  potential one-form A and the magnetic field B can be 
pulled back to  

A '=  f*A B ' =  f*B. (30) 



DESCHAMPS:  ELECTROMAGNETICS AND DIFFERENTIAL FORMS 

Since the pullback f* commutes  with  d, we  have 

B' (31) 

which is exactly the same equation as before the transforma- 
tion.  One  may dispense with the prime (see Appendix  I)  and 
consider (29) valid in any  system of coordinates. Explicitly, 
in  spherical  coordinates, if 

A = R  d r + @ d 8 + 9 d @  (32) 

where ( R ,  8, 9) are functions of ( r ,  8, @), then 

B = d A = ( 9 ' e - e ~ ) d B d @ + ( R ~ - 9 ~ ) d ~ d r + ( 8 , - R e ) d r d e  

(33) 

exactly  as if ( r ,  8, 9) were rectangular  coordinates.  One  must, 
of course, make sure  that  the variables  used are true coordi- 
nates  in  the region  of interest. 

The space-time formulations  in Tables I  and I1 are also ex- 
pressed  by exterior  differentials;  hence, they  are also  indepen- 
dent of the  coordinate system, including both space  and time 
variables. Of course, the relation  between 9 and \k, since it 
is metric  dependent,  does  not  enjoy  this  property.  It can be 
shown (see problem  in  Appendix I, equation (1.13)) that, in 
vacuum,  the  Lorentz  transformation leaves both  the Minkow- 
ski metric  and the relation \k +. 9 invariant. This is the basis 
of special relativity. 

The  metric  independence of Maxwell's equations  in  three 
dimensions  (Tables I and 11) and  more generally the covariance 
in  four dimensions under  any space-time transformation was 
recognized early by H. Weyl (1918) and by  E. Cartan  (1926). 
It was later rediscovered  by D. Van  Dantzig [ 81 (1934) and 
s t i l l  later by the present  author! 

E.  Physical Dimensions of Electromagnetic  Quantities 
When electromagnetic  quantities are represented by differen- 

tial  forms,  an important simplification  occurs in the discussion 
of their physical  dimensions. This is due to the  fact  that a 
differential  form carries with it  the differentials of the vari- 
ables  and that consequently  exterior  differentiation preserves 
the physical dimension. 

The  latter  property is easily verified: the  exterior  differential 
d a  of the  pform a = ZUJ d x J  is C d a ~  dxJ,  but daJ = CUJ, d x k ,  
where UJ, k is the partial derivation of U J  with  respect to  xk.  
Thus,  dim (dar) = dim (uJ) ,  and dim (da) = dim a. 

In Tables I, 11, and 111, all quantities  occurring  on  the same 
diagonal  have the same  physical dimension: (p ,  D )  in coulombs, 
( J ,  H )  in amperes, (9, E )  involts, and (A ,  B )  in webers. For  the 
space-time descriptions: (7, \k) are in coulombs  and (a, 9) 
are  in webers. 

It is interesting to  note  that  both coulombs  and webers can 
be  naturally  quantized.  Electric charges occur in integral 
multiples of e ,  the negative  of the electronic charge.  Webers 
measure magnetic charges. It was shown  by Dirac (1931)  that 
if these  exist  in  nature, they would occur in half-integer multi- 
ples  of a charge g = 137 e .  (See also Section IV-E.) The 
charges e and g in  this  relation  are expressed in Gaussian units, 
and  therefore have the same  dimension. If they are used as 
units instead  of the usual Gaussian units,  the  material con- 
stants  in  vacuum  reduce to dimensionless quantities 1-6 = 
ei l  = a. If one uses units e and g ,  the material  constants in a 
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Fig. 1. Balancing the degrees of formulas. 

vacuum reduce to  the dimensionless quantities 

where a = 1/137 is the fine  structure  constant e2 /hc .  
A common check on  the validity of a  formula, which  may 

help  detect  some  errors, is to verify that terms that are 
equated  or  added have the same  physical dimension. When 
using differential  forms,  these  terms  must also have the same 
degree. It may  be  useful  when  learning to compute  with dif- 
ferential  forms to indicate by an  underscript the degree of the 
various terms being considered. At the same time,  one would 
use an overscript for  the dimension of chains and  the degree  of 
multivectors. In balancing the degree of a  formula, the over- 
scripts  are  counted  as negative  degree.  Fig. 1 shows  examples 
of formulas balanced in  this  manner. With a  little  practice, 
one  becomes conscious  of the degrees  of the forms involved 
and  performs  these checks mentally. 

IV. SELECTED APPLICATIONS 
We shall in this  section discuss applications to a  few well- 

known problems. They  should  illustrate  sufficiently the new 
formulation  and  some of its advantages. In engineering prob- 
l e m  it is convenient to  describe the electromagnetic field by 
the pair  of  one-forms (E,  H )  rather  than (E, B )  or (D ,  H). In 
the following, we shall designate this pair  by F. 

A .  Reciprocity  Relations 
Consider two  electromagnetic  fields (E ,  , H ,  ) and ( E , ,   H 2 ) ,  

at frequency w, that satisfy Maxwell's equations  in  a medium 
m characterized by the  functions e0(r)  and &(r):  

where ( J ,  K) are the electric  and magnetic current two-forms. 
The two-form 

is called the crossflux  of fields 1  and 2. The  square  bracket in 
the  third  term is used as a  shorthand  expression  for  the second 
term. It has the properties of a product:  1) linearity  with re- 
spect to  both factors,  and 2) differentiation  by the Leibnitz 
rule  appropriate to  differential  forms, i.e., 

In the right-hand side, the square  bracket st i l l  means subtrac- 
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tion of the expression obtained  by exchanging 1  and  2  accord- 
ing to  the general scheme f (  1,2)  - f(2,  1) = [f( 1,2)]. Substi- 
tuting d E j  and dHi from  (35) gives 

~ [ E I H ~ I = [ J , E ~ - K , H ~ I .  (38) 

The  terms [(iwpH,) H21 and [El ( iueE2)1 equd'zero because 
the  products El * E, and Hl * H 2 ,  which equal *(El * E , )  
and * ( H 1   * H z )  are  symmetric (see Appendix F). The 
expression 

712 = J1 E2 - K1 H2 (39) 
is the three-form reaction of the  current (J1, K , )  with  the 
fields (E, ,   H2 1. 

Equation  (37) can be written 

m ,  (characterized  by  functions e l ,  pl ; eventually  complex to 
account  for  conduction), and bounded  by  the sur€ace S = aV,  
ca i  be expressed in  terms of the  components l?, and Hl of 
E ,  and H 1  tangent to  that surface. An actual  expression  for 
that field at  point r within V can be obtained if one  knows the 
field on S due  to  an electric  dipole p at  point r in  a medium 
mp (functions eP ,  p p )  which coincides with  the initial medium 
inside V but which  may be different  outside. Advantage  may 
be taken of this  freedom  by modifying the medium  outside of 
V for the  purpose of simplifying the  evaluation of the field 
( E p ,  H p )  of the electric  dipole p .  The  dipole is represented  by 
an  electric  current  distribution localized at  point I :  Sr (x ,y ,  z) 

The  reaction of the  dipole p and  the field (E , ,  H , )  is simply 
dx dY hip. 

the duality  product 

This is the differential  expression of the  Lorentz reciprocity 
relation.  The  corresponding  integral expression results im- 
mediately from  Stokes'  theorem. If the volume V has bound- 
a ryS=aV,  

Note that  the  two fields involved  in this  relation may exist 
in different media provided those media coincide within  the 
volume V .  The  functions E and p may differ  outside of V .  
Note also that  the right-hand side depends  only  on  those 
sources of the  two fields that are inside V.  If the  surface S 
surrounds  a region free of sources, Bl2 IS  = 0. Hence, inside 
the region dp12 = 0, i.e., Ol2 is a closed two-form. 

If the sources of both fields  are  contained within a finite 
volume V with  boundary S, it can  be shown that Pl2 IS = 0 
obtains if both fields satisfy the Sommerfeld  radiation condi- 
tion. This condition can be written 

r ( Y E + d r H ) + O  

r ( Z H -  d r E ) + O  
asr+CQ  (42) 

where Y, Z are the free-space admittance  and  impedance 
operators Y = *, Z = ( ~ b / e ~ ) l / ~  *; and r is the radial 
distance to a  point in the  source region. Sommerfeld's condi- 
tion means that far away from  the sources, the field behaves 
locally as a plane wave propagating  in  the radial direction. 

Under these  conditions 

ox 

since V contains  the  sources of 1 and 2. This is the Rayleigh- 
Carson form of reciprocity. 

B .  Huygens'  Principle 
According to  Huygens' principle, the field ( E , ,  H I )  at  any 

point r of a region V, iree  from  sources,  occupied  by  a  medium 

rpl I V =  E,(r)lp (45) 

which is also the scalar product zl - p .  

media m, and mp coincide, 
Applying Lorentz  reciprocity to the volume V ,  where the 

7p1 I V =  Sp1 IS. (46) 
The right-hand side is computable since on S(El , H , )  are 
known as well  as ( E p ,  H p )  and 

$1 = [E&, 1 .  (47) 
If the medium mp :onsists of a  conducting surface placed 
along S immediately  outside of V, the field H p  becomes 
tangent to S while Ep is normal  to it. "he integral  reduces to  

-E,  Hp IS (48) 

which depends  only  on  the  tangential field E , .  Similarly, if 
mp consists of a magnetic wall along S, the integral  reduces to 

EpHl IS (49) 

which depends  only  on  the  tangential field Hl . 
To evaluate the field E , ( r )  completely,  one can use test 

dipoles such as p ,  in  three  orthogonal  directions. This gives 
three  components of E , .  

