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Introduction 

There are three essential ideas underlying general relativity �GR�� The �rst is that space	
time may be described as a curved
 four	dimensional mathematical structure called a 

pseudo	Riemannian manifold� In brief
 time and space together comprise a curved four	
dimensional non	Euclidean geometry� Consequently
 the practitioner of GR must be 

familiar with the fundamental geometrical properties of curved spacetime� In particu	
lar
 the laws of physics must be expressed in a form that is valid independently of any 

coordinate system used to label points in spacetime� 

The second essential idea underlying GR is that at every spacetime point there exist 

locally inertial reference frames
 corresponding to locally �at coordinates carried by freely 

falling observers
 in which t h e p h ysics of GR is locally indistinguishable from that of 

special relativity� This is Einstein�s famous strong equivalence principle and it makes 

general relativity an extension of special relativity t o a c u r v ed spacetime� The third key 

idea is that mass �as well as mass and momentum �ux� curves spacetime in a manner 

described by the tensor �eld equations of Einstein� 

These three ideas are exempli�ed by c o n trasting GR with Newtonian gravity� I n t h e 

Newtonian view
 gravity is a force accelerating particles through Euclidean space
 while 

time is absolute� From the viewpoint of GR as a theory of curved spacetime
 there is no 

gravitational force� Rather
 in the absence of electromagnetic and other forces
 particles 

follow the straightest possible paths �geodesics� through a spacetime curved by mass� 

Freely falling particles de�ne locally inertial reference frames� Time and space are not 

absolute but are combined into the four	dimensional manifold called spacetime� 

In special relativity there exist global inertial frames� This is no longer true in the 

presence of gravity� H o wever
 there are local inertial frames in GR
 such that within a 







suitably small spacetime volume around an event �just how small is discussed e�g� in 

MTW Chapter 
�
 one may c hoose coordinates corresponding to a nearly	�at spacetime� 

Thus
 the local properties of special relativity c a r r y o ver to GR� The mathematics of 

vectors and tensors applies in GR much as it does in SR
 with the restriction that vectors 

and tensors are de�ned independently at each spacetime event �or within a su�ciently 

small neighborhood so that the spacetime is sensibly �at�� 

Working with GR
 particularly with the Einstein �eld equations
 requires some un	
derstanding of di�erential geometry� In these notes we w i l l d e v elop the essential math	
ematics needed to describe physics in curved spacetime� Many p h ysicists receive their 

introduction to this mathematics in the excellent  boo  k  o  f  W  einberg �
����� Weinbe  r g 

minimizes the geometrical content of the equations by representing tensors using com	
ponent notation� We believe that it is equally easy to work with a more geometrical 

description
 with the additional bene�t that geometrical notation makes it easier to dis	
tinguish physical results that are true in any coordinate system �e�g�
 those expressible 

using vectors� from those that are dependent on the coordinates� Because the geometry 

of spacetime is so intimately related to physics
 we believe that it is better to highlight 

the geometry from the outset� In fact
 using a geometrical approach a l l o ws us to develop 

the essential di�erential geometry as an extension of vector calculus� Our treatment 

is closer to that Wald �
���� and closer still to Misner
 Thorne and Wheeler �
���
 

MTW�� These books are rather advanced� For the newcomer to general relativity w e 

warmly recommend Schutz �
����� Our notation and presentation is patterned largely 

after Schutz� It expands on MTW Chapters �
 �
 and �� The student wishing addi	
tional practice problems in GR should consult Lightman et al� �
����� A slightly more 

advanced mathematical treatment is provided in the excellent notes of Carroll �
����� 

These notes assume familiarity with special relativity� W e will adopt units in which 

the speed of light c � 
 � Greek indices ��
 �
 etc�
 which t a k e the range f�� 
� �� �g� 

will be used to represent components of tensors� The Einstein summation convention 

is assumed� repeated upper and lower indices are to be summed over their ranges
 

e�g�
 A�B� 

� A�B� 

� A�B� 

� A�B� 

� A�B�� Four	vectors will be represented with 

�an arrow o ver the symbol
 e�g�
 A
 while one	forms will be represented using a tilde
 

�e�g�
 B� Spacetime points will be denoted in boldface type� e�g�
 x refers to a point 

with coordinates x� � Our metric has signature ��� the �at spacetime Minkowski metric 

components are ��� 

� diag��
� �
� �
� �
�� 

Vectors and one�forms 

The essential mathematics of general relativity is di�erential geometry
 the branch o f 

mathematics dealing with smoothly curved surfaces �di�erentiable manifolds�� The 

physicist does not need to master all of the subtleties of di�erential geometry in order 

�


� 



to use general relativity� � F or those readers who want a deeper exposure to di�erential 

geometry
 see the introductory texts of Lovelock and Rund 
���
 Bishop and Goldberg 


���
 or Schutz 
����� It is su�cient to develop the needed di�erential geometry as a 

straightforward extension of linear algebra and vector calculus� However
 it is important 

to keep in mind the geometrical interpretation of physical quantities� For this reason
 

we will not shy from using abstract concepts like p o i n ts
 curves and vectors
 and we will 

�distinguish between a vector A and its components A� � U n l i k e some other authors �e�g�
 

Weinberg 
����
 we will introduce geometrical objects in a coordinate	free manner
 only 

later introducing coordinates for the purpose of simplifying calculations� This approach 

requires that we distinguish vectors from the related objects called one	forms� Once 

the di�erences and similarities between vectors
 one	forms and tensors are clear
 we will 

adopt a uni�ed notation that makes computations easy� 

��� Vectors 

We begin with vectors� A vector is a quantity with a magnitude and a direction� This 

primitive concept
 familiar from undergraduate physics and mathematics
 applies equally 

in general relativity� An example of a vector is d�x
 the di�erence vector between two 

in�nitesimally close points of spacetime� Vectors form a linear algebra �i�e�
 a vector 

� �space�� If A is a vector and a is a real number �scalar� then aA is a vector with the 

same direction �or the opposite direction
 if a � �� whose length is multiplied by jaj� If 

� � � �A and B are vectors then so is A � B� These results are as valid for vectors in a curved 

four	dimensional spacetime as they are for vectors in three	dimensional Euclidean space� 

Note that we h a ve i n troduced vectors without mentioning coordinates or coordinate 

transformations� Scalars and vectors are invariant under coordinate transformations� 

�vector components are not� The whole point of writing the laws of physics �e�g�
 F � m�a� 

using scalars and vectors is that these laws do not depend on the coordinate system 

imposed by the physicist� 

We denote a spacetime point using a boldface symbo  l � x� �This notation is not meant 

to imply coordinates�� Note that x refers to a point
 not a vector� In a curved spacetime 

the concept of a radius vector �x pointing from some origin to each p o i n t x is not useful 

because vectors de�ned at two di�erent points cannot be added straightforwardly as 

they can in Euclidean space� For example
 consider a sphere embedded in ordinary 

three	dimensional Euclidean space �i�e�
 a two	sphere�� A v ector pointing east at one 

point on the equator is seen to point radially outward at another point on the equator 

whose longitude is greater by � � 

� � The radially outward direction is unde�ned on the 

sphere� 

Technically
 w e are discussing tangent vectors that lie in the tangent space of the 

manifold at each point� For example
 a sphere may b e e m bedded in a three	dimensional 

Euclidean space into which m a y be placed a plane tangent to the sphere at a point� A two	

�




dimensional vector space exists at the point of tangency� H o wever
 such a n e m bedding 

is not required to de�ne the tangent space of a manifold �Wald 
����� As long as the 

space is smooth �as assumed in the formal de�nition of a manifold�
 the di�erence vector 

d�x be  t  ween two in�nitesimally close points may be de�ned� The set of all d�x de�nes 

the tangent space at x� By assigning a tangent v ector to every spacetime point
 we 

can recover the usual concept of a vector �eld� However
 without additional preparation 

one cannot compare vectors at di�erent spacetime points
 because they lie in di�erent 

tangent spaces� In later notes we i n troduce will parallel transport as a means of making 

this comparison� Until then
 we consider only tangent v ectors at x� T o emphasize the 

�status of a tangent v ector
 we will occasionally use a subscript notation� AX 

� 

��� One�forms and dual vector space 

Next we i n troduce one	forms� A one	form is de�ned as a linear scalar function of a vector� 

That is
 a one	form takes a vector as input and outputs a scalar� For the one	form P�
 

P��V� � is also called the scalar product and may be denoted using angle brackets� 

�P��V� � � hP�� V i � �
� 

The one	form is a linear function
 meaning that for all scalars a and b and vectors V� and 

�W 
 the one	form P� satis�es the following relations� 

� � � � � � �P �aV � b � W i � ahP�� V i � bhP��W i � aP �V � � bP�� 

�W � � hP�� aV � b � W � � ��� 

Just as we m a y consider any function f� � as a mathematical entity independently of 

any particular argument
 we m a y consider the one	form P� independently of any particular 

�vector V � W e m a y also associate a one	form with each spacetime point
 resulting in a 

�one	form �eld P� � PX 

� N o w the distinction between a point a v ector is crucial� P�X 

is 

a one	form at point x while P��V� � is a scalar
 de�ned implicitly at point x� The scalar 

product notation with subscripts makes this more clear� hP�X 

� �VX 

i� 

One	forms obey their own linear algebra distinct from that of vectors� Given any t wo 

� �scalars a and b and one	forms P� and Q
 w e m a y de�ne the one	form aP � b �Q by 

� Q��V� � � haP� � b � � Q� � � � b � ��aP � b � Q�V� i � ahP�� V i � bh 

� V i � aP �V � � Q�V � � ��� 

Comparing equations ��� and ���
 we see that vectors and one	forms are linear operators 

on each other
 producing scalars� It is often helpful to consider a vector as being a linear 

� � � �scalar function of a one	form� Thus
 we m a y w r i t e hP�� V i � P �V � � V �P��� The set of 

all one	forms is a vector space distinct from
 but complementary to
 the linear vector 

space of vectors� The vector space of one	forms is called the dual vector �or cotangent� 

space to distinguish it from the linear space of vectors �tangent space�� 

� 



Although one	forms may appear to be highly abstract
 the concept of dual vector 

spaces is familiar to any student o f q u a n tum mechanics who has seen the Dirac bra	ket 

notation� Recall that the fundamental object in quantum mechanics is the state vector
 

represented by a k et j�i in a linear vector space �Hilbert space�� A distinct Hilbert 

space is given by the set of bra vectors h�j� Bra vectors and ket vectors are linear scalar 

functions of each other� The scalar product h�j�i maps a bra vector and a ket vector to a 

scalar called a probability amplitude� The distinction between bras and kets is necessary 

because probability amplitudes are complex numbers� As we will see
 the distinction 

be  t  ween vectors and one	forms is necessary because spacetime is curved� 

� Tensors 

Having de�ned vectors and one	forms we can now de�ne tensors� A tensor of rank �m� n�
 

also called a �m� n� tensor
 is de�ned to be a scalar function of m one	forms and n vectors 

that is linear in all of its arguments� It follows at once that scalars are tensors of rank 

��� ��
 vectors are tensors of rank �
� �� and one	forms are tensors of rank ��� 
�� We 

� � �may denote a tensor of rank ��� �� by T�P 

�� Q�� one of rank ��� 
� by T�P 

�� Q�A�
 etc� 

Our notation will not distinguish a ��� �� tensor T 

from a ��� 
� tensor T
 although a 

notational distinction could be made by placing m arrows and n tildes over the symbo  l 
 

or by appropriate use of dummy indices �Wald 
����� 

The scalar product is a tensor of rank �
� 
�
 which w e will denote I 

and call the 

identity tensor� 

� � � � �I�P 

�� V � � h P 

�� V i � P �V � � V �P�� � ��� 

�We call I 

the identity because
 when applied to a �xed one	form P� and any vector V 
 it 

returns P��V� �� Although the identity t e n s o r w as de�ned as a mapping from a one	form 

and a vector to a scalar
 we see that it may equally be interpreted as a mapping from a 

one	form to the same one	form� I�P 

�� �� � P�
 where the dot indicates that an argument 

�a vector� is needed to give a scalar� A similar argument shows that I 

may be considered 

�the identity operator on the space of vectors V � I��� �V � � V� � 

A tensor of rank �m� n� is linear in all its arguments� For example
 for �m � � � n � �� 

we h a ve a straightforward extension of equation ���� 

� � � � �Q� c R � dS�� � ac T�P 

�� R� � ad T�P 

�� S� � bc T� �T�aP � b 

� Q�R� � bd T� q�� S�� � ��� 

Tensors of a given rank form a linear algebra
 meaning that a linear combination of 

tensors of rank �m� n� is also a tensor of rank �m� n�
 de�ned by straightforward extension 

of equation ���� Two tensors �of the same rank� are equal if and only if they return the 

same scalar when applied to all possible input vectors and one	forms� Tensors of di�erent 

rank cannot be added or compared
 so it is important t o k eep track of the rank of each 

�




tensor� Just as in the case of scalars
 vectors and one	forms
 tensor �elds TX 

are de�ned 

by associating a tensor with each spacetime point� 

There are three ways to change the rank of a tensor� The �rst
 called the tensor �or 

outer� product
 combines two tensors of ranks �m�� n �� and � m�� n �� to form a tensor 

of rank �m� 

� m�� n � 

� n�� b y simply combining the argument lists of the two tensors 

and thereby expanding the dimensionality of the tensor space� For example
 the tensor 

� �product of two v ectors A and B gives a rank ��� �� tensor 

� � � �T 

� A � B� � T�P 

�� Q� � A�P�� B� �Q� � ��� 

We use the symbol � to denote the tensor product� later we will drop this symbo  l f o r 

notational convenience when it is clear from the context that a tensor product is implied� 

� � � � �Note that the tensor product is non	commutative� A � B � �� B � A �unless B � cA for 

� � � � �some scalar c� because A�P�� B� � � A� �Q� � � Q� B�P�� for all P and Q� W e use the symbo  l � 

� � �to denote the tensor product of any t wo tensors
 e�g�
 P� � T 

� P � A � B is a tensor 

of rank ��� 
�� The second way t o c hange the rank of a tensor is by c o n traction
 which 

reduces the rank of a �m� n� tensor to �m � 
� n � 
�� The third way is the gradient� We 

will discuss contraction and gradients later� 

��� Metric tensor 

The scalar product �eq� 
� requires a vector and a one	form� Is it possible to obtain a 

scalar from two v ectors or two one	forms� From the de�nition of tensors
 the answer is 

clearly yes� Any tensor of rank ��� �� will give a scalar from two v ectors and any tensor 

of rank ��� �� combines two one	forms to give a scalar� However
 there is a particular 

��� �� tensor �eld gX 

called the metric tensor and a related ��� �� tensor �eld g 

;� called
X 

the inverse metric tensor for which special distinction is reserved� The metric tensor is 

�a symmetric bilinear scalar function of two v ectors� That is
 given vectors V� and W 
 g 

returns a scalar
 called the dot product� 

� � � � �g�V� � W � � V � W � W � 

�V � g�W� � V � � ��� 

� �Similarly
 g 

;� returns a scalar from two one	forms P and Q
 w h ich w e also call the dot 

product� 

� � � � � �g 

;��P 

�� Q� � P � Q � P � Q � g 

;��P 

�� Q� � ��� 

Although a dot is used in both cases
 it should be clear from the context whether g or g 

;� 

is implied� We reserve the dot product notation for the metric and inverse metric tensors 

just as we reserve the angle brackets scalar product notation for the identity tensor �eq� 

��� Later �in eq� �
� we will see what distinguishes g from other ��� �� tensors and g 

;� 

from other symmetric ��� �� tensors� 

� 



One of the most important properties of the metric is that it allows us to convert 

�vectors to one	forms� If we forget to include W in equation ��� we get a quantity
 denoted 

V� 
 that behaves like a one	form� 

�V � � � � g�V� � � � � g� � � V� � � ��� 

where we h a ve inserted a dot to remind ourselves that a vector must be inserted to give 

a scalar� �Recall that a one	form is a scalar function of a vector�� We use the same letter 

�to indicate the relation of V and V� � 

Thus
 the metric g is a mapping from the space of vectors to the space of one	forms� 

� � � �g � V � V � By de�nition
 the inverse metric g 

;� is the inverse mapping� g 

;� � V � V � 

��The inverse always exists for nonsingular spacetimes�� Thus
 if V� is de�ned for any V 

by equation ���
 the inverse metric tensor is de�ned by 

� �V � � � � g 

;��V � � � � g 

;�� � � V� � � �
�� 

Equations ��� and �����
�� give us several equivalent w ays to obtain scalars from vectors 

� � �V and W and their associated one	forms V� and W � 

� � � � � � � �W � V � 

�hV� �W i � hW � V i � V � 

� � W � I�V� �W � � I�W� � V � � g�V� � W � � g 

;��V� �W � � �

� 

��� Basis vectors and one�forms 

It is possible to formulate the mathematics of general relativity e n tirely using the abstract 

formalism of vectors
 forms and tensors� However
 while the geometrical �coordinate	free� 

interpretation of quantities should always be kept in mind
 the abstract approach often is 

not the most practical way to perform calculations� To simplify calculations it is helpful 

to introduce a set of linearly independent basis vector and one	form �elds spanning 

our vector and dual vector spaces� In the same way
 practical calculations in quantum 

mechanics often start by expanding the ket vector in a set of basis kets
 e�g�
 energy 

eigenstates� By de�nition
 the dimensionality of spacetime �four� equals the numbe  r o f 

linearly independent basis vectors and one	forms� 

We denote our set of basis vector �elds by f�e� X 

g
 where � labels the basis vector 

�e�g�
 � � � � 
� �� �� and x labels the spacetime point� Any four linearly independent basis 

vectors at each spacetime point will work� we do not not impose orthonormality o r a n y 

other conditions in general
 nor have w e implied any relation to coordinates �although 

�later we will�� Given a basis
 we m a y expand any v ector �eld A as a linear combination 

of basis vectors� 

� � �e� X 

� A� 

X�e� X 

� A� 

X�e� X 

� A� 

X�e� X 

� A� 

X�e� X 

� �
��AX 

� A
X 

� 



Note our placement of subscripts and superscripts
 chosen for consistency with the Ein	
stein summation convention
 which requires pairing one subscript with one superscript� 

The coe�cients A� are called the components of the vector �often
 the contravariant 

�components�� Note well that the coe�cients A� depend on the basis vectors but A does 

not� 

Similarly
 w e m a y c hoose a basis of one	form �elds in which to expand one	forms 

like A�X� Although any set of four linearly independent one	forms will su�ce for each 

spacetime point
 we prefer to choose a special one	form basis called the dual basis and 

�denoted fe�
X 

g� Note that the placement of subscripts and superscripts is signi�cant� 

we never use a subscript to label a basis one	form while we n e v er use a superscript 

to label a basis vector� Therefore
 e�� is not related to �e� 

through the metric �eq� ��� 

e��� � � �� g��e�� � �� Rather
 the dual basis one	forms are de�ned by imposing the following 


� requirements at each spacetime point� 

he�� 

X
� �e� Xi � 	� � �
��� 

where 	�� 

is the Kronecker delta
 	� � 
 if � � � and 	�� 

� � otherwise
 with the � 

same values for each spacetime point� �We m ust always distinguish subscripts from 

superscripts� the Kronecker delta always has one of each�� Equation �
�� is a system of 

four linear equations at each spacetime point for each of the four quantities e�� and it 

has a unique solution� �The reader may s h o w t h a t a n y n o n trivial transformation of the 

we mdual basis one	forms will violate eq� 
��� Now a y expand any one	form �eld P�X 

in 

the basis of one	forms� 

P�X 

� P� X 

e�� 

X 

� �
�� 

The component P� 

of the one	form P� is often called the covariant component to distin	
�guish it from the contravariant component P 

� of the vector P � In fact
 because we h a ve 

consistently treated vectors and one	forms as distinct
 we should not think of these as 

being distinct �components� of the same entity a t a l l � 

There is a simple way to get the components of vectors and one	forms
 using the fact 

that vectors are scalar functions of one	forms and vice versa� One simply evaluates the 

vector using the appropriate basis one	form� 

� � � �� �A� e� � � he��� Ai � he� � A �e� 

i � he� � �e� 

iA� � 	�� 

A� � A� � �
�� 

and conversely for a one	form� 

�P���e�� � hP 

�� �e�i � hP� 

e�� � �e�i � he� � �e�iP� 

� 	��P� 

� P� 

� �
�� 

We h a ve suppressed the spacetime point x for clarity
 but it is always implied� 

� 



��� Tensor algebra 

We can use the same ideas to expand tensors as products of components and basis 

tensors� First we note that a basis for a tensor of rank �m�n� i s p r o vided by the tensor 

product of m vectors and n one	forms� For example
 a ��� �� tensor like the metric tensor 

�can be decomposed into basis tensors e�� � e� � T he components of a tensor of rank �m�n�
 

labeled with m superscripts and n subscripts
 are obtained by e v aluating the tensor using 

m basis one	forms and n basis vectors� For example
 the components of the ��� �� metric 

tensor
 the ��� �� inverse metric tensor and the �
� 
� identity tensor are 

;� � � g�� 

� g��e�� �e� 

� � �e� 

� �e� 

� g 

�� � g � e��� e� � � e�� � e� � 	� � I� e��� �e� 

� � he�� � �e� 

i � �
��� 

�The last equation follows from eqs� � and 
��� The tensors are given by summing over 

the tensor product of basis vectors and one	forms� 

� ;� g � g�� 

e�� � e� � g � g 

�� �e� 

� �e� 

� I 

� 	�� 

�e� 

� e�� � �
�� 

The reader should check that equation �
�� follows from equations �
�� and the duality 

condition equation �
��� 

Basis vectors and one	forms allow us to represent a n y tensor equations using com	
ponents� For example
 the dot product between two v ectors or two one	forms and the 

scalar product between a one	form and a vector may be written using components as 

� � � � �� P� 

P�A � B � g�� 

A�A� � hP�� Ai � P� 

A� � P� � Q � g � �
�� 

The reader should prove these important results� 

If two tensors of the same rank are equal in one basis
 i�e�
 if all of their components 

are equal
 then they are equal in any basis� While this mathematical result is obvious 

from the basis	free meaning of a tensor
 it will have important p h ysical implications in 

GR arising from the Equivalence Principle� 

As we discussed above
 the metric and inverse metric tensors allow us to transform 

�vectors into one	forms and vice versa� If we e v aluate the components of V and the 

one	form V� de�ned by equations ��� and �
��
 we g e t 

;� � g 

�� V�V� 

� g��e�� V� � � g�� 

V � � V � � g � e��� V � � � ���� 

Because these two equations must hold for any v ector V� 
 w e conclude that the matrix 

de�ned by g�� is the inverse of the matrix de�ned by g�� 

� 

�� g g�� 

� 	�� 

� ��
� 

We also see that the metric and its inverse are used to lower and raise indices on compo	
� �nents� Thus
 given two v ectors V and W 
 w e m a y e v aluate the dot product any of four 

equivalent w ays �cf� eq� 

�� 

� � �� V� 

W�V � W � g�� 

V �W � � V � W� 

� V�W
� � g � ���� 

� 



In fact
 the metric and its inverse may be used to transform tensors of rank �m� n� 

into tensors of any rank � m � k � n � k� where k � �m� �m � 
 � � � � � n � Consider
 for 

example
 a �
� �� tensor T 

with components 

�T �� 

� T� e��� �e� 

� �e�� � ���� 

If we fail to plug in the one	form �e�
 the result is the vector T 

� �e�� �A one	form must be �� 

inserted to return the quantity T 

� �� This vector may then be inserted into the metric �� 

tensor to give the components of a ��� �� tensor� 

T��� 

� g��e�� T 

� �e�� � g�� 

T 

� � ������ �� 

We could now use the inverse metric to raise the third index
 say
 giving us the component 

of a �
� �� tensor distinct from equation ����� 

� � ��T�� 

� � g 

;�� e� � T ��� 

e� � � g 

�� T��� 

� g g�� 

T 

� � ������ 

In fact
 there are �m�n di�erent tensor spaces with ranks summing to m � n� The metric 

or inverse metric tensor allow all of these tensors to be transformed into each other� 

Returning to equation ����
 we h y ust distinguish vectors �with components see w we m 

V 

� � from one	forms �with components V� 

�� The scalar product of two v ectors requires 

the metric tensor while that of two one	forms requires the inverse metric tensor� In 

general
 g�� �� g�� 

� The only case in which the distinction is unnecessary is in �at 

ca se�Lorentz� spacetime with orthonormal Cartesian basis vectors
 in which g�� 

� ��� 

is everywhere the diagonal matrix with entries ��
� �
� �
� �
�� However
 gravity curves 

spacetime� �Besides
 we m a y wish to use curvilinear coordinates even in �at spacetime�� 

As a result
 it is impossible to de�ne a coordinate system for which g�� � g�� 

everywhere� 

We m ust therefore distinguish vectors from one	forms and we m ust be careful about the 

placement of subscripts and superscripts on components� 

At this stage it is useful to introduce a classi�cation of vectors and one	forms drawn 

�from special relativity with its Minkowski metric ��� 

� Recall that a vector A � A��e� 

� �is called spacelike
 timelike o r n ull according to whether A � A � ��� 

A�A� is positive
 

� �negative or zero
 respectively� In a Euclidean space
 with positive de�nite metric
 A � A 

is never negative� However
 in the Lorentzian spacetime geometry of special relativity
 

�time enters the metric with opposite sign so that it is possible to have A � A� � �� In 

particular
 the four	velocity u� � dx�
d� of a massive particle �where d� is proper time� 

is a timelike v ector� This is seen most simply by performing a Lorentz boost to the 

z �rest frame of the particle in which c a s e ut � 

 ux � uy � u � � and ��� 

u�u � �
� 

� u � �Now
 ��� 

u�u is a Lorentz scalar so that � u � �
 i n a n y Lorentz frame� Often this is 

written p� � p� � �m� where p� � mu� is the four	momentum for a particle of mass m� 

For a massless particle �e�g�
 a photon� the proper time vanishes but the four	momentum 


�




is still well	de�ned with p� � p� � �� the momentum vector is null� We adopt the same 

notation in general relativity
 replacing the Minkowski metric �components ��� 

� with the 

� � � �actual metric g and evaluating the dot product using A � A � g�A�A� �	 g�� 

A�A� � The 

�same classi�cation scheme extends to one	forms using g 

;�� a one	form P is spacelike
 

timelike o r n ull according to whether P� � P� � g 

;��P 

�� P�� � g�� P� 

P� 

is positive
 negative 

� �or zero
 respectively� Finally
 a v ector is called a unit vector if A � A � �
 and similarly 

for a one	form� The four	velocity of a massive particle is a timelike u n i t v ector� 

Now that we h a ve i n troduced basis vectors and one	forms
 we can de�ne the contrac	
tion of a tensor� Contraction pairs two argument s o f a r a n k � m� n� tensor� one vector and 

one one	form� The arguments are replaced by b a s i s v ectors and one	forms and summed 

over� For example
 consider the �
� �� tensor R
 which m a y b e c o n tracted on its second 

vector argument to give a � � � �� tensor also denoted R 

but distinguished by its shorter 

argument list� 

� X 

�R�A� � � B� � R� e��� A��e�� �� B� � 	�� 

R� e��� A� �e�� � B� � ���� 

��� 

In later notes we will de�ne the Riemann curvature tensor of rank �
� ��� its contraction
 

de�ned by equation ����
 is called the Ricci tensor� Although the contracted tensor would 

appear to depend on the choice of basis because its de�nition involves the basis vectors 

and one	forms
 the reader may s h o w that it is actually invariant under a change of basis 

�and is therefore a tensor� as long as we use dual one	form and vector bases satisfying 

equation �
��� Equation ���� becomes somewhat clearer if we e x p r e s s i t e n tirely using 

tensor components� 

R�� 

� R�
��� 

�	 ���� 

Summation over � is implied� Contraction may be performed on any pair of covariant 

and contravariant indices� di�erent tensors result� 








��� Change of basis 

We h a ve made no restrictions upon our choice of basis vectors �e�� Our basis vectors are 

simply a linearly independent set of four vector �elds allowing us to express any v ector as 

a linear combination of basis vectors� The choice of basis is not unique� we m a y transform 

from one basis to another simply by de�ning four linearly independent c o m binations of 

our original basis vectors� Given one basis f�e� X 

g
 w e m a y de�ne another basis f�e�0 X 

g
 

distinguished by placing a prime on the labels
 as follows� 

�e�0 X 

� � 

�
�0 X�e� X 

�	 ���� 

The prime is placed on the index rather than on the vector only for notational conve	
nience� we do not imply that the new basis vectors are a permutation of the old ones� 






�

Any linearly independent linear combination of old basis vectors may be selected as 

the new basis vectors� That is
 any nonsingular four	by	four matrix may be used for 

�
�0 

� The transformation is not restricted to being a Lorentz transformation� the local 

reference frames de�ned by the bases are not required to be inertial �or
 in the presence of 

gravity
 freely	falling�� Because the transformation matrix is assumed to be nonsingular
 

the transformation may b e i n verted� 

�0 � �e� X 

� � � X 

�e�0 X 

� � �0 X 

��0 

� X 

� 	� � ����� 

Comparing equations ���� and ����
 note that in our notation the inverse matrix places 

the prime on the other index� Primed indices are never summed together with unprimed 

indices� 

If we c hange basis vectors
 we m ust also transform the basis one	forms so as to 

preserve the duality condition equation �
��� The reader may v erify that
 given the 

transformations of equations ���� and ����
 the new dual basis one	forms are 

�0 �0 

e�
X 

� � �� 

X 

� ����� X
e 

We m a y also write the transformation matrix and its inverse by scalar products of the 

old and new basis vectors and one	forms �dropping the subscript X for clarity�� 

��0 �0 

��
�0 

� he�� � �e�0 i � � he� � �e� 

i � ��
�� 




� 

�Apart from the basis vectors and one	forms
 a vector A and a one	form P� are
 by 

de�nition
 invariant under a change of basis� Their components are not� For example
 

using equation ���� or ��
� we � n d 

� A�0 � �0 

A � A� �e� 

� A�0 

�e�0 � � he��0 

� Ai � � � 

A� � ���� 

The vector components transform oppositely to the basis vectors �eq� ���� One	form 

components transform like basis vectors
 as suggested by the fact that both are labeled 

with a subscript� 

A � A� 

e�� � A�0 e��
0 

� A�0 � h 

�� A��e�0 i � � 

�
�0 

A� 

� ���� 

Note that if the components of two v ectors or two one	forms are equal in one basis
 they 

are equal in any basis� 

Tensor components also transform under a change of basis� The new components may 

be found by recalling that a �m� n� tensor is a function of m vectors and n one	forms 

and that its components are gotten by e v aluating the tensor using the basis vectors and 

one	forms �e�g�
 eq� 
��� For example
 the metric components are transformed under the 

change of basis of equation ���� to 

�g�0 �0 � g��e�0 � �e�0 � � g�� 

e� ��e�0 � e�� ��e�0 � � g�� 

��
�0 

��
�0 

� ���� 

�Recall that �evaluating� a one	form or vector means using the scalar product
 eq� 
�� 

We see that the covariant components of the metric �i�e�
 the lower indices� transform 

exactly like one	form components� Not surprisingly
 the components of a tensor of rank 

�m� n� transform like the product of m vector components and n one	form components� 

If the components of two tensors of the same rank are equal in one basis
 they are equal 

in any basis� 

��� Coordinate bases 

We h a ve made no restrictions upon our choice of basis vectors �e�� Before concluding 

our formal introduction to tensors
 we i n troduce one more idea� a coordinate system� A 

� coordinate system is simply a set of four di�erentiable scalar �elds x 

X 

�not one vector 

�eld � note that � labels the coordinates and not vector components� that attach a 

unique set of labels to each spacetime point x� That is
 no two points are allowed to 

have identical values of all four scalar �elds and the coordinates must vary smoothly 

throughout spacetime �although we will tolerate occasional �aws like the coordinate 

singularities at r � � and 
 � � in spherical polar coordinates�� Note that we impose 

no other restrictions on the coordinates� The freedom to choose di�erent coordinate 

systems is available to us even in a Euclidean space� there is nothing sacred about 

Cartesian coordinates� This is even more true in a non	Euclidean space
 where Cartesian 

coordinates covering the whole space do not exist� 




�


x

Coordinate systems are useful for three reasons� First and most obvious
 they allow 

us to label each spacetime point b y a set of numbers �x�� x 

�� x 

�� x 

��� The second and 

more important use is in providing a special set of basis vectors called a coordinate 

basis� Suppose that two in�nitesimally close spacetime points have coordinates x� and 

� � dx� � The in�nitesimal di�erence vector between the two p o i n ts
 denoted d�x
 is a 

vector de�ned at x� W e de�ne the coordinate basis as the set of four basis vectors �e� X 

such that the components of d�x are dx� � 

d�x � dx� �e� 

de�nes �e� 

in a coordinate basis � ���� 

From the trivial appearance of this equation the reader may incorrectly think that we 

have imposed no constraints on the basis vectors� However
 that is not so� According to 

equation ����
 the basis vector �e� X
 for example
 must point in the direction of increasing 

�x at point x� This corresponds to a unique direction in four	dimensional spacetime just 

as the direction of increasing latitude corresponds to a unique direction �north� at a given 

point on the earth� In more mathematical treatments �e�g� Walk 
����
 �e� 

is associated 

with the directional derivative �
�x 

� at x� 

It is worth noting the transformation matrix between two coordinate bases� 

���
� 

� 

�x 

��

� ����
�x 

� 

Note that not all bases are coordinate bases� If we w anted to be perverse we c o u l d 

de�ne a non	coordinate basis by
 for example
 permuting the labels on the basis vectors 

but not those on the coordinates �which
 after all
 are not the components of a vector�� In 

this case he��� d �xi
 the component o f d�x for basis vector �e�
 w ould not equal the coordinate 

di�erential dx� � This would violate nothing we h a ve written so far except equation ����� 

Later we will discover more natural ways that non	coordinate bases may arise� 

The coordinate basis f�e�g de�ned by equation ���� has a dual basis of one	forms fe��g
de�ned by equation �
��� The dual basis of one	forms is related to the gradient� We 

obtain this relation as follows� Consider any scalar �eld fX� T reating f as a function of 

the coordinates
 the di�erence in f be  t  ween two in�nitesimally close points is 

df � 

�f 

dx� � ��f dx 

� � ����
�x 

� 

Equation ���� may b e t a k en as the de�nition of the components of the gradient �with an 

alternative brief notation for the partial derivative�� However
 partial derivatives depend 

on the coordinates
 while the gradient � c o variant d e r i v ative� should not� What
 then
 is 

the gradient � is it a vector or a one	form� 



From equation ����
 because df is a scalar and dx� is a vector component
 �f 
�x� 

must be the component of a one	form
 not a vector� The notation ��
 with its covariant 

�subscript� index
 reinforces our view that the partial derivative is the component o f a 

�one	form and not a vector� We denote the gradient one	form by r� L i k e all one	forms
 

the gradient m a y be decomposed into a sum over basis one	forms e�� � Using equation 

���� and equation �
�� as the requirement f o r a d u a l b a s i s 
 w e conclude that the gradient 

is 

r 

� � e�� �� 

in a coordinate basis � ���� 

Note that we m ust write the basis one	form to the left of the partial derivative operator
 

for the basis one	form itself may depend on position� We will return to this point i n 

Section � when we discuss the covariant derivative� In the present case
 it is clear from 

equation ���� that we m ust let the derivative act only on the function f � W e can now 

rewrite equation ���� in the coordinate	free manner 

df � h 

� rf � d�xi � ���� 

If we w ant the directional derivative o f f along any particular direction
 we simply replace 

d�x by a v ector pointing in the desired direction �e�g�
 the tangent v ector to some curve�� 

Also
 if we let fX 

equal one of the coordinates
 using equation ���� the gradient gives us 

the corresponding basis one	form� 

� 

� rx � e�� in a coordinate basis � ���� 


� 

The third use of coordinates is that they can be used to describe the distance between 

two points of spacetime� However
 coordinates alone are not enough� We also need the 

metric tensor� We write the squared distance between two spacetime points as 

ds� � jd�x j� � g�d�x� d�x� � d�x � d�x � ��
� 



This equation
 true in any basis because it is a scalar equation that makes no reference 

to components
 is taken as the de�nition of the metric tensor� Up to now the metric 

could have been any symmetric � � � �� tensor� But
 if we insist on being able to measure 

distances
 given an in�nitesimal di�erence vector d�x
 only one ��� �� tensor can give t h e 

squared distance� We de�ne the metric tensor to be that tensor� Indeed
 the squared 

� � � �magnitude of any vector A is jA j� � g�A�A�� 

Now w e specialize to a coordinate basis
 using equation ���� for d�x� In a coordinate 

basis �and only in a coordinate basis�
 the squared distance is called the line element and 

takes the form 

ds� � g�� Xdx
� dx� in a coordinate basis � ���� 

We h a ve used equation �
�� to get the metric components� 

If we transform coordinates
 we w i l l h a ve t o c hange our vector and one	form bases� 

� �0 

Suppose that we transform from x 

X 

to x 

X 


 with a prime indicating the new coordinates� 

�
For example
 in the Euclidean plane we could transform from Cartesian coordinate �x� � 

0 �0 

x� x� � y� to polar coordinates �x � r� x � 
�� x � r cos 

 y � r sin 
� A one	to	one 

mapping is given from the old to new coordinates
 allowing us to de�ne the Jacobian 

�0 

matrix ��0 

� 

� � x 
�x� and its inverse ��
�0 

� �x 

� 
�x�
0 

� V ector components transform 

like dx�
0 

� � �x 

�0 


�x� � dx� � T ransforming the basis vectors
 basis one	forms
 and tensor 

components is straightforward using equations ���������� The reader should verify that 

equations ����
 ����
 ���� and ���� remain valid after a coordinate transformation� 

We h a ve n o w i n troduced many of the basic ingredients of tensor algebra that we will 

need in general relativity� Before moving on to more advanced concepts
 let us re�ect on 

our treatment o f v ectors
 one	forms and tensors� The mathematics and notation
 while 

straightforward
 are complicated� Can we simplify the notation without sacri�cing rigor� 

One way to modify our notation would be to abandon ths basis vectors and one	forms 

and to work only with components of tensors� We could have de�ned vectors
 one	forms 

and tensors from the outset in terms of the transformation properties of their components� 

However
 the reader should appreciate the clarity of the geometrical approach t h a t w e 

have adopted� Our notation has forced us to distinguish physical objects like v ectors from 

basis	dependent o n e s l i k e v ector components� As long as the de�nition of a tensor is not 

forgotten
 computations are straightforward and unambiguous� Moreover
 adopting a 

basis did not force us to abandon geometrical concepts� On the contrary
 computations 

are made easier and clearer by retaining the notation and meaning of basis vectors and 

one	forms� 


� 



��� Isomorphism of vectors and one�forms 

Although vectors and one	forms are distinct objects
 there is a strong relationship be	
tween them� In fact
 the linear space of vectors is isomorphic to the dual vector space 

of one	forms �Wald 
����� Every equation or operation in one space has an equivalent 

equation or operation in the other space� This isomorphism can be used to hide the 

distinction between one	forms and vectors in a way that simpli�es the notation� This 

approach i s u n usual �I haven�t seen it published anywhere� and is not recommended in 

formal work but it may be pedagogically useful� 

As we s a w in equations ��� and �
��
 the link between the vector and dual vector 

� � � �spaces is provided by g and g 

;� � If A � B �components A� � B��
 then A � B 

�components A� 

� B� 

� where A� 

� g�� 

A� and B� 

� g�� 

B� � So
 why do we bother with 

one	forms when vectors are su�cient� The answer is that tensors may be functions of 

both one	forms and vectors� However
 there is also an isomorphism among tensors of 

di�erent rank� We h a ve just argued that the tensor spaces of rank �
� �� �vectors� and 

��� 
� are isomorphic� In fact
 all �m�n tensor spaces of rank �m� n� with �xed m � n 

are isomorphic� The metric and inverse metric tensors link together these spaces
 as 

exempli�ed by equations ���� and ����� 

The isomorphism of di�erent tensor spaces allows us to introduce a notation that 

uni�es them� We could e�ect such a uni�cation by discarding basis vectors and one	forms 

and working only with components
 using the components of the metric tensor and its 

inverse to relate components of di�erent t ypes of tensors as in equations ���� and ����� 

However
 this would require sacri�cing the coordinate	free geometrical interpretation of 

vectors� Instead
 we i n troduce a notation that replaces one	forms with vectors and �m� n� 

tensors with �m � n� �� tensors in general� We d o t h i s b y replacing the basis one	forms 

e�� w ith a set of vectors de�ned as in equation �
��� 

� �� �e � � � � g 

;�� e��� � � � g �e� 

� � � � ���� 

We will refer to �e 

� as a dual basis vector to contrast it from both the basis vector �e� 

and the basis one	form e�� � The dots are present in equation ���� to remind us that a 

one	form may be inserted to give a scalar� However
 we no longer need to use one	forms� 

Using equation ����
 given the components A� 

of any one	form A�
 w e m ay form the 

�vector A de�ned by equation �
�� as follows� 

� ��A � A� 

�e 

� � A�g �e� 

� A� �e� 

� ���� 

� �The reader should verify that A � A� 

�e 

� is invariant under a change of basis because �e 

transforms like a basis one	form� 

The isomorphism of one	forms and vectors means that we can replace all one	forms 

with vectors in any tensor equation� Tildes may be replaced with arrows� The scalar 


�




product between a one	form and a vector is replaced by the dot product using the metric 

�eq� 
� or ���� The only rule is that we m ust treat a dual basis vector with an upper 

index like a basis one	form� 

� � � �e� 

� �e� 

� g�� 

� �e 

� � �e� 

� he��� �e� 

i � 	 � 

� �e 

� � �e � e�� � e� � g 

�� � ���� 

The reader should verify equations ���� using equations �
�� and ����� Now
 if we need 

the contravariant component o f a v ector
 we can get it from the dot product with the 

dual basis vector instead of from the scalar product with the basis one	form� 

� � 

� Ai � ����A� � �e A � he�� � �

�We m a y also apply this recipe to convert the gradient one	form r �eq� ��� to a vector
 

though we m ust not allow the dual basis vector to be di�erentiated� 

� 

�� r � �e 

��� 

� g �e� 

�� 

in a coordinate basis � ���� 

It follows at once that the dual basis vector �in a coordinate basis� is the vector gradient 

�of the coordinate� �e� � rx� � This equation is isomorphic to equation ����� 

The basis vectors and dual basis vectors
 through their tensor products
 also give a 

basis for higher	rank tensors� Again
 the rule is to replace the basis one	forms with the 

corresponding dual basis vectors� Thus
 for example
 we m a y write the rank ��� �� metric 

tensor in any of four ways� 

� � � g � g�� 

�e 

� � �e � g 

� �e� 

� �e � g �e 

� � �e� 

� g 

�� �e� 

� �e� 

� ����� � 

In fact
 by comparing this with equation �
�� the reader will see that what we h a ve 

written is actually the inverse metric tensor g 

;� 
 w h i c h is isomorphic to g through the 

replacement o f e�� with �e� � But
 what are the mixed components of the metric
 g� and�


�
g � F rom equations �
�� and ����
 we see that they both equal the Kronecker delta 

	
� 

�
� 

� Consequently
 the metric tensor is isomorphic to the identity tensor as well as to its 

inverse� However
 this is no miracle� it was guaranteed by our de�nition of the dual basis 

vectors and by the fact we de�ned g 

;� to invert the mapping from vectors to one	forms 

implied by g� The reader may fear that w e have de�ned away the metric by showing it to 

be isomorphic to the identity tensor� However
 this is not the case� We need the metric 

tensor components to obtain �e� from �e� 

or A� from A�� W e cannot take a d v antage of 

the isomorphism of di�erent tensor spaces without the metric� Moreover
 as we showed 

in equation ��
�
 the metric plays a fundamental role in giving the squared magnitude 

of a vector� In fact
 as we will see later
 the metric contains all of the information about 

the geometrical properties of spacetime� Clearly
 the metric must play a fundamental 

role in general relativity� 


� 



��� Example	 Euclidean plane 

We close this section by applying tensor concepts to a simple example� the Euclidean 

plane� This �at two	dimensional space can be covered by Cartesian coordinates �x� y� 

with line element and metric components 

ds� � dx� � dy� � gxx 

� gyy  

� 
 � g xy 

� gyx  

� � � ���� 

We prefer to use the coordinate names themselves as component labels rather than using 

numbers �e�g� gxx 

rather than g���� The basis vectors are denoted �ex 

and �ey 


 and their use 

in plane geometry and linear algebra is standard� Basis one	forms appear unnecessary 

because the metric tensor is just the identity tensor in this basis� Consequently the 

dual basis vectors �eq� ��� are �e 

x � �ex
 �e 

y � �ey 

and no distinction is needed between 

superscripts and subscripts� 

However
 there is nothing sacred about Cartesian coordinates� Consider polar coor	
dinates ��� 
�
 de�ned by the transformation x � � cos 

 y � � sin 
� A simple exercise 

in partial derivatives yields the line element in polar coordinates� 

ds� � d�� � ��d
� � g�� 

� 
 � g ��  

� �� � g �� 

� g��  

� � � ���� 

This appears eminently reasonable until
 perhaps
 one considers the basis vectors �e� 

and 

�e� 


 recalling that g�� 

� �e� 

� �e� 

� Then
 while �e� 

� �e� 

� 
 and �e� 

� �e� 

� �
 �e� 

� �e� 

� ��� �e� 

is 

not a unit vector� The new basis vectors are easily found in terms of the Cartesian basis 

vectors and components using equation ����� 

x y 

�e� 

� 

p
x� � y� 

�ex 

� �ey 

� �e� 

� �y �ex 

� x �ey 

� ��
�p
x� � y� 

The polar unit vectors are  � � �e� 

and 
 � �;��e� 

� 

Why does our formalism give us non	unit vectors� The answer is because we insisted 

that our basis vectors be a coordinate basis �eqs� ��
 ��
 �� and ���� In terms of the 

orthonormal unit vectors
 the di�erence vector between points ��� 
� and � ��d�� 
�d
� is 

 d�x � �  d� �
 �d
� In the coordinate basis this takes the simpler form d�x � �e� 

d���e� 

d
 � 

dx��e�� In the coordinate basis we don�t have t o w orry about normalizing our vectors� 

all information about lengths is carried instead by the metric� In the non	coordinate 

 basis of orthonormal vectors f  �� 
g we h a ve to make a separate note that the distance 

elements are d� and �d
� 

In the non	coordinate basis we can no longer use equation ���� for the line element� 

We m ust instead use equation ��
�� The metric components in the non	coordinate basis 

 f  �� 
g are 

g�� 

� g�� � 
 � g �� � g� � � ����� � �� �� � � �� 


� 



The reader may also verify this result by transforming the components of the metric 

 from the basis f�e�� �e� 

g to f  �� 
g using equation ���� with �� 

� � 

 � 

� � �;� � Now
 � 
�� 

equation ��
� still gives the distance squared
 but we are responsible for remembe  r i ng 

 d�x � �  d� � 
 �d
� In a non	coordinate basis
 the metric will not tell us how to measure 

distances in terms of coordinate di�erentials� 

With a non	coordinate basis
 we m ust sacri�ce equations ���� and ����� Nonetheless
 

for some applications it proves convenient t o i n troduce an orthonormal non	coordinate 

basis called a tetrad basis� Tetrads are discussed by W ald �
���� and Misner et al �
����� 

The use of non	coordinate bases also complicates the gradient �eqs� ��
 �� and ���� 

In our polar coordinate basis �eq� ���
 the inverse metric components are 

�� �� � g 

��  g � 
 � g 

��  � �;� � g � � � ���� 

�The matrix g�� 

is diagonal
 so its inverse is also diagonal with entries given by t h e 

� � g��reciprocals�� The basis one	forms obey the rules e�� � e� � They are isomorphic to 

� g��the dual basis vectors �e 

� �e� 

�eq� ���� Thus
 �e 

� � �e� 

� � 
 �e 

� � �;��e� 

� �;�
 � 

� 

�Equation ���� gives the gradient one	form as r � e�� ��
�� �� �e ��
�
 �� Expressing this 

as a vector �eq� ��� we get 

�  
 �� r � �e 

� 

� 

� �e 

� 

� 

� � � 
 � ����
�� �
 �� � �
 

The gradient is simpler in the coordinate basis� The coordinate basis has the added 

advantage that we can get the dual basis vectors �or the basis one	forms� by applying 

� �the gradient to the coordinates �eq� ���� �e 

� � r�
 �e 

� � r
� 

From now on
 unless otherwise noted
 we will assume that our basis vectors are 

a coordinate basis� We will use one	forms and vectors interchangeably through the 

mapping provided by the metric and inverse metric �eqs� �
 
� and ���� Readers who 

dislike one	forms may c o n vert the tildes to arrows and use equations ���� to obtain 

scalars from scalar products and dot products� 


�





�


� Di�erentiation and Integration 

In this section we discuss di�erentiation and integration in curved spacetime� These 

might seem like a delicate subjects but
 given the tensor algebra that we h a ve d e v eloped
 

tensor calculus is straightforward� 

��� Gradient of a scalar 

Consider �rst the gradient of a scalar �eld fX� We h a ve already shown in Section � 

�that the gradient operator r is a one	form �an object that is invariant under coordinate 

transformations� and that
 in a coordinate basis
 its components are simply the partial 

derivatives with respect to the coordinates� 

� rf � � ��f � e�� � � r�f � e�� � ���� 

where �� 

� ��
�x 

��� We h a ve i n troduced a second notation
 r�
 called the covariant 

derivative with respect to x� � By de�nition
 the covariant d e r i v ative behaves like t h e 

component of a one	form� But
 from equation ����
 this is also true of the partial 

derivative operator ��� W h y h a ve w e in troduced a new symbo  l� 

Before answering this question
 let us �rst note that the gradient
 because it behaves 

like a tensor of rank ��� 
� �a one	form�
 changes the rank of a tensor �eld from �m� n� 

to �m� n � 
�� �This is obviously true for the gradient of a scalar �eld
 with m � n � ��� 

That is
 application of the gradient i s l i k e taking the tensor product with a one	form� The 

di�erence is that the components are not the product of the components
 because r� 

is 

not a number� Nevertheless
 the resulting object must be a tensor of rank �m� n � 
�� 

e�g�
 its components must transform like components of a �m� n � 
� tensor� The gradient 

of a scalar �eld f is a ��� 
� tensor with components ���f �� 



��� Gradient o f a v ector	 covariant derivative 

The reason that we h a ve i n troduced a new symbol for the derivative will become clear 

� �when we take the gradient o f a v ector �eld AX 

� A � In general
 the basis vectors 

X 

e� X 

� 

are functions of position as are the vector components� So
 the gradient m ust act on 

both� In a coordinate basis
 we h a ve 

� � �� � � 

�rA � r�A� �e� 

� � e� ���A
� �e� 

� � � ��A
� � e� �e� 

� A� e� ��� 

�e� 

� � �r�A
� � e� �e� 

� ���� 

We h a ve dropped the tensor product symbo  l � for notational convenience although it 

is still implied� Note that we m ust be careful to preserve the ordering of the vectors 

and tensors and we m ust not confuse subscripts and superscripts� Otherwise
 taking the 

gradient o f a v ector is straightforward� The result is a �
� 
� tensor with components 

r�A
� � But now r� 

�� ��� T his is w hy w e have introduced a new derivative sym bol�  W  e 

reserve the covariant derivative notation r� 

for the actual components of the gradient o f 

a tensor� We note that the alternative notation A� 

�� 

� r�A
� is often used
 replacing the 

comma of a partial derivative A�
�� 

� ��A
� with a semicolon for the covariant derivative� 

The di�erence seems mysterious only when we ignore basis vectors and stick e n tirely 

to components� As equation ���� shows
 vector notation makes it clear why there is a 

di�erence� 

Equation ���� by itself does not help us evaluate the gradient o f a v ector because 

we do not yet know what the gradients of the basis vectors are� However
 they are 

straightforward to determine in a coordinate basis� First we note that
 geometrically
 

��




�� 

�e� 

is a vector at x� it is the di�erence of two v ectors at in�nitesimally close points
 

divided by a coordinate interval� �The easiest way to tell that �� 

�e� 

is a vector is to 

note that it has one arrow�� So
 like a l l v ectors
 it must be a linear combination of basis 

vectors at x� W e can write the most general possible linear combination as 

�� 

e� X 

� !� � ����� �� X 

e� X 

� 

��� Christo
el symb o l s 

We h a ve i n troduced in equation ���� a set of coe�cients
 !�
�� 


 called the connection 

coe�cients or Christo�el symbols� � T echnically
 the term Christo�el symbols is reserved 

for a coordinate basis�� It should be noted at the outset that
 despite their appear	
ance
 the Christo�el symbols are not the components of a �
� �� tensor� Rather
 they 

may be considered as a set of four �
� 
� tensors
 one for each basis vector �e� 


 because 

� ! 

�r�e� 

� �� 

e���e�� H o wever
 it is not useful to think of the Christo�el symbols as tensor 

components for �xed � because
 under a ch a n g e o f b a sis
 th e b a sis v ectors �e� 

themselves 

change and therefore the four �
� 
� tensors must also change� So
 forget about the 

Christo�el symbols de�ning a tensor� They are simply a set of coe�cients telling us how 

to di�erentiate basis vectors� Whatever their values
 the components of the gradient o f 

�A
 known also as the covariant derivative o f A� 
 are
 from equations ���� and ����
 

� A� r�A
� � ��A

� � ! � ������

How does one determine the values of the Christo�el symbols� That is
 how does one 

evaluate the gradients of the basis vectors� One way is to express the basis vectors in 

terms of another set whose gradients are known� For example
 consider polar coordinates 

��� 
� in the Cartesian plane as discussed in Section �� The polar coordinate basis vectors 

were given in terms of the Cartesian basis vectors in equation ��
�� We k n o w that the 

gradients of the Cartesian basis vectors vanish and we k n o w h o w to transform from 

Cartesian to polar coordinates� It is a straightforward and instructive exercise from this 

to compute the gradients of the polar basis vectors� 


 
 � � r�e� 

� e�� � �e� 

� r�e� 

� e�� � �e� 

� � e�� � �e� 

� ����
� � 

�We h a ve restored the tensor product symbol as a reminder of the tensor nature of the 

objects in eq� ���� From equations ���� and ���� we conclude that the nonvanishing 

Christo�el symbols are 

� � ! � ! 

� 

�� 

� �;� � ! � �� � ������  ��  

It is instructive to extend this example further� Suppose that we add the third 

dimension
 with coordinate z
 to get a three	dimensional Euclidean space with cylindrical 

�





coordinates ��� 
� z�� The line element �cf� eq� ��� now becomes ds� � d�� � �� d
� � dz� � 

Because �e� 

and �e� 

are independent o f z and �ez 

is itself constant
 no new non	vanishing 

Christo�el symbols appear� Now consider a related but di�erent manifold� a cylinder� 

A cylinder is simply a surface of constant � in our three	dimensional Euclidean space� 

This two	dimensional space is mapped by coordinates �
� z  �
 with basis vectors �e� 

and 

�ez 

� What are the gradients of these basis vectors� They vanish� But
 how can that be� 

From equation ����
 �� 

�e� 

� ���e�� H a ve w e forgotten about the �e� 

direction� 

This example illustrates an important lesson� We cannot project tensors into basis 

vectors that do not exist in our manifold
 whether it is a two	dimensional cylinder or 

a four	dimensional spacetime� A cylinder exists as a two	dimensional mathematical 

surface whether or not we c hoose to embed it in a three	dimensional Euclidean space� 

If it happens that we c a n e m bed our manifold into a simpler higher	dimensional space
 

we do so only as a matter of calculational convenience� If the result of a calculation is 

a v ector normal to our manifold
 we m ust discard this result because this direction does 

not exist in our manifold� If this conclusion is troubling
 consider a cylinder as seen by 

a t wo	dimensional ant crawling on its surface� If the ant goes around in circles about 

the z	axis it is moving in the �e� 

direction� The ant w ould say that its direction is not 

changing as it moves along the circle� We conclude that the Christo�el symbols indeed 

all vanish for a cylinder described by coordinates �
� z  �� 

��� Gradients of one�forms and tensors 

Later we will return to the question of how t o e v aluate the Christo�el symbols in general� 

First we i n vestigate the gradient of one	forms and of general tensor �elds� Consider a 

one	form �eld A�X 

� A� Xe�
� 

X
� Its gradient in a coordinate basis is 

� � � �� � � 

�rA � r�A� 

e�� � � e� ���A� 

e�� � � � ��A� 

� e�� e� � A� 

e�� ���e� � � �r�A� 

� e� e� � ��
� 

Again we h a ve de�ned the covariant derivative operator to give the components of the 

gradient
 this time of the one	form� We cannot assume that r� 

has the same form here 

as in equation ����� However
 we can proceed as we did before to determine its relation
 

if any
 to the Christo�el symbols� We note that the partial derivative of a one	form in 

equation ��
� must be a linear combination of one	forms� 

���e�
� 

X 

� "�
�� X 

e� X 

� ���� 

for some set of coe�cients "�
�� 

analogous to the Christo�el symbols� In fact
 these 

coe�cients are simply related to the Christo�el symbo  l s 
 a s w e m a y see by di�erentiating 

the scalar product of dual basis one	forms and vectors� 

� � � � �� � ��he�� � �e�i � " �� 

he� � �e�i � ! 

�
��he� � �e�i � " �� 

� ! � ������ 

�� 



"
We h a ve used equation �
�� plus the linearity of the scalar product� The result is 

�
�� 

� �!� 

��
 so that equation ���� becomes
 simply
 

���e�
� 

X 

� �!�
�� X 

e� X 

� ���� 

Consequently
 the components of the gradient of a one	form A�
 also known as the co	
variant derivative o f A� 


 are 

r�A� 

� ��A� 

� !� A� 

� ������ 

This expression is similar to equation ���� for the covariant derivative o f a v ector except 

for the sign change and the exchange of the indices � and � on the Christo�el symbo  l 

�obviously necessary for consistency with tensor index notation�� Although we still don�t 

know t h e v alues of the Christo�el symbols in general
 at least we h a ve i n troduced no 

more unknown quantities� 

We leave it as an exercise for the reader to show that extending the covariant deriva	
tive to higher	rank tensors is straightforward� First
 the partial derivative of the com	
ponents is taken� Then
 one term with a Christo�el symbol is added for every index on 

the tensor component
 with a positive sign for contravariant indices and a minus sign 

for covariant indices� That is
 for a �m� n� tensor
 there are m positive terms and n 

negative terms� The placement of labels on the Christo�el symbols is a straightforward 

extension of equations ���� and ����� We illustrate this with the gradients of the ��� �� 

metric tensor
 the �
� 
� identity tensor and the ��� �� inverse metric tensor� 

� 

� � rg � � r�g�� 

� e�� � e�� � e� � r�g�� 

� ��g�� 

� !�
��g�� 

� ! �� 

g�� 

� ���� 

� 

� � 	�� 

� !� 	� rI 

� � r�	
�
� 

� e�� � �e� 

� e� � r�	
�
� 

� ��	
�
� 

� ! � ������ �� � 

and 

� 

;� �� � ��g 

�� 

� �� � �� rg � � r�g 

�� � e�� � �e� 

� �e� 

� r�g � ! ��g � ! ��g � ���� 

Examination of equation ���� shows that the gradient of the identity tensor vanishes 

identically� While this result is not surprising
 it does have important implications� 

Recall from Section � the isomorphism between g
 I 

and g 

;� �eq� ���� A s a result of 

this isomorphism
 we w ould expect that all three tensors have v anishing gradient� Is this 

really so� 

For a smooth �di�erentiable� manifold the gradient of the metric tensor �and the 

inverse metric tensor� indeed vanishes� The proof is sketched as follows� At a g i v en 

point x in a smooth manifold
 we m a y construct a locally �at orthonormal �Cartesian� 

coordinate system� We de�ne a locally �at coordinate system to be one whose coordinate 

basis vectors satisfy the following conditions in a �nite neighborhood around X� �e� X 

� 

�e� X 

� � for � �� � and �e� X 

� �e� X 

� �
 �with no implied summation�� 

�� 



The existence of a locally �at coordinate system may be taken as the de�nition of 

a smooth manifold� For example
 on a two	sphere we m a y erect a Cartesian coordinate 

system x��
 with orthonormal basis vectors �e��
 applying over a small region around x� 

�We use a bar to indicate the locally �at coordinates�� While these coordinates cannot
 

in general
 be extended over the whole manifold
 they are satisfactory for measuring 

distances in the neighborhood of x using equation ���� with g���� � ����� � g 

����
 w here �����
is the metric of a �at space or spacetime with orthonormal coordinates �the Kronecker 

delta or the Minkowski metric as the case may be�� The key point is that this statement 

is true not only at x but also in a small neighborhood around it� �This argument relies 

on the absence of curvature singularities in the manifold and would fail
 for example
 if 

it were applied at the tip of a cone�� Consequently
 the metric must have v anishing �rst 

derivative a t x in the locally �at coordinates� ���g���� � � � The gradient of the metric 

�and the inverse metric� vanishes in the locally �at coordinate basis� But
 the gradient 

of the metric is a tensor and tensor equations are true in any basis� Therefore
 for any 

smooth manifold
 

� � rg � rg 

;� � � � ���� 

��� Evaluating the Christo
el symb o l s 

We can extend the argument made above t o p r o ve the symmetry of the Christo�el sym	
bols� !� � ! 

� for any coordinate basis� At p o i n t x
 the basis vectors corresponding�� �� 

to our locally �at coordinate system have v anishing derivatives� ����e�� � � � F rom equation 

����
 this implies that the Christo�el symbols vanish at a point in a locally �at coordi�

nate basis� Now let us transform to any other set of coordinates x� � The Jacobian of 

this transformation is �� 

�� � �x 

�
�x�� �eq� ���� Our basis vectors transform �eq� ��� 

according to �e�� � � 

� 

���e�� W e v aluate ����e�� � � using the new basis vectors
 beinge now 

careful to use equation ���� for their partial derivatives �which d o not vanish in non	�at 

coordinates�� 

���x � �x 

� � ����e�� � 

�x 

��� 

� 

�e� 

� 

�x 

��
!	

�� 

�e	 

� � � ����
�� �x 

�� �x x 

Exchanging #� and #� we see that 

	! � ! 

	 in a coordinate basis � ��
��� �� 

implying that our connection is torsion	free �Wald 
����� 

We can now use equations ����
 ���� and ��
� to evaluate the Christo�el symbols in 

terms of partial derivatives of the metric coe�cients in any coordinate basis� We write 

r�g�� 

� � and permute the indices twice
 combining the results with one minus sign 

and using the inverse metric at the end� The result is 

� 


 ��! � g ���g�� 

� �� 

g�� 

� ��g�� 

� in a coordinate basis � ������ � 

�� 



Although the Christo�el symbols vanish at a point in a locally �at coordinate basis
 

they do not vanish in general� This con�rms that the Christo�el symbols are not tensor 

components� If the components of a tensor vanish in one basis they must vanish in all 

bases� 

We c a n n o w summarize the conditions de�ning a locally �at coordinate system x 

��
X 

� X� 

� � or
 equivalently
 ���g���about point x�� g����X� 

� ����� and !��
��� � X� 

� �� 

��� Transformation to locally �at coordinates 

We h a ve d e r i v ed an expression for the Christo�el symbols beginning from a locally �at 

coordinate system� The problem may be turned around to determine a locally �at 

coordinate system at point x�
 given the metric and Christo�el symbols in any coordinate 

system� The coordinate transformation is found by expanding the components g�� X 

of 

the metric in the non	�at coordinates x� i n a T aylor series about x� 

and relating them 

to the metric components ����� in the locally �at coordinates x�� using equation ����� 

�x� g�� X 

� g�� X� 

� � x 

� � x� 

� ��g�� X� 

� O�x � x��
� � �����

�x 

�� ��

� O�x � x��
� � ����

��x 

� �x 

Note that the partial derivatives of ����� vanish as do those of any correction terms to 

��the metric in the locally �at coordinates at x�� � x� 

� Equation ���� imposes the two 

conditions required for a locally �at coordinate system� g����X� 

� ����� and ���g���� X� 

� �� 

However
 the second partial derivatives of the metric do not necessarily vanish
 implying 

that we cannot necessarily make the derivatives of the Christo�el symbols vanish at x�� 

Quadratic corrections to the �at metric are a manifestation of curvature� In fact
 we will 

see that all the information about the curvature and global geometry of our manifold is 

contained in the �rst and second derivatives of the metric� But �rst we m ust see whether 

general coordinates x� can be transformed so that the zeroth and �rst derivatives of the 

metric at x� 

match the conditions implied by equation ����� 

x
We expand the desired locally �at coordinates x�� in terms of the general coordinates 

� in a Taylor series about the point x�� 

�� �� � � � � � x � x� 

� A��
��x � x� 

� � B 

��
���x � x� 

��x 

� � x� 

� � O�x � x��
� � ���� 

��where x� 


 A�� and B 

��
�� 

are all constants� We leave it as an exercise for the reader to� 

show
 by substituting equations ���� into equations ����
 that A�� and B 

��
�� 

must satisfy� 

the following constraints� 


 ���g�� X� 

� �����A
��
�A

��
� 

� B �� 

� A��
�! �� X� 

� ����
� 

If these constraints are satis�ed then we h a ve found a transformation to a locally �at 

coordinate system� It is possible to satisfy these constraints provided that the metric and 

��




the Christo�el symbols are �nite at x�� This proves the consistency of the assumption 

underlying equation ����
 at least away from singularities� �One should not expect to 

�nd a locally �at coordinate system centered on a black hole�� 

From equation ����
 we see that for a given matrix A��
� 


 B 

�� is completely �xed by�� 

the Christo�el symbols in our non�at coordinates� So
 the Christo�el symbols determine 

the quadratic corrections to the coordinates relative to a locally �at coordinate system� 

As for the A��
� 

matrix giving the linear transformation to �at coordinates
 it has 
� 

independent coe�cients in a four	dimensional spacetime� The metric tensor has only 


� independent coe�cients �because it is symmetric�� From equation ����
 we see that 

we are left with � degrees of freedom for any transformation to locally �at spacetime 

coordinates� Could these � have a n y special signi�cance� Yes� Given any locally �at 

coordinates in spacetime
 we m a y rotate the spatial coordinates by a n y amount � l a b e l e d 

by one angle� about any direction �labeled by t wo angles�
 accounting for three degrees 

of freedom� The other three degrees of freedom correspond to a rotation of one of the 

space coordinates with the time coordinate
 i�e�
 a Lorentz boost� This is exactly the 

freedom we w ould expect in de�ning an inertial frame in special relativity� Indeed
 in a 

locally inertial frame general relativity reduces to special relativity b y the Equivalence 

Principle� 

��




� � 

Massachusetts Institute of Technology

Department of Physics


Physics 8.962 Spring 2002 

Tensor Calculus, Part 2

c©2000, 2002 Edmund Bertschinger.

1 Introduction 

The first set of 8.962 notes, Introduction to Tensor Calculus for General Relativity, 
discussed tensors, gradients, and elementary integration. The current notes continue 
the discussion of tensor calculus with orthonormal bases and commutators (§2), parallel 
transport and geodesics (§3), and the Riemann curvature tensor (§4). 

2 Orthonormal Bases, Tetrads, and Commutators 

A vector basis is said to be orthonormal at point X if the dot product is given by the 
Minkowski metric at that point: 

{�µ} is orthonormal if and only if eˆ · �eν̂ = ηµν . (1)eˆ �µ 

(We have suppressed the implied subscript X for clarity.) Note that we will always place 
a hat over the index for any component of an orthonormal basis vector. The smoothness 
properties of a manifold imply that it is always possible to choose an orthonormal basis 
at any point in a manifold. One simply choose a basis that diagonalizes the metric 
g and furthermore reduces it to the normalized Minkowski form. Indeed, there are 
infinitely many orthonormal bases at X related to each other by Lorentz transformations. 
Orthonormal bases correspond to locally inertial frames. 

For each basis of orthonormal vectors there is a corresponding basis of orthonormal 
one-forms related to the basis vectors by the usual duality condition: 

˜ˆeµ, �eν̂ = δµ
ν . (2) 

The existence of orthonormal bases at one point is very useful in providing a locally 
inertial frame in which to present the components of tensors measured by an observer at 

1 



�

�

rest in that frame. Consider an observer with 4-velocity � V · �V at point X. Since  � V = −1, 
the observer’s rest frame has timelike orthonormal basis vector �0 = V . The observer has 

eˆ

eˆ

a set of orthonormal space axes given by a set of spatial unit vectors �eî. For a given �0, 
there are of course many possible choices for the spatial axes that are related by spatial 
rotations. Each choice of spatial axes, when combined with the observer’s 4-velocity, 
gives an orthonormal basis or tetrad. Thus, an observer carries along an orthonormal 
bases that we call the observer’s tetrad. This basis is the natural one for splitting 
vectors, one-forms, and tensors into timelike and spacelike parts. We use the observer’s 
tetrad to extract physical, measurable quantities from geometric, coordinate-free objects 
in general relativity. 

For example, consider a particle with 4-momentum �P . The energy in the observer’s 
ˆ �V � eˆinstantaneous inertial local rest frame is E = −� · P = −�0 · P = 〈ẽ0 , P 〉. The observer 

can define a (2, 0) projection tensor 

V ⊗ �h ≡ g −1 + � V (3) 

with components (in any basis) hαβ = gαβ + V αV β . This projection tensor is essentially 
the inverse metric on spatial hypersurfaces orthogonal to �V ; the corresponding (0, 2)

tensor is hµν = gαµgβν h

αβ . The reader can easily verify that hµν V µ = hµν V ν = 0, hence

µν̂

µˆ = diag(0, 1, 1, 1). Then, the spatial momentum
in the observer’s tetrad, hˆ = hˆν 
î � eî P . (Normally it is meaningless to equate components follow from P î = 〈ẽ , P 〉 = Pˆ = � · �i 

components of one-forms and vectors since they cannot be equal in all bases. Here we are 
restricting ourselves to a single basis — the observer’s tetrad — where it happens that 

ˆ
spatial components of one-forms and vectors are equal.) Note that P i�eˆ = h(g( �P )): the i 

spatial part of the momentum is extracted using h. Thus, in any basis, P µ = EV µ+hµ
ν P

ν 

P into parts parallel and perpendicular to �splits � V . (Note  hµ ≡ gκν h
µκ.)ν 

2.1 Tetrads 

If one can define an orthonormal basis for the tangent space at any point in a manifold, 
then one can define a set of orthonormal bases for every point in the manifold. In this 
way, equation (1) applies everywhere. At all spacetime points, the dot product has been 
reduced to the Minkowski form: gˆν µˆµˆ = ηˆν . One then has an orthonormal basis, or 
tetrad, for all points of spacetime. 

If spacetime is not flat, how can we reduce the metric at every point to the Minkowski 
form? Doesn’t that require a globally flat, Minkowski spacetime? How can one have the 
Minkowski metric without having Minkowski spacetime? 

The resolution of this paradox lies in the fact that the metric we introduced in a 
coordinate basis has at least three different roles, and only one of them is played by 

µˆ
� �

µˆ
µBν̂ . Both  gµνηˆν . First, the metric gives the dot product: A · B = gµν A

µBν = ηˆν A
ˆ

2 
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and ηˆν fulfill this role. Second, the metric components in a coordinate basis give the µˆ

connection through the well-known Christoffel formula involving the partial derivatives 
of the metric components. Obviously since ηˆν has zero derivatives, it cannot give the µˆ

connection. Third, the metric in a coordinate basis gives spacetime length and time 
through d�x = dxµ�eµ. Combining this with the dot product gives the line element, 
ds2 = d�x · d�x = gµν dxµdxν . This formula is true only in a coordinate basis! 

Usually when we speak of “metric” we mean the metric in a coordinate basis, which 
relates coordinate differentials to the line element: ds2 = gµν dxµdxν . An orthonormal 
basis, unless it is also a coordinate basis, does not have enough information to pro-
vide the line element (or the connection). To determine these, we must find a linear 
transformation from the orthonormal basis to a coordinate basis: 

µ�eµ = E ˆµ�µeˆ . (4) 

The coefficients E ˆ are called the tetrad components. Note  that  ̂µ µ labels the (tetrad) µ 

basis vector while µ labels the component in some coordinate system (which may have 
µno relation at all to the orthonormal basis). For a given orthonormal basis, E ˆµ may be 

˜µ µregarded as (the components of) a set of 4 one-form fields, one one-form E ˆ = E ˆµẽ
µ 

for each value of µ̂. Note that the tetrad components are not the components of a (1,1) 
tensor because of the mixture of two different bases. 

The tetrad may be inverted in the obvious way: 

�µ = Eµ
µ �eµ where Eµ

µ E ˆν = δµ
ν . (5)eˆ ˆ ˆ

µ 

The dual basis one-forms are related by the tetrad and its inverse as for any change of 
˜ˆ eµ µbasis: ˜ ˆeµ = Eµ eµ, ˜ˆ = E ˆµẽ

µ,µ 

The metric components in the coordinate basis follow from the tetrad components: 

µ ν gµν = �eµ · �eν = ηˆν E ˆµE ˆ (6)µˆ ν 

or g = ET ηE in matrix notation. Sometimes the tetrad is called the “square root of the 
metric.” Equation (6) is the key result allowing us to use orthonormal bases in curved 
spacetime. 