The magnetic field H ,  (r) is evaluated similarly  by  means of 
magnetic test dipoles q in  three  orthogonal  directions. Of 
course, for  an  actual  computation of the field,  in both cases 
one must be able to compute  the field of dipoles on  the 
surface S. 

C .  Kirchhoff  Approximation 
Let the space R 3  be divided into  two regions Vl and V 2  

separated  by  a surface S = aV, (its  normal  points  toward V2) .  
The  surface S is composed of a screen with  surface 2 and of 
an  aperture A such  that S = Z U A .  The  sources  are given in 
Vl and  radiate a field (E , ,  H , )  when the  screen is absent 
(incident field F , ) .  The  problem is to find  the  actual field 
F2 = ( E , ,  H 2 )  that results  when the  sheen is in place. In 
particular, we shall look  for  the field diffracted  in region V 2 .  
This field would be known and  computable as in  Section 
IV-B if it was known  on  the  (mathematical)  surface S, which is 
assumed to lie on  side V ,  of the screen (see Fig. 2). Indeed, if 
an electric  dipole p is placed at  point r in V2 . 

E , ( r ) l p = $ 2  IS (50) 

according to (44) and  (45). This would  allow one to compute 
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Fig. 2. Kirchhoff approximation. 

.(p 

E 2 ( r )  by using three dipoles forming a reference frame at 
point r.  

The Kirchhoff approximation consists of assuming that  the 
field (&, g2) tangent to S is zero  on the screen E and equal 
to  the incident field (& , a, ) tangent to S in  the  aperture. 
Then (50) becomes 

E2(r)b = Ppl IA. (51) 
We note  that  the  dipole field ( E p ,  H p )  used in  this  formula can 
be computed  in a modified environment provided the modifi- 
cation occurs outside of the volume V2 in which the Lorentz 
reciprocity  formula is applied. Thus  one may  place on  the 
negative side of S either  an electric or a magnetic wall  making 
5 = 0 or gp = 0. This leads to variants of the Kirchhoff ap- 
proximation where only the  tangential l3, or  the  tangential Z$, 
have to  be  known  in  the  aperture. 

Note that  the validity of the assumptions on which the a p  
proximation is based must be examined critically in any 
application, as there  are cases where they are grossly incorrect! 
Also, note  that  the  nature of the screen is not  taken  into 
account.  It  is  sometimes considered as  “absorbing.” Further- 
more, one must make sure that  the surface S over the screen is 
not illuminated by the  incident field. These considerations, of 
course, do  not depend on whether  vector  or  exterior calculus 
is used;  therefore, we shall not discuss them  further. 

Consider the original problem where only one medium is in- 
volved in computing ( E , ,  H ,  ) and ( E p ,   H p ) .  The  aperture 
surface A may be distorted  continuously into a surface A ’ ,  
without changing the value of the crossflux integral Ppl IA, 
provided the following conditions  hold: 

a A ’ = a A = r  (52) 

A ’ - A = a V  (53) 

and the volume V (swept out during this  deformation)  does 
not  contain  the sources of F1 or  the  point r .  Thus since O p 1  is 
closed  over V ,  i.e., dop ,  = 0, 

P P I  [ ( A ’ -   A ) = & , ,  laV= d$l I V =  0. (54) 

Another consequence of dPpl = 0 is  that locally there will 
exist one-forms ap , such that 

dap, = P p 1 .  (55) 

If this is satisfied at all points of the  aperture A for some 
regular. one-form apl , the surface integral Ppl ( A  can be  re- 
placed by 

which is a line integral over the  contour  (boundary) of A .  
This is essentially the Maggi-Rabinowicz integral. 

Before applying (56),  one must ascertain that  the  conditions 
for  its validity are  met:  the forms apl and Ppl must be regular 
in a domain that  contains A and  its  boundary r, and (55) 
must hold in  that domain. 

To  illustrate  the importance of these  conditions, let us 
discuss the case of scalar  field solutions of the Helmholtz 
equation: 

(A + k 2 ) u  = 0. (57) 

More  specifically, take  two fields 

due io point sources at s, and s,. The Green’s function 
C ( r ) =  eiklrl/4nlrl.  The crossflux two-form Pl2 of fields G ,  
and G2 is 

= *GI C, [ (ik - -!-) dr2 - (ik - i) dr,] . (59) 

One verifies  easily that dp,, = 0 in the domain D’, comple- 
ment of the pair of points (s, , s2)  where P12 is singular. If 
one excludes the segment s1s2, a one-form a12 that satisfies 
da,, = Dl, in  the resulting domain D” is  given by 

where 6 is the angle between the vectors r - I, and r - s 2 ,  p is 
the distance from r to  the line s1s2, and @J is the azimuthal 
angle about  that line. This form is singular on  the segment 
SlS2.  

The equation da,, = fl12 is conveniently verified in elliptical 
coordinates  about foci s1 , s2.  The vector z,, associated with 
a,, is found  (for  instance) in [ 141, where this problem is 
thoroughly discussed. This discussion  would  be appreciably 
simplified by  the use  of differential forms. 

If the surface A of the  aperture does not intersect the seg- 
ment I, s2 ,  (56) is valid and gives the Kirchhoff approximation 
to  the field at s2 due to  the incident field G ,  diffracted 
through A (Fig. 3(a)). If sls2 intersects A (Fig. 3(b)) it can be 
shown that  the  contribution of the singularity is precisely 
G ,  (s, ) and the field at s2 is 

The first term is the geometrical optic field, the second is the 
diffracted field. The expression of the  latter shows that  it may 
be considered as originating on  the edge r of the  aperture, an 
interpretation  that agrees with the viewpoint of the geometri- 
cal theory of diffraction (GTD). The  two terms are discon- 
tinuous on  the shadow boundary,  but  their sum is continuous. 
This can also be seen by noting that a,, is not  unique.  It can 
be modified by adding to it any closed one-form 7. This may 
be used to shift the singularities of a,, from the segment 
slsl to its complement on  the line slsz (Fig. 3(b)). The 
.one-form 

Ppl IA = dopl IA = apl laA = ap, I r (56) is regular on  the segment st#, and the field u l  (s2) can be ob- 
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integrates  naturally over a  surface S. Since 

dP d(EH) = (dE) H - E(dH) (69) 

(see (H.16))  and dE = -B and dH = J + D, we  have (in  a region 
free of currents) 

d(EH) + ( E i  + HB) = 0. (70) 

Letting  the energy three-form be 

W =  + (ED+HB) (71) 

d P + W = O .  (72) 

we find 

Integrating  this  three-form over a  volume V and a V = S, 

PIS+ W l  v =  0 (73) 

which has a well-known interpretation. 

d = P d t  + win  the space R4. It is easy to see that 
A variant of (72) results  from considering the  three-form 

d&= 0. (74) 

Hen&, the integral of & over the  boundary of any  four- 
domain  D is zero. 

A  multitude of formulas also result  from  computing the dif- 
ferential of various products.  For  example, in R4, with  the 
notations of Table IV, 

d(Q\k) = @\k - w (75) 

so that 

a\klaD = (99’ - w ) I D  (76) 

for  any  four-domain  D. As early as 1908, Hargreaves wrote 
equations which, with OUT notation, are 

ala0 = 0 (77) 

and 

- ylD = O  (78) 

and claimed, justly, that if they held for any  four-domain 
D,  they expressed the laws  of electromagnetics. This is a 
direct  consequence of d 9  = 0 and d\k = 7 (see bottoms of 
‘Tables I and 11). Furthermoro,  equations similar to (77) and 
(78) are handled by  Bateman  in 1909 as differential  forms 
obeying Grassmann’s algebra. 

Some  relations  between  integrals, when their  domains of 
integration  are moving, are also easily written. These require 
the  concept of the Lie derivative (L. 11)  and  (L.12),  in Ap- 
pendix L, and Stokes’ theorem. Consider, for  example, 
Faraday’s  law 

d E + B = O .  (79) 

Integrating it over a  surface S with  boundary r = as gives: 

(dE+i) IS=ElI ’+BIS=O.  (80) 

If the  surface is fiied,  the last term 

B IS = aAB 1s) (81) 

which  gives the familiar integral  form of Faraday’s law. On 
the  other  hand, if the surface (and  its  boundary)  are carried 

Fig. 3. Reduction of the Kirchhoff approximation t o  a line intefl. 

tained  by  a single line integral: 

u,(g2)=al,lr. 

D. Applications of Stokes’  Theorem and Lie  Derivative 
Any of the  formulas  represented  in Tables I  and I1 can be 

converted to an integral  relation by utilizing Stokes’  theorem 
(see Appendix J). We have already invoked this  theorem  a 
number of times. For  example, dD = p over a  volume Y with 
boundary S = a V implies 

P I  V=DlS  (64) 

since dD I V = D [aV. It may be noted  at this occasion that 
although Stokes’ theorem is often stated  only for  smooth 
differential  forms, it is valid more generally for weak forms 
(deRham’s  “currents,” [91), i.e., those  forms  whose  coef- 
ficients  are  distributions.  Consequently, if a  unit  point charge 
at  the origin is represented by the weak form 

P = S ( x , y , z ) d x d y b  (65) 
Equation (64) is still valid. If the origin is in V ,  the charge 
content of Y is p I V = 1. Thus the integral D IS = 1.  From this 
result,  taking for S a  sphere of radius r centered  at 0 and in- 
voking symmetry,  one  finds 

*dr D = -  
4m2 * 

Hence, 

(Note  that  the star in  the  operator e-’ cancels the  one in 
(66).) Correspondingly, 

A 

a well-known result. 
Another simple example is Poynting’s theorem.  The  Poynting 

vector P is replaced by the  Poynting two-form P = EH,  which 
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along by a flow V r  defined by  the  vector field V (see A g  
pendix L), 

ar/o(BISr)=(LvB+B)IS  (82) 

where St = VrS. However, from (L.12) 

LvB=(dB)IY+d(BIY)  (83) 

and since dB = 0, one has 

( L y B ) I S = d ( B I Y ) I S = ( B I V ) I r .  (84) 

Thus (80) becomes 

( E -  (BIY))lr+ar~o(BISt)=O.  (85) 

The one-form ( E  - ( B  I V ) )  = E‘ may be considered as a modi- 
fied electric field. Reverting to vector notation,  one  obtains 

2 = z +  P X  I (86) 

therefore,  equation  (85)  represents  the  induction law for a 
moving circuit r = as. This equation is rigorously correct  and 
is not, as is sometimes claimed, the first approximation to a 
relativistic formula. Relativity plays no  role  in  its deduction. 