To discuss the curvature of a manifold we first need a connection relating nearby 
points in the manifold. If there exists any basis (orthonormal or not) such that 〈ẽλ , ∇eµ〉 ≡  
Γλ

µν ẽ
ν = 0 everywhere, then the manifold is indeed flat. However, the converse is not 

true: if the basis vectors rotate from one point to another even in a flat space (e.g. the 
polar coordinate basis in the plane) the connection will not vanish. Thus we will need 
to compute the connection and later look for additional quantities that give an invariant 
(basis-free) meaning to curvature. First we examine a more primitive object related to 
the gradient of vector fields, the commutator. 
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2.2 Commutators 

The difference between an orthonormal basis and a coordinate basis arises immediately 
when one considers the commutator of two vector fields, which is a vector that may 
symbolically be defined by 

[A, �� B ] ≡ ∇A∇B −∇B ∇A (7) 

where ∇A is the directional derivative (∇A = Aµ∂µ in a coordinate basis). Equation 
(7) introduces a new notation and new concept of a vector since the right-hand side 
consists solely of differential operators with no arrows! To interpret this, we rewrite the 
right-hand side in a coordinate basis using, e.g., ∇A∇B f = Aµ∂µ(Bν ∂ν f) (where f is 
any twice-differentiable scalar field): 

[ �A, �B ] =  

� 

Aµ ∂Bν 

∂xµ 
− Bµ ∂Aν 

∂xµ 

� 
∂ 

∂xν 
. (8) 

This is equivalent to a vector because {∂/∂xν } provide a coordinate basis for vectors 
in the formulation of differential geometry introduced by Cartan. Given our heuristic 
approach to vectors as objects with magnitude and direction, it seems strange to treat a 
partial derivative as a vector. However, Cartan showed that directional derivatives form 
a vector space isomorphic to the tangent space of a manifold. Following him, differential 
geometry experts replace our coordinate basis vectors �eµ by ∂/∂xµ. (MTW introduce this 
approach in Chapter 8. On p. 203, they write �eα = ∂P/∂xα where P refers to a point in 
the manifold, as a way to indicate the association of the tangent vector and directional 
derivative.) With this choice, vectors become differential operators (e.g. A = Aµ∂µ) and  
thus the commutator of two vector fields involves derivatives. However, we need not 
follow the Cartan notation. It is enough for us to define the commutator of two vectors 
by its components in a coordinate basis, 

A, �[ � B ] = (Aµ∂µB
ν − Bµ∂µA

ν )�eν in a coordinate basis, (9) 

where the partial derivative operators act only on Bν and Aν but not on �eν . 
Equation (9) implies 

[A, � � �� B ] =  ∇AB −∇B A + T µ AαBβ�eµ , (10)αβ 

where T µαβ ≡ Γµ − Γµ in a coordinate basis is a quantity called the torsion tensor. αβ βα 

The reader may easily show that the torsion tensor also follows from the commutator of 
covariant derivatives applied to any twice-differentiable scalar field, 

(∇α∇β −∇β ∇α)f = T µ f (11)αβ ∇µ

4 
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This equation shows that the torsion is a tensor even though the connection is not. The 
torsion vanishes by assumption in general relativity. This is a statement of physics, 
not mathematics. Other gravity theories allow for torsion to incorporate possible new 
physical effects beyond Einstein gravity. 

The basis vector fields �eµ(x) are vector fields, so let us examine their commutators. 
From equation (9) or (10), in an coordinate basis, the commutators vanish identically 
(even if the torsion does not vanish): 

[�eµ, �eν ] = 0 in a coordinate basis . (12) 

The vanishing of the commutators occurs because the coordinate basis vectors are dual 
eµ �xµ for a set of 4 scalar fields xµ. It  may  be  to an integrable basis of one-forms: ˜ = ∇

shown that this integrability condition (i.e. that the basis one-forms may be integrated 
to give functions) is equivalent to equation (12) (see Wald 1984, problem 5 of Chapter 
2). 

Now let us examine the commutator for an orthonormal basis. We use equation (9) 
by expressing the tetrad components in a coordinate basis using equation (5). The result 
is 

[�µ, �ν ] =  ∂ˆ�ν − ∂ˆeˆ
α
µˆeˆeˆ eˆ µeˆ ν�µ ≡ ωˆ
ˆν�α , (13) 

αwhere ∂ˆ ≡ Eµ
µ ∂µ. Equation (13) defines the commutator basis coefficients ωˆ

µˆµ ˆ ˆν 

(cf. MTW eq. 8.14). Using equations (5), (12), and (13), one may show 

α α α αωˆ
µˆ = E ˆ

α ∇ˆE
α −∇ν̂E

α
µ = Eµ Eν

ν̂ ∂µE
ˆ
ν − ∂ν E

ˆ
µ . (14)ˆν µ ν̂ ˆ µ̂

In general the commutator basis coefficients do not vanish. Despite the appearance of 
a second (coordinate) basis, the commutator basis coefficients are independent of any 
other basis besides the orthonormal one. The coordinate basis is introduced solely for 
the convenience of partial differentiation with respect to the coordinates. 

The commutator basis coefficients carry information about how the tetrad rotates as 
one moves to nearby points in the manifold. It is useful practice to derive them for the 
orthonormal basis {�er̂, �eˆ} in the Euclidean plane. θ 

2.3 Connection for an orthonormal basis 

The connection for the basis {�µ} is defined by eˆ

∂ˆeˆ
α 

ν�µ ≡ Γˆ
µˆeˆ . (15)ˆν�α 

(The placement of the lower subscripts on the connection agrees with MTW but is 
reversed compared with Wald and Carroll.) From the local flatness theorem (metric 
compatibility with covariant derivative) discussed in the first set of notes, 

∇ˆ µˆ = Eα 
ˆ∂αgˆν − Γβ̂

µ ̂ ˆαgˆ ˆ = 0  . (16)αgˆν α µˆ ˆαgβ̂ν̂ − Γβ̂
ν ̂ µβ 
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In an orthonormal basis, gˆν = ηˆν is constant so its derivatives vanish. We conclude µˆ µˆ

that, in an orthonormal basis, the connection is antisymmetric on its first two indices: 

β̂ β̂Γˆν ̂ ν ̂ α , Γˆν ̂ µβ ν ̂ µβ ν ̂µˆα = −Γˆµ ̂ µˆα ≡ gˆ ˆΓ ˆα = ηˆ ˆΓ ˆα . (17) 

In an orthonormal basis, the connection is not, in general, symmetric on its last two 
indices. (That is true only in a coordinate basis.) 

Another equation for the connection coefficients comes from combining equations (13) 
with equation (15): 

β̂ β̂ωˆµˆ = −Γˆµˆ αˆµ , ωˆµˆ α ̂ ω µˆ = ηα ̂ ωαˆν α ̂ ν + Γˆν ̂ α ̂ ν ≡ gˆβ ˆν ˆβ µˆ . (18)ˆν 

Combining these last two equations yields 

1

Γˆµˆ = (ωˆαˆ ν ̂ µ − ωˆµˆ
αˆν µ ̂ ν + ωˆαˆ α ̂ ν ) in an orthonormal basis. (19)

2 

The connection coefficients in an orthonormal basis are also called Ricci rotation coeffi-
cients (Wald) or the spin connection (Carroll). 

It is straightforward to generalize the results of this section to general bases that are 
neither orthonormal nor coordinate. The commutator basis coefficients are defined as in 
equation (12). Dropping the carets on the indices, the general connection is (MTW eq. 
8.24b) 

1 
Γαµν ≡ gαβ Γ

β
µν = (∂µgαν + ∂ν gαµ − ∂αgµν + ωµαν + ωναµ − ωαµν ) in any basis. (20)

2 

The results for coordinate bases (where ωαµν = 0) and for orthonormal bases (where 
∂αgµν = 0) follow as special cases. 
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3 Parallel transport and geodesics 

3.1 Differentiation along a curve 

As a prelude to parallel transport we consider another form of differentiation: differen-
tiation along a curve. A curve is a parametrized path through spacetime: x(λ), where 
λ is a parameter that varies smoothly and monotonically along the path. The curve 
has a tangent vector �V ≡ d�x/dλ = (dxµ/dλ) �eµ. Here one must be careful about the 
interpretation: xµ are not the components of a vector; they are simply 4 scalar fields. 
However, �V = d�x/dλ is a vector (i.e. a tangent vector in the manifold). 

V a unit vector (provided �If we wish, we could make � V is non-null) by setting dλ = 
|d�x · d�x |1/2 to measure path length along the curve. However, we will impose no such 
restriction in general. 
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Now, suppose that we have a scalar field fX defined along the curve. We define the 
derivative along the curve by a simple extension of equations (36) and (38) of the first 
set of lecture notes: 

df ∇f, �≡ ∇V f ≡ 〈 ˜ V 〉 = V µ∂µf ,  V = 
d�x

. (21)
dλ dλ 

We have introduced the symbol ∇V for the directional derivative, i.e. the covariant 
derivative along �V , the tangent vector to the curve x(λ). This is a natural generalization 
of ∇µ, the covariant derivative along the basis vector �eµ. 

For the derivative of a scalar field, ∇V involves just the partial derivatives ∂µ. Sup-

pose, however, that we differentiate a vector field �AX along the curve. Now the compo-
nents of the gradient ∇µA

ν are not simply the partial derivatives but also involve the 
connection. The same is true when we project the gradient onto the tangent vector �V 
along a curve: 

A DAµ 

≡ �eµ ≡ ∇V A ≡ 〈 ˜ A, �
d �

� ∇ � V 〉 = V ν (∇ν A
µ) �eµ = 

dAµ 

+ Γµ
κν A

κV ν �eµ . (22)
dλ dλ dλ 



We retain the symbol ∇V to indicate the covariant derivative along 

�

V but we have 
introduced the new notation D/dλ = V µ∇µ �= d/dλ = V µ∂µ. 

3.2 Parallel transport 

The derivative of a vector along a curve leads us to an important concept called parallel 
transport. Suppose that we have a curve x(λ) with tangent � A(0) defined V and a vector �

at one point on the curve (call it λ = 0). We define a procedure called parallel transport 
by defining a vector �A(λ) along each point of the curve in such a way that DAµ/dλ = 0:  

∇V A = 0  ⇔ parallel transport of � V . (23) � A along �

Over a small distance interval this procedure is equivalent to transporting the vector �A 
along the curve in such a way that the vector remains parallel to itself with constant 
length: A(λ + ∆λ) =  A(λ) +  O(∆λ)2 . In a locally flat coordinate system, with the 
connection vanishing at x(λ), the components of the vector do not change as the vector 
is transported along the curve. If the space were globally flat and we used rectilinear 
coordinates (with vanishing connection everywhere), the components would not change 
at all no matter how the vector is transported. This is not the case in a curved space or 
in a flat space with curvilinear coordinates because in these cases the connection does 
not vanish everywhere. 
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3.3 Geodesics 

Parallel transport can be used to define a special class of curves called geodesics. A  
geodesic curve is one that parallel-transports its own tangent vector �V = d�x/dλ, i.e., 

� V kept parallel to itself a curve that satisfies ∇V V = 0. In other words, not only is �

(with constant magnitude) along the curve, but locally the curve continues to point 
in the same direction all along the path. A geodesic is the natural extension of the 
definition of a “straight line” to a curved manifold. Using equations (22) and (23), we 
get a second-order differential equation for the coordinates of a geodesic curve: 

DV µ dV µ dxµ 

= + Γµ
αβ V αV β = 0 for a geodesic , V  µ ≡ . (24)

dλ dλ dλ 



� � � � �
� � � � � 

Indeed, in locally flat coordinates (such that the connection vanishes at a point), this 
is the equation of a straight line. However, in a curved space the connection cannot be 
made to vanish everywhere. A well-known example of a geodesic in a curved space is a 
great circle on a sphere. 

There are several technical points worth noting about geodesic curves. The first is 
that � � V , � V /dλ  = 0 (eq. 24) and V · V = g(� V ) is constant along a geodesic because d�

∇V g = 0 (metric compatibility with gradient). Therefore, a geodesic may be classified 
V V <  0), spacelike (� V >  0) or null by its tangent vector as being either timelike (� · � V · �

(� · �V V = 0). The second point is that a nonlinear transformation of the parameter λ will 
invalidate equation (24). In other words, if xµ(λ) solves equation (24), yµ(λ) ≡ xµ(ξ(λ)) 
will not solve it unless ξ = aλ + b for some constants a and b. Only a special class of 
parameters, called affine parameters, can parametrize geodesic curves. 

The affine parameter has a special interpretation for a non-null geodesic. We deduce 
this relation from the constancy along the geodesic of � �V ·V = (d�x·d�x)/(dλ2) ≡ a, implying 
ds = adλ and therefore s = aλ + b where s is the path length (ds2 = gµν dxµdxν ). For 

V · � = 0), all affine parameters are linear functions of path length a non-null geodesic (� V �
(or proper time, if the geodesic is timelike). The linear scaling of path length amounts 
simply to the freedom to change units of length and to choose any point as λ = 0.  
Note that originally we imposed no constraints on the parameterization. However, the 
solutions of the geodesic equation automatically have λ being an affine parameter. There 
is no fundamental reason to use an affine parameter; one could always take a solution 
of the geodesic equation and reparameterize it or eliminate the parameter altogether by 
replacing it with one of the coordinates along the geodesic. For example, for a timelike 
trajectory, xi(t) is a perfectly valid description and is equivalent to xµ(λ). But the spatial 
components as functions of t = x0 clearly do not satisfy the geodesic equation for xµ(λ). 

Another interesting point is that the total path length is stationary for a geodesic: � B � B 
δ ds = δ 

A A 

dxµ dxν 

gµν 
dλ dλ 

1/2 

dλ = 0 (25) 
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if λ is an affine parameter. The δ refers to a variation of the integral arising from 
a variation of the curve, xµ(λ) → xµ(λ) +  δxµ(λ), with fixed endpoints. The metric 
components are considered here to be functions of the coordinates. The variational 
principle is discussed in section 2 of the 8.962 notes “Hamiltonian Dynamics of Particle 
Motion,” where it is shown that stationary path length implies the geodesic equation (24) 
if the parameterization is affine. Equation (25) is invariant under reparameterization, so 
its stationary solutions are a broader class of functions than the solutions of equation 
(24). In general, the tangent vector of the stationary solutions are not normalized: 
|V · � = constant, implying that λ is not affine. It is easy to show that any � V |1/2 = Q(λ) �
stationary solution may be reparameterized, λ → τ through dτ /dλ = Q(λ), and that 
the resulting curve xµ(λ(τ )) obeys the geodesic equation with affine parameter τ . This  

V by �transformation replaces the unnormalized tangent vector � V /Q(λ). For an affine 
parameterization, the tangent vector must always have constant length. 

Equation (25) is a curved space generalization of the statement that a straight line 
is the shortest path between two points in flat space. 

3.4 Integrals of motion and Killing vectors 

Equation (24) is a set of four second-order nonlinear ordinary differential equations for 
the coordinates of a geodesic curve. One may ask whether the order of this system 
can be reduced by finding integrals of the motion. An integral, also called a conserved 
quantity, is a function of xµ and V µ = dxµ/dλ that is constant along any geodesic. At 
least one integral always exists: � V = gµν V µV ν . (For an affine parameterization, � · �V · � V V 
is constant along the curve.) Are there others? Sometimes. One may show that equation 
(24) may be rewritten as an equation of motion for Vµ ≡ gµν V ν , yielding 

dVµ 1 
= (∂µgαβ )V αV β . (26)

dλ 2 

Consequently, if all of the metric components are independent of some particular coor-
dinate xµ, the corresponding component of the tangent one-form is constant along the 
geodesic. This result is very useful in reducing the amount of integration needed to 
construct geodesics for metrics with high symmetry. However, the condition ∂µgαβ = 0  
is coordinate-dependent. There is an equivalent coordinate-free test for integrals, based 
on the existence of special vector fields K call Killing vectors. Killing vectors are, by 
definition, solutions of the differential equation 

∇µKν + ∇ν Kµ = 0  . (27) 

(The Killing vector components are, of course, Kµ = gµν Kν .) The Killing equation (27) 
usually has no solutions, but for highly symmetric spacetime manifolds there may be 
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one or more solutions. It is a nice exercise to show that each Killing vector leads to the 
integral of motion 

V ,  �〈 ̃ K 〉 = KµVµ = constant along a geodesic . (28) 

Note that if one of the basis vectors (for some basis) satisfies the Killing equation, then 
the corresponding component of the tangent one-form is an integral of motion. The test 
for integrals implied by equation (26) is a special case of the Killing vector test when the 
Killing vector is simply a coordinate basis vector. 

The discussion here has focused on geodesics as curves. The notes “Hamiltonian 
Dynamics of Particle Motion” interprets them as worldlines for particles because, as 
we will see, a fundamental postulate of general relativity is that, in the absence of non-
gravitational forces, particles move along geodesics. Given this fact, we are free to choose 
units of the affine parameter λ so that dxµ/dλ is the 4-momentum P µ, normalized by 
P · P = −m2 for a particle of mass m (instead of dxµ/dλ = V µ, V · V = −1). Thus, 
the tangent vector, denoted �V above, is equivalent to the particle 4-momentum vector. 
The affine parameter λ then measures proper time divided by particle mass. Although 
one might fear this makes no sense for a massless particle, in fact it is the only way to 
affinely parameterize null geodesics because the proper time change dτ vanishes along a 
null geodesic so dxµ/dτ is undefined. For a massless particle, one takes the limit m → 0 
starting from the solution for a massive particle, with the result that dλ = dτ /m is finite 
as m → 0. 
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4 Curvature  

We introduce curvature by considering parallel transport around a general (non-geodesic) 
closed curve. In flat space, in a globally flat coordinate system (for which the connection 
vanishes everywhere), parallel transport leaves the components of a vector unchanged. 
Thus, in flat space, transporting a vector around a closed curve returns the vector to its 
starting point unchanged. Not so in a nonflat space. This change under a closed cycle 
is called an “anholonomy.” 

Consider, for example, a sphere. Suppose that we have a vector pointing east on the 
equator at longitude 0◦ . We parallel transport the vector eastward on the equator by 
180◦ . At each point on the equator the vector points east. Now the vector is parallel 
transported along a line of constant longitude over the pole and back to the starting 
point on the equator. At each point on this second part of the curve, the vector points 
at right angles to the curve, and its direction never changes. Yet, at the end of the curve, 
at the same point where the curve started, the vector points west! 

The reader may imagine that the example of the sphere is special because of the 
sharp changes in direction made in the path. However, parallel transport around any 
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Figure 1: Parallel transport around a closed curve. The vector in the lower-left corner is 
parallel transported in a counter-clockwise direction along around 4 segments d�x1, d�x2, 
−d�x1, and  −d�x2. At the end of the journey, the vector has been rotated. This mismatch 
(“anholonomy”) does not occur for parallel transport in a flat space; its existence is the 
defining property of curvature. 

smooth closed curve results in an anholonomy on a sphere. For example, consider a 
latitude circle away from the equator. Imagine you are an airline pilot flying East from 
Boston. If you were flying on a great circle route, you would soon be flying in a south-
east direction. If you parallel transport a vector along a geodesic, its direction relative 

A · V ) = 0  for  to the tangent vector (direction of motion) does not change, i.e. ∇V ( � �

A along tangent � �parallel transport of � V . Parallel transport implies ∇V A = 0;  moreover,  
∇V V = 0 for a geodesic. However, a constant-latitude circle is not a geodesic, hence 
∇V V �� = 0. In order to maintain a constant latitude, you will have to constantly steer 
the airplane north compared with a great circle route. Consequently, the angle between 
� A · � �A (which is parallel-transported) and the tangent changes: ∇V ( � V ) =  A · (∇V V ). A 
nonzero rotation accumulates during the trip, leading to a net rotation of A around a 
closed curve. 

We can refine this into a definition of curvature as follows. Suppose that our closed 
curve consists of four infinitesimal segments: d�x1, d�x2, −d�x1 and −d�x2. In  a  flat  space  
this would be called a parallelogram and the difference d �A between the final and initial 
vectors would vanish. In a curved space we can create a parallelogram by taking two 
pairs of coordinate lines and choose d�x1 and d�x2 to point along the coordinate lines 
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(e.g.	 in directions �e1 and �e2). Parallel transport around a closed curve gives a change 
A that must be proportional to �in the vector d � A, to  d�x1, and  to  d�x2. Remarkably, it is 

proportional to nothing else. Therefore, d �A is given by a rank (1, 3) tensor called the 
Riemann curvature tensor: 

d � �	
1 dxβ . (29)A( · ) ≡ −R( · , A, d�x1, d�x2) =  −�eµR

µ Aν dxα 
ναβ 2 



The dots indicate that a one-form is to be inserted; recall that a vector is a function 
of a one-form. The minus sign is purely conventional and is chosen for agreement with 
MTW. Note that the Riemann tensor must be antisymmetric on the last two slots be-
cause reversing them amounts to changing the direction around the parallelogram, i.e. 
swapping the final and initial vectors � A.A, hence changing the sign of d �

All standard GR textbooks show that equation (29) is equivalent to the following 
important result known as the Ricci identity 

(∇α∇β −∇β∇α)Aµ = Rµ Aν in a coordinate basis . (30)ναβ

In a non-coordinate basis, there is an additional term on the left-hand side, −∇CA

µ 

where �C ≡ [�eα, �eβ ]. This commutator vanishes for a coordinate basis (eq. 12). 

Equation (30) is a remarkable result. In general, there is no reason whatsoever that 
the derivatives of a vector field should be related to the vector field itself. Yet the 
difference of second derivatives is not only related to, but is linearly proportional to the 
vector field! This remarkable result is a mathematical property of metric spaces with 
connections. It is equivalent to the statement that parallel transport around a small 
closed parallelogram is proportional to the vector and the oriented area element (eq. 
29). 

Equation (30) is similar to equation (11). The torsion tensor and Riemann tensor 
are geometric objects from which one may build a theory of gravity in curved spacetime. 
In general relativity, the torsion is zero and the Riemann tensor holds all of the local 
information about gravity. 

It is straightforward to determine the components of the Riemann tensor using equa-
tion (30) with �A = �eν . The result is 

Rµ
ναβ = ∂αΓµ

νβ − ∂βΓµ
να + Γµ

καΓκ − Γµ Γκ in a coordinate basis . (31)νβ κβ να 

Note that some authors (e.g., Weinberg 1972) define the components of Riemann with 
opposite sign. Our sign convention follows Misner et al (1973), Wald (1984) and Schutz 
(1985). 

Note that the Riemann tensor involves the first and second partial derivatives of 
the metric (through the Christoffel connection in a coordinate basis). Weinberg (1972) 
shows that the Riemann tensor is the only tensor that can be constructed from the metric 
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tensor and its first and second partial derivatives and is linear in the second derivatives. 
Recall that one can always define locally flat coordinates such that Γµ

νλ = 0 at a point. 
However, one cannot choose coordinates such that Γµ

νλ = 0 everywhere unless the space 
is globally flat. The Riemann tensor vanishes everywhere if and only if the manifold is 
globally flat. This is a very important result. 

If we lower an index on the Riemann tensor components we get the components of a 
(0, 4) tensor: 

1 � � 
ΓβRµνκλ = gµαRα

νκλ = (gµλ,νκ − gµκ,νλ + gνκ,µλ − gνλ,µκ) +  gαβ Γα
µλΓ

β
νκ − Γα

µκ νλ ,
2 

(32) 
where we have used commas to denote partial derivatives for brevity of notation: gµλ,νκ ≡ 
∂κ∂ν gµλ. In this form it is easy to determine the following symmetry properties of the 
Riemann tensor: 

Rµνκλ = Rκλµν = −Rνµκλ = −Rµνλκ , Rµνκλ + Rµκλν + Rµλνκ = 0  . (33) 

It can be shown that these symmetries reduce the number of independent components 
of the Riemann tensor in four dimensions from 44 to 20. 

4.1 Bianchi identities, Ricci tensor and Einstein tensor 

We note here several more mathematical properties of the Riemann tensor that are 
needed in general relativity. First, by differentiating the components of the Riemann 
tensor one can prove the Bianchi identities: 

∇σ R
µ µ (34)νκλ + ∇κR

µ
νλσ + ∇λR νσκ = 0  . 

Note that the gradient symbols denote the covariant derivatives and not the partial 
derivatives (otherwise we would not have a tensor equation). The Bianchi identities 
imply the vanishing of the divergence of a certain (2, 0) tensor called the Einstein tensor. 
To derive it, we first define a symmetric contraction of the Riemann tensor, known as 
the Ricci tensor: 

Rµν ≡ Rα
µαν = Rνµ = ∂κΓ

κ
µν − ∂µΓκ

κν + Γκ
κλΓ

λ
µν − Γκ

µλΓ
λ

κν . (35) 

One can show from equations (33) that any other contraction of the Riemann tensor 
either vanishes or is proportional to the Ricci tensor. The contraction of the Ricci tensor 
is called the Ricci scalar: 

R ≡ gµν Rµν . (36) 

Contracting the Bianchi identities twice and using the antisymmetry of the Riemann 
tensor one obtains the following relation: 

1µν ≡ Rµν − gµν R∇ν G
µν = 0  , G = Gνµ . (37)

2 
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The symmetric tensor Gµν that we have introduced is called the Einstein tensor. Equa-
tion (37) is a mathematical identity, not a law of physics. Through the Einstein equations 
it provides a deep illustration of the connection between mathematical symmetries and 
physical conservation laws. 
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1 Introduction 

These notes supplement Section 3 of the 8.962 notes “Introduction to Tensor Calculus for 
General Relativity.” Having worked through the formal treatment of vectors, one-forms 
and tensors, we are ready to evaluate two particularly useful and important examples, 
the number-flux four-vector and the stress-energy (or energy-momentum) tensor for a 
gas of particles. A good elementary discussion of these objects is given in chapter 4 of 
Schutz, A First Course in General Relativity; more advanced treatments are in chapters 
5 and 22 of MTW. Some of the mathematical material presented here is formalized in 
Section 4 of the 8.962 notes; to avoid repetition we will present the computations here in 
a locally flat frame (orthonormal basis with locally vanishing connection) frame rather 
than in a general basis. However, the final results are tensor equations valid in any basis. 

2 Number-Flux Four-Vector for a Gas of Particles 

We wish to describe the fluid properties of a gas of noninteracting particles of rest mass 
m starting from a microscopic description. In classical mechanics, we would describe 
the system by giving the spatial trajectories xa(t) where  a labels the particle and t is 
absolute time. (An underscore is used for 3-vectors; arrows are reserved for 4-vectors. 
While the position x isn’t a true tangent vector, we retain the common notation here.) a 

The number density and number flux density are 

n = 
�

δ3 = 
� dxa(x − xa(t)) , J  δ3(x − xa(t)) (1)

dta a 

1 



� 

�

� 

� 

where the Dirac delta function has its usual meaning as a distribution: 

d3x f  (x) δ3(x − y) =  f (y) . (2) 

In order to get well-defined quantities when relativistic motions are allowed, we at-
tempt to combine the number and flux densities into a four-vector N . The obvious 
generalization of equation (1) is 

� = 
�

δ3 d�xa
N (x − xa(t)) . (3)

dta 

However, this is not suitable because time and space are explicitly distinguished: (t, x). 
A first step is to insert one more delta function, with an integral (over time) added to 
cancel it: 

N ′� = 
�

dt′ δ4(x − xa(t )) 
d�xa 

. (4)
dt′ a 

The four-dimensional Dirac delta function is to be understood as the product of the 
three-dimensional delta function with δ(t − ta(t′)) = δ(x0 − t′): 

0 1 2 3δ4(x − y) ≡ δ(x 0 − y )δ(x 1 − y )δ(x 2 − y )δ(x 3 − y ) . (5) 

Equation (4) looks promising except for the fact that our time coordinate t′ is frame-
dependent. The solution is to use a Lorentz-invariant time for each particle — the 
proper time along the particle’s worldline. We already know that particle trajectories in 
spacetime can be written xa(τ ). We can change the parametrization in equation (4) so 
as to obtain a Lorentz-invariant object, a four-vector: 

N� = 
�

dτ δ4(x − xa(τ )) 
d�xa 

. (6)
dτa 

2.1 Lorentz Invariance of the Dirac Delta Function 

Before accepting equation (6) as a four-vector, we should be careful to check that the 
delta function is really Lorentz-invariant. We can do this without requiring the existence 
of a globally inertial frame (something that doesn’t exist in the presence of gravity!) 
because the delta function picks out a single spacetime point and so we may regard 
spacetime integrals as being confined to a small neighborhood over which locally flat 
coordinates may be chosen with metric ηµν (the Minkowski metric). 

To prove that δ4(x − y) is Lorentz invariant, we note first that it is nonzero only if 
xµ = yµ. Now suppose we that perform a local Lorentz transformation, which maps dxµ 

µ µ x = | det Λ| d4x. Clearly, δ4(¯to dx¯ = Λ¯
ν dxν and d4x to d4 ̄ x − ȳ) is nonzero only if 
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¯ ¯xµ = yµ and hence only if xµ = yµ. From this it follows that δ4(x̄ − ȳ) =  Sδ4(x − y) for  
some constant S. We will show that S = 1.  

To do this, we write the Lorentz transformation in matrix notation as x = Λx and¯
we make use the definition of the Dirac delta function: 

f (¯ x δ4(¯ x) =  d4 x | det Λ| Sδ4(x − y)f (Λx) =  S | det Λ| f (¯y) =  d4 ¯ x − ȳ)f (¯ y) . (7) 

Lorentz transformations are the group of coordinate transformations which leave the 
Minkowski metric invariant, η = ΛT ηΛ. Now, det η = −1, from which it follows that 
| det Λ| = 1. From equation (7), S = 1 and the four-dimensional Dirac delta function is 
Lorentz-invariant (a Lorentz scalar). 

As an aside, δ4(x) is  not invariant under arbitrary coordinate transformations, be-
cause d4x isn’t invariant in general. (It is invariant only for those transformations with 
| det Λ| = 1). In part 2 of the notes on tensor calculus we show that | det g|1/2d4x is fully 
invariant, so we should multiply the Dirac delta function by | det g|−1/2 to make it in-
variant under general coordinate transformations. In the special case of an orthonormal 
basis, g = η so that | det g| = 1.  

3 Stress-Energy Tensor for a Gas of Particles 

The energy and momentum of one particle is characterized by a four-vector. For a gas 
of particles, or for fields (e.g. electromagnetism), we need a rank (2, 0) tensor which 
combines the energy density, momentum density (or energy flux — they’re the same) 
and momentum flux or stress. The stress-energy tensor is symmetric and is defined so 
that 

νT(˜ ν eµ, ẽ ) =  T µν is the flux of momentum pµ across a surface of constant x . (8) 

It follows (Schutz chapter 4) that in an orthonormal basis T 00 is the energy density, 
T 0i is the energy flux (energy crossing a unit area per unit time), and T ij is the stress 
(i-component momentum flux per unit area per unit time crossing the surface xj = 
constant. The stress-energy tensor is especially important in general relativity because 
it is the source of gravity. It is important to become familiar with it. 

The components of the number-flux four-vector N ν = N (˜� eν ) give the flux of particle 
number crossing a surface of constant xν (with normal one-form ẽν ). From this, we can 
obtain the stress-energy tensor following equation (6). Going from number (a scalar) to 

p = mV = md�momentum (a four-vector) flux is simple: multiply by � � x/dτ . Thus,  

dτ δ4(x − xa(τ ))mVa ⊗ �T = 
�

� Va . (9) 
a 
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4 Uniform Gas of Non-Interacting Particles 

The results of equations (6) and (9) include a discrete sum over particles. To go to the 
continuum, or fluid, limit, we suppose that the particles are so numerous that the sum 
of delta functions may be replaced by its average over a small spatial volume. To get 
the number density measured in a locally flat (orthonormal) frame we must undo some 
of the steps leading to equation (6). Using the fact that dt/dτ = γ, comparing equations 
(3) and (6) shows that we need to evaluate 

dτ δ4(x − xa(τ)) = 
�

γa 
−1 δ3(x − xa(t)) . (10) 

a a 

Now, aside from the factor γ−1, integrating equation (10) over a small volume ∆V anda 

dividing by ∆V would yield the local number density. However, we must also keep 
track of the velocity distribution of the particles. Let us suppose that the velocities are 
randomly sampled from a (possibly spatially or temporally varying) three-dimensional 
velocity distribution f(x, v, t) normalized so that, in an orthonormal frame, 

d3v f(x, v, t) = 1  . (11) 

To make the velocity distribution Lorentz-invariant takes a little more work which we 
will not present here; the interested reader may see problem 5.34 of the Problem Book 
in Relativity and Gravitation by Lightman, Press, Price, and Teukolsky. 

In an orthonormal frame with flat spacetime coordinates, the result becomes 

dτ δ4(x − xa(τ)) = n(x) d3v γ−1 f(x, v) . (12) 
a 

Using �V = γ(1, v) and substituting into equation (3), we obtain the number-flux four-
vector �

N = (n, J) , J  = n(x) d3v f(x, v)v . (13) 

Although this result has been evaluated in a particular Lorentz frame, once we have it 
we could transform to any other frame or indeed to any basis, including non-orthonormal 
bases. 

The stress-energy tensor follows in a similar way from equations (9) and (12). In a 
local Lorentz frame, 

V µV ν 

T µν = mn(x) d3v f(x, v) 
V 0 

. (14) 

If there exists a frame in which the velocity distribution is isotropic (independent 
of the direction of the three-velocity), the components of the stress-energy tensor are 
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particularly simple in that frame: 

T 00 ≡ ρ = d3v f(x, v) γmn(x) , T  0i = T i0 = 0  , 

T ij 1 2 = pδij where p ≡ d3v f(x, v)γmn(x)v . (15)
3 

Here ρ is the energy density (γm is the energy of a particle) and p is the pressure. 
Equation (15) isn’t Lorentz-invariant. However, we can get it into the form of a 

spacetime tensor (an invariant) by using the tensor basis plus the spatial part of the 
metric: 

T = ρ�e0 ⊗ �e0 + pηij�ei ⊗ �ej . (16) 

We can make further progress by noting that the pressure term may be rewritten after 
defining the projection tensor 

h = g −1 + �e0 ⊗ �e0 (17) 

since gµν = ηµν in an orthonormal basis and therefore h00 = η00 +1 = 0, h0i = hi0 = 0  and  
hij = δij . The tensor h projects any one-form into a vector orthogonal to �e0. Combining 
results, we get 

e0 ⊗ �e0 + p g −1T = (ρ + p)� . (18) 

Equation (18) is in the form of a tensor, but it picks out a preferred coordinate 
system through the basis vector �e0. To eliminate this remnant of our nonrelativistic 
starting point, we note that, for any four-velocity �U , there exists an orthonormal frame 

U = �e0. Thus, if we identify �(the instantaneous local inertial rest frame) in which � U as 
the fluid velocity, we obtain our final result, the stress-energy tensor of a perfect gas: 

U ⊗ �T = (ρ + p) � U + p g −1 or T µν = (ρ + p)UµUν + p gµν (19) 

If the sleight-of-hand of converting �e0 to �U seems unconvincing (and it is worth checking!), 
the reader may apply an explicit Lorentz boost to the tensor of equation (18) with three-
velocity U i/U0 to obtain equation (19). We must be careful to remember that ρ and p 
are scalars (the proper energy density and pressure in the fluid rest frame) and �U is the 
fluid velocity four-vector. 

From this result, one may be tempted to rewrite the number-flux four-vector as 
N = nU where �� � U is the same fluid 4-velocity that appears in the stress-energy tensor. 
This is valid for a perfect gas, whose velocity distribution is isotropic in a particular 
frame, where n would be the proper number density. However, in general T 0i is nonzero 
in the frame in which N i = 0, because the energy of particles is proportional to γ but 
the number is not. Noting that the kinetic energy of a particle is (γ − 1)m, we could 
have a net flux of kinetic energy (heat) even if there is no net flux of momentum. In 
other words, energy may be conducted by heat as well as by advection of rest mass. This 
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leads to a fluid velocity in the stress-energy tensor which differs from the velocity in the 
number-flux 4-vector. 

Besides heat conduction, a general fluid has a spatial stress tensor differing from pδij 

due to shear stress provided by, for example, shear viscosity. 
An example where these concepts and techniques find use is in the analysis of fluctu-

ations in the cosmic microwave background radiation. When the radiation (photon) field 
begins to decouple from the baryonic matter (hydrogen-helium plasma) about 300,000 
years after the big bang, anisotropies in the photon momentum distribution develop 
which lead to heat conduction and shear stress. The stress-energy tensor of the ra-
diation field must be computed by integrating over the full non-spherical momentum 
distribution of the photons. Relativistic kinetic theory is one of the ingredients needed 
in a theoretical calculation of cosmic microwave background anisotropies (Bertschinger 
& Ma 1995, Astrophys. J. 455, 7).  
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1 Introduction 

These notes present a treatment of geodesic motion in general relativity based on Hamil-
ton’s principle, illustrating a beautiful mathematical point of tangency between the 
worlds of general relativity and classical mechanics. 

2 Geodesic Motion 

Our starting point is the standard variational principle for geodesics as extremal paths. 
Adopting the terminology of classical mechanics, we make the action stationary under 
small variations of the parameterized spacetime path xµ(τ ) → xµ(τ ) + δxµ(τ ) subject to 
fixed values at the endpoints. The action we use is the path length: 

� � 
dxµ dxν �1/2 

S1[x(τ )] = gµν (x) dτ ≡ L1(x, dx/dτ ) dτ . (1)
dτ dτ 

Variation of the trajectory leads to the usual Euler-Lagrange equations 
� � 

d ∂L ∂L 
dτ ∂(dxµ/dτ ) 

− 
∂xµ 

= 0 , (2) 

from which one obtains the equation of motion 

d2xµ 

dτ 2 
+ Γµ 

αβ 

dxα 

dτ 
dxβ 

dτ 
− 

1 
L1 

dL1 

dτ 
dxµ 

dτ 
= 0 . (3) 

The last term arises because the action of equation (1) is invariant under arbitrary

reparameterization. If the path length is taken to be proportional to path length, dτ ∝
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ds = (gµν dx
µdxν )1/2, then L1 = ds/dτ = constant and the last term vanishes, giving the 

standard geodesic equation 

d2xµ dxα dxβ 

+ Γµ
αβ = 0 . (4)

dτ 2 dτ dτ 

It may be shown that any solution of equation (3) can be reparameterized to give a 
solution of equation (4). Moreover, at the level of equation (4), we needn’t worry about 
whether τ is an affine parameter; we will see below that for any solution of equation 
(4), τ is automatically proportional to path length. The full derivation of the geodesic 
equation and discussion of parameterization of geodesics can be found in most general 
relativity texts (e.g. Misner et al 1973, ¶13.4). 