Note that  the domain of integration is arbitrary  and  that 
its  “motion” does not necessarily coincide with the  motion of 
the  matter it contains. The variable t may not be the real 
time,  but a parameter that characterizes the variation (flow) 
of the domain and, eventually, the variation of the differential 
forms involved. 

On the  other  hand, if the vector field U represents  the flow 
of electric charge and if the volume V is carried along with 
that flow to U r V =  Vr, the  content of Vr is constant. This 
expresses the  continuity of charge. 

Using the Lie  derivative, 

ar,o(pIVr)=(P+LuP>IV=o  (87) 

and 

L u p = d ( p I U ) + ( d p ) l U = d d ( p I U )  (88) 

since dp = 0. Thus the  continuity condition in integral form is 

p l V + ( p l U ) l a V = o .  (89) 

E. Applications of Poincari’s Lemma 
As shown in Appendix J, the Poincar6 lemma gives the 

answer to  the following question: given a p-form a, is it pos- 
sible to  express it as the differential of a (p  - 1)-form p, over 
some domain D? Since a = do implies da  = d(@) = 0, it is 
necessary that a be  closed  over D. This is also sufficient 
locally, i.e., in some spherical neighborhood of any  point  in 
D; or globally  over D if that domain has appropriate topologi- 
cal properties (see Appendix J). The proof of the lemma 
actually provides a construction  for  the  form p. (This con- 
struction, however, is not always the most convenient.) 
Having obtained 0, the  integration of CY over some p-domain 
(or  p-chain)  in D is reduced to  that of p over the boundary of 
that domain (or chain). 

If a describes a field, 0 is in general called its  “potential.” 
Thus, a potential’s existence depends critically upon  the 
topology of the region over which it is to be  used. A common 
feature of a potential is its lack of uniqueness: 0 may be in- 
creased by any closed form  or by an  exact  differential d-y, 

without ceasing to be a solution. Perhaps this is what led 
Heaviside to call the  potentials “treacherous  and useless.” 
The “useless” meant that  they could be dispensed with. It 
turns  out, however, that when quantum mechanics is involved 
[ 101,  potentials  are more meaningful than Heaviside suspected. 

As an example of  PoincarC’s lemma, consider Faraday’s 
equations: 

d E + B = O  

dB = 0. 

Letting @ = B + E dt,  they can be expressed, in space-time, 
by the single equation 

d@ = 0. (91) 

This equation holds throughout R4 and asserts the non- 
existence of free magnetic charges.  Poincar6’s lemma applies 
globally to  the space R4; hence,  there exists a one-form a 
such that 

@ = da.  (92) 

writing 

a = A  - @ d t  (93) 

where A is a one-form in space and (J is a scalar function, equa- 
tion (92) becomes 

{:::@-A. (94) 

[Note  that  the minus sign in (93) and in some of the  other 
equations considered, such as \k = D - H dt, is not particularly 
significant. These signs  have been introduced to simplify the 
correspondence with the usual vectorial expressions.] A gauge 
transformation 

(Y+a’=a+df (95) 

where f is a scalar function, gives another  solution @ =dol‘, 
sinced.d=O. 

To show the importance of the topology on  the global 
existence of a potential, we consider two examples: 1)  the 
magnetic field of a steady linear electric current  (a well-known 
problem) and 2) the field B (two-form)  due to a hypothetical 
magnetic charge (Dirac [ 1 1  ] , [ 121 ). 

In the first example, a steady unit current, along the z-axis, 
Oz, is represented by the two-form 

J ( x , Y , z ) = ~ ( x , Y )  l(z) dx du (96) 

where l(z) is the  function equal to 1 for all  values of z .  The 
magnetic field satisfies 

d H = J  (97) 

thus, dH = 0 in  the domain D, complement of the z-axis. This 
domain is not simply connected,  hence, we cannot assert the 
existence of a function f (zero-form) such that 

df = J  (98) 

in D. However, if we remove from R 3  the half-plane P1 : y  = 0, 
x < 0, the resulting domain D1 = R 3 k 1  is simply connected 
and  there exists a function f l  such that 

dfl = H  in Dl. (99) 
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In  fact, H can be obtained  by  a classical argument:  integrating 
d H =  J over a disk S of radius r and  axis Oz, bounded  by the 
circle I’ = as: 

JIS = dHlS = HlaS  = Hlr (100) 

and  then invoking the  rotational  symmetry, 

H = -  d@l 
2n 

where is the azimuthal angle I$ about Oz restricted to 

-n<I$<n. (102) 

Equation  (101)  corresponds to  the well-known a= $1/2nr. 
(Note  that @ without  such  a  restriction is not a  function over 
D since it is  multivalued.  Therefore,  strictly  speaking,  d@ is 
not an exact one-form over D.) A scalar potential  for H in D is 

@1 
f1=- .  

2n 

It is discontinuous across the  cut represented by the half- 
plane P I .  If  we had chosen the half-plane P 2  : y = 0, x > 0, 
as a  cut, we could have used the  potential 

4 
f 2  =G 

where 4 is the azimuthal angle restricted to  the range 

0 ~ 4  < 2 n .  (105) 

It is discontinuous  across  the  cut  represented  by the half- 
plane Pa.  In any given region of overlap the  two potentials 
f1 and f2 must  differ  only by a  constant since H = dfl = df2. 
Thus, for y > 0 ,  f1 = f2 ,  while for y < 0, f 2  =f l  + 1. The 
constants  are  different  in  the two regions. 

This simple example shows how to handle cases where, 
because of the  topology of the domain D, a global potential 
does not exist. A set of potentials can be constructed,  each 
valid  over a “simp1e”region. In the overlap of the  two regions, 
the  two potentials,  in  order to give the same field, are related 
by  a gauge transtormation (in y < 0, it is simply fl + f 2  = fl + 
1). When more than  two regions overlap,  the gauge transfor- 
mations  between  each pair must  satisfy  obvious  compatibility 
conditions  (form  a  group). These considerations are relevant 
to  the theory of gauge fields [ 131 . 

Using the  two  potentials fl and f2 ,  one can evaluate the 
circulation Hlr over a cycle r that surrounds the origin 0. 
We can decompose it  into rl U r2 (see Fig. 4) where rl C Dl 
and r2 C D2 and the  endpoints a and b have been  chosen 
such that a is in the region y < 0 and b is in  the  region y > 0. 
We have arl = b - a and ar2 = a  - b .  Applying Stokes’ 
theorem to each  path, 

Hlrl =f1 I@ - a )  =f1(b) - f l @ )  (106) 
and 

Hlr2 = f 2 l ( a  - b )  = f2 (a )  - f 2 ( b ) .  (1 07) 

Hlr=wrl + r 2 ) = ( f 2  - f l ) ( a ) -  ( f 2  - f 1 m =  1. (108) 

Thus 

The second  example is provided by Dirac’s analysis of the 
properties of a  magnetic  monopole, assuming that  one exists 

1’ 

Fig. 4. Scalar potentials for the magnetic  field of a linear electric 
current. 

[ 1  1 1 ,  [ 121.  Such  a  monopole of strength p would be repre- 
sented by a  three-form 

o = ~ ( x , y , z )  dx dy dz. (10% 

The  two-form B satisfying dB = IJ can be obtained  directly  in 
the same manner as the  D field of an  electric charge. It is 
given  by 

*dr 
B = p s = z  sin 8 d8 d@. 

An interpretation of B is that  for any  surface S, the  integral 
B IS is p times the solid angle under  which S is seen from the 
origin (in  units of 4n). 

In order to describe the motion of an  electron  in that field, 
according to quantum mechanics,  one seeks a  wavefunction $ 
that satisfies Schroding$s equation, an equation that depends 
on  a vector  potential A (or  the corresponding  one-form A ) .  
Since dB is not zero over the  entire space,  but  only on  the 
domain  D,  complement of the origin, such  a  one-form  does 
not exist  globally. This is because D does not have the  appro- 
priate  topology:  a  surface  surrounding  the origin can not be 
shrunk continuously to a  point  without  getting out of D. 
Following the process used in the preceding  example, we can 
consider the domains D l ,  complement of the negative z-axis, 
and D 2 ,  complement of the positive z-axis. (These removed 
half-axes have been called strings [ 121 .) In these two domains 
potentials can be found  such that dAi  = B over Di; i = 1, 2. 
It is easily verified that 

A2 =-*(l   +cosO)d@ 

satisfy  these  conditions. One can also verify that A is regular 
for 8 = 0 and singular for 8 = n. The converse is true  for A 2 .  
In the  intersection D, = D l  n D2,  complement of the z-axis, 
the  two potentials A 1  and A2 are  related  by  a gauge 
transformation 

4s (1  12) 
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A potential A ,  = -(p/4n) cos 6 d4 is also valid in that domain. 
It can  be shown (see standard texts in quantum mechanics) 

that a change in phase of the wave function combined  with a 
gauge transformation of the  potential one-form preserves the 
form of  Schrodinger’s equation. More precisely, if the poten- 
tial is expressed in  units of g =j ic /e ,  the transformation 

A + A ’ = A + U  (1  14) 

where w is a closed one-form,  corresponds to a change of the 
wave function 

+ + +’ = +eiWlr (1  15) 

where r is a path ending at  the observation point. When the 
path r is closed (initial and observation points coincide), the 
phase factor eiwlr must be one in order to make the wave 
function single-valued;  i.e., w l r  must be an integer multiple 
of 2n. 

In  the present case, from  (1 06) 

Taking for r a circle with axis Oz, 

w l r  = p .  

Hence, p must be an integral multiple of 27~  or  in terms of the 
units chosen, a multiple of g/2. Thus a unit magnetic mono- 
pole has charge g/2; it is 57.5 times stronger than a unit elec- 
tric charge e .  

CONCLUSION 
The calculus of exterior differential forms  offers  an  attrac- 

tive alternative to the conventional vector calculus for  the 
formulation and handling of the equations of electromagnetics. 
It plays an  important  role as  well for a number of topics in 
physics:  classical mechanics, geometrical optics,  quantum 
mechanics, and  more  recently, gauge  field theories. 

This article was meant to  introduce  this subject for  the 
particular application to electromagnetics. Exterior differ- 
ential  forms  are particularly relevant because they represent 
electromagnetic  quantities  quite  naturally. The  relations 
between  these  quantities  are expressed by means of the dif- 
ferential  operator  “d,” which takes  the place of the  curl, 
grad, and div operators  and which obeys simple rules. The 
equations have been displayed in flow diagrams. Their invari- 
ance under changes of coordinates  in  three  or  four dimensions 
simplifies the use of curvilinear coordinates. Physical dimen- 
sions of all forms  related by d are  the same;  hence, two  units 
(electric and magnetic charge) suffice for all the forms 
involved. 

Only a few applications could be sketched in this  paper,  and 
they have been deliberately chosen among the simplest ones. 
They  should give the reader at least a flavor of the  exterior 
calculus, demonstrate its  appropriateness,  the  automatic 
nature of the  computations involved, the ease in changing 
variables, and the conciseness  of the expressions obtained. 
Many interesting aspects had to be left  out such as the con- 
sideration of weak forms (deRham’s currents)-these are 
almost essential to electromagnetics when wires and surfaces 
are considered-the consideration of flows in  optics, symplec- 
tic geometry and  its  applications to reciprocity  (topics  for 
future articles!). 

In  spite of its  shortcomings,  it is hoped that  this article may 
help realize this  prediction of H. Flanders about  exterior 
calculus:  “Physicists are beginning to realize its usefulness. 
Perhaps it will soon make its way into engineering.” 

APPENDICES 
A BRIEF REVIEW OF DIFFERENTIAL GEOMETRY 

A.  Vector Space 
A vector space E,  over the set of  real numbers R (scalars)  is 

a set of elements, called vectors, and two  operations:  addition, 
which  assigns to a pair of vectors ( x , y )  a vector x + y ,  and 
multiplication by a scalar a E R ,  which transforms vector x 
into vector ax .  The set R may  be replaced by any “field” 
of numbers, for  instance  the set C of complex numbers. The 
above operations satisfy well-known properties  that will not 
be repeated here. 

Vectors e l ,   e 2 ,  . , e ,  are said to be linearly independent 
if = 0 implies that all ai = 0. These vectors form a basis 
if any vector x is  expressible  as 

x = x’ei.  (A.1) 

(The Einstein summation  convention with respect to  the re- 
peated Gdex i is used throughout.) 

The x ’  coordinates of x are uniquely defined by x. The 
space E is thus isomorphic to the direct product R” of n 
replicas of R .  The  number n is the dimension of E .  A linear 
transformation p from space E of dimension n to space F of 
dimension rn is defined if its  action  on all  basis vectors ei is 
known: 

pi = dfi (‘4.2) 
where vj} is a basis  of F. 

The numerical.coefficients pi  form  an rn X n matrix. When 
rn = n and det pi # 0, p-’ is defined,  and p is an isomorphism 
of E and F.  

B. Duality-Covectors 

function 
A linear function t over the space E with values in R is a 

E :  E - + R : x  P[(x)  (B.1) 

which  satisfies 

E(ax + b y )  = 4 x 1  + 03.2) 
for any scalars (a,  b )  and’any vectors ( x , y ) .  

The set of linear functions over E form a space E *  called 
the  dual  of E .  This space takes  the  structure of a vector space 
by the  natural definitions 

(t + 77) (x) = .!(x> + 77(x) (B.3) 

(at> (x) = a&), x E E .  (B.4) 
Its  elements  are called covectors and will be denoted here by 
greek letters  with  the  exception of the electromagnetic quanti- 
ties which in the main text are designated  by the conventional 
notations: E, B, D, H, etc. 

A basis of E* is a set of linearly independent covectors 
e l ,  E ’ ,  . . . , E“ such that any t E E *  can  be expressed by 

It can be shown that  the dimension of E * is n and that  the 
dual of E * may be taken as E .  
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To emphasize the  symmetry  between  E  and E*, we shall 
denote &x) by t l x ,  or simply by & when no  confusion is to 
be feared; that is, when it is clear that  the  two factors  are, 
respectively, a covector and  a  vector. We shall call SIX the 
duality  product of t and x .  It is indeed  a  “product,” i.e., a 
linear function of each of the  two factors. 

If  we let E‘ be the linear function  that  takes the value 1  for 
ei and  the value zero for e,< j # i ) ,  the set {E’} is called the 
dual  basis of {ei} .  If E and x are expressed in  dual bases, their 
duality  product 

~ I X  = ( t i C ) ~ ( x j e j )  = t i x i .  (B.6) 

It is similar in  form to  a scalar product x * y = x i y  ’ .  The dif- 
ference is that for the scalar product  the  two  factors belong to 
the same vector space while for  the duality  product  they 
belong to two  distinct  dual spaces [observe the up  and  down 
positions of the  indices]. 

C. Exterior  Algebra-Multivectors 

sented as a sum 
In the  n-dimensional  vector space E,  a  vector x can be repre- 

x = x’ei (C.1) 

where ( e l  * e , )  are n vectors  that  form  a basis of E and the 
x’ are real numbers. 

An algebra is constructed  on E by defining products of the 
basis vectors ei ,  and by applying  the familiar rules of associa- 
tivity  and  distributivity.  For  example, the  complex algebra C 
is a  two-dimensional  vector space over the field of real num- 
bers with basis ( e o ,   e l  ) and  multiplication rules e: = eo ; eOel = 
e l e O   = e l ; e :   = - e o .  The usual notation eo = 1,el = f l = i ,  
makes R  a subspace of C. Another  example is the  quaternion 
algebra, a  four-dimensional vector space  over R based on 
( e o ,   e l ,   e ’ ,   e 3 )  with  the following multiplication rules: e; = 
e o ;  e: = -eo and e p ,  = eOei = ei (for i = 1, 2 or  3);  and e p j  = 
ek (where ( i ,  j ,  k) form an even permutation of (1,2,3)). 

In these  two examples, the  products  formed  remain  within 
the vector space E. In contrast,  the exterior algebra produces 
new elements  that lie outside of E.  The  product of two basis 
vectors ei and ej,  denoted by eij, satisfy  the  rule 

e,ei = -eiej 

Hence, in  particular, eiei = 0. 
Linear combinations of these eij generate  a  vector space of 

dimension n(n - 1)/2,  denoted by A2E or E’. Its  elements 
are called two-vectors. 

For instance,  the  product of vectors (x, y) in R3 is 

xy = ( x 2 y 3  - x 3 y 2 ) e z 3   + ( x 3 y 1  - x 1 y 3 ) e 3 1  

+ (x’y’ - x 2 y 1 ) e 1 2 .  (c.3) 

The  coefficients have the same expressions as those of a  vector 
product.  The  product xy would  actually be the  vector  product 
if the basis ei was orthonormal  and if (e23, e31 ,   e12 )  were re- 

This gives a hint  for  an interpretation of a  two-vector.  It 
represents  the parallelogram defined by x and y through  its 
area, the direction of its  plane,  and a sign  which indicates the 
order of the factors (x, y ) .  

placed  by ( e l ,  e2, e3) .  

The expression xy is more general than  the  vector  product 
in two  respects: 1)  It applies to bases that are not  ortho- 
normal  (the space E may not be endowed  with  a  “metric” 
which is necessary to give a meaning to orthogonality  and 
normality (see Appendix E). The  elements eij that  form  a 
basis  of A’E represent  the  “extent” of the  oriented parallelo- 
grams  defined by pairs (ei ,  e$. 2)  The  exterior  product is 
def ied for  any dimension of the space E. When n # 3,  it is 
not possible to associate a  vector  in  E to  a two-vector. For 
instance,  in R4 a two-vector has six components.  Note  that  a 
general two-vector z = Zz’leij E A2 E is not always representable 
as a  product of two-vectors, but by a sum of such  products. 

Continuing  the  construction of products, we introduce  a 
basis for three-vectors by defining eijk = eiejek, a  product  that 
obeys  associativity,  but is anticommutative.  There are c“, = 
n(n - 1) (n - 2)/3!  such  independent  products  that span the 
vector space A3E = E3  of three-vectors. More generally, 
p-vectors form  a space APE of dimension 

c; = n!/p!(n - PI!. (C.4) 

In  particular,  A”E = E” has dimension one. Its  elements  are 
scalar multiples of e l e 2 . * . e , = e N ,  w h e r e N = l ,   2 ; - - , n .  
F o r p > n   o r p < O , A p E i s e m p t y .   F o r p = O , w e l e t A o E = R  
(or whatever “field” of s’dars has been  used to define E). 