The Lagrangian of equation (1) is not unique. Any Lagrangian that yields the same 
equations of motion is equally valid. For example, equation (4) also follows from 

1 dxµ dxν 

S2[x(τ )] = gµν (x) dτ ≡ L2(x, dx/dτ ) dτ . (5)
2 dτ dτ 

Unlike equation (1), which is extremal for geodesic curves regardless of their parame­
terization, equation (5) is extremal for geodesics only when τ is an affine parameter, 
dτ /ds = constant. In other words, τ measures path length up to a linear rescaling. 

p
The freedom to linearly rescale the affine parameter allows us to define τ so that 

µ = dxµ/dτ gives the 4-momentum (vector) of the particle, even for massless particles 
for which the proper path length vanishes. One may easily check that dτ = ds/m where 
m is the mass. 

With the form of the action given by equation (5), the canonical momentum conjugate 
to xµ equals the momentum one-form of the particle: 

∂L2 dxν 

= gµν . (6)pµ ≡ 
∂(dxµ/dτ ) dτ 

The coincidence of the conjugate momentum with the momentum one-form encourages 
us to consider the Hamiltonian approach as an alternative to the geodesic equation. 
In the Hamiltonian approach, coordinates and conjugate momenta are treated on an 
equal footing and are varied independently during the extremization of the action. The 
Hamiltonian is given by a Legendre transformation of the Lagrangian, 

dxµ 

H(p, x, τ ) ≡ pµ − L(x, dx/dτ, τ ) (7)
dτ 

where the coordinate velocity dxµ/dτ must be expressed in terms of the coordinates and 
momenta. For Lagrangian L2 this is simple, with the result 

1 
H2(pµ, x ν , τ ) = gµν (x)pµpν . (8)

2 
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Notice the consistency of the spacetime tensor component notation in equations (6)-
(8). The rules for placement of upper and lower indices automatically imply that the 
conjugate momentum must be a one-form and that the Hamiltonian is a scalar. 

The reader will notice that the Hamiltonian H2 exactly equals the Lagrangian L2 (eq. 
5) when evaluated at a given point in phase space (p, x). However, in its meaning and use 
the Hamiltonian is very different from the Lagrangian. In the Hamiltonian approach, we 
treat the position and conjugate momentum on an equal footing. By requiring the action 
to be stationary under independent variations δxµ(τ ) and δpν (τ ), we obtain Hamilton’s 
equations in four-dimensional covariant tensor form: 

dxµ ∂H2 dpµ ∂H2 
= = . (9)

dτ ∂pµ 
, 

dτ 
− 
∂xµ 

Evaluating them using equation (8) yields the canonical equations of motion, 

κα βλ dxµ 

= gµν pν , 
dpµ 

=
1 ∂gκλ 

pκpλ =
1 ∂gαβ 

g g pκpλ = g βλΓκ
µβ pκpλ . (10)

dτ dτ 
− 
2 ∂xµ 2 ∂xµ 

These equations may be combined to give equation (4). 
The canonical equations (9) imply dH/dτ = ∂H/∂τ . Because H2 is independent of 

the parameter τ , it is therefore conserved along the trajectory. Indeed, its value follows 
simply from the particle mass: 

1µν 2 g pµpν = −m → H2(p, x) = − m 2 . (11)
2 

It follows that solutions of Hamilton’s equations (10) satisfy ds2 = gµν dx
µdxν ∝ dτ 2 , 

hence τ must be an affine parameter. 

L
L

At this point, it is worth explaining why we did not use the original, parameterization-
invariant Largrangian of equation (1) as the basis of a Hamiltonian treatment. Because 
1 is homogeneous of first degree in the coordinate velocity, (dxµ/dτ )∂L1/∂(dx

µ/dτ ) = 
1 and the Hamiltonian vanishes identically. This is a consequence of the parameteriza­

tion invariance of equation (1). The parameterization-invariance was an extra symmetry 
not needed for the dynamics. With a non-zero Hamiltonian, the dynamics itself (through 
the conserved Hamiltonian) showed that the appropriate parameter is path length. 

3 Separating Time and Space 

The Hamiltonian formalism developed above is elegant and manifestly covariant, i.e. the 
results are tensor equations and therefore hold for any coordinates and any reference 
frame. However, the covariant formulation is inconvenient for practical use. For one 
thing, every test particle has its own affine parameter; there is no global invariant clock 
by which to synchronize a system of particles. Sometimes this is regarded, incorrectly, 
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as a shortcoming of relativity. In fact, relativity allows us to parameterize the spatial 
position of any number of particles using the coordinate time t = x0 . (After all, time was 
invented precisely to label spacetime events with a timelike coordinate.) An observer 
would report the results of measurement of any number of particle trajectories as xi(t); 
there is no ambiguity nor any loss of generality as long as we specify the metric. 

Our goal is to obtain a Hamiltonian on the six-dimensional phase space {pi, xj } which 
yields the form of Hamilton’s equations familiar from undergraduate mechanics: 

dxi ∂H dpi ∂H 
= = . (12)

dt ∂pi 
, 

dt 
− 
∂xi 

However, unlike undergraduate mechanics, we require that these equations of motion be 
fully correct in general relativity. Their solutions must be consistent with solutions of 
equation (10). We might hope simply to eliminate τ as a parameter, replacing it with t, 
while retaining the spatial components of pµ and xν for our phase space variables. But 
what is the Hamiltonian, and can we ensure relativistic covariance? 

The answer comes from a third expression for the action, regarded now as a functional 
of the 6-dimensional phase space trajectory {pi(t), xj (t)}: 

dxi 

S3[pi(t), x
j (t)] = 2S2 = pµdx

µ = p0 + pi dt . (13)
dt 

Note that S3 is manifestly a spacetime scalar, but that we have separated time and space 
components of the momentum one-form. Our desire to have a global time parameter has 
forced this space-time split. 

Equation (13) is highly suggestive if we recall the Legendre transformation H = 
pidx

i/dt − L (written here for three spatial coordinates parameterized by t rather than 
four coordinates parameterized by τ ). Inverting the transformation, we conclude that 
the factor in parentheses in equation (13) must be the Lagrangian so that S3 = L dt, 
and therefore the Hamiltonian is H = −p0. 

This result is appealing: the Hamiltonian naturally works out to be (minus) the time 
component of the momentum one-form. It is suggestive that, in locally flat coordinates, 
−p0 = p0 is the energy. However, despite appearances, the Hamiltonian is not in general 
the proper energy. Our formalism works for arbitrary spacetime coordinates and is not 
restricted to flat coordinates or inertial frames. We only require that t be time-like so 
that it can parameterize timelike spacetime trajectories. 

Equation (13) with p0 = −H is not useful until we write the Hamiltonian in terms 
of the phase space coordinates and time: H = H(pi, xj , t). We could do this by writing 
L = pµdxµ/dt in terms of xi and dxi/dt, but it is simpler to write p0 directly in terms of 
(pi, xj , t). How? 

A hint is given by the fact that in abandoning the affine parameterization by τ , we 
don’t obtain the normalization of the four-momentum (eq. 11) automatically. Therefore 
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we must add it as a constraint to the action of equation (13). We wish to use the 
1energy integral H2 = 
2 m

2 to reduce the order of the system (eqs. 10). Solving this −
relation for −p0 in terms of the other variables yields the Hamiltonian on our reduced 
(6-dimensional) phase space. 

For this procedure to be valid, it has to be shown that extremizing S3 with respect 
to all possible phase space trajectories {pi(t), xi(t)} is equivalent to extremizing S2 with 
respect to {xi(τ), t(τ)} for τ being an affine parameter. Equivalently, we must show 
that solutions of equations (9) are solutions of equations (9) and vice versa. A proof is 
presented in Section 4.2 below. 

Before presenting the technicalities, we state the key result of these notes, the Hamil­
tonian on our six-dimensional phase space {pi, xj }, obtained by solving H2(pi, p0, x

j , t) = 
1 m2 for p0 = −H:
2− 

0i g pi
H(pi, x

j , t) = −p0 = 
g pi 

+
(gij pipj + m2)

+ 

� 
0i

�2 
�1/2 

. (14) 
g00 −g00 g00 

Note that here, as in the covariant case, the conjugate momenta are given by the (here, 
spatial) components of the momentum one-form. The inverse metric components gµν 

are, in general, functions of xi and t. Equation (14) is exact; no approximation to the 
metric has been made. We only require that t be timelike, i.e. g00 < 0, in order to 
parameterize timelike geodesics. 

The next section presents mathematical material that is optional for 8.962. However, 
it is recommended for those students prepared to explore differential geometry somewhat 
further. The application to Hamiltonian mechanics should help the student to better 
understand the mathematics of general relativity. 

4 Hamiltonian mechanics and symplectic manifolds 

The proof that the 8-dimensional phase space may be reduced to the six spatial dimen­
sions while retaining a Hamiltonian description becomes straightforward in the context 
of symplectic differential geometry (see Section 4.2 below). Classical Hamiltonian me­
chanics is naturally expressed using differential forms and exterior calculus (Arnold 1989; 
see also Exercise 4.11 of Misner et al 1973). We present an elementary summary here, 
both to provide background for the proof to follow and to elucidate differential geom­
etry through its use in another context. In fact, we are not ignoring general relativity 
but extending it; the Hamiltonian mechanics we develop is fully consistent with general 
relativity. 

The material presented in this section is mathematically more advanced than Schutz 
(1985). Treatments may be found in Misner et al (1973, Chapter 4), Schutz (1980), 
Arnold (1989), and, briefly, in Appendix B of Wald (1984) and Carroll (1997). 
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We begin with the configuration space of a mechanical system of n degrees of freedom 
characterized by the generalized coordinates qi (which may, for example, be the four 
spacetime coordinates of a single particle’s worldline, or the three spatial coordinates 
only). The configuration space is a manifold V whose tangent space T Vq at each point 
q in the manifold is given by the set of all generalized velocity vectors d�q/dt at q. Note 
that t is any parameter for a curve q(t); we are not restricting ourselves to Newtonian 
mechanics with its absolute time. 

The union of all tangent spaces at all points of the manifold is called the tangent 
bundle, denoted T V . The set T V has the structure of a manifold of dimension 2n. There 
exists a differentiable function on T V , the Lagrangian, whose partial derivatives with 
respect to the velocity vector components defines the components of a one-form, the 
canonical momentum: 

∂L 
� . (15)p ≡ 

∂(d�q/dt) 

To see that this is a one-form, we note that it is a linear function of a tangent vector: 
p�(d�q) = pidqi is a scalar. At each point in the configuration space manifold, the set of 
all �p defines the cotangent space T ∗Vq. (The name cotangent is used to distinguish the 
dual space of one-forms from the space of vectors.) 

The union of all cotangent spaces at all points of the manifold is called the cotangent 
bundle, T ∗V . Like the tangent bundle, the cotangent bundle is a manifold of dimension 
2n. A point of T ∗V is specified by the coordinates (pi, qj ). The cotangent bundle is well 
known: it is phase space. 

Having set up the phase space, we now discard the original configuration space V , 
its tangent vector space T Vq and the tangent bundle T V . To emphasize that the phase 
space is a manifold of dimension 2n, we will denote it M 2n rather than by T ∗V . 

Being a manifold, the phase space has a tangent space of vectors. Each parameterized 
curve γ(t) in phase space has, at each point in the manifold, a tangent vector ξ� whose 
coordinate components are the 2n numbers (dpi/dt, dqj /dt). The phase space also has 
one-forms, or linear functions of vectors. For example, the gradient of a scalar field 
H(pi, qj ) in phase space is a one-form. However, it will prove convenient to denote the 
gradient of a scalar using a new notation, the exterior derivative: dH ≡ �H. In the 
coordinate basis, dH has components (∂H/∂pi, ∂H/∂qj ). In this section, forms will be 
denoted with boldface symbols. 

One must be careful not to read too much into the positions of indices: ∂H/∂pi and 
∂H/∂qi are both components of a one-form in phase space. They may also happen to be 
spacetime vectors and one-forms, respectively, but we are now working in phase space. 
In phase space, pi and qj have equal footing as coordinates. We will retain the placement 
of indices (i, j go from 1 to n) simply as a reminder that our momenta and position 
displacements may be derived from spacetime one-forms and vectors. This way we can 
arrive at physical equations of Hamiltonian dynamics that are tensor equations (hence 
valid for any coordinate system) in both spacetime and phase space. 
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As in spacetime, we define the basis one-forms by the gradient (here, the exterior 
derivative) of the coordinate fields: {dpi, dqj }. We can combine one-forms and vectors 
to produce higher-rank tensors through the operations of gradient and tensor product. 
It proves especially useful to define the antisymmetric tensor product, or wedge product. 
The wedge product of two one-forms α and β is 

α ∧ β ≡ α ⊗ β − β ⊗ α . (16) 

The wedge product of two one-forms gives a 2-form, an antisymmetric (0, 2) tensor. The 
wedge product (tensor product with antisymmetrization) can be extended to produce 
p-forms with p less than or equal to the dimension of the manifold. A p-form is a fully 
antisymmetric, linear function of p vectors. Forms will be denoted by Greek letters. 

Given a p-form α, we can obtain a (p + 1)-form by exterior differentiation, dα. 
Exterior differentiation consists of the gradient followed by antisymmetrization on all 
arguments. For p-form ωp and q-form ωq , the exterior derivative obeys the relation 

d(ωp ∧ ωq ) = dωp ∧ ωq + (−1)pωp ∧ dωq . (17) 

(Here p and q are integers having nothing to do with phase space coordinates.) Note 
that ddω = 0 for any form ω. Any form ω for which dω = 0 is called a closed form. 

Forms are most widely used to provide a definition of integration free from coordinates 
and the metric. Consider, for example, the line integral giving the work done by a force, 
F d�� x. If the force were a one-form θ instead of a vector, and if ξ� were the tangent · 

vector to a path γ (ξ� = d�x/dt where t parameterizes the path), we could write the work 
as θ(ξ� ) or 

γ θ for short. No coordinates are involved until we choose a coordinate 
γ 

basis, and no metric is required because we integrate a one-form instead of a vector with 
a dot product. 

Similarly, a 2-form may be integrated over an orientable 2-dimensional surface. Inte­
gration is built up by adding together the results from many small patches of the surface. 
An infinitesimal patch may be taken to be the parallelogram defined by two tangent 

η. The integral of the 2-form ω over the surface σ is 
σ ω(� η) or ω forvectors, ξ� and � ξ, �

σ 
short. 

The spacetime manifold received additional structure with the introduction of the 
metric, a (0, 2) tensor used to give the magnitude of a vector (and to distinguish timelike, 
spacelike and null vectors). A manifold with a positive-definite symmetric (0, 2) tensor 
defining magnitude is called a Riemannian manifold. When the eigenvalues of the metric 
have mixed signs (as in the case of spacetime), the manifold is called pseudo-Riemannian. 

Phase space has no metric; there is no concept of distance between points of phase 
space. It has a special antisymmetric (0, 2) tensor instead, in other words a 2-form. 
We will call this fundamental form the symplectic form ω; Arnold (1989) gives it the 
cumbersome name �the form giving the symplectic structure.� In terms of the coordinate 
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basis one-forms dpi and dqj , the symplectic form is 

ω ≡ dpi ∧ dq i = dp1 ∧ dq 1 + dpn ∧ dq n . (18)+ · · ·

Note the implied sum on paired upper and lower indices. 
One of the uses of the metric is to map vectors to one-forms; the symplectic form 

fulfills the same role in phase space. Filling one slot of ω with a vector yields a one-
form, ω(·, ξ� ). It is easy to show that this mapping is invertible by representing ω in the 
coordinate basis and showing that it is an orthogonal matrix. Therefore, every one-form 
has a corresponding vector. 

There is a particular one-form of special interest in phase space, dH where H(p, q, t) 
is the Hamiltonian function. The corresponding vector is the phase space velocity, i.e. 
the tangent to the phase space trajectory: 

dpi
ω(·, ξ� ) = dpi(·)dq i(ξ� ) − dq i(·)dpi(ξ� ) = 

dqi 
dpi − dq i 

dt dt 
∂H ∂H 

= dH(·) = dpi + dq i . (19)
∂pi ∂qi 

Equating terms, we see that Hamilton’s equations are given concisely by ω(ξ� ) = dH. 
Besides giving the antisymmetric relationship between coordinates and momenta 

apparent in Hamilton’s equations, the symplectic form allows us to define canonical 
transformations of the coordinates and momenta. The phase space components (pi, qj ) 

¯
transform with a 2n × 2n matrix Λ to (pī, q j ). A canonical transformation is one that 
leaves the symplectic form invariant. In matrix notation, this implies ΛT ωΛ = ω. Thus, 
canonical invariance of a Hamiltonian system is analogous to Lorentz invariance in special 
relativity, where the transformations obey ΛT ηΛ = η where η is the Minkowski metric. 

The standard results of Hamiltonian mechanics are elegantly derived and expressed 
using the language of symplectic differential geometry. For example, Arnold (1989, ¶38 
and ¶44D) shows that transformation of phase space induced by Hamiltonian evolution is 
canonical. This implies that the phase space area (the integral of ω, a 2-form) is preserved 
by Hamiltonian evolution. It is easy to show that not only ω but also ω2 ≡ ω ∧ ω 
is a canonical invariant, as is ωp ≡ ω ∧ · · · ∧ ω with p factors of ω, for all p ≤ n. 
(Antisymmetry limits the rank of a p-form to p ≤ n.) Thus, phase space volume is 
preserved by Hamiltonian evolution (Liouville theorem). 

4.1 Extended phase space 

Inspired by relativity, we can absorb the time parameter into the phase space to obtain 
a manifold of 2n + 1 dimensions, denoted M2n+1 and called extended phase space. As 
we will see, this extension allows a concise derivation of the extremal form of the action 
under Hamiltonian motion. 

8 



� � 

� � 

Before proceeding, we should emphasize that the results of the previous section are 
not limited to nonrelativistic systems. Indeed, they apply to the phase space (pµ, xν) 
of a single particle in general relativity where the role of time is played by the affine 
parameter τ . The relativistic Hamilton’s equations (9) follow immediately from equation 
(19). Nonetheless, if we wish to parameterize trajectories by coordinate time (as we must 
for a system of more than one particle), we must show the consistency of the space-time 
split apparent in equation (14). We can do this by re-uniting coordinates and time in 
M2n+1 . 

In M2n, the symplectic form dpi ∧ dqi is the fundamental object. In M2n+1, we must 
incorporate the one-form dt. This is done with a new one-form, the integral invariant 
of Poincaré-Cartan: 

ω ≡ pidq 
i − H(pi, q

j, t)dt . (20) 

(The reader must note from context whether ω refers to this one-form or to the sym­
plectic 2-form.) This one-form looks deceptively like the integrand of the action, or 
the Lagrangian. However, it is a differential form on the extended phase space, not a 
function. Once we integrate it over a curve γ in M2n+1, however, we get the action: 

� � B 
� � 

S = ω = pidq
i − H(pi, q

j, t)dt . (21) 
γ A 

The integration is taken from A to B in the extended phase space. 
Now suppose we integrate ω from A to B along two slightly different paths and take 

the difference to get a close loop integral. To evaluate this integral we can use Stokes’ 
theorem. In the language of differential forms, Stokes’ theorem is written (Misner et al 
1973, Chapter 4, or Wald 1984, Appendix B) 

ω = dω (22) 
∂M M 

Here, M is a p-dimensional compact orientable manifold with boundary ∂M and ω is a 
(p−1)-form; dω is its exterior derivative, a p-form. Note that M can be a submanifold of 
a larger space, so that Stokes’ theorem actually implies a whole set of relations including 
the familiar Gauss and Stokes laws of ordinary vector calculus. 

Applying equation (22) to the difference of actions computed along two neighboring 
paths with (qi, t) fixed at the endpoints and using equation (17), we get 

dpi ∧ dq iδS = dω = − dH ∧ dt , (23) 
σ σ 

where σ denotes the surface area in the extended phase space bounded by the two paths 
from A to B. Note the emergence of the fundamental symplectic form on M2n . 
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in M
Now, let us express the integrand of equation (23) in the coordinate basis of one-forms 

2n+1, evaluating one of the vector slots using the tangent vector ξ� to one of the two 
curves from A to B. The result is similar to equation (19): 

dqi ∂H dH ∂H 
dω(·, ξ� ) = 

dt 
− 

∂pi 
dpi + 

dpi ∂H 
dq i + dt . (24)− 

dt 
− 

∂qi dt 
− 

∂t 

The principal of least action states that δS = 0 for small variations about the true path, 
with (qi, t) fixed at the end points. This will be true, for arbitrary small variations, if 
and only if dω(·, ξ� ) = 0 for the tangent vector along the extremal path. From equation 
(24), Hamilton’s equations follow. 

The solution of Hamilton’s equations gives an extended phase-space trajectory with 
tangent vector ξ� being an eigenvector of the 2-form dω with zero eigenvalue. Arnold 
(1989) proves that, for any differentiable function H defined on M2n+1, the two-form 
dω has exactly one eigenvector with eigenvalue zero, (∂H/∂pi, −∂H/∂qi , 1). This is a 
vector field in M2n+1 and it defines a set of integral curves (field lines, to which it is 
tangent) called the �vortex lines� of the one-form ω. The vortex lines are precisely the 
trajectories of Hamiltonian flow, i.e. the solutions of equations (12). 

A bundle of vortex lines is called a vortex tube. From Stokes’ theorem, the circulation 
of a vortex tube, defined as the integral of the Poincaré-Cartan integral invariant around 
a closed loop bounding the vortex tube, is an integral of motion. (This is why ω is called 
an integral invariant.) If the bounding curves are taken to lie on hypersurfaces of constant 

pidqitime, it follows that is also an integral of motion. By Stokes’ theorem, this 
implies that the fundamental form dpi ∧ dqi is an integral invariant. Thus, Hamiltonian 
evolution is canonical and preserves phase space areas and volumes. 

M

p

q

By adding t to our manifold we have partially unified coordinates and time. Can we 
go all the way to obtain a spacetime covariant formulation of Hamiltonian dynamics? For 
the case of single particle motion, the answer is clearly yes. If we write H = −p0 and t = 
0, the integral invariant of Poincaré-Cartan takes the simple form ω = pµdqµ where µ 
takes the range 0 to n. Now dω looks like the symplectic form on M2n+2, except that here 
0 is not a dynamical variable but rather a function on M2n+1 . However, we can promote 
it to the status of an independent variable by defining a new Hamiltonian H �(pµ, qν ) on 

2n+2 such that H � = constant can be solved for p0 to give −p0 = H(pi, qj , q0 = t). A 
simple choice is H � = p0 + H. 

M

Having subsumed the parameter for trajectories into the phase space, we must intro­
duce a new parameter, τ . Because ∂H �/∂τ = 0, the solution of Hamilton’s equations in 

2n+2 will ensure that H � is a constant of motion. This is exactly what happened with 
the relativistically covariant Hamiltonian H2 in Section 2 (eqs. 8 and 11). 

The reader may now ask, if the Hamiltonian is independent of time, is it possible to 
reduce the dimensionality of phase space by two? The answer is yes; the next section 
shows how. 
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4.2 Reduction of order 

Hamilton’s equations imply that when ∂H/∂t = 0, H is an integral of motion. In this 
case, phase space trajectories in M2n are confined to the (2n− 1)-dimensional hypersur­
face H = constant. This condition may be used to eliminate t and choose one of the 
coordinates to become a new �time� parameter, with a new Hamiltonian defined on the 
reduced phase space. 

This procedure was used in Section 3 to reduce the relativistically covariant 8­
dimensional phase space {pµ, xν } with Hamiltonian given by equation (8) to the 6­
dimensional phase space {pi, xj } with the Hamiltonian of equation (14). While this 
reduction is plausible, it remains to be proved that the reduced phase space is a sym­
plectic manifold and that the new Hamiltonian is given by the momentum conjugate to 
the time coordinate. The proof is given here. 

Starting from the conserved Hamiltonian H(p, q) ≡ H(p0, pi, q
0, qj ) = h with 1 ≤

i, j ≤ n − 1, we assume that (in some region) this equation can be solved for the mo­
mentum coordinate p0: 

p0 = −K(Pi, Q
j , T ; h) (25) 

0where Pi = pi, Qi = qi, and T = q . Note that any of the coordinates may be elimi­
nated, with its conjugate momentum becoming (minus) the new Hamiltonian. Thus, the 
reduction of order is compatible with relativistic covariance. However, it can be applied 
to any Hamiltonian system, relativistic or not. 

Next we write the integral invariant of Poincaré-Cartan in terms of the new variables: 

ω = p0dq 
0 + pidq 

i − Hdt = PidQ
i − KdT − d(Ht) + tdH . (26) 

Recall that this is a one-form defined on M2n+1 . 
Now let γ be an integral curve of the canonical equations (12) lying on the 2n­

dimensional surface H(p, q) = h in the (2n + 1)-dimensional extended phase space 
i{p, q, t}. Thus, γ is a vortex line of the two-form pdq − Hdt = p0dq0 + pidq − Hdt. 

We project the extended phase space M2n+1 onto the phase space M2n = {p, q} by dis­
carding the time parameter t. The surface H = h projects onto a (2n− 1)-dimensional 
manifold M2n−1 with coordinates {Pi, Q

j , T}. Discarding t, the integral curve γ projects 
onto a curve γ̄ also in M2n−1 . 

M

The coordinates (Pi, Q
j , T ) = (pi, q

j , q0) locally (and perhaps globally) cover the 
submanifold M2n−1 (the surface H = constant in M2n = {p, q}). We now show that 

2n−1 is the extended phase space for a symplectic manifold with Hamiltonian K. 
We do this by examining equation (26) while noting that the integral curve γ lies on 

the surface H = constant. Clearly the last term in equation (26) vanishes on M2n−1 . 
Next, d(Ht) does not affect the vortex lines of ω because dd(Ht) = 0. (The variation of 
the action is invariant under the addition of a total derivative to the Lagrangian.) But 
the vortex lines of PidQi − KdT satisfy Hamilton’s equations (Sect. 4.1). Thus we have 
proven that reduction of order preserves Hamiltonian evolution. 
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The solution curves γ̄ on M2n−1 are vortex lines of pdq = P dQ − KdT . Thus, they 

in M
are extremals of the integral pdq. In other words, if the Hamiltonian function H(q, p) 

2n+1 is independent of time, then the phase space trajectories satisfying Hamilton’s 
equations are extremals of the integral pdq in the class of curves lying on M2n−1 with 
fixed endpoints of integration. The converse is also true (Arnold 1989): if ∂H/∂t = 0, 
the extremals of the �reduced action� 

� 
pdq = 

� 

∂(d�

∂L 
q/dτ) 

(τ) 
d�q 
dτ 

dτ (27) 
γ γ 

with fixed endpoints, δq = 0, are solutions of Hamilton’s equations in M2n+1 . This is 
known as Maupertuis’ principle of least action. Note that the principle can only be 
implemented if pi is expressed as a function of q and �q so that the integral is a functional of 
the configuration space trajectory. Also, because the time parameterization is arbitrary, 
Maupertuis’ principle determines the shape of a trajectory but not the time (t does not 
appear in eq. 27); in order to determine the time we must use the energy integral. 

These results justify the approach of Section 3. The spacetime trajectories are ex­
tremals of equation (13) as a consequence of ∂H2/∂τ = 0 (eq. 8) and Maupertuis’ 

1principle. The order is reduced further by using H2 = 
2 m

2 to solve for −p0 as the new −
Hamiltonian H(pi, xj , t), equation (14). 
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Introduction 

These notes show how observers can set up a coordinate system and measure the space-
time geometry using clocks and lasers. The approach is similar to that of special rela­
tivity, but the reader must not be misled. Spacetime diagrams with rectilinear axes do 
not imply flat spacetime any more than flat maps imply a flat earth. 

Cartography provides an excellent starting point for understanding the metric. Ter­
restrial maps always provide a scale of the sort �One inch equals 1000 miles.� If the 
map is of a sufficiently small region and is free from distortion, one scale will suffice. 
However, a projection of the entire sphere requires a scale that varies with location and 
even direction. The Mercator projection suggests that Greenland is larger than South 
America until one notices the scale difference. The simplest map projection, with lat­
itude and longitude plotted as a Cartesian grid, has a scale that depends not only on 
position but also on direction. Close to the poles, one degree of latitude represents a far 
greater distance than one degree of longitude. 

The map scale is the metric. The spacetime metric has the same meaning and use: it 
translates coordinate distances and times (�one inch on the map�) to physical (�proper�) 
distances and times. 

The terrestrial example also helps us to understand how coordinate systems can be 
defined in practice on a curved manifold. Let us consider how coordinates are defined on 
the Earth. First pick one point and call it the north pole. The pole is chosen along the 
rotation axis. Now extend a family of geodesics from the north pole, called meridians 
of longitude. Label each meridian by its longitude φ. We choose the meridian going 
through Greenwich, England, and call it the�prime meridian,� φ = 0. Next, we define 
latitude λ as an affine parameter along each meridian of longitude, scaled to π/2 at the 
north pole and decreasing linearly to −π/2 at the point where the meridians intersect 
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again (the south pole). With these definitions, the proper distance between the nearby 
points with coordinates (λ, φ) and (λ + dλ, φ + dφ) is given by ds2 = R2(dλ2 + cos2 λ dφ2). 
In this way, every point on the sphere gets coordinates along with a scale which converts 
coordinate intervals to proper distances. 

This example seems almost trivial. However, it faithfully illustrates the concepts 
involved in setting up a coordinate system and measuring the metric. In particular, 
coordinates are numbers assigned by obsevers who exchange information with each other. 
There is no conceptual need to have the idealized dense system of clocks and rods filling 
spacetime. Observe any major civil engineering project. The metric is measured by two 
surveyors with transits and tape measures or laser ranging devices. Physicists can do the 
same, in principle and in practice. These notes illustrate this through a simple thought 
experiment. The result will be a clearer understanding of the relation between curvature, 
gravity, and acceleration. 

The metric in 1+1 spacetime 

We study coordinate systems and the metric in the simplest nontrivial case, spacetime 
with one space dimension. This analysis leaves out the issue of orientation of spatial axes. 
It also greatly reduces the number of degrees of freedom in the metric. As a symmetric 
2 matrix, the metric has three independent coefficients. Fixing two coordinates imposes 
two constraints, leaving one degree of freedom in the metric. This contrasts with the six 
metric degrees of freedom in a 3+1 spacetime. However, if one understands well the 1+1 
example, it is straightforward (albeit more complicated) to generalize to 2+1 and 3+1 
spacetime. 

We will construct a coordinate system starting from one observer called A. Observer 
A may have any motion whatsoever relative to other objects, including acceleration. 
But neither spatial position nor velocity is meaningful for A before we introduce other 
observers or coordinates (�velocity relative to what?�) although A’s acceleration (relative 
to a local inertial frame!) is meaningful: A stands on a scale, reads the weight, and 
divides by rest mass. Observer A could be you or me, standing on the surface of the 
earth. It could equally well be an astronaut landing on the moon. It may be helpful 
in this example to think of the observers as being stationary with respect to a massive 
gravitating body (e.g. a black hole or neutron star). However, we are considering a 
completely general case, in which the spacetime may not be at all static. (That is, there 
may not be any Killing vectors whatsoever.) 

We take observer A’s worldine to define the t-axis: A has spatial coordinate xA ≡ 0. 
A second observer, some finite (possibly large) distance away, is denoted B. Both A and 
B carry atomic clocks, lasers, mirrors and detectors. 

Observer A decides to set the spacetime coordinates over all spacetime using the 
following procedure, illustrated in Figure 1. First, the reading of A’s atomic clock gives 
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Figure 1: Setting up a coordinate system in curved spacetime. There are two time-
like worldlines and two pairs of null geodesics. The appearance of flat coordinates is 
misleading; the metric varies from place to place. 

the t-coordinate along the t-axis (x = 0). Then, A sends a pair of laser pulses to B, who 
reflects them back to A with a mirror. If the pulses do not return with the same time 
separation (measured by A) as they were sent, A deduces that B is moving and sends 
signals instructing B to adjust her velocity until t6 − t5 = t2 − t1. The two continually 
exchange signals to ensure that this condition is maintained. A then declares that B has 
a constant space coordinate (by definition), which is set to half the round-trip light-travel 

1time, xB ≡ 2 (t5 − t1). A sends signals to inform B of her coordinate. 
Having set the spatial coordinate, A now sends time signals to define the t-coordinate 

along B’s worldline. A’s laser encodes a signal from Event 1 in Figure 1, �This pulse 
was sent at t = t1. Set your clock to t1 + xB .� B receives the pulse at Event 3 and sets 
her clock. A sends a second pulse from Event 2 at t2 = t1 + Δt which is received by B 
at Event 4. B compares the time difference quoted by A with the time elapsed on her 
atomic clock, the proper time ΔτB . To her surprise, ΔτB = Δt. 

At first A and B are sure something went wrong; maybe B has begun to drift. But 
repeated exchange of laser pulses shows that this cannot be the explanation: the round-
trip light-travel time is always the same. Next they speculate that the lasers may be 
traveling through a refractive medium whose index of refraction is changing with time. 
(A constant index of refraction wouldn’t change the differential arrival time.) However, 
they reject this hypothesis when they find that B’s atomic clock continually runs at a 
different rate than the timing signals sent by A, while the round-trip light-travel time 
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Figure 2: Testing for space curvature. 

measured by A never changes. Moreover, laboratory analysis of the medium between 
them shows no evidence for any change. 

Becoming suspicious, B decides to keep two clocks, an atomic clock measuring τB 

and another set to read the time sent by A, denoted t. The difference between the two 
grows increasingly large. 

The observers next speculate that they may be in a non-inertial frame so that special 
relativity remains valid despite the apparent contradiction of clock differences (gtt = 1) 
with no relative motion (dxB /dt = 0). We will return to this speculation in Section 3. In 
any case, they decide to keep track of the conversion from coordinate time (sent by A) 
to proper time (measured by B) for nearby events on B’s worldline by defining a metric 
coefficient: 

� �2
ΔτB 

gtt(t, xB ) ≡ lim . (1)
Δt 0 

− 
Δt→

The observers now wonder whether measurements of spatial distances will yield a 
similar mystery. To test this, a third observer is brought to help in Figure 2. Observer 
C adjusts his velocity to be at rest relative to A. Just as for B, the definition of rest 
is that the round-trip light-travel time measured by A is constant, t8 − t1 = t9 − t2 = 
2xC ≡ 2(xB + Δx). Note that the coordinate distances are expressed entirely in terms 
of readings of A’s clock. A sends timing signals to both B and C. Each of them sets 
one clock to read the time sent by A (corrected for the spatial coordinate distance xB 

and xC , respectively) and also keeps time by carrying an undisturbed atomic clock. The 
former is called coordinate time t while the latter is called proper time. 
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The coordinate time synchronization provided by A ensures that t2 − t1 = t5 − t3 = 

6 − t4 = t7 − t5 = t9 − t8 = 2Δx. Note that the procedure used by A to set t and x 
relates the coordinates of events on the worldlines of B and C: 

(t4, x4) = (t3, x3) + (1, 1)Δx , (t5, x5) = (t4, x4) + (1,−1)Δx , 

(t6, x6) = (t5, x5) + (1, 1)Δx , (t7, x7) = (t6, x6) + (1,−1)Δx . (2) 

Because they follow simply from the synchronization provided by A, these equations 
are exact; they do not require Δx to be small. However, by themselves they do not 
imply anything about the physical separations between the events. Testing this means 
measuring the metric. 

g

To explore the metric, C checks his proper time and confirms B’s observation that 
proper time differs from coordinate time. However, the metric coefficient he deduces, 
tt(xC , t), differs from B’s. (The difference is first-order in Δx.) 
The pair now wonder whether spatial coordinate intervals are similarly skewed relative 

to proper distance. They decide to measure the proper distance between them by using 
laser-ranging, the same way that A set their spatial coordinates in the first place. B 
sends a laser pulse at Event 3 which is reflected at Event 4 and received back at Event 
5 in Figure 2. From this, she deduces the proper distance of C, 

1 
Δs = (τ5 − τ3) (3)

2 

where τi is the reading of her atomic clock at event i. To her surprise, B finds that Δx 
does not measure proper distance, not even in the limit Δx 0. She defines another →
metric coefficient to convert coordinate distance to proper distance, 

� �2
Δs 

lim . (4)gxx ≡ 
Δx 0 Δx→

τ

The measurement of proper distance in equation (4) must be made at fixed t; oth­
erwise the distance must be corrected for relative motion between B and C (should 
any exist). Fortunately, B can make this measurement at t = t4 because that is when 
her laser pulse reaches C (see Fig. 2 and eqs. 2). Expanding τ5 = τB (t4 + Δx) and 
3 = τB (t4 − Δx) to first order in Δx using equations (1), (3), and (4), she finds 

gxx(x, t) = −gtt(x, t) . (5) 

The observers repeat the experiment using Events 5, 6, and 7. They find that, while the 
metric may have changed, equation (5) still holds. 

The observers are intrigued to find such a relation between the time and space parts 
of their metric, and they wonder whether this is a general phenomenon. Have they 
discovered a modification of special relativity, in which the Minkowski metric is simply 
multipled by a conformal factor, gµν = Ω2ηµν ? 
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They decide to explore this question by measuring gtx. A little thought shows that 
they cannot do this using pairs of events with either fixed x or fixed t. Fortunately, they 
have ideal pairs of events in the lightlike intervals between Events 3 and 4: 

ds2 
34 ≡ lim gtt(t4 − t3)

2 + 2gtx(t4 − t3)(x4 − x3) + gxx(x4 − x3)
2 . (6)

Δt,Δx 0→

Using equations (2) and (5) and the condition ds = 0 for a light ray, they conclude 

gtx = 0 . (7) 

Their space and time coordinates are orthogonal but on account of equations (5) and (7) 
all time and space intervals are stretched by 

√
gxx. 