A p-vector a can be expressed as a sum 

a = &JeJ (C.5) 

where J is a  p-index; i.e., a  sequence 

J = j l j 2  * * s i p  (C.6) 

ofindicesjkE[1,2;..,n],andeJstandsforejlej2 - . * e  
Because  of the skew symmetry  property jP 

eiei = -ejei (C.7) 

the sum may be reduced to one where no  two J’s are  com- 
posed of the same elements  in  different  order. One can 
achieve this by  using only indices J such  that j l  < j 2  < * * * < 
j p .  These will form  a  set 9, and  in (C.5) we may restrict the 
sum to run over that set. We may write 

a = ZoaJeJ (C.8) 

or simply a = a J e ~ ,  generalizing Einstein’s convention to 
ordered multi-indices. Note  that  other  conventions may be 
used to define  the  set%  that also lead to a  reduced expression. 
In three dimensions, for  example,  it is convenient to choose 
for 9’ the set (23,31,  12) rather  than  (23, 13,12) as this leads 
to more  harmonious expressions. 

In the Minkowski space R 3 + l ,  we can take  for 33 the set 
(234,  314,  125,  123) where the  fourth  coordinate  (time) 
plays a special role. 

The  direct s u m  of all the A p ~  forms  the  exterior algebra AE. 
The  rules  for  adding  and  multiplying  any  two  elements  are 
those of ordinary algebra, except  that  one must  pay attention 
to the  order of the factors. 

A scalar (or zero-vector) a commutes  with  any  pvector,  and 
therefore can be moved in  the  sequence of factors: 

a(xy )  = (ax)y = x(ay). (C.9) 

(The p-vectors may be considered as contravariant skew- 
symmetric  tensors,  but  there is little to be gained from  this 
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point of view  as exterior calculus can be carried out  without 
reference to it.) 

An alternative  expression for  a p-vector results  from allow- 
ing J to take all possible p! values obtained  by  permutation 
instead of only  those in j p ,  and  from  requiring  that  the a 3 
be skew symmetric  with  respect to  the j ’s.  Then, 

1 
x = - ZaJe,. (C.10) 

P! 
To form  the  product of a p-vector, x = a’eJ, J E S ,  and a 
q-vector, y = b e K ,  K E j q ,  one uses distributivity  and the 
property 

K 

eJeK = e x  (C.11) 

JK being the (p  + q)-index  obtained by juxtaposition of J 
and K. The resulting expression is then  reduced. 

It is easy to verify that 

m yx = (-)P4xy . (C.12) 

The  exterior  product of xy is often  denoted by x A y  and 
called a “wedge  product.” As long as only  exterior  products 
are considered (which is the case for most of this  article), 
the sign  can  be omitted. This is a  current  practice when deal- 
ing with  differentials,  and we shall apply  it  to all multivectors 
and  multicovectors  considered.  Other  types of products will 
be distinguished by a sign, for  instance, a  dot  for  the  inner 
product (see Appendix E), a vertical bar for  the duality 
product (see Appendices B and D). 

An exterior algebra can also be constructed on  the  dual 
space E*.  It will  be denoted  by  A(E*)  and is the direct  sum 
of the spaces of p-covectors  Ap(E *) = Ep. 

D. Extensions of Duality 

[ i n E * a n d x i n E  
The  duality  product  defined at first  for a pair of elements, 

E * X   E - t R :  ([,x)+[lx (D.1) 

is extended to  the  product of a  p-covector by a p-vector 

X EP+R:  ( ~ , x ) - + . ~ I x  (D.2) 

by noting  that  Ep is the  dual of EP, dual bases for  these spaces 
being { e J }  and { e J }  where J E 9,. 

The  duality  product can  be further  extended to a bilinear 
operation 

Ep x +Ep-q,  4 < P  (D.3) 

( I ,  x) + 5 Ix 0x4) 

defined  by  the  condition  that 

i f f  for every y E EP- 

(6  1x1 Iv = t I (w). (D.5) 
(The vertical bars can be omitted if one  takes  into  account  the 
nature of the various factors.)  The  duality  product is also 
called inner  product,  or  contraction. 

An important special case obtains when x is a  vector (q = 1). 
The notation ix[ is then  often used instead of [x. The opera- 
tor ix transforms  p-forms  into (p  - 1)-forms. Applied to an 

exterior  product of covectors & it  acts as a derivative, obeying 
the modified Leibnitz rule: 

r i,(&) = ( i x t )  11 + (- )Pt(iX11) 
(D.6) 

where [ E Ep . 

contain  any e’ , we  have 
Note that if x = e l  and E = e1 a, where a E Ep-l  does not 

( e ’a )e l  =a. (D.7) 

Thus iel acts as a division by e1 from  the left. 

E. Metric Vector Space 
The  vector space E = R” is endowed  with  a  metric  (more 

precisely, a Euclidean metric) if a scalar-valued symmetric 
bilinear function g(x, y )  is def ied  for every pair of vectors 
(x, y )  in E. This function is called the scalar or dot product 
of x and y ,  and is often  denoted by x * y .  It is assumed to be 
a  nondegenerate; i.e., g(x, y )  = 0 for every y implies x = 0. 

When the  quadratic  form g(x, x) is positive definite, i.e., 

g(x,x)>O, for x f O  (E. 1) 

one  defines  the  length of x as the positive square  root of 
g(x, x). When the  quadratic  form is not positive definite,  one 
can define  the  “extent” of x as the  square  root of Ig(x,x)l 
and  add  some  qualification  that  indicates  the sign of g(x x). 
For  example,  in  the Minkowski space,  where for  a  vector u 
with  coordinates (x, y ,  z, T = ct) 

g(U, U) = X 2  + y 2  + Z 2  - T2 (E.2) 

one calls the  vector u space-like when g > 0 and time-like when 
g < o .  

Two vectors (x, y )  are said to be orthogonal if 

g ( x , y )  = 0. 05.3) 
Besides lengths  (or  extents)  of  vectors,  one can also define 
the angle between  two vectors. When the  metric is not posi- 
tive definite,  some of these angles are imaginary and  cor- 
respond to real  hyperbolic angles. 

From an arbitrary basis for  the space E, one can deduce 
special bases { e j } ,  i E (1, 2, - , n) that are semiorthonormal. 
This means that any pair ei, ej is orthogonal: 

e i . e j = O  (E.4) 

and  that any e j  has a scalar square  equal to + - I .  
We shall express this by 

ei  ei = (-)s(O (E.5) 

introducing  a  function s on  the set {1,2, * * * , n} that  takes 
values 0 or  1.  For a  p-index J = j l  j z  - * j p ,  we define 

s ( J ) = s ( j l ) + . * * + s ( j p ) .  (E.6) 

The value s ( J )  is the  number of elements ei with j [jr , * * , j p  1 ,  
that have a negative square. 

When the  metric is positive definite (g(x, x) > 0 for all x 
except 0), there exists orthonormal bases,  i.e.,  bases such  that 
s ( i )  = 0; hence, all ei are of unit  length. When the  metric is 
not positive definite,  some  of the ei have a negative scalar 
square.  The  number of these  particular  units, which is s ( N )  
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for N =  (12 * - n) is the same for all semiorthonormal bases 
corresponding to a given metric (Sylvester's  law  of inertia). 

An alternative description of the metric is based on  the 
observation that  for a fixed vector x, the  function 

g ( x ,  - 1: Y --+ g ( x ,  Y )  (E.7) 
is linear over the space E .  Hence, it may  be considered as an 
element of the dual E * .  This element depends linearly on x. 
We shall denote it by C(x) and call it the mate of x. Thus 

C : E + E * : x + C ( x )  (E.8) 

and 

g ( x , y )  = G(x)ly. (E.9) 

Thus the scalar product that combines two vectors x and y 
is replaced by a duality  product that combines a vector C(x), 
the mate of x, with the vector y .  We shall designate the mate 
by an overbar: C(x) =?and (E.9) becomes 

x ' y  = F l y .  (E.lO) 

With respect to an  arbitrary basis { e j }  the scalar product is 
defined if it is known for every pair (ei,-ej). 

Letting 

ei * ej = gij 

the scalar product of x = x 'ei and y = yiei is 

g ( x , y )  =gijxiy'. 

(E.11) 

(E.12) 

det gii f 0. It .is symmetric: gij = gji; and  nondegenerate: 
If {E'} is the  dual basis of {e i } ,  the linear mapping G is 

represented by the matrix gij as  follows. If C(x) = x'G(ei) 
is expressed by t e J ,  equation  (E.12) implies 

ij 'g jhx  h (E.13) 

and 

Fi = c(e i )  =gi jeJ.  (E.14) 

Since gij is nondegenerate, the transformation (E.13) can  be 
inverted. This defines a map 

C-' : E *   + E :  E +  C-'(E) (E.15) 

which associates to every  covector-5 a mate C - ' ( i )  that will 
also be designated by  an overbar [. Both  operations C and 
G-' (sometimes called g flat  and g sharp) can be represented 
by a single  involutive overbar operator' 0. No confusion 
results since E and E* are disjoint. (The  situation is similar to 
the use  of a transpose operator to relate  row vectors and 
column vectors.) 

A natural choice for a metric in E * ,  related to  the  one in 
E ,  is defined by the scalar product of two covectors, E and 7 ) :  

- 

E * 7 ) = . $ 1 7 ) .  (E.16) 
The metric can  also  be extended to multivectors and multi- 
covectors in a natural manner. It is sufficient to define the 
overbar of the generators eJ (or eJ for covectors). If the 
{ej}  form a semiorthonormal basis and { E ' )  is a dual basis, 

'Any operator that is represented by adding  a subscript, a  super- 
script, an overbar, astar, or any  recognized "ornament"  may be repre- 
sented  by  the  letter 0 embellished  by  the same ornament. Thus 

a:x+X, 0,: f+fr, o*: f+f*,etc .  
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the mate of ei is (-)so')d = 5 and that of a product of several 
ej is the  product of the corresponding 5. Thus, a p-vector 
element e j  has for  its mate ( - ) s ( J ) ~ J .  By linearity,  this defines 
the  metric over A P ~  and  in a similar manner over APE *. 

F. Star Operator 
We have noted  that  the space E P  of p-vectors and the space 

E"-P of (n - p)-vectors have the same dimension C i .  Conse- 
quently,  there exist one-to-one linear transformations of the 
algebra AE onto itself that map  each E P  onto En-P. Among 
these  transformations a particular one, denoted by * and 
called the (Hodge) star  operator, bears a close relationship to a 
given metric of E ,  extended to AE (see Appendix E). Thus 
among other applications, the  star operator can replace the 
scalar product  or  the overbar operator as a characteristic of 
the given metric. 

For a pair of multivectors ( x , y ) ,  the  relation  to  the scalar 
product is 

*(x ' y )  = x  * y (F.1) 

where x * y ,  to be  read from right to  left, is short  for x ( * y ) .  
Since * is a linear transformation and (F.l)  is linear in x and y ,  
it is sufficient to define the  effect of *, and to verify (F.l), 
for  the elements of a basis. We shall assume this basis (semi) 
orthonormal  and  take x = eI,  y = e J .  The analysis of (F.l) 
then shows that  both sides are  zero unless I =  J ,  and that a 
solution  for * e j  is 

*eJ = (- )"(K)(- )"eK (F.2) 

where K is a complement of J ,  i.e., a sequence such that JK 
is a permutation of N =  (1,2,  - * - , n), (-)" = +I for even u, 
- 1 for  odd u. 

Special  cases of (F.2)  are 

*1 = (-)S'N'eN 07.3) 

and 

*eN = 1.  (F.4) 

Another  solution would have been the negative of (F.2), 
which obviously also  satisfies (F.1).  It would  have resulted 
from replacing eN by eN' where N' is an  odd  permutation of 
N .  The particular ordering of indices in N defines the  orienta- 
tion of space. It must be considered as a part of the  definition 
of *. For a positive definite  metric s(N) = 0 and the formulas 
simplify accordingly. 

In its  applications to electromagnetics, the  star  operator  that 
is of most use is the  one defined over the  exterior algebra 
generated by differential forms;  hence, instead of using {d} to 
represent the  orthonormal basis of the algebra, we  shall  use for 
a basis the differentials (dx, dy, dz) of some orthonormal 
coordinates  for space and (dx, dy, dz, dT), with T = ct,  for  the 
basis in space-time. The bases (for vectors) dual of these are 
(a,, a,, a,) and (a,, a,, a,, a,), respectively. 

For  the three-dimensional space, the positive definite  metric 
would be defined for vector 

Y = xa, + ray + za, (F.5) 

by 
~ Y = Y = X d x + Y d y + Z d z  (F.6) 

- 
YIY=X' + Y2 +z2.  (F.7) 
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The  star  operator * computed  from  (F.2) is defined by 

* : l + d x d y d z + l ,   d x + d y d z + d x  (F:8) 

and  relations  obtained by circular permutations of the vari- 
ables (x,y,z).  We note  that  in R 3  or  any space of  odd 
dimension 

e2 =id, = *. 07.9) 

For  a  two-dimensional space, which is useful in  computations 
in waveguides, the star operator, designated by 1 (a two- 
branch star) is 

1: l + d x d y + l ,   d x + d y + - d x  (F.lO) 

for orthonormal  coordinates x and y,  and  the  orientation 
defined  by  the  order dx dy . 

We note  that lis not reciprocal: 

l2 = (-)P on  p-forms.  (F.11) 

In Minkowski space-time R3+’ ,  a  vector being 

v = xa, + yay + za, + Ta, (F.12) 

the  metric  (not positive) can be defined by 

o V = Y = X d x + Y d y + Z d z -  Td7. (F.13) 

Thus 
- 
VI V = X 2  + Y2 + Z 2  - T2.  (F.14) 

The following table gives the star operator * 
f 1 +d7 dx dy d z = - d x  dy dz d 7 + -  1 

(F.  15) 

and  relations  obtained  by  circular  permutations of the vari- 
ables (x, y , z). 

Note  that  the set of ordered  subscripts is not based on the 
M t U d  order  (any  more  than  it was in R 3 ) .  Rather, we choose 
to make  it  invariant  under  circular  permutation of the space 
variables, with  a special role played by the  time variable. 

Differential  forms  are often  decomposed  into space and  time 
components.  They may be purely  spatial, say a that does not 
contain d7, or  mixed,  in which  case  d7  can  be factored, yield- 
ing an expression  (d7) a where a is purely  spatial.  It is con- 
venient when transforming  equations  from  four to three di- 
mensions (see (F. 15)) to make use of the following properties: 

a + -(*a) d7 

* { (dr)a --+ -*a. 
(F.16) 

Given two  forms a and fl of the same degree, on  a  compact 
manifold M of dimension n ,  the  expression a(*@) = a * fl is an 
n-form which can be integrated over M, producing an (in- 
tegrated) scalar product (a * @)IM, which we shall denote 

(a * 0). (F.17) 

Since @ * a = a * 0 for a, @ of the  same degree, this scalar prod- 
uct is symmetric. 

Let L be an  operator of  degree q, i.e., one  that maps p-forms 
onto (p  + qhforms. If a is a  p-form  and fl a ( p  - qbform,  the 
adjoint L* of L is defined  by 

(a * (LB)) = (@*a) * @>. (F.18) 

Naturally,  the degree of L* is -4. 
Taking for L the differential operator  d  (of degree +1, to be 

def ied in  Appendix H), its  adjoint d’ (of degree - 1) is called 
the  codiffrenth2  operator. ’ Its explicit expression is 

d* = d (-)P (F.19) 

when applied to p-forms. (This operator is often  denoted  by 6 
in  the literature.) An obvious property,  shared  with  the  ex- 
terior  differential is 

d* - d* = 0 (F.20) 

The following combination 

- A = d . d * + d * . d  (F.21) 

is an  operator of degree zero  which  equals the negative of the 
Laplacian. 

G. Vector Fields  and Differential Forms 
Up to this  point we  have considered a single vector space E 

(or  its  dual E * )  and the exterior algebras AE and AE* con- 
structed ,on these spaces. Now  we shall deal with manifolds 
such as the surface S of a  sphere  in R 3 .  These  are  not  vector 
spaces, but we can attach to every point r ,  of S for instance, 
the  tangent space denoted  by T,S (tangent  at r ,  to S). This 
produces  a  collection of vector spaces which is called the 
tangent  bundle TS to S. This concept is beginning to play an 
important role in  theoretical physics. It  extends  immediately 
to  a manifold M of any  dimension, provided M is embedded in 
a linear  vector space. When this is not  the case, one bust seek 
an intrinsic  definition of vector  on  a manifold. 

Roughly speaking, a manifold M is a  topological space 
that locally “looks like” an Euclidean space. More precisely 
[ 1, pp. 49, ff.1, M can  be  covered  by a collection of open  sets 
Vi, each of which can be mapped  continuously by a  one-to- 
one  function & into  an Euclidean space Rn ( n  is the dimension 
of M, 9;’ is a  parameterization of Vi). The  collection of maps 
or charts (Vi, &) is said to constitute  an atlas. A compatibility 
condition  must hold on  the overlap Vi n Vj of two sets: the 
function q& - @, defined on 4i(Vi Vi) must be C”, i.e.,  have 
continuous derivatives of all orders.  The manifold is called 
differentiable  and is the  only  type considered here.  The  com- 
patibility  condition enables on to carry  on globally the  opera- 
tions of differential  geometry.  The need for several maps to  
define  a manifold is clear from  the  example of the sphere, 
which obviously cannot be mapped  in  its entirety  on  a plane 
by a one-to-one  function. 

A tangent  vector V, E T,M, when the manifold is embedded 
into  a linear space, may be considered as the velocity vector, 
at  time t = 0, for  a  point describing a trajectory ~ ( t )  passing 
through r at  time, 0, ( ~ ( 0 )  = r ) .  To ~ ( t )  is associated a direc- 
t i o ~ l  deriuative which indicates the  rate of variation at  time 0 
of  a  function  defined  on M as the  observation  point moves 
along the trajectory 
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(The notation atlo h ( t )  is short  for (dh/dt),,o.) It can be 
shown that  this  rate of change depends  only on  the vector V,. 
Consequently, we shall denote  this  rate  by V,f Furthermore, 
when the manifold is not embedded, we shall consider that  the 
directional derivative  itself defines a vector on  the manifold. 

The assignment of a vector V, to every point t of M defines 
a vector fiehi over M. Any vector field is identified  with a lin- 
ear differential operator  that transforms SO into 90, where 9 0 
is the set of functions over M .  For example, on a manifold 
parametrized by (u, U ,  w )  the  operators a,, a,, a, are three 
vector fields. 

To apply the results from the previous section,  one can  re- 
place (el ,  e2 ,  e3) by (a,, a,, a,). (ei by ai on a manifold of 
dimension n.) 