Our observers now begin to wonder if they have discovered a modification of special 
relativity, or perhaps they are seeing special relativity in a non-inertial frame. However, 
we know better. Unless the Riemann tensor vanishes identically, the metric they have 
determined cannot be transformed everywhere to the Minkowski form. Instead, what 
they have found is simply a consequence of how A fixed the coordinates. Fixing two 
coordinates means imposing two gauge conditions on the metric. A defined coordinates 
so as to make the problem look as much as possible like special relativity (eqs. 2). 
Equations (5) and (7) are the corresponding gauge conditions. 

It is a special feature of 1+1 spacetime that the metric can always be reduced to a 
conformally flat one, i.e. 

ds2 = Ω2(x)ηµν dx
µdxν (8) 

for some function Ω(xµ) called the conformal factor. In two dimensions the Riemann 
tensor has only one independent component and the Weyl tensor vanishes identically. 
Advanced GR and differential geometry texts show that spacetimes with vanishing Weyl 
tensor are conformally flat. 

Thus, A has simply managed to assign conformally flat coordinates. This isn’t a 
coincidence; by defining coordinate times and distances using null geodesics, he forced 
the metric to be identical to Minkowski up to an overall factor that has no effect on null 
lines. Equivalently, in two dimensions the metric has one physical degree of freedom, 
which has been reduced to the conformal factor Ω ≡ √

gxx = 
√
−gtt. 

This does not mean that A would have had such luck in more than two dimensions. 
2In n dimensions the Riemann tensor has n2(n − 1)/12 independent components (Wald 

p. 54) and for n ≥ 3 the Ricci tensor has n(n + 1)/2 independent components. For n = 2 
and n = 3 the Weyl tensor vanishes identically and spacetime is conformally flat. Not 
so for n > 3. 

It would take a lot of effort to describe a complete synchronization in 3+1 spacetime 
using clocks and lasers. However, even without doing this we can be confident that 
the metric will not be conformally flat except for special spacetimes for which the Weyl 
tensor vanishes. Incidentally, in the weak-field limit conformally flat spacetimes have 
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no deflection of light (can you explain why?). The solar deflection of light rules out 
conformally flat spacetime theories including ones proposed by Nordstrom and Weyl. 

It is an interesting exercise to show how to transform an arbitrary metric of a 1+1 
spacetime to the conformally flat form. The simplest way is to compute the Ricci scalar. 
For the metric of equation (8), one finds 

R = Ω−2(∂2 − ∂2 
x) ln Ω2 . (9)t 

Starting from a 1+1 metric in a different form, one can compute R everywhere in space-
time. Equation (9) is then a nonlinear wave equation for Ω(t, x) with source R(t, x). It 
can be solved subject to initial Cauchy data on a spacelike hypersurface on which Ω = 1, 
∂tΩ = ∂xΩ = 0 (corresponding to locally flat coordinates). 

We have exhausted the analysis of 1+1 spacetime. Our observers have discerned one 
possible contradiction with special relativity: clocks run at different rates in different 
places (and perhaps at different times). If equation (9) gives Ricci scalar R = 0 ev­
erywhere with Ω = 

√
−gtt, then the spacetime is really flat and we must be seeing the 

effects of accelerated motion in special relativity. If R = 0, then the variation of clocks 
is an entirely new phenomenon, which we call gravitational redshift. 

The metric for an accelerated observer 

It is informative to examine the problem from another perspective by working out the 
metric that an arbitrarily accelerating observer in a flat spacetime would deduce using 
the synchronization procedure of Section 2. We can then more clearly distinguish the 
effects of curvature (gravity) and acceleration. 

Figure 3 shows the situation prevailing in special relativity when observer A has 
µan arbitrary timelike trajectory xA(τA) where τA is the proper time measured by his 

atomic clock. While A’s worldline is erratic, those of light signals are not, because here 
t = x0 and x = x1 are flat coordinates in Minkowski spacetime. Given an arbitrary 

µworldline xA(τA), how can we possibly find the worldines of observers at fixed coordinate 
displacement as in the preceding section? 

The answer is the same as the answer to practically all questions of measurement in 
GR: use the metric! The metric of flat spacetime is the Minkowski metric, so the paths of 
laser pulses are very simple. We simply solve an algebra problem enforcing that Events 
1 and 2 are separated by a null geodesic (a straight line in Minkowski spacetime) and 
likewise for Events 2 and 3, as shown in Figure 3. Notice that the lengths (i.e. coordinate 
differences) of the two null rays need not be the same. 

The coordinates of Events 1 and 3 are simply the coordinates along A’s worldine, 
while those for Event 2 are to be determined in terms of A’s coordinates. As in Section 2, 
A defines the spatial coordinate of B to be twice the round-trip light-travel time. Thus, 

0if event 0 has x0 = tA(τ0), then Event 3 has x = tA(τ0 + 2L). For convenience we will 
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Figure 3: An accelerating observer sets up a coordinate system with an atomic clock, 
laser and detector. 

set τ0 ≡ τA − L. Then, according to the prescription of Section 2, A will assign to Event 
2 the coordinates (τA, L). The coordinates in our flat Minkowksi spacetime are 

Event 1: x 0 = tA(τA − L) , x 1 = xA(τA − L) , 

Event 2: x 0 = t(τA, L) , x 1 = x(τA, L) , 

Event 3: x 0 = tA(τA + L) , x 1 = xA(τA + L) . (10) 

Note that the argument τA for Event 2 is not an affine parameter along B’s wordline; 
it is the clock time sent to B by A. A second argument L is given so that we can look 
at a family of worldlines with different L. A is setting up coordinates by finding the 
spacetime paths corresponding to the coordinate lines L = constant and τA = constant. 
We are performing a coordinate transformation from (t, x) to (τA, L). 

Requiring that Events 1 and 2 be joined by a null geodesic in flat spacetime gives 
µ µthe condition x2 − x1 = (C1, C1) for some constant C1. The same condition for Events 

µ2 and 3 gives xµ = (C2,−C2) (with a minus sign because the light ray travels 3 − x2 

toward decreasing x). These conditions give four equations for the four unknowns C1, 
C2, t(τA, L), and x(τA, L). Solving them gives the coordinate transformation between 
(τA, L) and the Minkowski coordinates: 

1 
t(τA, L) = [tA(τA + L) + tA(τA − L) + xA(τA + L) − xA(τA − L)] ,

2

1


x(τA, L) = [xA(τA + L) + xA(τA − L) + tA(τA + L) − tA(τA − L)] . (11)
2 
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Note that these results are exact; they do not assume that L is small nor do they restrict 
A’s worldline in any way except that it must be timelike. The student may easily evaluate 

1 and C2 and show that they are not equal unless xA(τA + L) = xA(τA − L). 
Using equations (11), we may transform the Minkowski metric to get the metric in 

the coordinates A has set with his clock and laser, (τA, L): 

ds2 = −dt2 + dx2 = gttdτ 
2 + 2gtxdτAdL + gxxdL

2 . (12)A 

Substituting equations (11) gives the metric components in terms of A’s four-velocity 
components, 

−gtt = gxx = VA
t (τA + L) + V x 

A (τA + L) VA
t (τA − L) − VA

x(τA − L) , gtx = 0 . (13) 

This is precisely in the form of equation (8), as it must be because of the way in which 
A coordinatized spacetime. 

It is straightforward to work out the Riemann tensor from equation (13). Not surpris­
ingly, it vanishes identically. Thus, an observer can tell, through measurements, whether 
he or she lives in a flat or nonflat spacetime. The metric is measurable. 

Now that we have a general result, it is worth simplifying to the case of an observer 
with constant acceleration gA in Minkowski spacetime. Problem 3 of Problem Set 1 
showed that one can write the trajectory of such an observer (up to the addition of 
constants) as x = g−1 cosh gAτA, t = g−1 sinh gAτA. Equation (13) then gives A A 

A + dL2 . (14)ds2 = e 2gAL −dτ 2 

One word of caution is in order about the interpretation of equation (14). Our 
derivation assumed that the acceleration gA is constant for observer A at L = 0. However, 
this does not mean that other observers (at fixed, nonzero L) have the same acceleration. 
To see this, we can differentiate equations (11) to derive the 4-velocity of observer B at 
(τA, L) and the relation between coordinate time τA and proper time along B’s worldline, 
with the result 

V µ 
B (τA, L) = (cosh gAτA, sinh gAτA) = (cosh gB τB , sinh gB τB ) , 

dτB 
= 

gA 
= egL . (15)

dτA gB 

The four-acceleration of B follows from aB = dV µµ
B /dτB = e−gLdV µ/dτA and its mag-

gAe
−gL nitude is therefore gB = . The proper acceleration varies with L precisely so 

that the proper distance between observers A and B, measured at constant τA, remains 
constant. 

4 Gravity versus acceleration in 1+1 spacetime 

Equation (14) gives one form of the metric for a flat spacetime as seen by an accelerating 
observer. There are many other forms, and it is worth noting some of them in order to 
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gain some intuition about the effects of acceleration. For simplicity, we will restrict our 
discussion here to static spacetimes, i.e. metrics with g0i = 0 and ∂tgµν = 0. In 1+1 
spacetime this means the line element may be written 

ds2 = −e 2φ(x)dt2 + e−2ψ(x)dx2 . (16) 

(The metric may be further transformed to the conformally flat form, eq. 8, but we leave 
it in this form because of its similarity to the form often used in 3 + 1 spacetime.) 

Given the metric (16), we would like to know when the spacetime is flat. If it is flat, 
we would like the explicit coordinate transformation to Minkowski. Both of these are 
straightforward in 1+1 spacetime. (One might hope for them also to be straightforward 
in more dimensions, at least in principle, but the algebra rapidly increases.) 

The definitive test for flatness is given by the Riemann tensor. Because the Weyl 
tensor vanishes in 1+1 spacetime, it is enough to examine the Ricci tensor. With equation 
(16), the Ricci tensor has nonvanishing components 

= −e−(φ+ψ) dg� dφφ+ψRtt = e φ+ψ dg� , Rxx where g�(x) = e φ g(x) = e . (17)
dx dx dx 

The function g(x) is the proper acceleration along the x-coordinate line, along which 
the tangent vector (4-velocity) is V µ = e−φ(1, 0). This follows from computing the 

V 

x


4-acceleration with equation (16) using the covariant prescription aµ(x) = �V V µ =


x
ν �ν V µ. The magnitude of the acceleration is then g(x) ≡ (gµν a

µaν )1/2, yielding g(x) =

e

x 
ψ dφ/dx. The factor eψ converts dφ/dx to g(x) = dφ/dl where dl = 

√
gxx dx measures 

proper distance. 
A stationary observer, i.e. one who remains at fixed spatial coordinate x, feels a time-

independent effective gravity g(x). Nongravitational forces (e.g. a rocket, or the contact 
force from a surface holding the observer up) are required to maintain the observer at 
fixed x. The gravity field g(x) can be measured very simply by releasing a test particle 
from rest and measuring its acceleration relative to the stationary observer. For example, 
we measure g on the Earth by dropping masses and measuring their acceleration in the 
lab frame. 

We will see following equation (18) below why the function �g(x) = (dτ /dt)g(x) rather 
than g(x) determines curvature. For now, we simply note that equation (17) implies that 
spacetime curvature is given (for a static 1+1 metric) by the gradient of the gravitational 
redshift factor 

√
−gtt = eφ rather than by the �gravity� (i.e. acceleration) gradient 

dg/dx. 
In linearized gravitation, g = g� and so we deduced (in the notes Gravitation in 

the Weak-Field Limit) that a spatially uniform gravitational (gravitoelectric) field can 
be transformed away by making a global coordinate transformation to an accelerating 
frame. For strong fields, g = �g and it is no longer true that a uniform gravitoelectric field 
can be transformed away. Only if the gravitational redshift factor eφ(x) varies linearly 
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with proper distance, i.e. g� ≡ d(eφ)/dl is a constant, is spacetime is flat, enabling one 
to transform coordinates so as to remove all evidence for acceleration. If, on the other 
hand, d�g/dx = 0 � even if dg/dx = 0 � then the spacetime is not flat and no coordinate 
transformation can transform the metric to the Minkowski form. 

Suppose we have a line element for which �g(x) = constant. We know that such a 
spacetime is flat, because the Ricci tensor (hence Riemann tensor, in 1+1 spacetime) 
vanishes everywhere. What is the coordinate transformation to Minkowski? 

µ̄The transformation may be found by writing the metric as g = ΛT ηΛ where Λ = ν 
¯∂ ̄ ¯xµ/∂xν is the Jacobian matrix for the transformation x(x). (Note that here g is the 

¯matrix with entries gµν and not the gravitational acceleration!) By writing t̄ = t(t, x) 
¯ ¯and x = x(t, x), substituting into g = ΛT ηΛ, using equation (16) and imposing the 

integrability conditions ∂2¯ t/∂x∂t and ∂2 ̄ x/∂x∂t, one finds t/∂t∂x = ∂2¯ x/∂t∂x = ∂2 ̄

1 1 
g t , x(t, x) = cosh �t̄(t, x) = sinh � ¯ g t if 

dg�
= 0 , (18) 

g g dx 

up to the addition of irrelevant constants. We recognize this result as the trajectory in 
flat spacetime of a constantly accelerating observer. 

Equation (18) is easy to understand in light of the discussion following equation (14). 
The proper time τ for the stationary observer at x is related to coordinate time t by 
dτ = −gtt(x) dt = eφdt. Thus, g(x)τ = eφ g t = g t or, in the notation of equation 

e
(15), gB τB = gAτA (since τA was used there as the global t-coordinate). The condition 
φ g = g�(x) = constant amounts to requiring that all observers be able to scale their 
gravitational accelerations to a common value for the observer at φ(x) = 0, �g. If they 
cannot (i.e. if d�g/dx = 0), then the metric is not equivalent to Minkowski spacetime 
seen in the eyes of an accelerating observer. 

With equations (16)�(18) in hand, we can write the metric of a flat spacetime in 
several new ways, with various spatial dependence for the acceleration of our coordinate 
observers: 

2�g x(−dt2 g x ds2 = e + dx2) , g(x) = �g e−� (19) 
12= −g� (x − x0)

2dt2 + dx2 , g(x) = (20) 
x − x0 

= −[2� g(x − x0)]
−1dx2 , g(x) = 

2(x − x0) 
. (21)g(x − x0)]dt

2 + [2�
g�

The first form was already given above in equation (14). The second and third forms are 
peculiar in that there is a coordinate singularity at x = x0; these coordinates only work 
for x > x0. This singularity is very similar to the one occuring in the Schwarzschild line 
element. Using the experience we have obtained here, we will remove the Schwarzschild 
singularity at r = 2GM by performing a coordinate transformation similar to those used 
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here. The student may find it instructive to write down the coordinate transformations 
for these cases using equation (18) and drawing the (t, x) coordinate lines on top of 
the Minkowski coordinates (¯ x). While the singularity at x = x0 can be transformed t, ¯
away, it does signal the existence of an event horizon. Equation (20) is called Rindler 
spacetime. Its event horizon is discussed briefly in Schutz (p. 150) and in more detail 
by Wald (pp. 149�152). 

Actually, equation (21) is closer to the Schwarzschild line element. Indeed, it becomes 
the r-t part of the Schwarzschild line element with the substitutions x → r, −2�gx0 → 1 
and �g → −GM/r2 . These identifications show that the Schwarzschild spacetime differs 
from Minkowski in that the acceleration needed to remain stationary is radially directed 
and falls off as e−φ r−2 . We can understand many of its features through this identification 
of gravity and acceleration. 

For completeness, I list three more useful forms for a flat spacetime line element: 

2gds2 = dt2 + � (t − t0)
2dx2 , g(x) = 0 (22)−

= dU dV (23)−
= −e v−ududv . (24) 

The first is similar to Rindler spacetime but with t and x exchanged. The result is 
suprising at first: the acceleration of a stationary observer vanishes. Equation (22) has 
the form of Gaussian normal or synchronous coordinates (Wald, p. 42). It represents 
the coordinate frame of a freely-falling observer. It is interesting to ask why, if the 
observer is freely-falling, the line element does not reduce to Minkowski despite the fact 
that this spacetime is flat. The answer is that different observers (i.e., worldlines of 
different x) are in uniform motion relative to one another. In other words, equation (22) 
is Minkowski spacetime in expanding coordinates. It is very similar to the Robertson-
Walker spacetime, which reduces to it (short of two spatial dimensions) when the mass 
density is much less than the critical density. 

Equations (23) and (24) are Minkowski spacetime in null (or light-cone) coordinates. 
x, V = t̄+ ¯For example, U = t̄− ¯ x. These coordinates are useful for studying horizons. 

s

Having derived many results in 1 + 1 spacetime, I close with the cautionary remark 
that in 2 + 1 and 3 + 1 spacetime, there are additional degrees of freedom in the met­
ric that are quite unlike Newtonian gravity and cannot be removed (even locally) by 
transformation to a linearly accelerating frame. Nonetheless, it should be possible to 
extend the treatment of these notes to account for these effects � gravitomagnetism and 
gravitational radiation. As shown in the notes Gravitation in the Weak-Field Limit, a 
uniform gravitomagnetic field is equivalent to uniformly rotating coordinates. Gravita­
tional radiation is different; there is no such thing as a spatially uniform gravitational 
wave. However, one can always choose coordinates so that gravitational radiation strain 
ij and its first derivatives vanish at a point. 
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Introduction 

These notes show how observers can set up a coordinate system and measure the space-
time geometry using clocks and lasers. The approach is similar to that of special rela­
tivity, but the reader must not be misled. Spacetime diagrams with rectilinear axes do 
not imply flat spacetime any more than flat maps imply a flat earth. 

Cartography provides an excellent starting point for understanding the metric. Ter­
restrial maps always provide a scale of the sort �One inch equals 1000 miles.� If the 
map is of a sufficiently small region and is free from distortion, one scale will suffice. 
However, a projection of the entire sphere requires a scale that varies with location and 
even direction. The Mercator projection suggests that Greenland is larger than South 
America until one notices the scale difference. The simplest map projection, with lat­
itude and longitude plotted as a Cartesian grid, has a scale that depends not only on 
position but also on direction. Close to the poles, one degree of latitude represents a far 
greater distance than one degree of longitude. 

The map scale is the metric. The spacetime metric has the same meaning and use: it 
translates coordinate distances and times (�one inch on the map�) to physical (�proper�) 
distances and times. 

The terrestrial example also helps us to understand how coordinate systems can be 
defined in practice on a curved manifold. Let us consider how coordinates are defined on 
the Earth. First pick one point and call it the north pole. The pole is chosen along the 
rotation axis. Now extend a family of geodesics from the north pole, called meridians 
of longitude. Label each meridian by its longitude φ. We choose the meridian going 
through Greenwich, England, and call it the�prime meridian,� φ = 0. Next, we define 
latitude λ as an affine parameter along each meridian of longitude, scaled to π/2 at the 
north pole and decreasing linearly to −π/2 at the point where the meridians intersect 
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again (the south pole). With these definitions, the proper distance between the nearby 
points with coordinates (λ, φ) and (λ + dλ, φ + dφ) is given by ds2 = R2(dλ2 + cos2 λ dφ2). 
In this way, every point on the sphere gets coordinates along with a scale which converts 
coordinate intervals to proper distances. 

This example seems almost trivial. However, it faithfully illustrates the concepts 
involved in setting up a coordinate system and measuring the metric. In particular, 
coordinates are numbers assigned by obsevers who exchange information with each other. 
There is no conceptual need to have the idealized dense system of clocks and rods filling 
spacetime. Observe any major civil engineering project. The metric is measured by two 
surveyors with transits and tape measures or laser ranging devices. Physicists can do the 
same, in principle and in practice. These notes illustrate this through a simple thought 
experiment. The result will be a clearer understanding of the relation between curvature, 
gravity, and acceleration. 

The metric in 1+1 spacetime 

We study coordinate systems and the metric in the simplest nontrivial case, spacetime 
with one space dimension. This analysis leaves out the issue of orientation of spatial axes. 
It also greatly reduces the number of degrees of freedom in the metric. As a symmetric 
2 matrix, the metric has three independent coefficients. Fixing two coordinates imposes 
two constraints, leaving one degree of freedom in the metric. This contrasts with the six 
metric degrees of freedom in a 3+1 spacetime. However, if one understands well the 1+1 
example, it is straightforward (albeit more complicated) to generalize to 2+1 and 3+1 
spacetime. 

We will construct a coordinate system starting from one observer called A. Observer 
A may have any motion whatsoever relative to other objects, including acceleration. 
But neither spatial position nor velocity is meaningful for A before we introduce other 
observers or coordinates (�velocity relative to what?�) although A’s acceleration (relative 
to a local inertial frame!) is meaningful: A stands on a scale, reads the weight, and 
divides by rest mass. Observer A could be you or me, standing on the surface of the 
earth. It could equally well be an astronaut landing on the moon. It may be helpful 
in this example to think of the observers as being stationary with respect to a massive 
gravitating body (e.g. a black hole or neutron star). However, we are considering a 
completely general case, in which the spacetime may not be at all static. (That is, there 
may not be any Killing vectors whatsoever.) 

We take observer A’s worldine to define the t-axis: A has spatial coordinate xA ≡ 0. 
A second observer, some finite (possibly large) distance away, is denoted B. Both A and 
B carry atomic clocks, lasers, mirrors and detectors. 

Observer A decides to set the spacetime coordinates over all spacetime using the 
following procedure, illustrated in Figure 1. First, the reading of A’s atomic clock gives 
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Figure 1: Setting up a coordinate system in curved spacetime. There are two time-
like worldlines and two pairs of null geodesics. The appearance of flat coordinates is 
misleading; the metric varies from place to place. 

the t-coordinate along the t-axis (x = 0). Then, A sends a pair of laser pulses to B, who 
reflects them back to A with a mirror. If the pulses do not return with the same time 
separation (measured by A) as they were sent, A deduces that B is moving and sends 
signals instructing B to adjust her velocity until t6 − t5 = t2 − t1. The two continually 
exchange signals to ensure that this condition is maintained. A then declares that B has 
a constant space coordinate (by definition), which is set to half the round-trip light-travel 

1time, xB ≡ 2 (t5 − t1). A sends signals to inform B of her coordinate. 
Having set the spatial coordinate, A now sends time signals to define the t-coordinate 

along B’s worldline. A’s laser encodes a signal from Event 1 in Figure 1, �This pulse 
was sent at t = t1. Set your clock to t1 + xB .� B receives the pulse at Event 3 and sets 
her clock. A sends a second pulse from Event 2 at t2 = t1 + Δt which is received by B 
at Event 4. B compares the time difference quoted by A with the time elapsed on her 
atomic clock, the proper time ΔτB . To her surprise, ΔτB = Δt. 

At first A and B are sure something went wrong; maybe B has begun to drift. But 
repeated exchange of laser pulses shows that this cannot be the explanation: the round-
trip light-travel time is always the same. Next they speculate that the lasers may be 
traveling through a refractive medium whose index of refraction is changing with time. 
(A constant index of refraction wouldn’t change the differential arrival time.) However, 
they reject this hypothesis when they find that B’s atomic clock continually runs at a 
different rate than the timing signals sent by A, while the round-trip light-travel time 
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Figure 2: Testing for space curvature. 

measured by A never changes. Moreover, laboratory analysis of the medium between 
them shows no evidence for any change. 

Becoming suspicious, B decides to keep two clocks, an atomic clock measuring τB 

and another set to read the time sent by A, denoted t. The difference between the two 
grows increasingly large. 

The observers next speculate that they may be in a non-inertial frame so that special 
relativity remains valid despite the apparent contradiction of clock differences (gtt = 1) 
with no relative motion (dxB /dt = 0). We will return to this speculation in Section 3. In 
any case, they decide to keep track of the conversion from coordinate time (sent by A) 
to proper time (measured by B) for nearby events on B’s worldline by defining a metric 
coefficient: 

� �2
ΔτB 

gtt(t, xB ) ≡ lim . (1)
Δt 0 

− 
Δt→

The observers now wonder whether measurements of spatial distances will yield a 
similar mystery. To test this, a third observer is brought to help in Figure 2. Observer 
C adjusts his velocity to be at rest relative to A. Just as for B, the definition of rest 
is that the round-trip light-travel time measured by A is constant, t8 − t1 = t9 − t2 = 
2xC ≡ 2(xB + Δx). Note that the coordinate distances are expressed entirely in terms 
of readings of A’s clock. A sends timing signals to both B and C. Each of them sets 
one clock to read the time sent by A (corrected for the spatial coordinate distance xB 

and xC , respectively) and also keeps time by carrying an undisturbed atomic clock. The 
former is called coordinate time t while the latter is called proper time. 
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t
The coordinate time synchronization provided by A ensures that t2 − t1 = t5 − t3 = 

6 − t4 = t7 − t5 = t9 − t8 = 2Δx. Note that the procedure used by A to set t and x 
relates the coordinates of events on the worldlines of B and C: 

(t4, x4) = (t3, x3) + (1, 1)Δx , (t5, x5) = (t4, x4) + (1,−1)Δx , 

(t6, x6) = (t5, x5) + (1, 1)Δx , (t7, x7) = (t6, x6) + (1,−1)Δx . (2) 

Because they follow simply from the synchronization provided by A, these equations 
are exact; they do not require Δx to be small. However, by themselves they do not 
imply anything about the physical separations between the events. Testing this means 
measuring the metric. 

g

To explore the metric, C checks his proper time and confirms B’s observation that 
proper time differs from coordinate time. However, the metric coefficient he deduces, 
tt(xC , t), differs from B’s. (The difference is first-order in Δx.) 
The pair now wonder whether spatial coordinate intervals are similarly skewed relative 

to proper distance. They decide to measure the proper distance between them by using 
laser-ranging, the same way that A set their spatial coordinates in the first place. B 
sends a laser pulse at Event 3 which is reflected at Event 4 and received back at Event 
5 in Figure 2. From this, she deduces the proper distance of C, 

1 
Δs = (τ5 − τ3) (3)

2 

where τi is the reading of her atomic clock at event i. To her surprise, B finds that Δx 
does not measure proper distance, not even in the limit Δx 0. She defines another →
metric coefficient to convert coordinate distance to proper distance, 

� �2
Δs 

lim . (4)gxx ≡ 
Δx 0 Δx→

τ

The measurement of proper distance in equation (4) must be made at fixed t; oth­
erwise the distance must be corrected for relative motion between B and C (should 
any exist). Fortunately, B can make this measurement at t = t4 because that is when 
her laser pulse reaches C (see Fig. 2 and eqs. 2). Expanding τ5 = τB (t4 + Δx) and 
3 = τB (t4 − Δx) to first order in Δx using equations (1), (3), and (4), she finds 

gxx(x, t) = −gtt(x, t) . (5) 

The observers repeat the experiment using Events 5, 6, and 7. They find that, while the 
metric may have changed, equation (5) still holds. 

The observers are intrigued to find such a relation between the time and space parts 
of their metric, and they wonder whether this is a general phenomenon. Have they 
discovered a modification of special relativity, in which the Minkowski metric is simply 
multipled by a conformal factor, gµν = Ω2ηµν ? 
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They decide to explore this question by measuring gtx. A little thought shows that 
they cannot do this using pairs of events with either fixed x or fixed t. Fortunately, they 
have ideal pairs of events in the lightlike intervals between Events 3 and 4: 

ds2 
34 ≡ lim gtt(t4 − t3)

2 + 2gtx(t4 − t3)(x4 − x3) + gxx(x4 − x3)
2 . (6)

Δt,Δx 0→

Using equations (2) and (5) and the condition ds = 0 for a light ray, they conclude 

gtx = 0 . (7) 

Their space and time coordinates are orthogonal but on account of equations (5) and (7) 
all time and space intervals are stretched by 

√
gxx. 

Our observers now begin to wonder if they have discovered a modification of special 
relativity, or perhaps they are seeing special relativity in a non-inertial frame. However, 
we know better. Unless the Riemann tensor vanishes identically, the metric they have 
determined cannot be transformed everywhere to the Minkowski form. Instead, what 
they have found is simply a consequence of how A fixed the coordinates. Fixing two 
coordinates means imposing two gauge conditions on the metric. A defined coordinates 
so as to make the problem look as much as possible like special relativity (eqs. 2). 
Equations (5) and (7) are the corresponding gauge conditions. 

It is a special feature of 1+1 spacetime that the metric can always be reduced to a 
conformally flat one, i.e. 

ds2 = Ω2(x)ηµν dx
µdxν (8) 

for some function Ω(xµ) called the conformal factor. In two dimensions the Riemann 
tensor has only one independent component and the Weyl tensor vanishes identically. 
Advanced GR and differential geometry texts show that spacetimes with vanishing Weyl 
tensor are conformally flat. 

Thus, A has simply managed to assign conformally flat coordinates. This isn’t a 
coincidence; by defining coordinate times and distances using null geodesics, he forced 
the metric to be identical to Minkowski up to an overall factor that has no effect on null 
lines. Equivalently, in two dimensions the metric has one physical degree of freedom, 
which has been reduced to the conformal factor Ω ≡ √

gxx = 
√
−gtt. 

This does not mean that A would have had such luck in more than two dimensions. 
2In n dimensions the Riemann tensor has n2(n − 1)/12 independent components (Wald 

p. 54) and for n ≥ 3 the Ricci tensor has n(n + 1)/2 independent components. For n = 2 
and n = 3 the Weyl tensor vanishes identically and spacetime is conformally flat. Not 
so for n > 3. 

It would take a lot of effort to describe a complete synchronization in 3+1 spacetime 
using clocks and lasers. However, even without doing this we can be confident that 
the metric will not be conformally flat except for special spacetimes for which the Weyl 
tensor vanishes. Incidentally, in the weak-field limit conformally flat spacetimes have 
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no deflection of light (can you explain why?). The solar deflection of light rules out 
conformally flat spacetime theories including ones proposed by Nordstrom and Weyl. 

It is an interesting exercise to show how to transform an arbitrary metric of a 1+1 
spacetime to the conformally flat form. The simplest way is to compute the Ricci scalar. 
For the metric of equation (8), one finds 

R = Ω−2(∂2 − ∂2 
x) ln Ω2 . (9)t 

Starting from a 1+1 metric in a different form, one can compute R everywhere in space-
time. Equation (9) is then a nonlinear wave equation for Ω(t, x) with source R(t, x). It 
can be solved subject to initial Cauchy data on a spacelike hypersurface on which Ω = 1, 
∂tΩ = ∂xΩ = 0 (corresponding to locally flat coordinates). 

We have exhausted the analysis of 1+1 spacetime. Our observers have discerned one 
possible contradiction with special relativity: clocks run at different rates in different 
places (and perhaps at different times). If equation (9) gives Ricci scalar R = 0 ev­
erywhere with Ω = 

√
−gtt, then the spacetime is really flat and we must be seeing the 

effects of accelerated motion in special relativity. If R = 0, then the variation of clocks 
is an entirely new phenomenon, which we call gravitational redshift. 

The metric for an accelerated observer 

It is informative to examine the problem from another perspective by working out the 
metric that an arbitrarily accelerating observer in a flat spacetime would deduce using 
the synchronization procedure of Section 2. We can then more clearly distinguish the 
effects of curvature (gravity) and acceleration. 

Figure 3 shows the situation prevailing in special relativity when observer A has 
µan arbitrary timelike trajectory xA(τA) where τA is the proper time measured by his 

atomic clock. While A’s worldline is erratic, those of light signals are not, because here 
t = x0 and x = x1 are flat coordinates in Minkowski spacetime. Given an arbitrary 

µworldline xA(τA), how can we possibly find the worldines of observers at fixed coordinate 
displacement as in the preceding section? 

The answer is the same as the answer to practically all questions of measurement in 
GR: use the metric! The metric of flat spacetime is the Minkowski metric, so the paths of 
laser pulses are very simple. We simply solve an algebra problem enforcing that Events 
1 and 2 are separated by a null geodesic (a straight line in Minkowski spacetime) and 
likewise for Events 2 and 3, as shown in Figure 3. Notice that the lengths (i.e. coordinate 
differences) of the two null rays need not be the same. 

The coordinates of Events 1 and 3 are simply the coordinates along A’s worldine, 
while those for Event 2 are to be determined in terms of A’s coordinates. As in Section 2, 
A defines the spatial coordinate of B to be twice the round-trip light-travel time. Thus, 

0if event 0 has x0 = tA(τ0), then Event 3 has x = tA(τ0 + 2L). For convenience we will 
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Figure 3: An accelerating observer sets up a coordinate system with an atomic clock, 
laser and detector. 

set τ0 ≡ τA − L. Then, according to the prescription of Section 2, A will assign to Event 
2 the coordinates (τA, L). The coordinates in our flat Minkowksi spacetime are 

Event 1: x 0 = tA(τA − L) , x 1 = xA(τA − L) , 

Event 2: x 0 = t(τA, L) , x 1 = x(τA, L) , 

Event 3: x 0 = tA(τA + L) , x 1 = xA(τA + L) . (10) 

Note that the argument τA for Event 2 is not an affine parameter along B’s wordline; 
it is the clock time sent to B by A. A second argument L is given so that we can look 
at a family of worldlines with different L. A is setting up coordinates by finding the 
spacetime paths corresponding to the coordinate lines L = constant and τA = constant. 
We are performing a coordinate transformation from (t, x) to (τA, L). 

Requiring that Events 1 and 2 be joined by a null geodesic in flat spacetime gives 
µ µthe condition x2 − x1 = (C1, C1) for some constant C1. The same condition for Events 

µ2 and 3 gives xµ = (C2,−C2) (with a minus sign because the light ray travels 3 − x2 

toward decreasing x). These conditions give four equations for the four unknowns C1, 
C2, t(τA, L), and x(τA, L). Solving them gives the coordinate transformation between 
(τA, L) and the Minkowski coordinates: 

1 
t(τA, L) = [tA(τA + L) + tA(τA − L) + xA(τA + L) − xA(τA − L)] ,

2

1


x(τA, L) = [xA(τA + L) + xA(τA − L) + tA(τA + L) − tA(τA − L)] . (11)
2 
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C

Note that these results are exact; they do not assume that L is small nor do they restrict 
A’s worldline in any way except that it must be timelike. The student may easily evaluate 

1 and C2 and show that they are not equal unless xA(τA + L) = xA(τA − L). 
Using equations (11), we may transform the Minkowski metric to get the metric in 

the coordinates A has set with his clock and laser, (τA, L): 

ds2 = −dt2 + dx2 = gttdτ 
2 + 2gtxdτAdL + gxxdL

2 . (12)A 

Substituting equations (11) gives the metric components in terms of A’s four-velocity 
components, 

−gtt = gxx = VA
t (τA + L) + V x 

A (τA + L) VA
t (τA − L) − VA

x(τA − L) , gtx = 0 . (13) 

This is precisely in the form of equation (8), as it must be because of the way in which 
A coordinatized spacetime. 

It is straightforward to work out the Riemann tensor from equation (13). Not surpris­
ingly, it vanishes identically. Thus, an observer can tell, through measurements, whether 
he or she lives in a flat or nonflat spacetime. The metric is measurable. 

Now that we have a general result, it is worth simplifying to the case of an observer 
with constant acceleration gA in Minkowski spacetime. Problem 3 of Problem Set 1 
showed that one can write the trajectory of such an observer (up to the addition of 
constants) as x = g−1 cosh gAτA, t = g−1 sinh gAτA. Equation (13) then gives A A 

A + dL2 . (14)ds2 = e 2gAL −dτ 2 

One word of caution is in order about the interpretation of equation (14). Our 
derivation assumed that the acceleration gA is constant for observer A at L = 0. However, 
this does not mean that other observers (at fixed, nonzero L) have the same acceleration. 
To see this, we can differentiate equations (11) to derive the 4-velocity of observer B at 
(τA, L) and the relation between coordinate time τA and proper time along B’s worldline, 
with the result 

V µ 
B (τA, L) = (cosh gAτA, sinh gAτA) = (cosh gB τB , sinh gB τB ) , 

dτB 
= 

gA 
= egL . (15)

dτA gB 

The four-acceleration of B follows from aB = dV µµ
B /dτB = e−gLdV µ/dτA and its mag-

gAe
−gL nitude is therefore gB = . The proper acceleration varies with L precisely so 

that the proper distance between observers A and B, measured at constant τA, remains 
constant. 

4 Gravity versus acceleration in 1+1 spacetime 

Equation (14) gives one form of the metric for a flat spacetime as seen by an accelerating 
observer. There are many other forms, and it is worth noting some of them in order to 
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gain some intuition about the effects of acceleration. For simplicity, we will restrict our 
discussion here to static spacetimes, i.e. metrics with g0i = 0 and ∂tgµν = 0. In 1+1 
spacetime this means the line element may be written 

ds2 = −e 2φ(x)dt2 + e−2ψ(x)dx2 . (16) 

(The metric may be further transformed to the conformally flat form, eq. 8, but we leave 
it in this form because of its similarity to the form often used in 3 + 1 spacetime.) 

Given the metric (16), we would like to know when the spacetime is flat. If it is flat, 
we would like the explicit coordinate transformation to Minkowski. Both of these are 
straightforward in 1+1 spacetime. (One might hope for them also to be straightforward 
in more dimensions, at least in principle, but the algebra rapidly increases.) 