The dwt-T,?Ahf T,Y-is-c~maese8,af-tangent-covectors, also 
called cotangent vectors. The collection of T,?M for all r is the 
cotangent bundlepn M:  T*M.  The basis, dualof  the {ei}  ={ai}, 
is {e'} and the e' are  preciply  the differential of the variables 
u'-they are  denoted by du'. This definition might have  seemed 
strange to. Leibnitz himself! The du' are  not increments of the 
variable d ,  as is often  stated  in classical texts.  From  the mod- 
em point of view, the differential of coordinate u, du, is a lin- 
ear operator which applied to a vector 

v = h a ,  +sua, + 6wa:, (G.2) 

where dUJ(X) is computed as in (H.2) and the expression (H.4) 
is then simplified according to the  rule of exterior algebra. 
The main justification  for  introducing  this  operation is its  role 
in expressing the Stokes' theorem (see Appendix J). We shall 
consider its  application to  functions and  differential  forms  in 
space R 3 ,  using (x, y ,  z) as coordinates instead of (x1, x ? ,  x3). 

For  the  functionf(x, y, z), equation (H.2) becomes 

df= f, dx + fy dy +f, dz. ( H . 3  

If (x, y ,  z)  are Euclidean coordinates, i.e., if the metric is de- 
fined by x' + y 2  + zz,  then  the vector associated to df is 

- 
o a-= V =  f,a, + fyay + f,a, (H.6) 

which is recognized as the  gradient  off. 
For a one*- 

a = X d x + Y d y + Z d z  (H.7) 

its differential is the  two form 

da  = (Zy - Y,)  dy dz + (X, - Z,) dz  dx + ( Y ,  - X,,) dx dy . 
(H.8) 

The coefficients are those of the  curl of the  vector E = as- 
sociated with a. Using the  star  operator, we convert da  into a 
one-form: 

produces the u component of the vector V *da = (Zy - Y,)  dx + (X, - Z,) dy + ( Y ,  - Xy) dz. 

duJV=Gu. (G.3) (H.9) 
(The 6 U  may be considered aS small (infinitesimal) or finite.) and then transform this one-form into a vector a, obtaining 
The one-form the formula 

df=f,du+f,du+f,dw (G.4) curl Z = *dol. (H.lO) 
applied to V gives For example, if E is tke electric field one-form and E the elec- 

(G.5) g c  field vector, d r l  E and  *dE  are mates, i.e., are related  by 

-# 

dflV= f,Su + f,6u+ f,Sw. 
0. 

The similarity with (G.4) explains the confusion that often ex- For a two-form 
ists between  increment  and differential. 

Vf. Once the correspondence  between the  notations  for bases Its differential, after shp~lcation, is the thzee-form 
Note that  this last equation (G.5) is also an expression of p = U d y d z + V d z d x + W d x d y  (H.11) 

d/3=(U, + Vy  + W,) dx dy dz (H.12) 
have been understood, all the results of preceeding sections 
can be translated  from a single vector space to the tangent and 
cotangent spaces at  one  point, and to  fields of multivectors or 

whose coefficient is the divergence  of the vector $= Ua, + 
Va, + wa, associated with p: 

multicovectors. The  latter  are  known as  differential forms. *@ = div $. (H.13) 

H. Exterior Differential 
The differential of a scalar-vaiued function f 

f : R " ~ R : x = ( x ' , x ' ; . . , x " ) + f ( x )  (H.l) 

For  exynple,  the  current two-form J and  the  current density 
vector J are  such that 

div I =  *dJ. (H.14) 

is the  onaform Thus, we recognize the kinship of the  exterior differentials 
with the  operators curl, grad, and div. Their  connection is 

df= fi dx'  (H.2)  complicated by  the  intervention of metrical concepts, ass* 
ciated with the  latter and that  are  often  spurious to the problem 

where fi is the partial derivative off  with respect to xi. considered. Thus formulas (H.5),  (H.8), and (H.12), which are 
The differential of a p-form a independent of a metric, have the same expression if (x, y ,  z) 

are  arbitrary curvilinear coordinates.  The  formulas  for curl, 
(H.3) grad, and div on  the  other hand  are more complicated, as they 

involve the  metrical coefficients gij. For  instance, even in  or- 
thogonal coordinates (u, u, w ) ,  where only the  three Lam6 co- 

da = Eo dahx)  dx" (H.4) efficients ( h l ,  h z ,  h 3 )  are needed, the expression for  the  curl is 

a = Zo a A x )  dx", J €3, 
is by  definition  the (p  + 1)-form 
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as follows 

(H.15) 

as compared to an expression  such as (H.8) valid when (x, y,   z)  
are replaced by arbitrary  cnnrdinates (u, u, w) and ( X ,   Y ,  2) 
by functions (U, V ,  W) of these  coordinates. Many other ex- 
amples could be cited where the  introduction of an  irrelevant 
metric  only  complicates  formulas.  The  expression (H.15) is 
even more  complex  for  arbitrary  coordinates, and is unneces- 
sary in many cases where the metric  does  not  matter. 

Some  useful  properties of  the exterior  diffefential are 
d(&) = 0, discussed in  Appendix K, and  the  modified  Leibnitz 
rule 

where a is a  p-form. This equation  encompasses the  equations 
of vector  calculus  for  grad(fg),  curl(f8),  dm( fa, and  div(it X 3). 

I. Change of Variables-Atllbacks,  Integration 
Differential  forms  are  particularly well-suited to perform 

changes of  variables. This is essentially because their expres- 
sions include  the  differentials of thevariables  x = (x1, - * - , x"). 
Let the variables x be  known  in  terms of-new variables u = 
(u',...,um)throu~asetofn~nctionsx'=f'(u';..,um) 
which define  the mapping 

f : R m + R n : u b x  (I. 1) 

and  let 

Q = Eo aJ(x)  dxJ (1.2) 

be a  p-form ( J  E S p ,  IJl = p ) .  
The  clpnge of  variables from x to u in a is done by substi- 

tuting f ' (u for ' both  in  the  coefficients a~ and ip the differ- 
entials dx"= da?' - - - dxip.  The  differential df ' (u)  is com- 
puted as in (H.2): 

The  products  in (1.2) are then simplified  according to  the rules 
of exterior algebra. The  result is a  p-form a' which is called 
the pullback of a, this relation3 being denoted by 

a' = f*a. (1.4) 

ables u through 0.4). It is sometimes  the practice t o  use the  same sym- 
'The form a with variables x corresponds t o  the form a' with vari- 

b o 1  Q for the two forms, writing Mar) for the f&. Nu) for the  second. 
and t h u  relying on the variable t o  indicate which of the two forms is 

f(u) for f(x(u)). This. of course, strictly is incorrect and somewhat 
meant. This is a common ''abuse of language'' which It.& to writing 

dangerous when otha variables, or n u m a i d  values, are substituted in 
f (-1. 

(The  star  here is not to  be  confused  with the  conjugate sign or 
the star operation  described in Appendix F.) 

As an  example,  consider the electric  field  one-form  in R 2  : 

E = X(x,  y)  dx + Y(x ,  y) dy  (1.5) 

and "new"  variables ( p ,  8 )  related to (x, y)  by 

f :  ( p ,  e )  -* (X,Y) = ( p  COS 0 ,  P sin 0). (1.6) 

Then 

(dx,  dy) = (COS 8 dp - p sin 8 de, sin 0 dp + p COS 8 dB). 

(1.7) 

Substituting (1.7) in (1.5) and  simplifying gives 

f *E = R(p, e )  dp + 8 ( p ,  8 )  de (1.8) 

with 

~ ( p ,  e )  = x ' ( p ,  e) COS e + P(p, e) sin e (1.9) 

e(p, e )  = -x'(p, e )  sin e + f ( p ,  e) COS e (1.10) 

x ' = f * x = x * f   P = f * Y =   Y : f .  (1.11) 

The  name pullback given to this change of variable  process 
is understood  by  the diagram representing  the pullback of a 
function F (zero-form).  The mapping f transforms  a set U into 
a  set V ,  and F maps V into R .  The  composition F * f maps U 
into R and is the pullback f *F: 

f 
U ,v 

Fof\ /" 
L J  

R 

Fig. 1.1. Pullback of a function F. 

The following  problem is left to  the reader. Consider in vac- 
uum  the  electromagnetic force field @ = Edr  + B and the Source 
field 9 = D - Hdr, where r = ct. Evaluate  the  pullbacks a' = 
f*@ and 9' = f*\k,  under  the  Lorentz  transformation  corre- 
sponding to  a  uniform  motion  with  velocity c - th 0 in  the x- 
direction. This transformation is expressed by 

f: (x ' ,Y ' , z ' , r ' )~ (x ,Y ,z , r )  (1.12) 

x = r ' s h e + x ' c h e  

f : [  Y z = z  = Y '  ' (1.13) 

r = r ' c h e + x ' s h e .  

Verify that a' and 9' are related by the same  space-time s t a r  
opentor (defined  in Appendix F) as and \k. In other  terms, 
this operator is Lorentz  invariant. 

Even with little experience the  reader will realize  how easy 
and  automatic  these  computations are. To quote  Flanders on 
that  subject .[ 1, p. 251, "One can carry on fearlessly with  the 
most  obvious  kind of calculations." 
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The following properties of the pullback can be verified: 

f*(a + 0)  = f*a  + f*O (1.14) 

f *(as) = ( f  *a) (f  ‘8) (I. 15) 

(f .g)* =g* * f*. (I:17) 

f *(&I = d(f *a) (1.16) 

The  property (1.16) is particularly important, as it implies the 
invariance properties of equations expressed by  means of ex- 
terior  differentials. 

An important  application of pullbacks is the  computation of 
integrals over a  domain  (or  a  chain) in an arbitrary  manifold. 
If the domain D is parameterized by 

y :  U + D  

where U is a Euclidean domain,  the integral of the  form w 
over D equals that of y*w over U. 

Take, for  instance, a curve in R 3  defied by the  parametriza- 
tion y, i.e., by a mapping  from  an  interval I = [a ,  b] of R to 
the  space R 3  : 

y : I - + R 3 :  t ~ ( ~ , ~ , z ) = ( f ( t ) , g ( t ) , h ( t ) ) .  (1.19) 

The image y ( I )  = I’ is oriented  from y(a) to y(b). Consider the 
problem of finding the work  done  by the electric field E = 
X dx + Y dy +Z dz, where X, Y,Z are  functions of ( x , y ,  z), 
when a  unit  test charge is moved along I’. The  work W is the 
integral jr E ,  which we have denoted E to emphasize the 
linear dependence of the result  on both factors E and r, and 
the fact that  the integral is the limit of a  Riemann  sum of 
duality  products EilGiy (see equation (4)). 

This integral  reduces to  an integral over I by the pullback 
y* : 

E IF = E I y ( I )  = (y*E)lI. (1.20) 

The one-form y*E is a  function of t and  its  integral is taken 
along an interval I of the real axis R .  

Computations of multiple integrals can be handled similarly 
[ l ,  P. 631. 

J. Stokes’  Theorem 
Stokes’ theorem is the single most important  theorem of in- 

tegral calculus. It  does  contain as special cases all known t h e  
orems  that relate integrals over a domain  and integrals over its 
boundary  such as those  due to Gauss, Poincark, Ostrogradski, 
Green, and even Newton  and Leibnitz! The  statement of 
Stokes’  theorem is particularly elegant in  terms of differential 
forms: if a is a p-form and D is a ( p  + 1)domain of integration 
having aD as a  boundary, 

weights that add  up to 1. A simplex is oriented  by selecting a 
particular  order of the vertices. The  boundary 

a[AoAl - . A ~ ]  = Z ( - ) ’ [ A ~  - - - k i - . ~ p ~ ,  (1.2) 

where A i  means A i  is omitted, as extended  by  linearity  and  a 
continuous  mapping  onto  the  manifold.  For precise definitions 
and discussion of these  matters (see [ 1,  pp.  6 11 .) 

K.  Poincari  Lemma 
The  differential of a  function f (x, y , z) is the one-form 

df = fx dx + fy dy + f, dz  (K.1) 

where (fx, fy, f,) are  partial derivatives of f with  respect to 
( x , y ,  z). The  exterior  differential d(df) of this oneform is 
null because the mixed  partial derivatives such as fxy and fyx 
are equal.  This  property is easily generalized to  any p-form on 
a manifold of any  dimension:  the  operation  d applied twice  in 
succession gives zero [ 1, pp. 2,271. 

d o d = O  (K.2) 

(For  two  operators T and S the  notation T o S represents  their 
composition, Le., the  operation resulting  from  applying S first, 
then T . )  Special  cases of (K.2) in R 3  correspond to  the  vector 
calculus properties  curl grad = 0 and div curl = 0. 

The  boundary  operator a, applied to  chains,  enjoys a similar 
property : 

a o a = o .  (K.3) 

This can be  understood  intuitively:  the curve that  bounds  a 
surface has no end points, the  surface  that  bounds  a volume 
has no edge. The  property is proven rigorously on  a curved man- 
ifold after defining properly  the  boundary  operator a,  and the 
objects to which it applies, namely the chains which generalize 
integration domains. (See [ 1,  pp.  61-63 1 .) 

By defi t ion,  a  form  d is closed if da = 0;it  is exact if there 
exists a  form  such  that do = a. Similarly, a  chain C is a cycle 
if aC = 0, and it is a boundmy if there  exists a chain S such 
that as = C. With these  nomenclatures,  properties  (K.2) and 
(K.3) are expressed by 

{ “Every exact  form is closed.” (K.2’) 

“Every boundary chain is a cycle.” (K.3’) 

In these  two  statements  the  conclusion  holds over a domain D 
if the premise holds over that  domain. 

Converse properties of (K.2)  and (K.3) are 

“Every  closed form is exact.” (K.4) 

“Every cycle is a  boundary.” (K.5) 

The definition of aD specifies the  orientation of aD  in rela- 
tion to  that of D. Both D and aD may be replaced by chains 

In brief, a p-chain D  on a manifold M is a linear  combination 
x a p i  of p-simplices. A p-simplex is a  continuous  map u of an 
Euclidean p-simplex Ap into M. A Euclidean p-simplex is d e  
f i e d  by ( p  + 1) vertices [AoAl  * - A p ]  in RP and  consists 
of the  centers of  mass  of those vertices with variable positive 

[ l ,  P. 611. 

These are true over a specified domain  D provided D  has a p  
propriate  topological  properties.  For  instance,  D may be the 
whole space R”, the inside of a  sphere, or a star-like  domain, 
i.e., one  such  that  a segment joining  a  point 0 in D  to any 
other  point  in  D is entirely inside the domain  D. 

Taking 0 as an origin, the  transformation 

h t : r + t r ,  for t E [ O , 1 ]  (K.6) 

maps D  continuously  into  D  such  that hl is the  identity and ho 
maps every point in D  onto 0. It  defies  a homotopy from the 
identity map h to  the map ho .  (Other  homotopies h,: r -+ h p  
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sharing the  above  properties  could be  used to derive a  solution  one  may  consider  the  function 
of (K.4) and (K.5).) 

The  importance of this homotopy is that it makes it possible 
to construct  a  solution of (K.4)  and (K.5). For (K.51,  given a 
cycle C, the surface S of the cone  with  apex 0 and base C 
(generated  by h,(C) as t varies from  1 to 0), is such that 

For  (K.4),  one is given a p-form a, closed over D.  This  form 
is exact if there  exists  a ( p  - 1 )-form 0 such that @ = a. The 
actual  construction of p results  essentially  from  integrating 
along segments  from 0 to  the point where p is evaluated. See 
[ 1, pp. 27-3 1 ] for such  a  construction.  The  property  (K.4) is 
usually known as the Poincarb lemma (or  theorem), although 
some  authors  (Flanders  in  particular)  take (K.2) as the P o i n d  
lemma  and call (K.4)  its converse. 

Note that  the  solution 0 is not unique.  It is obvious that 0 
can be  augmented by any closed form  or  by  dy,  for  any  form 
y, without changing its  differential. Conversely, two solutions 
of (KS), PI and p2, are  such that d& - pl) = 0; hence, O2 - 
81 = dy for  some ( p  - 2)-form y, provided the  conditions  under 
which the lemma  applies  are  satisfied. 

as = c. 

L. Flow and Lie Derivatives 
The  steady  motion of a  fluid in space R 3  may  be  described 

by a vector-field V(r) which gives at every point r E R 3  the 
velocity of the fluid  particle passing through that point. An 
integral  curve of the vectorfield V i s  a  curve 

7: R + R 3 :  t t+y( t )  (L.1) 

such that 

a d t )  = v(r(t)). (L.2) 

The space over which the  motion takes place may be a mani- 
fold M, its  points  representing the  states of a  system whose 
evolution is described by  an  integral  curve, or  trajectory in M. 

If V(r)  is smooth enough, it is possible to find for every 
point r an integral  curve y(t, r )  such that 

y ( . , r ) : I - , R 3 : t ~ ~ t , r ) : O b r  (L.3) 

where I is an interval  in R ,  that contains t = 0. (The  interval I 
may depend on r.)  

The mapping 

y(t, -1: R 3  + R 3  : r b ~ ( t ,  f )  (L.4) 

defines the  flow associated  with the vectorfield V .  It wiU be 
denoted  by V'. 

Thus, V'(r) = rt is the position at time t of the fluid  particle 
that was at point r at time 0. It is easy to see that 

v'o  vs= ,'+S (L.5) 

and 

V o  = id  (L.6) 

which justifies the exponential  notation  and  shows that the 
transformations V' form  a  one-parameter  Abelian  group if V' 
is defined for all real values of t .  (The  transformation V' de- 
fined  only for positive values of r forms  a  semigroup.) Given 
a flow V' over a  manifold M (for instance R 3 )  and  a  scalar 
function 

which is the pullback (see Appendix  I) of function f. It does 
represent the  function f observed at a  point rt = V'(r) d e d  
by the flow. The derivative of this function at time 0 is called 
the Lie  derivative Lvf of the  function f .  We have encountered 
its  expression as the direction derivative Vf = df I V (see Ap- 
pendix G, equation  (G.5)). More generally, however, it is pos- 
sible to define  a derivative along the flow for  other  than scalar- 
valued functions:  any  type of tensor,  covariant,  contravariant, 
or  mixed, can be  transported  by the flow,  hence  compared at 
two different  points of a  trajectory. The difference  between 
its values at t and t = 0, divided by the time t has a limit as 
t + 0 called the Lie  derivative of the  tensor. (This derivative 
should not be confused  with the covariant derivative that re- 
quires the concept of parallel displacement  related to a Rie- 
mannian  metric  or to a  connection.) 

For covariant  tensors  and  in  particular  for  exterior  differ- 
ential  forms, which are of primary  interest  €or our purpose, 
the  transport is performed by a  pullback.  At  point r on the 
manifold the Lie derivative of the form a is the differential 
form 

(L  ya), = at,,< Vt)*U( V'r). (L.9) 

If a is a  p-form, we can integrate this equation over a pdomain 
D,  carried along by  the  flow to 

D, = V'D. (L.10) 

This gives 

expressing the  rate of change at time t = 0 of the  integral of a 
over a moving domain D,. 

A  useful  formula for L v a  is 

I I 

or  in  operator  form 

L V = d o i v + i v o d .  (L.13) 

With the help of Stokes'  theorem,  equations  (L.11)  and  (L.12) 
yield 

a,o(aIDt)=((da)lV)ID+(alV)lao. (L.14) 

This formula expresses and generalizes formulas of vector cal- 
culus  relative to integration over domains of dimensions l ,  2, 
and 3. For example, in dimension  2,  (L.14)  corresponds to 
the  vector flux  theorem of Helmholtz [7, pp.  285-2871. 
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