The definitive test for flatness is given by the Riemann tensor. Because the Weyl 
tensor vanishes in 1+1 spacetime, it is enough to examine the Ricci tensor. With equation 
(16), the Ricci tensor has nonvanishing components 

= −e−(φ+ψ) dg� dφφ+ψRtt = e φ+ψ dg� , Rxx where g�(x) = e φ g(x) = e . (17)
dx dx dx 

The function g(x) is the proper acceleration along the x-coordinate line, along which 
the tangent vector (4-velocity) is V µ = e−φ(1, 0). This follows from computing the 

V 

x


4-acceleration with equation (16) using the covariant prescription aµ(x) = �V V µ =


x
ν �ν V µ. The magnitude of the acceleration is then g(x) ≡ (gµν a

µaν )1/2, yielding g(x) =

e

x 
ψ dφ/dx. The factor eψ converts dφ/dx to g(x) = dφ/dl where dl = 

√
gxx dx measures 

proper distance. 
A stationary observer, i.e. one who remains at fixed spatial coordinate x, feels a time-

independent effective gravity g(x). Nongravitational forces (e.g. a rocket, or the contact 
force from a surface holding the observer up) are required to maintain the observer at 
fixed x. The gravity field g(x) can be measured very simply by releasing a test particle 
from rest and measuring its acceleration relative to the stationary observer. For example, 
we measure g on the Earth by dropping masses and measuring their acceleration in the 
lab frame. 

We will see following equation (18) below why the function �g(x) = (dτ /dt)g(x) rather 
than g(x) determines curvature. For now, we simply note that equation (17) implies that 
spacetime curvature is given (for a static 1+1 metric) by the gradient of the gravitational 
redshift factor 

√
−gtt = eφ rather than by the �gravity� (i.e. acceleration) gradient 

dg/dx. 
In linearized gravitation, g = g� and so we deduced (in the notes Gravitation in 

the Weak-Field Limit) that a spatially uniform gravitational (gravitoelectric) field can 
be transformed away by making a global coordinate transformation to an accelerating 
frame. For strong fields, g = �g and it is no longer true that a uniform gravitoelectric field 
can be transformed away. Only if the gravitational redshift factor eφ(x) varies linearly 
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with proper distance, i.e. g� ≡ d(eφ)/dl is a constant, is spacetime is flat, enabling one 
to transform coordinates so as to remove all evidence for acceleration. If, on the other 
hand, d�g/dx = 0 � even if dg/dx = 0 � then the spacetime is not flat and no coordinate 
transformation can transform the metric to the Minkowski form. 

Suppose we have a line element for which �g(x) = constant. We know that such a 
spacetime is flat, because the Ricci tensor (hence Riemann tensor, in 1+1 spacetime) 
vanishes everywhere. What is the coordinate transformation to Minkowski? 

µ̄The transformation may be found by writing the metric as g = ΛT ηΛ where Λ = ν 
¯∂ ̄ ¯xµ/∂xν is the Jacobian matrix for the transformation x(x). (Note that here g is the 

¯matrix with entries gµν and not the gravitational acceleration!) By writing t̄ = t(t, x) 
¯ ¯and x = x(t, x), substituting into g = ΛT ηΛ, using equation (16) and imposing the 

integrability conditions ∂2¯ t/∂x∂t and ∂2 ̄ x/∂x∂t, one finds t/∂t∂x = ∂2¯ x/∂t∂x = ∂2 ̄

1 1 
g t , x(t, x) = cosh �t̄(t, x) = sinh � ¯ g t if 

dg�
= 0 , (18) 

g g dx 

up to the addition of irrelevant constants. We recognize this result as the trajectory in 
flat spacetime of a constantly accelerating observer. 

Equation (18) is easy to understand in light of the discussion following equation (14). 
The proper time τ for the stationary observer at x is related to coordinate time t by 
dτ = −gtt(x) dt = eφdt. Thus, g(x)τ = eφ g t = g t or, in the notation of equation 

e
(15), gB τB = gAτA (since τA was used there as the global t-coordinate). The condition 
φ g = g�(x) = constant amounts to requiring that all observers be able to scale their 
gravitational accelerations to a common value for the observer at φ(x) = 0, �g. If they 
cannot (i.e. if d�g/dx = 0), then the metric is not equivalent to Minkowski spacetime 
seen in the eyes of an accelerating observer. 

With equations (16)�(18) in hand, we can write the metric of a flat spacetime in 
several new ways, with various spatial dependence for the acceleration of our coordinate 
observers: 

2�g x(−dt2 g x ds2 = e + dx2) , g(x) = �g e−� (19) 
12= −g� (x − x0)

2dt2 + dx2 , g(x) = (20) 
x − x0 

= −[2� g(x − x0)]
−1dx2 , g(x) = 

2(x − x0) 
. (21)g(x − x0)]dt

2 + [2�
g�

The first form was already given above in equation (14). The second and third forms are 
peculiar in that there is a coordinate singularity at x = x0; these coordinates only work 
for x > x0. This singularity is very similar to the one occuring in the Schwarzschild line 
element. Using the experience we have obtained here, we will remove the Schwarzschild 
singularity at r = 2GM by performing a coordinate transformation similar to those used 
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here. The student may find it instructive to write down the coordinate transformations 
for these cases using equation (18) and drawing the (t, x) coordinate lines on top of 
the Minkowski coordinates (¯ x). While the singularity at x = x0 can be transformed t, ¯
away, it does signal the existence of an event horizon. Equation (20) is called Rindler 
spacetime. Its event horizon is discussed briefly in Schutz (p. 150) and in more detail 
by Wald (pp. 149�152). 

Actually, equation (21) is closer to the Schwarzschild line element. Indeed, it becomes 
the r-t part of the Schwarzschild line element with the substitutions x → r, −2�gx0 → 1 
and �g → −GM/r2 . These identifications show that the Schwarzschild spacetime differs 
from Minkowski in that the acceleration needed to remain stationary is radially directed 
and falls off as e−φ r−2 . We can understand many of its features through this identification 
of gravity and acceleration. 

For completeness, I list three more useful forms for a flat spacetime line element: 

2gds2 = dt2 + � (t − t0)
2dx2 , g(x) = 0 (22)−

= dU dV (23)−
= −e v−ududv . (24) 

The first is similar to Rindler spacetime but with t and x exchanged. The result is 
suprising at first: the acceleration of a stationary observer vanishes. Equation (22) has 
the form of Gaussian normal or synchronous coordinates (Wald, p. 42). It represents 
the coordinate frame of a freely-falling observer. It is interesting to ask why, if the 
observer is freely-falling, the line element does not reduce to Minkowski despite the fact 
that this spacetime is flat. The answer is that different observers (i.e., worldlines of 
different x) are in uniform motion relative to one another. In other words, equation (22) 
is Minkowski spacetime in expanding coordinates. It is very similar to the Robertson-
Walker spacetime, which reduces to it (short of two spatial dimensions) when the mass 
density is much less than the critical density. 

Equations (23) and (24) are Minkowski spacetime in null (or light-cone) coordinates. 
x, V = t̄+ ¯For example, U = t̄− ¯ x. These coordinates are useful for studying horizons. 

s

Having derived many results in 1 + 1 spacetime, I close with the cautionary remark 
that in 2 + 1 and 3 + 1 spacetime, there are additional degrees of freedom in the met­
ric that are quite unlike Newtonian gravity and cannot be removed (even locally) by 
transformation to a linearly accelerating frame. Nonetheless, it should be possible to 
extend the treatment of these notes to account for these effects � gravitomagnetism and 
gravitational radiation. As shown in the notes Gravitation in the Weak-Field Limit, a 
uniform gravitomagnetic field is equivalent to uniformly rotating coordinates. Gravita­
tional radiation is different; there is no such thing as a spatially uniform gravitational 
wave. However, one can always choose coordinates so that gravitational radiation strain 
ij and its first derivatives vanish at a point. 
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Introduction 

Action principles are widely used to express the laws of physics, including those of 
general relativity. For example, freely falling particles move along geodesics, or curves 
of extremal path length. 

Symmetry transformations are changes in the coordinates or variables that leave the 
action invariant. It is well known that continuous symmetries generate conservation laws 
(Noether’s Theorem). Conservation laws are of fundamental importance in physics and 
so it is valuable to investigate symmetries of the action. 

It is useful to distinguish between two types of symmetries: dynamical symmetries 
corresponding to some inherent property of the matter or spacetime evolution (e.g. the 
metric components being independent of a coordinate, leading to a conserved momentum 
one-form component) and nondynamical symmetries arising because of the way in 
which we formulate the action. Dynamical symmetries constrain the solutions of the 
equations of motion while nondynamical symmetries give rise to mathematical identities. 
These notes will consider both. 

An example of a nondynamical symmetry is the parameterization-invariance of the 
path length, the action for a free particle: 

� τ2 
� τ2 dxµ dxν 

�1/2 

S[xµ(τ )] = L1 (x
µ(τ ), ẋµ(τ ), τ ) dτ = gµν (x) dτ . (1) 

τ1 τ1 dτ dτ 

This action is invariant under arbitrary reparameterization τ τ �(τ ), implying that any →
solution xµ(τ ) of the variational problem δS = 0 immediately gives rise to other solutions 
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yµ(τ ) = xµ(τ �(τ )). Moreover, even if the action is not extremal with Lagrangian L1 for 
some (non-geodesic) curve xµ(τ ), it is still invariant under reparameterization of that 
curve. 

There is another nondynamical symmetry of great importance in general relativity, 
coordinate-invariance. Being based on tensors, equations of motion in general relativity 
hold regardless of the coordinate system. However, when we write an action involving 
tensors, we must write the components of the tensors in some basis. This is because 
the calculus of variations works with functions, e.g. the components of tensors, treated 
as spacetime fields. Although the values of the fields are dependent on the coordinate 
system chosen, the action must be a scalar, and therefore invariant under coordinate 
transformations. This is true whether or not the action is extremized and therefore it is 
a nondynamical symmetry. 

Nondynamical symmetries give rise to special laws called identities. They are distinct 
from conservation laws because they hold whether or not one has extremized the action. 

The material in these notes is generally not presented in this form in the GR text­
books, although much of it can be found in Misner et al if you search well. Although these 
symmetry principles and methods are not needed for integrating the geodesic equation, 
they are invaluable in understanding the origin of the contracted Bianchi identities and 
stress-energy conservation in the action formulation of general relativity. More broadly, 
they are the cornerstone of gauge theories of physical fields including gravity. 

Starting with the simple system of a single particle, we will advance to the Lagrangian 
formulation of general relativity as a classical field theory. We will discover that, in the 
field theory formulation, the contracted Bianchi identities arise from a non-dynamical 
symmetry while stress-energy conservation arises from a dynamical symmetry. Along 
the way, we will explore Killing vectors, diffeomorphisms and Lie derivatives, the stress-
energy tensor, electromagnetism and charge conservation. We will discuss the role of 
continuous symmetries (gauge invariance and diffeomorphism invariance or general co­
variance) for a simple model of a relativistic fluid interacting with electromagnetism and 
gravity. Although this material goes beyond what is presented in lecture, it is not very 
advanced mathematically and it is recommended reading for students wishing to under­
stand gauge symmetry and the parallels between gravity, electromagnetism, and other 
gauge theories. 

2 Parameterization-Invariance of Geodesics 

The parameterization-invariance of equation (1) may be considered in the broader con­
text of Lagrangian systems. Consider a system with n degrees of freedom — the gen­
eralized coordinates qi — with a parameter t giving the evolution of the trajectory in 
configuration space. (In eq. 1, qi is denoted xµ and t is τ .) We will drop the superscript 

ion q when it is clear from the context. 
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Theorem: If the action S[q(t)] is invariant under the infinitesimal transformation 
t t + �(t) with � = 0 at the endpoints, then the Hamiltonian vanishes identically. →

The proof is straightforward. Given a parameterized trajectory qi(t), we define a new 
parameterized trajectory q̄(t) = q(t + �). The action is 

t2 

S[q(t)] = L(q, q̇, t) dt . (2) 
t1 

Linearizing q̄(t) for small �, 

dq̄ d 
q̄(t) = q + q̇� , = q̇ + ( ̇q�) . 

dt dt 
The change in the action under the transformation t t + � is, to first order in �, 

S[q(t + �)] − S[q(t)] = 

= 

= 

� t2 

t1 

� 

� t2 

t1 

� 

[L�]t2 
t1 

→ 

∂L 
∂t 

� + 
∂L 
∂qi 

q̇i� + 
∂L 
∂q̇i 

dL 
dt 

� + 

� 
∂L 
∂q̇i 

q̇i 

� 
d� 
dt 

� 

+ 
� t2 

t1 

� 
∂L 
∂q̇i 

q̇i − L 

� 

d 
dt 

dt 

d� 
dt 

( ̇q i�) 

� 

dt . 

dt 

(3) 

The boundary term vanishes because � = 0 at the endpoints. Parameterization-invariance 
means that the integral term must vanish for arbitrary d�/dt, implying 

∂L 
H ≡ 

∂q̇i 
q̇i − L = 0 . (4) 

Nowhere did this derivation assume that the action is extremal or that qi(t) satisfy the 
Euler-Lagrange equations. Consequently, equation (4) is a nondynamical symmetry. 

The reader may easily check that the Hamiltonian H1 constructed from equation 
(1) vanishes identically. This symmetry does not mean that there is no Hamiltonian 
formulation for geodesic motion, only that the Lagrangian L1 has non-dynamical degrees 
of freedom that must be eliminated before a Hamiltonian can be constructed. (A similar 
circumstance arises in non-Abelian quantum field theories, where the non-dynamical 
degrees of freedom are called Faddeev-Popov ghosts.) This can be done by replacing the 
parameter with one of the coordinates, reducing the number of degrees of freedom in the 
action by one. It can also be done by changing the Lagrangian to one that is no longer 

1 xµ ˙ νinvariant under reparameterizations, e.g. L2 = 
2 gµν ˙ x . In this case, ∂L2/∂τ = 0 leads 

1to a dynamical symmetry, H2 = 
2 g

µν pµpν = constant along trajectories which satisfy the 
equations of motion. 

The identity H1 = 0 is very different from the conservation law H2 = constant arising 
from a time-independent Lagrangian. The conservation law holds only for solutions of the 
equations of motion; by contrast, when the action is parameterization-invariant, H1 = 0 
holds for any trajectory. The nondynamical symmetry therefore does not constrain the 
motion. 
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3 Generalized Translational Symmetry 

Continuing with the mechanical analogy of Lagrangian systems exemplified by equation 
(2), in this section we consider translations of the configuration space variables. If the 

iLagrangian is invariant under the translation qi(t) → qi(t) + a for constant ai, then 
pia

i is conserved along trajectories satisfying the Euler-Lagrange equations. This well-
known example of translational invariance is the prototypical dynamical symmetry, and 
it follows directly from the Euler-Lagrange equations. In this section we generalize the 
concept of translational invariance by considering spatially-varying shifts and coordinate 
transformations that leave the action invariant. Along the way we will introduce several 
important new mathematical concepts. 

In flat spacetime it is common to perform calculations in one reference frame with 
a fixed set of coordinates. In general relativity there are no preferred frames or coordi­
nates, which can lead to confusion unless one is careful. The coordinates of a trajectory 
may change either because the trajectory has been shifted or because the underlying 
coordinate system has changed. The consequences of these alternatives are very dif­
ferent: under a coordinate transformation the Lagrangian is a scalar whose form and 
value are unchanged, while the Lagrangian can change when a trajectory is shifted. The 
Lagrangian is always taken to be a scalar in order to ensure local Lorentz invariance (no 
preferred frame of reference). In this section we will carefully sort out the effects of both 
shifting the trajectory and transforming the coordinates in order to identify the under­
lying symmetries. As we will see, conservation laws arise when shifting the trajectory is 
equivalent to a coordinate transformation. 

We consider a general, relativistically covariant Lagrangian for a particle, which de­
pends on the velocity, the metric, and possibly on additional fields: 

� τ2 

S[x(τ )] = L(gµν , Aµ, . . . , ẋ
µ) dτ . (5) 

τ1 

Note that the coordinate-dependence occurs in the fields gµν (x) and Aµ(x). An example 
of such a Lagrangian is 

1 
xµ ˙ νL = gµν ˙ x + qAµẋ

µ . (6)
2 

The first piece is the quadratic Lagrangian L2 that gives rise to the geodesic equation. 
The additional term gives rise to a non-gravitational force. The Euler-Lagrange equation 
for this Lagrangian is 

D2xµ dxν 

dτ 2 
= qF µν dτ 

, Fµν = ∂µAν − ∂ν Aµ = µ ν Aµ . (7)� Aν −�

We see that the non-gravitational force is the Lorentz force for a charge q, assuming 
that the units of the affine parameter τ are chosen so that dxµ/dτ is the 4-momentum 
(i.e. mdτ is proper time for a particle of mass m). The one-form field Aµ(x) is the 
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Figure 1: A vector field and its integral curves. 

electromagnetic potential. We will retain the electromagnetic interaction term in the 
Lagrangian in the presentation that follows in order to illustrate more broadly the effects 
of symmetry. 

Symmetry appears only when a system is changed. Because L is a scalar, coordinate 
transformations for a fixed trajectory change nothing and therefore reveal no symmetry. 
So let us try changing the trajectory itself. Keeping the coordinates (and therefore 
the metric and all other fields) fixed, we will shift the trajectory along the integral 
curves of some vector field ξµ(x). (Here ξ� is any vector field.) As we will see, a vector 
field provides a one-to-one mapping of the manifold back to itself, providing a natural 
translation operator in curved spacetime. 

Figure 1 shows a vector field and its integral curves xµ(λ, τ) where τ labels the curve 
and λ is a parameter along each curve. Any vector field ξ�(x) has a unique set of integral 
curves whose tangent vector is ∂xµ/∂λ = ξµ(x). If we think of ξ�(x) as a fluid velocity 
field, then the integral curves are streamlines, i.e. the trajectories of fluid particles. 

The integral curves of a vector field provide a continuous one-to-one mapping of the 
manifold back to itself, called a pushforward. (The mapping is one-to-one because the 
integral curves cannot intersect since the tangent is unique at each point.) Figure 2 
illustrates the pushforward. This mapping associates each point on the curve xµ(τ) with 
a corresponding point on the curve yµ(τ). For example, the point P0 (λ = 0, τ = 3) 
is mapped to another point P (λ = 1, τ = 3). The mapping x → y is obtained by 
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1 2 3 4 5 

P0 

P 

xµ(τ) 

yµ(τ) 

λ=0 

λ=1 

τ=0 

Figure 2: Using the integral curves of a vector field to shift a curve xµ(τ) to a new curve 
yµ(τ). The shift, known as a pushforward, defines a continuous one-to-one mapping of 
the space back to itself. 

integrating along the vector field ξ�(x): 

∂xµ 

= ξµ(x) , xµ(λ = 0, τ) ≡ xµ(τ) , yµ(τ) ≡ xµ(λ = 1, τ) . (8)
∂λ 

The shift amount λ = 1 is arbitrary; any shift along the integral curves constitutes a 
pushforward. The inverse mapping from y → x is called a pullback. 

The pushforward generalizes the simple translations of flat spacetime. A finite trans­
lation is built up by a succession of infinitesimal shifts yµ = xµ + ξµdλ. Because the 
vector field ξ�(x) is a tangent vector field, the shifted curves are guaranteed to reside in 
the manifold. 

Applying an infinitesimal pushforward yields the action 
� τ2 

S[x(τ) + ξ(x(τ))dλ] = L(gµν (x + ξdλ), Aµ(x + ξdλ), ẋµ + ξ̇µdλ) dτ . (9) 
τ1 

This is similar to the usual variation xµ xµ + δxµ used in deriving the Euler-Lagrange →
equations, except that ξ is a field defined everywhere in space (not just on the trajectory) 
and we do not require ξ = 0 at the endpoints. Our goal here is not to find a trajectory 
that makes the action stationary; rather it is to identify symmetries of the action that 
result in conservation laws. 

We will ask whether applying a pushforward to one solution of the Euler-Lagrange 
equations leaves the action invariant. If so, there is a dynamical symmetry and we 
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will obtain a conservation law. Note that our shifts are more general than the uniform 
translations and rotations considered in nonrelativistic mechanics and special relativity 
(here the shifts can vary arbitrarily from point to point, so long as the transformation 
has an inverse), so we expect to find more general conservation laws. 

On the face of it, any pushforward changes the action: 

� τ2 ∂L ∂L ∂L dξµ 

S[x(τ) + ξ(x(τ))dλ] = S[x(τ)] + dλ (∂αgµν )ξ
α + (∂αAµ)ξα + dτ . 

τ1 ∂gµν ∂Aµ ∂ẋµ dτ 
(10) 

It is far from obvious that the term in brackets ever would vanish. However, we have one 
more tool to use at our disposal: coordinate transformations. Because the Lagrangian 
is a scalar, we are free to transform coordinates. In some circumstances the effect of the 
pushforward may be eliminated by an appropriate coordinate transformation, revealing 
a symmetry. 

We consider transformations of the coordinates xµ xµ(x), where we assume this ¯→
mapping is smooth and one-to-one so that ∂x̄µ/∂xα is nonzero and nonsingular every­
where. A trajectory xµ(τ) in the old coordinates becomes ¯ xµ(τ) in the new xµ(x(τ)) ≡ ¯
ones, where τ labels a fixed point on the trajectory independently of the coordinates. 

The action depends on the metric tensor, one-form potential and velocity components, 
which under a coordinate transformation change to 

∂xα ∂xβ ∂xα d¯ ∂¯xµ xµ dxα 

µ¯ = gαβ 
∂¯ν 

, A¯ = Aα , = . (11)g¯ν 
xµ µ

∂¯ x ∂x̄µ dτ ∂xα dτ 

We have assumed that ∂x̄µ/∂xα is invertible. Under coordinate transformations the 
action does not even change form (only the coordinate labels change), so coordinate 
transformations alone cannot generate any nondynamical symmetries. However, we will 
show below that coordinate invariance can generate dynamical symmetries which apply 
only to solutions of the Euler-Lagrange equations. 

Under a pushforward, the trajectory xµ(τ) is shifted to a different trajectory with 
¯coordinates yµ(τ). After the pushforward, we transform the coordinates to xµ(y(τ)). 

Because the pushforward is a one-to-one mapping of the manifold to itself, we are free 
¯ ¯ xµ(τ) = xµ(τ).to choose our coordinate transformation so that x = x, i.e. xµ(y(τ)) ≡ ¯

In other words, we transform the coordinates so that the new coordinates of the new 
trajectory are the same as the old coordinates of the old trajectory. The pushforward 
changes the trajectory; the coordinate transformation covers our tracks. 

The combination of pushforward and coordinate transformation is an example of a 
diffeomorphism. A diffeomorphism is a one-to-one mapping between the manifold and 
itself. In our case, the pushforward and transformation depend on one parameter λ and 
we have a one-parameter family of diffeomorphisms. After a diffeomorphism, the point 
P in Figure 2 has the same values of the transformed coordinates as the point P0 has in 
the original coordinates: xµ(λ, τ) = xµ(τ).¯

7 



Naively, it would seem that a diffeomorphism automatically leaves the action un­
changed because the coordinates of the trajectory are unchanged. However, the La­
grangian depends not only on the coordinates of the trajectory; it also depends on tensor 
components that change according to equation (11). More work will be required before 
we can tell whether the action is invariant under a diffeomorphism. While a coordinate 
transformation by itself does not change the action, in general a diffeomorphism, because 
it involves a pushforward, does. A continuous symmetry occurs when a diffeomorphism 
does not change the action. This is the symmetry we will be studying. 

The diffeomorphism is an important operation in general relativity. We therefore 
digress to consider the diffeomorphism in greater detail before returning to examine its 
effect on the action. 

3.1 Infinitesimal Diffeomorphisms and Lie derivatives 

In a diffeomorphism, we shift the point at which a tensor is evaluated by pushing it 
forward using a vector field and then we transform (pull back) the coordinates so that 
the shifted point has the same coordinate labels as the old point. Since a diffeomor­
phism maps a manifold back to itself, under a diffeomorphism a rank (m, n) tensor is 
mapped to another rank (m, n) tensor. This subsection asks how tensors change under 
diffeomorphisms. 

The pushforward mapping may be symbolically denoted φλ (following Wald 1984, 
Appendix C). Thus, a diffeomorphism maps a tensor T(P0) at point P0 to a tensor 
T̄(P ) ≡ φλT(P0) such that the coordinate values are unchanged: xµ(P ) = xµ(P0). (See ¯
Fig. 2 for the roles of the points P0 and P .) The diffeomorphism may be regarded as an 
active coordinate transformation: under a diffeomorphism the spatial point is changed 
but the coordinates are not. 

We illustrate the diffeomorphism by applying it to the components of the one-form 
Ã = Aµẽ

µ in a coordinate basis: 

∂xα 

Āµ(P0) ≡ Aα(P ) (P ) , where xµ(P ) = xµ(P0) . (12)¯
xµ∂ ̄

Starting with Aα at point P0 with coordinates xµ(P0), we push the coordinates forward 
to point P , we evaluate Aα there, and then we transform the basis back to the coordinate 
basis at P with new coordinates x̄µ(P ). 

The diffeomorphism is a continuous, one-parameter family of mappings. Thus, a 
general diffeomorphism may be obtained from the infinitesimal diffeomorphism with 
pushforward yµ = xµ + ξµdλ. The corresponding coordinate transformation is (to first 
order in dλ) 

x̄µ = xµ − ξµdλ (13) 
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so that x̄µ(P ) = xµ(P0). This yields (in the xµ coordinate system) 

∂xα 

Āµ(x) ≡ Aα(x + ξdλ) = Aµ(x) + [ξα∂αAµ(x) + Aα(x)∂µξ
α] dλ + O(dλ)2 . (14) 

xµ∂ ̄

xµ/∂xα = δµ
α − ∂αξµdλ to first order in dλ, ∂xα/∂ ̄We have inverted the Jacobian ∂ ̄ xµ = 

δα
µ + ∂µξ

αdλ + O(dλ)2 . In a similar manner, the infinitesimal diffeomorphism of the 
metric gives 

∂xα ∂xβ 

ḡµν (x) gαβ (x + ξdλ)≡ 
∂ ̄ xxµ ∂ ̄ ν 

= gµν (x) + [ξα∂αgµν (x) + gαν (x)∂µξ
α + gµα(x)∂ν ξ

α] dλ + O(dλ)2 . (15) 

¯In general, the infinitesimal diffeomorphism T ≡ φΔλT changes the tensor by an 
amount first-order in Δλ and linear in ξ�. This change allows us to define a linear 
operator called the Lie derivative: 

with ¯Lξ T ≡ lim 
φΔλT(x) − T(x) 

xµ(P ) = xµ(P0) = xµ(P ) − ξµΔλ + O(Δλ)2 . (16)
Δλ→0 Δλ 

The Lie derivatives of Aµ(x) and gµν (x) follow from equations (14)–(16): 

Lξ Aµ(x) = ξα∂αAµ + Aα∂µξ
α , Lξ gµν (x) = ξα∂αgµν + gαν ∂µξ

α + gµα∂ν ξ
α . (17) 

The first term of the Lie derivative, ξα∂α, corresponds to the pushforward, shifting a 
tensor to another point in the manifold. The remaining terms arise from the coordinate 
transformation back to the original coordinate values. As we will show in the next 
subsection, this combination of terms makes the Lie derivative a tensor in the tangent 
space at xµ. 

Under a diffeomorphism the transformed tensor components, regarded as functions 
of coordinates, are evaluated at exactly the same numerical values of the transformed 
coordinate fields (but a different point in spacetime!) as the original tensor components in 
the original coordinates. This point is fundamental to the diffeomorphism and therefore 
to the Lie derivative, and distinguishes the latter from a directional derivative. Thinking 
of the tensor components as a set of functions of coordinates, we are performing an active 
transformation: the tensor component functions are changed but they are evaluated at 
the original values of the coordinates. The Lie derivative generates an infinitesimal 
diffeomorphism. That is, under a diffeomorphism with pushforward xµ xµ + ξµdλ,→
any tensor T is transformed to T + Lξ Tdλ. 

The fact that the coordinate values do not change, while the tensor fields do, dis­
tinguishes the diffeomorphism from a simple coordinate transformation. An important 
implication is that, in integrals over spacetime volume, the volume element d4x does not 
change under a diffeomorphism, while it does change under a coordinate transformation. 
By contrast, the volume element 

√−g d4x is invariant under a coordinate transformation 
but not under a diffeomorphism. 
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3.2 Properties of the Lie Derivative 

The Lie derivative Lξ is similar to the directional derivative operator �ξ in its properties 
but not in its value, except for a scalar where Lξ f = �ξ f = ξµ∂µf . The Lie derivative of 
a tensor is a tensor of the same rank. To show that it is a tensor, we rewrite the partial 
derivatives in equation (17) in terms of covariant derivatives in a coordinate basis using 
the Christoffel connection coefficients to obtain 

Lξ Aµ = ξα �αAµ + Aα�µξ
α + T αµβ Aαξβ , 

Lξ gµν = ξα �αgµν + gαν �µξ
α + gµα�ν ξ

α + T αµβ gαν ξ
β + T ανβ gµαξβ , (18) 

where T αµβ is the torsion tensor, defined by T αµβ = Γα
µβ − Γα

βµ in a coordinate basis. 
The torsion vanishes by assumption in general relativity. Equations (18) show that Lξ Aµ 

and Lξ gµν are tensors. 
The Lie derivative Lξ differs from the directional derivative �ξ in two ways. First, 

the Lie derivative requires no connection: equation (17) gave the Lie derivative solely 
in terms of partial derivatives of tensor components. [The derivatives of the metric 
should not be regarded here as arising from the connection; the Lie derivative of any 
rank (0, 2) tensor has the same form as Lξ gµν in eq. 17.] Second, the Lie derivative 
involves the derivatives of the vector field ξ� while the covariant derivative does not. The 
Lie derivative trades partial derivatives of the metric (present in the connection for the 
covariant derivative) for partial derivatives of the vector field. The directional derivative 
tells how a fixed tensor field changes as one moves through it in direction ξ�. The Lie 
derivative tells how a tensor field changes as it is pushed forward along the integral curves 
of ξ�. 

More understanding of the Lie derivative comes from examining the first-order change 
in a vector expanded in a coordinate basis under a displacement �ξdλ: 

d � � A(x) = Aµ(x + ξdλ)�eµ(x + ξdλ) − Aµ(x)�eµ(x) . (19)A = A(x + ξdλ) − �

The nature of the derivative depends on how we obtain �eµ(x + ξdλ) from �eµ(x). For 
the directional derivative �ξ , the basis vectors at different points are related by the 
connection: 

�eµ(x + ξλ) = δβ
µ + dλ ξαΓβ

µα �eβ (x) for �ξ . (20) 

For the Lie derivative Lξ , the basis vector is mapped back to the starting point with 

∂¯βx
�eµ(x + ξdλ) = �eβ (x) = δβ

µ − dλ ∂µξ
β �eβ (x) for Lξ . (21)

∂xµ 

Similarly, the basis one-form is mapped using 

∂xµ 

ẽµ(x + ξdλ) = ẽβ (x) = δµ
β + dλ ∂β ξ

µ ẽβ (x) for Lξ . (22)
∂¯βx
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A/dλ = Lξ A is a tangent vector on the manifold. These mappings ensure that d � �

The Lie derivative of any tensor may be obtained using the following rules: (1) The 
Lie derivative of a scalar field is the directional derivative, Lξ f = ξα∂αf = �ξ f . (2) 
The Lie derivative obeys the Liebnitz rule, Lξ (T U) = (Lξ T )U + T (Lξ U), where T and 
U may be tensors of any rank, with a tensor product or contraction between them. The 
Lie derivative commutes with contractions. (3) The Lie derivatives of the basis vectors 
are Lξ�eµ = −�eα∂µξ

α . (4) The Lie derivatives of the basis one-forms are Lξ ẽ
µ = ẽα∂αξµ. 

These rules ensure that the Lie derivative of a tensor is a tensor. Using them, the 
Lie derivative of any tensor may be obtained by expanding the tensor in a basis, e.g. for 
a rank (1, 2) tensor, 

ν ⊗ ˜κ) ≡ (Lξ S
µ
νκ) �µ ⊗ ˜ν ⊗ ˜κ Lξ S = Lξ (S

µ �µ ⊗ ẽ e e e eνκe
ν ⊗ ˜κ = [ξα∂αSµ

νκ − Sα
νκ∂αξµ + Sµ

ακ∂ν ξ
α + Sµ

να∂κξ
α] �eµ ⊗ ẽ e . (23) 

The partial derivatives can be changed to covariant derivatives without change (with 
vanishing torsion, the connection coefficients so introduced will cancel each other), con­
firming that the Lie derivative of a tensor really is a tensor. 

The Lie derivative of a vector field is an antisymmetric object known also as the 
commutator or Lie bracket: 

LV U = (V µ∂µU
ν − Uµ∂µV ν )�eν ≡ [V , �� � U ] . (24) 

The commutator was introduced in the notes Tensor Calculus, Part 2, Section 2.2. With 
� U ] = �V U −�U V . Using rule (4) of the Lie derivative given after vanishing torsion, [V , � � �

equation (22), it follows at once that the commutator of any pair of coordinate basis 
vector fields vanishes: [�eµ, �eν ] = 0. 

3.3 Diffeomorphism-invariance and Killing Vectors 

Having defined and investigated the properties of diffeomorphisms and the Lie derivative, 
we return to the question posed at the beginning of Section 3: How can we tell when the 
action is translationally invariant? Equation (10) gives the change in the action under a 
generalized translation or pushforward by the vector field ξ�. However, it is not yet in a 
form that highlights the key role played by diffeomorphisms. 

To uncover the diffeomorphism we must perform the infinitesimal coordinate trans­
formation given by equation (13). To first order in dλ this has no effect on the dλ term 
already on the right-hand side of equation (10) but it does add a piece to the unperturbed 
action. Using equation (11) and the fact that the Lagrangian is a scalar, to O(dλ) we 
obtain 

� τ2 
� τ2 xµ 

S[x(τ)] = L(gµν , Aµ, ẋ
µ) dτ = L gαβ 

∂¯ν 
, Aα , dτ 

∂xα ∂xβ ∂xα dxα ∂¯

xµ xµ dτ ∂xατ1 τ1 ∂¯ x ∂¯
� τ2 ∂L ∂L ∂L dξµ 

= S[x(τ)] + dλ 
∂gµν 

(gαν ∂µξ
α + gµα∂ν ξ

α) + (Aα∂µξ
α) − dτ . (25) 

τ1 ∂Aµ ∂ẋµ dτ 
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The integral multiplying dλ always has the value zero for any trajectory xµ(τ) and 
vector field ξ� because of the coordinate-invariance of the action. However, it is a special 
kind of zero because, when added to the pushforward term of equation (10), it gives a 
diffeomorphism: 

� τ2 ∂L ∂L 
S[x(τ) + ξ(x(τ))dλ] = S[x(τ)] + dλ 

τ1 ∂gµν 
Lξ gµν + 

∂Aµ 
Lξ Aµ dτ . (26) 

If the action contains additional fields, under a diffeomorphism we obtain a Lie derivative 
term for each field. 

Thus, we have answered the question of translation-invariance: the action is transla­
tionally invariant if and only if the Lie derivative of each tensor field appearing in the 
Lagrangian vanishes. The uniform translations of Newtonian mechanics are generalized 
to diffeomorphisms, which include translations, rotations, boosts, and any continuous, 
one-to-one mapping of the manifold back to itself. 

In Newtonian mechanics, translation-invariance leads to a conserved momentum. 
What about diffeomorphism-invariance? Does it also lead to a conservation law? 

Let us suppose that the original trajectory xµ(τ) satisfies the equations of motion 
before being pushed forward, i.e. the action, with Lagrangian L(gµν (x), Aµ, ẋ

µ), is sta­
tionary under first-order variations xµ xµ + δxµ(x) with fixed endpoints δxµ(τ1) = →
δxµ(τ2) = 0. From equation (26) it follows that the action for the shifted trajectory is 
also stationary, if and only if Lξ gµν = 0 and Lξ Aµ = 0. (When the trajectory is varied 
xµ xµ + δxµ, cross-terms ξδx are regarded as being second-order and are ignored.) →

If there exists a vector field ξ� such that Lξ gµν = 0 and Lξ Aµ = 0, then we can 
shift solutions of the equations of motion along ξ�(x(τ)) and generate new solutions. 
This is a new continuous symmetry called diffeomorphism-invariance, and it generalizes 
translational-invariance in Newtonian mechanics and special relativity. The result is a 
dynamical symmetry, which may be deduced by rewriting equation (26): 

� τ2S[x(τ) + ξ(x(τ))Δλ] − S[x(τ)] ∂L ∂L Lξ Aµlim = dτ 
Δλ→0 Δλ τ1 ∂gµν 

Lξ gµν + 
∂Aµ 

� τ2 ∂L ∂L dξµ 

= ξα + dτ 
τ1 ∂xα ∂ẋµ dτ 

� τ2 d ∂L ∂L dξµ 

= ξµ + dτ 
τ1 dτ ∂ẋµ ∂ẋµ dτ 

� τ2 d 
= (pµξ

µ) dτ 
τ1 dτ 

= [pµξ
µ]τ2 . (27)τ1 

All of the steps are straightforward aside from the second line. To obtain this we first 
expanded the Lie derivatives using equation (17). The terms multiplying ξα were then 
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combined to give ∂L/∂xα (regarding the Lagrangian as a function of xµ and ẋµ). For 
the terms multiplying the gradient ∂µξ

α , we used dξµ(x(τ ))/dτ = ẋα∂αξµ combined 
with equation (6) to convert partial derivatives of L with respect to the fields gµν and 
Aµ to partial derivatives with respect to ẋµ. (This conversion is dependent on the 

xµ ˙ νLagrangian, of course, but works for any Lagrangian that is a function of gµν ˙ x and 
Aµẋ

µ.) To obtain the third line we used the assumption that xµ(τ ) is a solution of the 
Euler-Lagrange equations. To obtain the fourth line we used the definition of canonical 
momentum, 

∂L 
. (28)pµ ≡ 

xµ∂ ˙
For the Lagrangian of equation (6), pµ = gµν ẋ

ν + qAµ is not the mechanical momentum 
(the first term) but also includes a contribution from the electromagnetic field. 

Nowhere in equation (27) did we assume that ξµ vanishes at the endpoints. The 
vector field ξ� is not just a variation used to obtain equations of motion, nor is it a 
constant; it is an arbitrary small shift. 

Theorem: If the Lagrangian is invariant under the diffeomorphism generated by a 
p(�vector field ξ�, then ˜ ξ ) = pµξ

µ is conserved along curves that extremize the action, i.e. 
for trajectories obeying the equations of motion. 

This result is a generalization of conservation of momentum. The vector field ξ� may 
be thought of as the coordinate basis vector field for a cyclic coordinate, i.e. one that does 
not appear in the Lagrangian. In particular, if ∂L/∂xα = 0 for a particular coordinate 
xα (e.g. α = 0), then L is invariant under the diffeomorphism generated by �eα so that 
pα is conserved. 

When gravity is the only force acting on a particle, diffeomorphism-invariance has 
a purely geometric interpretation in terms of special vector fields known as Killing vec­
tors. Using equation (18) for a manifold with a metric-compatible connection (implying 
�αgµν = 0) and vanishing torsion (both of these are true in general relativity), we find 
that diffeomorphism-invariance implies 

Lξ gµν = �µξν + �ν ξµ = 0 . (29) 

This equation is known as Killing’s equation and its solutions are called Killing vector 
fields, or Killing vectors for short. Thus, our theorem may be restated as follows: If the 
spacetime has a Killing vector ξ�(x), then pµξ

µ is conserved along any geodesic. A much 
shorter proof of this theorem follows from �V (pµξ

µ) = ξµ�V pµ + pµV ν �ν ξ
µ. The first 

term vanishes by the geodesic equation, while the second term vanishes from Killing’s 
equation with pµ ∝ V µ. Despite being longer, however, the proof based on the Lie 
derivative is valuable because it highlights the role played by a continuous symmetry, 
diffeomorphism-invariance of the metric. 

One is not free to choose Killing vectors; general spacetimes (i.e. ones lacking sym­
metry) do not have any solutions of Killing’s equation. As shown in Appendix C.3 of 
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Wald (1984), a 4-dimensional spacetime has at most 10 Killing vectors. The Minkowski 
metric has the maximal number, corresponding to the Poincaré group of transforma­
tions: three rotations, three boosts, and four translations. Each Killing vector gives a 
conserved momentum. 

The existence of a Killing vector represents a symmetry: the geometry of spacetime as 
represented by the metric is invariant as one moves in the ξ�-direction. Such a symmetry 
is known as an isometry. In the perturbation theory view of diffeomorphisms, isometries 
correspond to perturbations of the coordinates that leave the metric unchanged. 

Any vector field can be chosen as one of the coordinate basis fields; the coordinate 
lines are the integral curves. In Figure 2, the integral curves were parameterized by 
λ, which becomes the coordinate whose corresponding basis vector is �eλ ≡ ξ�(x). For 
definiteness, let us call this coordinate λ = x0 . If ξ� = �e0 is a Killing vector, then x0 is 
a cyclic coordinate and the spacetime is stationary: ∂0gµν = 0. In such spacetimes, and 
only in such spacetimes, p0 is conserved along geodesics (aside from special cases like 
the Robertson-Walker spacetimes, where p0 is conserved for massless but not massive 
particles because the spacetime is conformally stationary). 

Another special feature of spacetimes with Killing vectors is that they have a con­
served 4-vector energy-current Sν = ξµT µν . Local stress-energy conservation �µT µν = 0 
then implies �ν S

ν = 0, which can be integrated over a volume to give the usual form 
of an integral conservation law. Conversely, spacetimes without Killing vectors do not 
have an tensor integral energy conservation law, except for spacetimes that are asymp­
totically flat at infinity. (However, all spacetimes have a conserved energy-momentum 
pseudotensor, as discussed in the notes Stress-Energy Pseudotensors and Gravitational 
Radiation Power.) 

4 Einstein-Hilbert Action for the Metric 

We have seen that the action principle is useful not only for concisely expressing the 
equations of motion; it also enables one to find identities and conservation laws from 
symmetries of the Lagrangian (invariance of the action under transformations). These 
methods apply not only to the trajectories of individual particles. They are readily 
generalized to spacetime fields such as the electromagnetic four-potential Aµ and, most 
significantly in GR, the metric gµν itself. 

To understand how the action principle works for continuous fields, let us recall how it 
works for particles. The action is a functional of configuration-space trajectories. Given 
a set of functions qi(t), the action assigns a number, the integral of the Lagrangian 
over the parameter t. For continuous fields the configuration space is a Hilbert space, 
an infinite-dimensional space of functions. The single parameter t is replaced by the 
full set of spacetime coordinates. Variation of a configuration-space trajectory, qi(t) → 
qi(t) + δqi(t), is generalized to variation of the field values at all points of spacetime, e.g. 
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gµν (x) → gµν (x) + δgµν (x). In both cases, the Lagrangian is chosen so that the action is 
stationary for trajectories (or field configurations) that satisfy the desired equations of 
motion. The action principle concisely specifies those equations of motion and facilitates 
examination of symmetries and conservation laws. 

In general relativity, the metric is the fundamental field characterizing the geometric 
and gravitational properties of spacetime, and so the action must be a functional of 
gµν (x). The standard action for the metric is the Hilbert action, 

1 
SG[gµν (x)] = gµν Rµν 

√−g d4 x . (30)
16πG 

Here, g = det gµν and Rµν = Rα
µαν is the Ricci tensor. The factor 

√−g makes the volume 
element invariant so that the action is a scalar (invariant under general coordinate trans­
formations). The Einstein-Hilbert action was first shown by the mathematician David 
Hilbert to yield the Einstein field equations through a variational principle. Hilbert’s 
paper was submitted five days before Einstein’s paper presenting his celebrated field 
equations, although Hilbert did not have the correct field equations until later (for an 
interesting discussion of the historical issues see L. Corry et al., Science 278, 1270, 1997). 

(The Einstein-Hilbert action is a scalar under general coordinate transformations. 
As we will show in the notes Stress-Energy Pseudotensors and Gravitational Radiation 
Power, it is possible to choose an action that, while not a scalar under general coor­
dinate transformations, still yields the Einstein field equations. The action considered 
there differs from the Einstein-Hilbert action by a total derivative term. The only real 
invariance of the action that is required on physical grounds is local Lorentz invariance.) 

In the particle actions considered previously, the Lagrangian depended on the gen­
eralized coordinates and their first derivatives with respect to the parameter τ . In a 
spacetime field theory, the single parameter τ is expanded to the four coordinates xµ. If 
it is to be a scalar, the Lagrangian for the spacetime metric cannot depend on the first 
derivatives ∂αgµν , because �αgµν = 0 and the first derivatives can all be transformed to 
zero at a point. Thus, unless one drops the requirement that the action be a scalar under 
general coordinate transformations, for gravity one is forced to go to second derivatives 
of the metric. The Ricci scalar R = gµν Rµν is the simplest scalar that can be formed 
from the second derivatives of the metric. Amazingly, when the action for matter and 
all non-gravitational fields is added to the simplest possible scalar action for the metric, 
the least action principle yields the Einstein field equations. 

To look for symmetries of the Einstein-Hilbert action, we consider its change under 
variation of the functions gµν (x) with fixed boundary hypersurfaces (the generalization 
of the fixed endpoints for an ordinary Lagrangian). It proves to be simpler to regard 
the inverse metric components gµν as the field variables. The action depends explicitly 
on gµν and the Christoffel connection coefficients, Γα

µν , the latter appearing in the Ricci 
tensor in a coordinate basis: 

Rµν = ∂αΓα
µν − ∂µΓα

αν + Γα
µν Γ

β
αβ − Γα

βµΓβ
αν . (31) 
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Lengthy algebra shows that first-order variations of gµν produce the following changes 
in the quantities appearing in the Einstein-Hilbert action: 

δ
√−g = − 

1 
2 

√−g gµν δg
µν = + 

1 
2 

√−g gµν δgµν , 

δΓα 
µν = − 

1 
2 

� 
�µ(gνλδg αλ) + �ν (gµλδg αλ) − �β (gµκgνλg αβ δg κλ) 

� 
, 

δRµν = �α(δΓα 
µν ) − �µ(δΓα 

αν ) , 
� � 

gµν δRµν 

δ(gµν Rµν 
√−g) 

= 

= 

�µ�ν −δgµν + gµν gαβ δg αβ 

(Gµν δg
µν + gµν δRµν )

√−g , 

, 

(32) 

1where Gµν = Rµν − 
2 Rgµν is the Einstein tensor. The covariant derivative �µ appearing 

in these equations is taken with respect to the zeroth-order metric gµν . Note that, 
while Γα

µν is not a tensor, δΓα
µν is. Note also that the variations we perform are not 

necessarily diffeomorphisms (that is, δgµν is not necessarily a Lie derivative), although 
diffeomorphisms are variations of just the type we are considering (i.e. variations of 
the tensor component fields for fixed values of their arguments). Equations (32) are 
straightforward to derive but take several pages of algebra. 

Equations (32) give us the change in the gravitational action under variation of the 
metric: 

≡ 
� 

µν ]δSG SG[gµν + δgµν ] − SG[g

1


= (Gµν δg
µν + �µv

µ)
√−g d4 x , vµ µν gαβ δg αβ ) .(33)

16πG 
≡ �ν (−δgµν + g

Besides the desired Einstein tensor term, there is a divergence term arising from gµν δRµν = 
�µv

µ which can be integrated using the covariant Gauss’ law. This term raises the ques­
tion of what is fixed in the variation, and what the endpoints of the integration are. 

In the action principle for particles (eq. 2), the endpoints of integration are fixed 
time values, t1 and t2. When we integrate over a four-dimensional volume, the endpoints 
correspond instead to three-dimensional hypersurfaces. The simplest case is when these 
are hypersurfaces of constant t, in which case the boundary terms are integrals over 
spatial volume. 

In equation (33), the divergence term can be integrated to give the flux of vµ through 
the bounding hypersurface. This term involves the derivatives of δgµν normal to the 
boundary (e.g. the time derivative of δgµν , if the endpoints are constant-time hyper­
surfaces), and is therefore inconvenient because the usual variational principle sets δgµν 

but not its derivatives to zero at the endpoints. One may either revise the variational 
principle so that gµν and Γα

µν are independently varied (the Palatini action), or one can 
add a boundary term to the Einstein-Hilbert action, involving a tensor called the extrin­
sic curvature, to cancel the �µv

µ term (Wald, Appendix E.1). In the following we will 
ignore this term, understanding that it can be eliminated by a more careful treatment. 
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(The Schrödinger action presented in the later notes Stress-Energy Pseudotensors and 
Gravitational Radiation Power eliminates the �µv

µ term.) 
For convenience below, we introduce a new notation for the integrand of a functional 

variation, the functional derivative δS/δψ, defined by 

δS 
δS[ψ] ≡ 

δψ 
δψ
√−g d4 x . (34) 

gµνHere, ψ is any tensor field, e.g. . The functional derivative is strictly defined only 
when there are no surface terms arising from the variation. Neglecting the surface term 
in equation (33), we see that δSG/δgµν = (16πG)−1Gµν . 

4.1 Stress-Energy Tensor and Einstein Equations 

To see how the Einstein equations arise from an action principle, we must add to SG 

the action for matter, the source of spacetime curvature. Here, “matter” refers to all 
particles and fields excluding gravity, and specifically includes all the quarks, leptons 
and gauge bosons in the world (excluding gravitons). At the classical level, one could 
include electromagnetism and perhaps a simplified model of a fluid. The total action 
would become a functional of the metric and matter fields. Independent variation of each 
field yields the equations of motion for that field. Because the metric implicitly appears 
in the Lagrangian for matter, matter terms will appear in the equation of motion for the 
metric. This section shows how this all works out for the simplest model for matter, a 
classical sum of massive particles. 

Starting from equation (1), we sum the actions for a discrete set of particles, weighting 
each by its mass: 

iSM = −ma −g00 − 2g0iẋa
i − gij ẋaẋ

j
a 

�1/2 
dt . (35) 

a 

The subscript a labels each particle. We avoid the problem of having no global proper 
time by parameterizing each particle’s trajectory by the coordinate time. Variation of 

i i 
a(t) for particle a with ΔSM = 0, yields the geodesic each trajectory, xa(t) → xa(t) + δxi 

equations of motion. 
Now we wish to obtain the equations of motion for the metric itself, which we do by 

combining the gravitational and matter actions and varying the metric. After a little 
algebra, equation (33) gives the variation of SG; we must add to it the variation of SM. 
Equation (35) gives 

�

� 1 V µV ν


δSM = dt ma
a a δgµν (xa

i (t), t) = dt 
� 1 

ma 
V 0 

i
− 
2 

VaµVaν 
δgµν (xa(t), t) . (36)

2 V 0 
a a a a 

Variation of the metric naturally gives the normalized 4-velocity for each particle, V µ = a 

dxµ/dτa with VaµV µ = −1, with a correction factor 1/V 0 = dτa/dt. Now, if we are a a 
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to combine equations (33) and (36), we must modify the latter to get an integral over 
4-volume. This is easily done by inserting a Dirac delta function. The result is 

1 � ma VaµVaν 
δ3(x i iδSM = − 

2 a 
√−g a 

− xa(t)) δgµν (x)
√−g d4 x . (37)

V 0 

The term in brackets may be rewritten in covariant form by inserting an integral over 
affine parameter with a delta function to cancel it, dτa δ(t− t(τa))(dt/dτa). Noting that 
V 0 = dt/dτa, we get a 

1 1 
δSM = − 

2 
Tµν δg

µν (x)
√−g d4 x = + 

� 

T µν δgµν (x)
√−g d4 x , (38)

2 

where the functional differentiation has naturally produced the stress-energy tensor for 
a gas of particles, 

� δ4(x − x(τa))
T µν = 2 

δSM 
= dτa √−g

maV µV ν . (39)
δgµν a 

a a 

Aside from the factor 
√−g needed to correct the Dirac delta function for non-flat coor­

dinates (because 
√−g d4x is the invariant volume element), equation (39) agrees exactly 

with the stress-energy tensor worked out in the 8.962 notes Number-Flux Vector and 
Stress-Energy Tensor. 

Equation (38) is a general result, and we take it as the definition of the stress-energy 
tensor for matter (cf. Appendix E.1 of Wald). Thus, given any action SM for particles 
or fields (matter), we can vary the coordinates or fields to get the equations of motion 
and vary the metric to get the stress-energy tensor, 

T µν δSM 
. (40)≡ 2 

δgµν 

Taking the action to be the sum of SG and SM, requiring it to be stationary with 
respect to variations δgµν , now gives the Einstein equations: 

Gµν = 8πGTµν . (41) 

The pre-factor (16πG)−1 on SG was chosen to get the correct coefficient in this equation. 
The matter action is conventionally normalized so that it yields the stress-energy tensor 
as in equation (38). 

4.2 Diffeomorphism Invariance of the Einstein-Hilbert Action 

We return to the variation of the Einstein-Hilbert action, equation (33) without the 
surface term, and consider diffeomorphisms δgµν = Lξ g

µν : 

16πG δSG = Gµν (Lξ g
µν )
√−g d4 x = −2 

� 

Gµν (�µξν )
√−g d4 x . (42) 
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Here, ξ� is not a Killing vector; it is an arbitrary small coordinate displacement. The Lie 
derivative Lξ g

µν has been rewritten in terms of −Lξ gµν using gµαgαν = δµ
ν . Note that 

diffeomorphisms are a class of field variations that correspond to mapping the manifold 
back to itself. Under a diffeomorphism, the integrand of the Einstein-Hilbert action 
is varied, including the 

√−g factor. However, as discussed at the end of 3.1, the §
volume element d4x is fixed under a diffeomorphism even though it does change under 
coordinate transformations. The reason for this is apparent in equation (16): under 
a diffeomorphism, the coordinate values do not change. The pushforward cancels the 
transformation. If we simply performed either a passive coordinate transformation or 
pushforward alone, d4x would not be invariant. Under a diffeomorphism the variation 
δgµν = Lξ gµν is a tensor on the “unperturbed background” spacetime with metric gµν . 

We now show that any scalar integral is invariant under a diffeomorphism that van­
ishes at the endpoints of integration. Consider the integrand of any action integral, 
Ψ
√−g, where Ψ is any scalar constructed out of the tensor fields of the problem; e.g. 

Ψ = R/(16πG) for the Hilbert action. From the first of equations (32) and the Lie 
derivative of the metric, 

1 Lξ 
√−g = 

√−g gµν Lξ gµν = (�αξα)
√−g . (43)

2 

Using the fact that the Lie derivative of a scalar is the directional derivative, we obtain 

δS = Lξ (Ψ
√−g) d4 x = 

� 

(ξµ�µΨ + Ψ�µξ
µ)
√−g d4 x = Ψξµ d3Σµ . (44) 

We have used the covariant form of Gauss’ law, for which d3Σµ is the covariant hyper­
surface area element for the oriented boundary of the integrated 4-volume. Physically 
it represents the difference between the spatial volume integrals at the endpoints of 
integration in time. 

For variations with ξµ = 0 on the boundaries, δS = 0. The reason for this is 
simple: diffeomorphism corresponds exactly to reparameterizing the manifold by shifting 
and relabeling the coordinates. Just as the action of equation (1) is invariant under 
arbitrary reparameterization of the path length with fixed endpoints, a spacetime field 
action is invariant under reparameterization of the coordinates (with no shift on the 
boundaries). The diffeomorphism differs from a standard coordinate transformation in 
that the variation is made so that d4x is invariant rather than 

√−g d4x, but the result 
is the same: scalar actions are diffeomorphism-invariant. 

In considering diffeomorphisms, we do not assume that gµν extremizes the action. 
Thus, using δSG = 0 under diffeomorphisms, we will get an identity rather than a 
conservation law. 

Integrating equation (42) by parts using Gauss’s law gives 

8πG δSG = − Gµν ξν d
3Σµ + ξν �µG

µν √−g d4 x . (45) 
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Under reparameterization, the boundary integral vanishes and δSG = 0 from above, but 
ξν is arbitrary in the 4-volume integral. Therefore, diffeomorphism-invariance implies 

�µG
µν = 0 . (46) 

Equation (46) is the famous contracted Bianchi identity. Mathematically, it is an 
identity akin to equation (4). It may also be regarded as a geometric property of the 
Riemann tensor arising from the full Bianchi identities, 

�σ R
α
βµν + �µR

α
βνσ + �ν R

α
βσµ = 0 . (47) 

Contracting on α and µ, then multiplying by gσβ and contracting again gives equation 
(46). One can also explicitly verify equation (46) using equation (31), noting that Gµν = 
Rµν 1 = gµαg− 

2 Rgµν and Rµν νβ Rαβ . Wald gives a shorter and more sophisticated proof 
in his Section 3.2; an even shorter proof can be given using differential forms (Misner 
et al chapter 15). Our proof, based on diffeomorphism-invariance, is just as rigorous 
although quite different in spirit from these geometric approaches. 

The next step is to inquire whether diffeomorphism-invariance can be used to obtain 
true conservation laws and not just offer elegant derivations of identities. Before answer­
ing this question, we digress to explore an analogous symmetry in electromagnetism. 

4.3 Gauge Invariance in Electromagnetism 

Maxwell’s equations can be obtained from an action principle by adding two more terms 
to the total action. In SI units these are 

1 
SEM[Aµ, g

µν ] = − 
16π

F µν Fµν 
√−g d4 x , SI[Aµ] = 

� 

AµJ
µ√−g d4 x , (48) 

where Fµν ≡ ∂µAν − ∂ν Aµ = µ. Note that gµν is present in SEM implicitly�µAν − �ν A
through raising indices of Fµν , and that the connection coefficients occurring in �µAν 

are cancelled in Fµν . Electromagnetism adds two pieces to the action, SEM for the free 
field Aµ and SI for its interaction with a source, the 4-current density Jµ. Previously 
we considered SI = qAµẋ

µ dτ for a single particle; now we couple the electromagnetic 
field to the current density produced by many particles. 

The action principle says that the action SEM + SI should be stationary with respect 
to variations δAµ that vanish on the boundary. Applying this action principle (left as a 
homework exercise for the student) yields the equations of motion 

�ν F µν = 4πJµ . (49) 

In the language of these notes, the other pair of Maxwell equations, �[αFµν] = 0, arises 
from a non-dynamical symmetry, the invariance of SEM[Aµ] under a gauge transformation 
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Aµ → Aµ +�µΦ. (Expressed using differential forms, dF = 0 because F = dA is a closed 
2-form. A gauge transformation adds to F the term ddΦ, which vanishes for the same 
reason. See the 8.962 notes Hamiltonian Dynamics of Particle Motion.) The source-free 
Maxwell equations are simple identities in that �[αFµν] = 0 for any differentiable Aµ, 
whether or not it extremizes any action. 

If we require the complete action to be gauge-invariant, a new conservation law ap­
pears, charge conservation. Under a gauge transformation, the interaction term changes 
by 

4δSI ≡ SI[Aµ + �µΦ] − SI[Aµ] = Jµ(�µΦ)
√−g d x 

4 = ΦJµ d3Σµ − Φ(�µJ
µ)
√−g d x . (50) 

For gauge transformations that vanish on the boundary, gauge-invariance is equivalent 
to conservation of charge, �µJ

µ = 0. This is an example of Noether’s theorem: a 
continuous symmetry generates a conserved current. Gauge invariance is a dynamical 
symmetry because the action is extremized if and only if Jµ obeys the equations of motion 
for whatever charges produce the current. (There will be other action terms, such as 
eq. 35, to give the charges’ equations of motion.) Adding a gauge transformation to 
a solution of the Maxwell equations yields another solution. All solutions necessarily 
conserve total charge. 

Taking a broad view, physicists regard gauge-invariance as a fundamental symmetry 
of nature, from which charge conservation follows. A similar phenomenon occurs with 
the gravitational equivalent of gauge invariance, as we discuss next. 

4.4 Energy-Momentum Conservation from Gauge Invariance 

The example of electromagnetism sheds light on diffeomorphism-invariance in general rel­
ativity. We have already seen that every piece of the action is automatically diffeomorphism­
invariant because of parameterization-invariance. However, we wish to single out gravity 
— specifically, the metric gµν — to impose a symmetry requirement akin to electromag­
netic gauge-invariance. 

We do this by defining a gauge transformation of the metric as an infinitesimal 
diffeomorphism, 

gµν → gµν + Lξ gµν = gµν + �µξν + �ν ξµ (51) 

where ξµ = 0 on the boundary of our volume. (If the manifold is compact, it has a 
natural boundary; otherwise we integrate over a compact subvolume. See Appendix A 
of Wald for mathematical rigor.) Gauge-invariance (diffeomorphism-invariance) of the 
Einstein-Hilbert action leads to a mathematical identity, the twice-contracted Bianchi 
identity, equation (46). The rest of the action, including all particles and fields, must 
also be diffeomorphism-invariant. In particular, this means that the matter action must 

21 



� 

� � � 

5 

be invariant under the gauge transformation of equation (51). Using equation (38), this 
requirement leads to a conservation law: 

δSM = T µν (�µξν )
√−g d4 x = 

� 

ξν (�µT
µν )
√−g d4 x = 0 �µT

µν = 0 . (52)− ⇒ 

In general relativity, total stress-energy conservation is a consequence of gauge-invariance 
as defined by equation (51). Local energy-momentum conservation therefore follows as 
an application of Noether’s theorem (a continuous symmetry of the action leads to a 
conserved current) just as electromagnetic gauge invariance implies charge conservation. 

There is a further analogy with electromagnetism. Physical observables in general 
relativity must be gauge-invariant. If we wish to try to deduce physics from the metric 
or other tensors, we will have to work with gauge-invariant quantities or impose gauge 
conditions to fix the coordinates and remove the gauge freedom. This issue will arise 
later in the study of gravitational radiation. 

An Example of Gauge Invariance and Diffeomor­

phism Invariance: The Ginzburg-Landau Model 

The discussion of gauge invariance in the preceding section is incomplete (although fully 
correct) because under a diffeomorphism all fields change, not only the metric. Similarly, 
the matter fields for charged particles also change under an electromagnetic gauge trans­
formation and under the more complicated symmetry transformations of non-Abelian 
gauge symmetries such as those present in the theories of the electroweak and strong 
interactions. In order to give a more complete picture of the role of gauge symmetries 
in both electromagnetism and gravity, we present here the classical field theory for the 
simplest charged field, a complex scalar field φ(x) representing spinless particles of charge 
q and mass m. Although there are no fundamental particles with spin 0 and nonzero 
electric charge, this example is very important in physics as it describes the effective field 
theory for superconductivity developed by Ginzburg and Landau. 

The Ginzburg-Landau model illustrates the essential features of gauge symmetry 
arising in the standard model of particle physics and its classical extension to gravity. 
At the classical level, the Ginzburg-Landau model describes a charged fluid, e.g. a fluid 
of Cooper pairs (the electron pairs that are responsible for superconductivity). Here we 
couple the charged fluid to gravity as well as to the electromagnetic field. 

The Ginzburg-Landau action is (with a sign difference in the kinetic term compared 
with quantum field theory textbooks because of our choice of metric signature) 

1 
∗

λ 
∗∗SGL[φ,Aµ, g

µν ] = − 
2 
1 
gµν (Dµφ) (Dν φ) + µ 2φ φ− (φ φ)2 √−g d4 x , (53)

2 4 
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where φ∗ is the complex conjugate of φ and 

D µ − iqAµ(x) (54)µ ≡ �
is called the gauge covariant derivative. The electromagnetic one-form potential 
appears so that the action is automatically gauge-invariant. Under an electromagnetic 
gauge transformation, both the electromagnetic potential and the scalar field change, as 
follows: 

Aµ(x) → Aµ(x) + �µΦ(x) , φ(x) → eiqΦ(x)φ(x) , Dµφ eiqΦ(x)Dµφ , (55)→
where Φ(x) is any real scalar field. We see that (Dµφ)∗(Dν φ) and the Ginzburg-Landau 
action are gauge-invariant. Thus, an electromagnetic gauge transformation corresponds 
to an independent change of phase at each point in spacetime, or a local U(1) symmetry. 

The gauge covariant derivative automatically couples our charged scalar field to the 
electromagnetic field so that no explicit interaction term is needed, unlike in equation 
(48). The first term in the Ginzburg-Landau action is a “kinetic” part that is quadratic in 
the derivatives of the field. The remaining parts are “potential” terms. The quartic term 
with coefficient λ/4 represents the effect of self-interactions that lead to a phenomenon 
called spontaneous symmetry breaking. Although spontaneous symmetry breaking is of 
major importance in modern physics, and is an essential feature of the Ginzburg-Landau 
model, it has no effect on our discussion of symmetries and conservation laws so we 
ignore it in the following. 

The appearance of Aµ in the gauge covariant derivative is reminiscent of the appear­
ance of the connection Γµ in the covariant derivative of general relativity. However, αβ 

the gravitational connection is absent for derivatives of scalar fields. We will not discuss 
the field theory of charged vector fields (which represent spin-1 particles in non-Abelian 
theories) or spinors (spin-1/2 particles). 

A complete model includes the actions for gravity and the electromagnetic field in 
addition to SGL: S[φ, Aµ, gµν ] = SGL[φ, Aµ, gµν ] + SEM[Aµ, gµν ] + SG[gµν ]. According to 
the action principle, the classical equations of motion follow by requiring the total action 
to be stationary with respect to small independent variations of (φ, Aµ, gµν ) at each point 
in spacetime. Varying the action yields 

δS 
= gµν DµDν φ + µ 2 − λφ∗φ φ , 

δφ 
δS 1 

= GL ,δAµ 
−

4π 
�ν F µν + Jµ 

δS 1 1 1 
T GL = µν µν , (56)

δgµν 16πG
Gµν −

2 
T EM −

2 

where the current and stress-energy tensor of the charged fluid are 

∗ ∗JGL iq 
[φ(Dµφ) − φ (Dµφ)] ,µ ≡ 

2 

23 



� � 

� � � 

� � � �� 

λ 
∗∗

1 αβ ∗T GL ≡ (Dµφ) (Dν φ) + − 
2 
g (Dαφ) (Dβ φ) + 

1 
µ 2φ∗φ − (φ φ)2 gµν . (57)µν 2 4 

The expression for the current density is very similar to the probability current density 
in nonrelativistic quantum mechanics. The expression for the stress-energy tensor seems 
strange, so let us examine the energy density in locally Minkowski coordinates (where 
gµν = ηµν ): 

1 2 1 2 1 
∗ρGL = T GL =

2 
|D0φ + Diφ| − 

2 
µ 2φ φ + 

λ 
(φ∗φ)2 . (58)00 | 

2 
|

4 
Aside from the electromagnetic contribution to the gauge covariant derivatives and the 
potential terms involving φ∗φ, this looks just like the energy density of a field of rela­
tivistic harmonic oscillators. (The potential energy is minimized for |φ| = µ/

√
λ. This 

is a circle in the complex φ plane, leading to spontaneous symmetry breaking as the 
field acquires a phase. Those with a knowledge of field theory will recognize two modes 
for small excitations: a massive mode with mass 

√
2µ and a massless Goldstone mode 

corresponding to the field circulating along the circle of minima.) 
The equations of motion follow immediately from setting the functional derivatives 

to zero. The equations of motion for gµν and Aµ are familiar from before; they are 
simply the Einstein and Maxwell equations with source including the current and stress-
energy of the charged fluid. The equation of motion for φ is a nonlinear relativistic wave 

2equation. If Aµ = 0, µ2 = −m , λ = 0, and gµν = ηµν then it reduces to the Klein-
Gordon equation, (∂2 − ∂2 + m2)φ = 0 where ∂2 ≡ δij ∂i∂j is the spatial Laplacian. Our t 

equation of motion for φ generalizes the Klein-Gordon equation to include the effects 
of gravity (through gµν ), electromagnetism (through Aµ), and self-interactions (through 
λφ∗φ). 

Now we can ask about the consequences of gauge invariance. First, the Ginzburg-
Landau current and stress-energy tensor are gauge-invariant, as is easily verified using 
equations (55) and (57). The action is explicitly gauge-invariant. Using equations (56), 
we can ask about the effect of an infinitesimal gauge transformation, for which δφ = 
iqΦ(x)φ, δAµ = �µΦ, and δgµν = 0. The change in the action is 

δS δS 
δS = (iqΦφ) + (�µΦ) 

√−g d4 x 
δφ δAµ 

δS δS 
= iqφ

δφ 
− �µ 

δAµ 
Φ(x)

√−g d4 x , (59) 

where we have integrated by parts and dropped a surface term assuming that Φ(x) 
vanishes on the boundary. Now, requiring δS = 0 under a gauge transformation for the 
total action adds nothing new because we already required δS/δφ = 0 and δS/δAµ = 0. 
However, we have constructed each piece of the action (SGL, SEM and SG) to be gauge­
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invariant. This gives: 

δS 
δSGL = 0 iqφ = 0 ,GL⇒ 

δφ 
− �µJ

µ 

1 
δSEM = 0 − 

4π 
�µ�ν F µν = 0 . (60)⇒ 

For SGL, gauge invariance implies charge conservation provided that the field φ obeys 
the equation of motion δS/δφ = 0. For SEM, gauge invariance gives a trivial identity 
because F µν is antisymmetric. 

Similar results occur for diffeomorphism invariance, the gravitational counterpart of 
gauge invariance. Under an infinitesimal diffeomorphism, δφ = Lξ φ, δAµ = Lξ Aµ, and 
δgµν = Lξ gµν = �µξν + �ν ξµ. The change in the action is 

δS δS δS 
δS = 

δφ 
Lξ φ + 

δAµ 
Lξ Aµ + 

δgµν 
Lξ gµν 

√−g d4 x 

δS 1 − 
4π 
�ν F µν + Jµ= ξµ�µφ + Lξ Aµ + 

δφ 

1 
+ − 

8πG
Gµν + T µν �µξν 

√−g d4 x , (61) 

where Jµ = GL and T µν = GL + T µνJµ T µν 
EM. As above, requiring that the total action be 

diffeomorphism-invariant adds nothing new. However, we have constructed each piece 
of the action to be diffeomorphism-invariant, i.e. a scalar under general coordinate 
transformations. Applying diffeomorphism-invariance to SGL gives a subset of the terms 
in equation (61), 

δS 
0 = ξµ�µφ + Jµ (ξα �αAµ + Aα�µξ

α) + T µν 
GL�µξν 

√−g d4 x 
δφ 

δS 
= ν T GL ξµ(x)

√−g d4 xµν− 
δφ 
�µφ + Jα �µAα − �α (J

αAµ) − � 

δS ν T GL = − 
δφ 
�µφ − (�αJα)Aµ ξµ(x)

√−g d4 x , (62)µν+ JαFµα − � 

where we have discarded surface integrals in the second line assuming that ξµ(x) = 0 on 
the boundary. 

Equation (62) gives a nice result. First, as always, our continuous symmetry (here, 
diffeomorphism-invariance) only gives physical results for solutions of the equations of 
motion. Thus, δS/δφ = �αJα = 0 can be dropped without further consideration. The 
remaining terms individually need not vanish from the equations of motion. From this 
we conclude 

�ν T µν = F µν JGL 
ν . (63)GL 
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This has a simple interpretation: the work done by the electromagnetic field transfers 
energy-momentum to the charged fluid. Recall that the Lorentz force on a single charge 
with 4-velocity V µ is qF µν Vν and that 4-force is the rate of change of 4-momentum. 
The current qV µ for a single charge becomes the current density Jµ of a continuous 
fluid. Thus, equation (63) gives energy conservation for the charged fluid, including the 
transfer of energy to and from the electromagnetic field. 

The reader can show that requiring δSEM = 0 under an infinitesimal diffeomorphism 
proceeds in a very similar fashion to equation (62) and yields the result 

�µT µν = −F µν JGL 
ν . (64)EM 

This result gives the energy-momentum transfer from the viewpoint of the electromag­
netic field: work done by the field on the fluid removes energy from the field. Combining 
equations (63) and (64) gives conservation of total stress-energy, �µT µν = 0. 

Finally, because SG depends only on gµν and not on the other fields, diffeomorphism 
invariance yields the results already obtained in equations (45) and (46). 
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Introduction 

In special relativity, electromagnetism is described by a one-form field Aµ(x) in flat 
spacetime. Similarly, in the weak-field limit gravitation is described by a symmetric 
tensor field hµν (x) in flat spacetime. Pursuing the analogy can lead us to many insights 
about GR. These notes detail linearized GR, discussing particle motion via Hamiltonian 
dynamics, the gravitational field equations, the transverse gauge (giving the closest thing 
to an inertial frame in GR), gauge transformations, motion in accelerated and rotating 
frames, Mach’s principle, and more. 

Linear theory is also useful for most practical computations in general relativity. 
Linear theory suffices for nearly all experimental applications of general relativity per­
formed to date, including the solar system tests (light deflection, perihelion precession, 
and Shapiro time delay measurements), gravitational lensing, and gravitational wave 
detection. The Hulse-Taylor binary pulsar offers some tests of gravity beyond lineaer 
theory (Taylor et al 1992), as do (in principle) cosmological tests of space curvature. 

Some of this material is found in Thorne et al (1986) and some in Bertschinger (1996) 
but much of it is new. The notation differs slightly from chapter 4 of my Les Houches 
lectures (Bertschinger 1996); in particular, φ and ψ are swapped there, and hij in those 
notes is denoted sij here (eq. 11 below). 

Throughout this set of notes, the Minkowski metric ηµν is used to raise and lower 
indices. In this set of notes we refer to gravity as a field in flat spacetime as opposed 
to the manifestation of curvature in spacetime. With one important exception, this 
pretense can be made to work in the weak-field limit (although it breaks down for strong 
gravitational fields). As we will see, gravitational radiation can only be understood 
properly as a traveling wave of space curvature. 
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2 Particle Motion and Gauge Dependence 

We begin by studying an analogue of general relativity, the motion of a charged particle. 
The covariant action for a particle of mass m and charge q has two terms: one for the 
free particle and another for its coupling to electromagnetism: 

� � 
dxµ dxν �1/2 

dxµ 

S[xµ(τ )] = −m −ηµν dτ + qAµ dτ . (1)
dτ dτ dτ 

Varying the trajectory and requiring it to be stationary, with τ being an affine parameter 
such that V µ = dxµ/dτ is normalized ηµν V µV ν = −1, yields the equation of motion 

dV µ 

= 
q
F µ V ν , Fµν = ∂µAν − ∂ν Aµ . (2)

dτ m ν 

Regarding gravity as a weak (linearized) field on flat spacetime, the action for a 
particle of mass m also has two terms, one for the free particle and another for its 
coupling to gravity: 

� � �−1/2� � 
dxµ dxν �1/2 

m dxµ dxν dxµ dxν 

S[xµ(τ )] = −m −ηµν dτ + hµν −ηµν dτ . 
dτ dτ 2 dτ dτ dτ dτ 

(3) 
This result comes from using the free-field action with metric gµν = ηµν + hµν and 
linearizing in the small quantities hµν . Note that for this to be valid, two requirements 
must be satisfied: First, the curvature scales given by the eigenvalues of the Ricci tensor 
(which have units of inverse length squared) must be large compared with the length 
scales under consideration (e.g. one must be far from the Schwarzschild radius of any 
black holes). Second, the coordinates must be nearly orthonormal. One cannot, for 
example, use spherical coordinates; Cartesian coordinates are required. (While this 
second condition can be relaxed, it makes the analysis much simpler. If the first condition 
holds, then coordinates can always be found such that the second condition holds also.) 

Requiring the gravitational action to be stationary yields the equation of motion 

dV µ 1 
= ηµν (∂αhνβ + ∂β hαν − ∂ν hαβ ) V αV β = −Γµ V αV β . (4)αβdτ 

− 
2 

The object multiplying the 4-velocities on the right-hand side is just the linearized 
Christoffel connection (with ηµν rather than gµν used to raise indices). 

Equations (2) and (4) are very similar, as are the actions from which they were 
derived. Both Fµν and Γµ are tensors under Lorentz transformations. This fact ensures αβ 

that equations (2) and (4) hold in any Lorentz frame. Thus, in the weak field limit it is 
straightforward to analyze arbitrary relativistic motions of the sources and test particles, 
as long as all the components of the Lorentz-transformed field, h¯ν = Λµ 

¯Λ
ν
ν̄hµν areµ¯ µ
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small compared with unity (otherwise the linear theory assumption breaks down). A 
simple example of the Lorentz transformation of weak gravitational fields was given in 
problem 1 of Problem Set 6. 

From these considerations one might conclude that regarding linearized gravity as a 
field in flat spacetime with gravitational field strength tensor Γµ

αβ presents no difficulties. 
However, there is a very important difference: the electromagnetic force law is gauge-
invariant while the gravitational one is not. 

The electromagnetic field strength tensor, hence equation (2), is invariant under the 
gauge transformation 

Aµ(x) → Aµ(x) + ∂µΦ(x) . (5) 

h

The Christoffel connection is, however, not invariant under the gravitational gauge trans­
formation 

µν (x) → hµν + ∂µξν (x) + ∂ν ξµ(x) . (6) 

(Note that in both special relativity and linearized GR, �µ = ∂µ.) While Fµν is a 
tensor under general coordinate transformations, Γµ is not. Because the gravitational αβ 

gauge transformation is simply an infinitesimal coordinate transformation, our putative 
gravitational field strength tensor is not gauge-invariant. While the form of equation 
(4) is unchanged by Lorentz transformations, it is not preserved by arbitrary coordinate 
transformations. 

Try to imagine the Lorentz force law if the electromagnetic fields were not gauge-
invariant. We would be unable to get a well-defined prediction for the motion of a 
particle. 

The situation in gravity is less bleak because we recognize that the gauge transfor­
mation is equivalent to shifting the coordinates, xµ → xµ − ξµ(x). If the coordinates are 
deformed, fictitious forces (like the Coriolis force) are introduced by the change in the 
Christoffel symbols. But while this perspective is natural in general relativity, it doesn’t 
help one trying to obtain trajectories in the weak-field limit. 

Can one ignore the gauge-dependence of Γµ by simply regarding hµν (x) as a given αβ 

field? Yes, up to a point. However, as we will see later, the gauge-dependence rears its 
ugly head when one tries to solve the linearized field equations for hµν . The Einstein equa­
tions contain extra degrees of freedom arising from the fact that a gauge-transformation 
of any solution is also a solution. Gravitational fields can mimic fictitious forces. In the 
full theory of GR this is no problem in principle, because gravity itself is a fictitious force 
� gravitational deflection arises from the use of curvilinear coordinates. (Of course, in 
a curved manifold we have no choice!) 

Regardless of how we interpret gravity, in practice we must eliminate the gauge free­
dom somehow. There are two ways to do this: one may form gauge-invariant quantities 
(e.g. the electromagnetic field strength tensor) or impose gauge conditions that fix the 
potentials hµν . 
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It happens that while the Christoffel connection is not gauge-invariant, in linearized 
gravity (but not in general) the Riemann tensor is gauge-invariant. Thus one way to form 
gauge-invariant quantities is to replace equation (4) by the geodesic deviation equation, 

d2(Δx)µ 

= Rµ V αV β (Δx)ν (7)
dτ 2 αβν 

where (Δx)ν is the infinitesimal separation vector between a pair of geodesics. While 
this tells us all about the local environment of a freely-falling observer, it fails to tell us 
where the observer goes. In most applications we need to know the trajectories. Thus 
we will have to find other strategies for coping with the gauge problem. 

Hamiltonian Formulation and Gravitomagnetism 

Some aid in solving the gauge problem comes if we abandon manifest covariance and use 
t = x0 to parameterize trajectories instead of the proper time dτ . This yields the added 
benefit of highlighting the similarities between linearized gravity and electromagnetism. 
In particular, it illustrates the phenomenon of gravitomagnetism. 

Changing the parameterization in equation (1) from τ to t and performing a Legendre 
transformation gives the Hamiltonian 

�1/22H(x i, πi, t) = 
� 
p 2 + m + qφ , p i ≡ πi − qAi , . (8)φ ≡ −A0 

Here we denote the conjugate momentum by πi to distinguish it from the mechanical 
momentum pi . (Note that pi and πi are the components of 3-vectors in Euclidean space, 
so that their indices may be raised or lowered without change.) It is very important to 
treat the Hamiltonian as a function of the conjugate momentum and not the mechanical 
momentum, because only in this way do Hamilton’s equations give the correct equations 
of motion: 

idxi 
= 
p

,
dπi 

= q 
� 
−∂iφ + vj ∂iAj 

� 
, E ≡ 

� 
p2 + m = 

m
. (9)

dt E 
≡ v i 

dt 
2 √

1 − v2 

Combining these gives the familiar form of the Lorentz force law, 

dpi 
= q (E + v ×B)i , B = �× A (10)

dt 
E ≡ −�φ − ∂tA , 

where underscores denote standard 3-vectors in Euclidean space. The dependence of the 
fields on the potentials ensures that the equation of motion is still invariant under the 
gauge transformation φ → φ − ∂tΦ, A → A + �Φ. 

Now we repeat these steps for gravity, starting from equation (3). For convenience, 
we first decompose hµν as 

h00 = −2φ , h0i = wi , hij = −2ψδij + 2sij , where sj j = δij sij = 0. (11) 

4 



The ten degrees of freedom in hµν are incorporated into two scalars under spatial rotations 
(φ and ψ), one 3-vector, and one symmetric 2-index tensor, the traceless strain sij . Notice 
that wi and sij generalize the weak-field metric used previously in 8.962. 

To first order in hµν , the Hamiltonian may now be written 

E ≡ (δij pipj + m 2)1/2H(x i, πi, t) = (1 + φ)E , , 
2)1/2 wi − sj iπjpi ≡ (1 + ψ)πi − (δij πiπj + m . (12) 

Here, πi is the conjugate momentum while pi and E are the proper 3-momentum and 
energy measured by an observer at fixed xi, just as they are in equation (8). To prove 
this, we construct an orthonormal basis for such an observer: 

1 
e¯ = √

−g00 
�e0 = (1 − φ)�e0 , �eī = �ei + g0i�e0 − 

1 
hj �ej = (1 + ψ)�ei + wi�e0 − sj i�ej . (13)�0 

2 i

This basis is constructed by first setting �0 e¯ �0e¯ � �e0 and normalizing it with �0 e¯ = −1.· 
Next, �e¯ is required to be orthogonal to �0, giving the g0i�e0 term (to first order in the i e¯
metric perturbations). Requiring �eī e¯ = δij gives the remaining term. Now, using �j· 
the results from the notes Hamiltonian Dynamics of Particle Motion, the spacetime 

imomentum one-form is P� = −He�0 + πie� . Setting E = −P�(�0) and pi = P�(�eī) gives the 
desired results (to first order in the metric perturbations). 

Equation (12) has the simple Newtonian interpretation that the Hamiltonian is the 
sum of E, the kinetic plus rest mass energy, and Eφ, the gravitational potential energy. 
This result is remarkably similar to equation (8), with just two differences. In place of 
charge q, the gravitational coupling is through the energy E. Gravitation also has a rank 
(0, 2) spatial tensor hij in addition to spatial scalar and vector potentials. 

Although the gravitational potentials represent physical metric perturbations, hav­
ing obtained the Hamiltonian we can forget about this for the moment in order to gain 
intuition about weak-field gravity by applying our understanding of analogous electro­
magnetic phenomena. 

Hamilton’s equations applied to equation (12) give 

e¯

idxi ∂H 
= = (1 + φ + ψ)vj (δij − viwj − sij ) , v i 

p
,

dt ∂πi 
≡ 
E 

dπi 
= 

∂H 
= E 

� 
−∂iφ + vj ∂iwj − (∂iψ)v 2 + (∂isjk)v

j v k 
� 

(14)
dt 

− 
∂xi 

Let us compare our result with equation (9). The equation for dxi/dt is more complicated 
than the corresponding equation for electromagnetism because of the more complicated 
momentum-dependence of the gravitational �charge� E. Alternatively, one may adopt 
the curved spacetime perspective and note that dxi and dt are coordinate differentials and 
not proper distances or times, so that the coordinate velocity dxi/dt must be corrected 
to give the proper 3-velocity vi measured by an observer at fixed xi in an orthonormal 
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frame, with the same result. The Newtonian and curved spacetime interpretations are 
consistent. 

Equations (14) may be combined to give the weak-field gravitational force law 

kdpi 
= E 

� 
g + v × H 

� 
+

1 
E 
� 
−vj ∂thij + vj v (∂ihjk − ∂k hij ) ,

i 2dt 
g H = �× w . (15)≡ −�φ − ∂tw , 

As before, underscores denote standard 3-vectors in Euclidean space. (The terms in­
volving hij may be expanded by substituting hij = −2ψδij + 2sij . No simplification 
results, so they are left in a more compact form above.) This equation, the gravitational 
counterpart of the Lorentz force law, is exact for linearized GR (though it is not valid for 
strong gravitational fields). Combined with the first of equations (14), it is equivalent 
to the geodesic equation for timelike or null geodesics in a weakly perturbed Minkowski 
spacetime. 

Equation (15) is remarkably similar to the Lorentz force law. It reveals electric-
type forces (present for particles at rest) and magnetic-type forces (force perpendicular 
to velocity). In addition there are velocity-dependent forces arising from the tensor 
potentials, i.e. from the spatial curvature terms in the metric. The Newtonian limit is 
obvious when v � 1. But equation (15) is correct also for relativistic particles and for 
relativistically moving gravitational sources, as long as the fields are weak, i.e. hµν | � 1.|

It is straightforward to check that equation (15) is invariant under a gauge transfor­
mation generated by shifting the time coordinate, equation (6) with ξ0 = Φ and ξi = 0. 
However, the force law is not invariant under gauge (coordinate) transformations gen­
erated by ξi . Thus, the Hamiltonian formulation has not solved the gauge problem, 
although it has isolated it. As a result, it has provided important insight into the nature 
of relativistic gravitation. 

The fields gi = −∂iφ − ∂twi and H i = �ijk ∂j wk are called the gravitoelectric and grav­
itomagnetic fields, respectively. (Here, �ijk is the fully antisymmetric three-dimensional 
Levi-Civita symbol, with �123 = +1.) They are invariant under the gauge transformation 
generated by ξ0 = Φ and therefore are not sensitive to how one chooses hypersurfaces of 
constant time, although they do depend on the parameterization of spatial coordinates 
within these hypersurfaces. Once those coordinates are fixed, the gravitoelectric and 
gravitomagnetic fields have a clear meaning given by equation (15). Noting that p = Ev, 
these fields contribute to the acceleration dv/dt = g + v × H. 

There are four distinct gravitational phenomena present in equation (15). They are 

•	 The quasi-Newtonian gravitational field g. 

•	 The gravitomagnetic field H, which is responsible for Lense-Thirring precession 
and the dragging of inertial frames. 
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•	 The scalar part of hij , i.e. hij = −2ψδij , which (for ψ = φ) doubles the deflection 
of light by the sun compared with the simple Newtonian calculation. 

•	 The transverse-traceless part of hij , or gravitational radiation, described by the 
transverse-traceless strain matrix sij . 

The rest of these notes will explore these phenomena in greater detail. 

Field Equations 

Greater understanding of the physics of weak-field gravitation comes from examining the 
Einstein equations and comparing them with the Maxwell equations. This will allow us 
to solve the gauge problem and thereby to explore the phenomena mentioned above with 
confidence that we are not being misled by coordinate artifacts. 

Starting from equation (11), we obtain the linearized Christoffel symbols 

Γ0 = ∂tφ , Γ0 = ∂iφ , Γ0 
ij = −∂(iwj) + ∂t(sij − δij ψ) , 

Γ

00 i0 

i = ∂iφ+ ∂twi , Γj
i0 = ∂[iwj] + ∂t(sij − δij ψ) ,00 

Γk = δij ∂k ψ − 2δk(i∂j)ψ − ∂k sij + 2∂(isj)k .	 (16)ij 

(Notice that the Kronecker delta is used to raise and lower spatial components.) The 
Ricci tensor has components 

i 2R00 = ∂2φ+ ∂t(∂iw ) + 3∂t ψ ,

1 1 j
∂2 wi + ∂i(∂j w

j ) + 2∂t∂iψ + ∂t∂j s i ,R0i = − 
2 2 

2	 kRij = −∂i∂j (φ− ψ) − ∂t∂(iwj) + (∂t 
2 − ∂ )(sij − ψδij ) + 2∂k ∂(isj) (17) 

ij ∂i∂j .where ∂2 ≡ δ The Einstein tensor components are 

ijG00 = 2∂2ψ + ∂i∂j s ,

1 1 j
G0i = − 
2 
∂2 wi + ∂i(∂j w

j ) + 2∂t∂iψ + ∂t∂j s i ,2 
Gij = (δij ∂

2 − ∂i∂j )(φ− ψ) + ∂t δij (∂k w k ) − ∂(iwj) + 2δij (∂t 
2ψ) 

2 k+ (∂t 
2 − ∂ )sij + 2∂k ∂(is − δij (∂k ∂ls 

kl) .	 (18)j) 

Γ

It is fascinating that the time-time part of the Einstein tensor contains only the spatial 
parts of the metric, and h00 = −2φ appears only in Gij . Although the equation of motion 
for nonrelativistic particles in the Newtonian limit is dependent only on h00 (through 
i 
00), the Newtonian gravitational field equation (the Poisson equation) is sensitive only 

to hij ! I do not know if this is a merely a coincidence; it is not true for the fully nonlinear 
Einstein equations. 
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It is also fascinating that G00 contains no time derivatives and G0i contains only 
first time derivatives. If the Einstein equations Gµν = 8πGTµν are to provide evolution 
equations for the metric, we would have expected a total of ten independent second-order 
in time equations, one for each component of gµν . (After all, typical mechanical systems 
have, from the Euler-Lagrange equations, second-order time evolution equations for each 
generalized coordinate.) What is going on? 

A clue comes from similar behavior of the Maxwell equations: 

∂ν F µν = 4πJ µ , ∂[κFµν] = 0 . (19) 

The substitution Fµν = ∂µAν − ∂ν Aµ automatically satisfies the source-free Maxwell 
equations and gives 

∂2A0 + ∂t(∂j A
j ) = −4πJ 0 , ∂t(∂iA

0 + ∂tA
i) + ∂i(∂j A

j ) − ∂2Ai = 4πJ i , (20) 

≡ δij ∂i∂j . 

A

where once again ∂2 Only the spatial parts of the Maxwell equations provide 
second-order time evolution equations. Does this mean that Ai evolves dynamically but 

0 does not? 
The answer to that question is clearly no, because Aµ is gauge-dependent and one 

can easily choose a gauge in which ∂ν F 0ν contains second time derivatives of A0 . (The 
Lorentz gauge, with ∂µAµ = 0, is a well-known example.) 

However, there is a sense in which the time part of the Maxwell equations (the first of 
eqs. 20) is redundant and therefore need not provide an equation of motion for the field. 
As the reader may easily verify, the time derivative of this equation, when subtracted 
from the spatial divergence of the spatial equations (the second of eqs. 20), enforces 
charge conservation, ∂µJ µ = 0. (We are working in flat spacetime so there is no need for 
the covariant derivative symbol.) This is another way of expressing the statement that 
gauge-invariance implies charge conservation. We are perfectly at liberty to choose a 
gauge such that ∂j Aj = 0 (the Coulomb or transverse gauge), in which case only Ai need 
be solved for by integrating a time evolution equation. Coulomb’s law, ∂2A0 = −4πJ 0 , 
may be regarded as a constraint equation to ensure conservation of charge. 

Similarly, general relativity has a conservation law following from gauge-invariance: 
∂µT µν = 0. Now there are four conserved quantities, the energy and momentum. (In 
the weak-field limit, but not in general, T µν can be integrated over volume to obtain a 
globally conserved energy and momentum.) The reader can easily verify the redundancy 
in equations (18): ∂tG00 + ∂iG0i = 0, ∂tG0i + ∂j Gij = 0. Thus, if the matter evolves so as 
to conserve stress-energy T µν , then the G00 and G0i Einstein equations are redundant. 
They are present in order to enforce stress-energy conservation. In the literature they 
are known as the (linearized) Arnowitt-Deser-Misner (ADM) energy and momentum 
constraints (Arnowitt et al. 1962). 

The Ricci and Einstein tensors are invariant (in linearized theory) under gauge 
transformations (eq. 6). This follows from the fact that a gauge transformation is 
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R
a diffeomorphism and changes each tensor by the addition of a Lie derivative term: 

µν → Rµν + Lξ Rµν and similarly for Gµν . The Lie derivative is first-order in both 
the shift vector ξ� and the Ricci tensor, and therefore vanishes in linear theory. Put 
another way, because the Ricci tensor vanishes for the flat background spacetime, its Lie 
derivative vanishes. 

Although Rµν and Gµν are gauge-invariant, their particular forms in equations (17) 
and (18) are not, because of the appearance of the metric perturbations (φ, wi, ψ, sij ). 
Part of this dependence, in G0i and Gij , can be eliminated by using the gravitoelectro­
magnetic fields, giving 

G0i = 
1
(�×H)i + 2∂t∂iψ + ∂t∂j s

j 
i , 

G
2 

ij = ∂(igj) − δij (∂k g 
k ) + (∂i∂j − δij ∂

2)ψ + 2δij (∂
2ψ)t 

k+ (∂2 − ∂2)sij + 2∂k ∂(is − δij (∂k ∂ls 
kl) . (21)t j) 

Note that the potentials φ and wi (from h00 and h0i) enter into both the equations 
of motion and the Einstein equations only through the fields gi and Hi, giving strong 
support to the interpretation of g and H as physical fields for linearized GR. But what 
of ψ and sij ? We explore this question in the next section. 

Gauge-fixing: Transverse Gauge 

Up to this point, we have imposed no gauge conditions at all on the metric tensor 
potentials. However, we have four coordinate variations at our disposal. Under the gauge 
transformation (6), the potentials change by 

1 1 
δφ = ∂tξ

0 , δwi = −∂iξ0 + ∂tξ
i , δψ = −

3 
∂iξ

i , δsij = ∂(iξj) − δij (∂k ξ
k ) . (22)

3 

Examing equations (21), it is clear that substantial simplification would result if could 
choose a gauge such that 

∂j s
j = 0 . (23)i 

Indeed, this is possible, by gauge-transforming any sij which does not obey this condition 
jusing the spatial shift vector ξi obtained by solving ∂j (s i + δsj i) = 0, or 

1 j∂2ξi + ∂i(∂j ξ
j ) = −2∂j s i . (24)

3 

This is an elliptic equation which may be solved by decomposing ξi into longitudinal 
(curl-free) and transverse (divergence-free) parts. Solutions to this equation always exist; 
indeed, suitable boundary conditions must be specified in order to yield a unique solution. 
In Section 8 we will discuss the physical meaning of the extra solutions. 
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Equation (23) is called the transverse-traceless gauge condition. It is widely used 
when studying gravitational radiation, but we will see that it is also useful for other 
applications. 

Similarly, although we have hidden the vector potential wi in the gravitoelectromag­
netic fields, the gauge may be fixed by requiring it to be transverse: 

∂iw i = 0 . (25) 

(The equations of motion depend only on � × w, so we expect to lose no physics by 
setting the longitudinal part to zero.) To convert a coordinate system that does not 
satisfy equation (25) to one that does, one solves the following elliptic equation for ξ0: 

i∂2ξ0 − ∂t(∂iξ
i) = ∂iw . (26) 

Once again, this equation (in combination with eq. 24 for ξi) may have multiple solutions 
depending on boundary conditions. (For given ξi, this is simply a Poisson equation for 
ξ0.) 

The combination of gauge conditions given by equations (23) and (25) imposes four 
conditions on the coordinates. They generalize the Coulomb gauge conditions of elec­
tromagnetism, ∂iAi = 0. As a result, both wi and the traceless part of hij (i.e., sij ) 
are transverse. The gauge condition on sij is well-known and is almost always used in 
studies of gravitational radiation; it reduces the number of degrees of freedom of sij from 
five to two, corresponding to the two orthogonal polarizations of gravitational radiation. 
However, the metric is not fully constrained until a gauge condition is imposed on wi as 
well. Equation (25) reduces the number of degrees of freedom of wi from three to two. 
The total number of physical degrees of freedom is six: one each for the spatial scalar 
fields φ and ψ, two for the transverse vector field wi, and two for the transverse-traceless 
tensor field sij . 

Based on its similarity with the Coulomb gauge of electromagnetism, Bertschinger 
(1996) dubbed these gauge conditions the Poisson gauge. Here we will call them trans­
verse gauge. In transverse gauge, the Einstein equations become 

G00 = 2∂2ψ = 8πGT00 ,

1


G0i = (�×H)i + 2∂t∂iψ = 8πGT0i , 

G
2 

ij = (δij ∂
2 − ∂i∂j )(φ − ψ) − ∂t∂(iwj) + 2δij (∂

2ψ) + (∂2 − ∂2)sij (27)t t 

= ∂(igj) − δij (∂k g 
k ) + (∂i∂j − δij ∂

2)ψ + 2δij (∂
2ψ) + (∂2 − ∂2)sij = 8πGTij .t t 

The G00 equation is precisely the Newtonian Poisson equation, justifying the alternative 
name Poisson gauge. 
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6 Scalar, Vector and Tensor Components 

Having reduced the number of degrees of freedom in the metric to six, let us now reexam­
ine the statement made at the end of Section 3 that there are four distinct gravitational 
phenomena. They may be classified by the form of the metric variables as scalar (φ 
and ψ), vector (wi) and tensor (sij ). The scalar-vector-tensor decomposition was first 
performed by Lifshitz (1946) in the context of perturbations of a Robertson-Walker 
spacetime, but it works (at least) for perturbations of any spacetime (such as Minkowski) 
with sufficient symmetry (i.e. with sufficient number of Killing vector fields). See Section 
4.2 of Bertschinger (1996) for the cosmological application. 

The scalar-vector-tensor decomposition is based on decomposing both the metric and 
stress-energy tensor components into longitudinal and transverse parts. Three-vectors 
like w (regarded as a three-vector in Euclidean space) and T0i are decomposed as follows: 

i i i w = w + w⊥ , = �ei�
ijk ∂j wk,� = 0 , � · w = δij ∂iwj,⊥ = 0 . (28)� �× w� ⊥ 

In the transverse gauge, w� = 0 but we are retaining it here for purposes of illustration. 
The terms �longitudinal� and �transverse� come from the Fourier transform repre­

sentation. Because w = �Φw for some scalar field Φw, the Fourier transform of w is 
parallel to the wavevector k. Similarly, w = �×A for some vector field A , hence its w w⊥
Fourier transform is perpendicular (i.e. transverse) to k. A spatial constant vector may 
be regarded as being either longitudinal or transverse. 

Jackson (1975, Section 6.5) gives explicit expressions for the longitudinal and trans­
verse parts of a three-vector field in flat space: 

1 w(x�) 
d3 1 

w = 
w(x�) 

d3 x� . (29) 
x − x�� −

4π 
� �� ·

| 
x� , w⊥ = 4π 

�×�× 
x − x�| | | 

Note that this decomposition is nonlocal, i.e. the longitudinal and transverse parts carry 
information about the vector field everywhere. Thus, if w is nonzero only in a small region 
of space, its longitudinal and transverse parts will generally be nonzero everywhere. One 
cannot deduce causality by looking at w or w alone.� ⊥

Similarly, a symmetric two-index tensor may be decomposed into three parts depend­
ing as to whether its divergence is longitudinal, transverse, or zero: 

hij = hij,� + hij,⊥ + hij,T . (30) 

We will refer to these parts as longitudinal (or scalar), rotational (or solenoidal or vector) 
and transverse (or tensor) parts of hij . In the transverse gauge h + ij = hij,T, but we 
retain the other parts here for purpose of illustration. 

The longitudinal and rotational parts are defined in terms of a scalar field h�(x) and 
a transverse vector field h⊥(x) such that 

1 
hij,� = ∂i∂j − δij ∂

2 h� , hij,⊥ = ∂(ihj),⊥ . (31)
3 
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As stated above, the divergences of hij,� and hij,⊥ are longitudinal and transverse vectors, 
respectively, and the divergence of hij,T vanishes identically: 

2 1 
δjk ∂k hij,� = ∂i(∂

2h�) , δjk∂k hij,⊥ = ∂2hi,⊥ , δjk ∂khij,T = 0 . (32)
3 2 

Thus, the longitudinal part is obtainable from a scalar field, the rotational part is ob­
tainable only from a (transverse) vector field, and the transverse part is obtainable only 
from a (transverse traceless) tensor field. The reader may find it a useful exercise to 
construct integral expressions for these parts, similar to equations (29). 

The stress-energy tensor may be decomposed in a similar way. Doing this, the lin­
earized Einstein equations (27) in transverse gauge give field equations for the physical 
fields (ψ, gi, Hi, sij ): 

∂2ψ = 4πGT00 , 

� · g − 3∂t 
2ψ = −4πG(T00 + T ii) , 

−16πGf , f ≡ T 0i�ei , (33)�×H = ⊥ 

(∂2 − ∂2)sij = 8πGTij,Tt 

plus constraint equations to ensure ∂µT µν = 0: 

∂t�ψ = −4πGf , 

1 1 
∂(igj) − δij (∂k g 

k ) + (∂i∂j − δij ∂
2)ψ = 8πG(Πij − Πij,T) , (34)

3 3 
1 

where Πij ≡ Tij − δij T kk . 3 

Note that the third constraint equation may be further decomposed into longitudinal 
and rotational parts as follows: 

1 
(∂i∂j − δij ∂

2)(ψ − φ) = 8πG Πij,� , −∂t∂(iwj) = 8πG Πij,⊥ . (35)
3 

Equations (33)�(35) may be regarded as the fundamental Einstein equations in linear 
theory. No approximations have been made in deriving them, aside from hµν | � 1.|

7 Physical Content of the Einstein equations 

Equations (33)�(35) are remarkable in bearing similarities to both Newtonian gravity 
and electrodynamics. They exhibit precisely the four physical features mentioned at the 
end of Section 3: the quasi-Newtonian gravitational field g, the gravitomagnetic field H, 
the spatial potential ψ, and the transverse-traceless strain sij . 
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To see the effects of these fields, let us rewrite the gravitational force law, equation 
(15), using equation (11) with the transverse gauge conditions (23) and (25): 

dp � 
g + v ×H + v(∂tψ) − v 2

� � 
= E �⊥ψ + E −vj ∂ts i j + �ijk vj v lΩk 

� 
�ei (36)ldt 

iwhere �⊥ ≡ (δij − v vj /v2)�ei∂j is the gradient perpendicular to v and 

Ωkl ≡ ∂ms 
(k �l)mn (37)n 

is the �curl� of the strain tensor skl . (We define the curl of a symmetric two-index tensor 
by this equation). 

We can build intuition about each component of the gravitational field (g, H, ψ, sij ) 
by comparing equations (33)�(36) with the corresponding equations of Newtonian grav­
itation and electrodynamics. 

First, the gravitoelectric field g is similar to the static Newtonian gravitational field 
in its effects, but its field equation (33b) differs from the static Poisson equation. While 
the potential ψ obeys the Newtonian Poisson equation (33a), its time derivative enters 
the equations of motion for both g and for particle momenta. Why? Note first that 
we’ve regarded φ as the more natural generalization of the Newtonian potential because 
it gives the deflection for slowly-moving particles; the terms with ψ in equation (36) 
all vanish when vi = 0. Under what conditions then do we have φ = ψ and why does 
equation (33b) differ from the Newtonian Poisson equation? 

The answers lie in source motion and causality. If the sources are static (or their 
motion is negligible), ∂tψ = 0 from equation (33a). The first of equations (35) shows 
that if the shear stress is small (compared with T00), then φ ≈ ψ (up to solutions of 
∂i∂j (φ −ψ) = 0). Small stresses imply slow motions, so we deduce that the gravitational 
effects are describable by static gravitational fields in the Newtonian limit. Thus, one 
cannot argue that the Einstein equations violate causality because ψ is the solution of 
a static elliptic equation. The gravitational effects on slowly moving particles come not 
from ψ but from g, whose source depends on the ∂2ψ as well as on the pressure. t 

It is instructive to compare the field equations for g and H with the Maxwell equations 
for E and B: 

E = 4πρc , �× E + ∂tB = 0 ,� ·
B = 0 , �×B − ∂tE = 4πJ (38)c� ·

were Jµ = (ρc, Jc) is the four-current density. By comparison, g and H obey 

� · g − 3∂t 
2ψ = −4πG(T00 + T ii) , �× g + ∂tH = 0 , 

H = 0 , �×H = −16πGf . (39)� · ⊥ 

How do we interpret these? 
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Gauss’ law for the gravitoelectric field differs from its electrostatic counterpart be­
cause of the time-dependence of ψ and the inclusion of spatial stress as as source. (The 
electromagnetic source, being a vector rather than a tensor, has no such possibility.) 
We already noted that the ∂2ψ term is needed to ensure causality. (The proof of this t 

is somewhat detailed, requiring a transformation to the Lorentz gauge where all metric 
components obey wave equations.) 

The source-free equations, of both electrodynamics and gravitodynamics ensure that 
magnetic field lines have no ends. Faraday’s law of induction ∂tB + �×E = 0 (and its 
gravitational counterpart) ensures � ·B = 0 persists when the current sources evolve in 
Ampere’s law. 

So far gravitation and electrodynamics appear similar. However, Ampere’s law reveals 
a fundamental difference between the two theories. There is no gravitational displacement 
current. The gravitomagnetic field does not obey a causal evolution equation � it is 
determined by the instantaneous energy current. Moreover, it is not the whole current 
f = T 0i�ei that appears as its source but rather only the transverse current. (The 
longitudinal current would be incompatible with the transverse field �×H.) 

Recall that the Maxwell equations enforce charge conservation through the time 
derivative of Gauss’ law combined with the divergence of Ampere’s law. Gravitation is 
completely different: ∂µT µ0 = 0 is enforced by equations (33a) and (34a), which are not 
even present in our gravitational �Maxwell� equations. So gravitation doesn’t need a 
displacement current to enforce energy conservation. However, the displacement current 
plays another fundamental role in electromagnetism, which was recognized by Maxwell 
before there was any experimental evidence for this term: it leads to wave equations for 
the electromagnetic fields. 

s

The conclusion is inescapable � g and H do not obey causal wave equations. This 
does not mean GR violates causality, because one must include the effects of ψ and sij 
on any particle motion (eq. 36). This is left as an extended exercise for the reader. 
However, it is worth noting that one cannot simply deduce causality from the fact that 
ij evolves according to a causal wave equation (eq. 33d). The source for sij is the 
transverse-traceless stress, which extends over all space even if T µν = 0 outside a finite 
region. (This gives rise to �near-field� contributions from gravitational radiation sources 
similar to the near-field electromagnetic fields of radiating charges.) 

So far we have discussed the physics of g and H in detail but there are some aspects 
of the spatial metric perturbation fields ψ and sij remaining to be discussed. Starting 
with equation (36), we see that ψ plays two roles. The first was discussed in the notes 
Hamiltonian Dynamics of Particle Motion: ψ doubles the deflection of light (or any 
particle with v = 1). Its effect on the proper 3-momentum is to produce a transverse 
force −Ev2 ψ. However, a time-varying potential also changes the proper energy of a �⊥
particle through the longitudinal force Ev(∂tψ) = p∂tψ. This effect is not the same as a 
time-varying gravitational (or electric) field; the Lorentz force law contains no such term 
as p∂tφ. It is purely a relativistic effect arising from the tensorial nature of gravity. 

14




Finally, the best-known relativistic phenomenon of gravity is gravitational radiation, 
described (in transverse gauge) by the transverse-traceless potential sij . One could de­
duce the whole set of linearized Einstein equations by starting from the premise that 
gravitational radiation should be represented by a traceless two-index tensor (physically 
representing a spin-two field) and, because static gravitational fields are long-ranged, 
the graviton must be massless hence gravitational radiation must be transverse. (These 
statements will not be proven; doing so requires some background in field theory.) All 
the other gravitational fields may be regarded as auxiliary potentials needed to enforce 
gauge-invariance (local stress-energy conservation). In a similar way, Maxwell’s equa­
tions may be built up starting from the premise that the transverse vector potential A⊥
obeys a wave equation with source given by the transverse current. 

Gravitational radiation affects particle motion in three ways. The first two are ap­
parent in equation (36). Noting that vlΩk appears in the equation of motion the same l 

way as the gravitomagetic field H, we conclude that gravitational radiation contributes 
a force perpendicular to the velocity. However, that force is quadratic rather than linear 
in the velocity (for a given energy). Second, gravitational radiation contributes a term 
to the force that is linear in the velocity but dependent on the time derivative: −vj ∂tsij . 

Both of these effects appear only in motion relative to the coordinate system. Be­
cause gravitational radiation produces no �force� on particles at rest in the coordinates, 
particles at rest remain at rest. The Christoffel symbol Γi receives no contribution 00 

from hij . 
Does this mean that gravitational radiation has no effect on static particles? No � 

it means instead that gravitational radiation cannot be understood as a force in flat 
spacetime; it is fundamentally a wave of space curvature. One cannot deduce its effects 
from the coordinates alone; one must also use the metric. The proper spatial separa­
tion between two events (e.g. points on two particle worldlines) with small coordinate 

i iseparation Δxi = (Δx)n is (gij ΔxiΔxj )1/2 = (Δx)(1 + sij n nj ). (Note that Schutz and 
most other references used hij = 1 sij .) We see that sij is the true strain � the change 

2 
in distance divided by distance due to a passing gravitational wave. This strain effect, 
and not the velocity-dependent forces appearing in equation (36), is what is being sought 
by LIGO and other gravitational radiation detectors. The velocity-dependent forces do 
make a potentially detectable signature in the cosmic microwave background anisotropy, 
however, which provides a way to search for very long wavelength gravitational radiation. 

Residual Gauge Freedom: Accelerating, Rotating, 
and Inertial Frames 

Before concluding our discussion of linear theory, it is worthwhile examining equations 
(24) and (26) to deduce the gauge freedom remaining after we impose the transverse 
gauge conditions (23) and (25). Doing so will help to clarify the differences between 
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gravity, acceleration, and rotation. 
The gauge conditions are unaffected by linear transformations of the spatial coordi­

nates, which are homogeneous solutions of equations (24) and (26): 

0 iξ0 = a (t) + bi(t)x i , ξi = a (t) + c(ij) + c[ij](t) x
j , c(ij) = constant . (40) 

x

Equations (24) and (26) also have quadratic solutions in the spatial coordinates, but these 
are excluded because gauge transformations require that the coordinate transformation 
µ → yµ = xµ − ξµ be one-to-one and invertible. (The symmetric tensor cij must be 

constant because otherwise ξ0 would have a contribution 1 �
2 cij x

ixj .) 
The various terms in equation (40) have straightforward physical interpretations: 

a0(t) represents a global redefinition of the time coordinate t → t−a0(t), bi(t) is a velocity 
which tilts the t-axis as in an infinitesimal Lorentz transformation (t� = t − vx), dai/dt 
is the other half of the Lorentz transformation (e.g. x� = x − vt), c(ij) represents a static 
stretching of the spatial coordinates, and c[ij] is a spatial rotation of the coordinates 
about the axis �ijk cjk . 

Notice that the class of coordinate transformations allowed under a gauge transfor­
mation is broader than the Lorentz transformations of special relativity. Transformations 
to accelerating (d2ai/dt2) and rotating (dc[ij]/dt) frames occur naturally because the for­
mulation of general relativity is covariant. That is, the equations of motion have the 
same form in any coordinate system. (However, the assumption hµν | � 1 greatly limits |
the coordinates allowed in linear theory.) 

Using equations (22) and (40), the changes in the fields are 

1 
δg = −ä + �ω × r , δH = −2 ω , δψ =

1 
c kk , δsij = c(ij) − δij c 

k
k (41)− 

3 3 

where r ≡ xi�ei is the �radius vector� (which has the same meaning here as in special 
relativity) and the angular velocity ωi is defined through 

dc[ij] ≡ �ijkω
k . (42)

dt 

The spatial curvature force terms in equation (36) are invariant because the residual 
gauge freedom of transverse gauge in equation (41) allows only for constant spatial 
deformations (i.e., time-independent δhij ). Gravitational radiation is necessarily time-
dependent, so it is completely fixed by the transverse-traceless gauge condition equation 
(23). The spatial curvature potential ψ is arbitrary up to the addition of a constant. 
Thus, only the gravitoelectric and gravitomagnetic fields have physically relevant gauge 
freedom after the imposition of the transverse gauge conditions. 

Note that equations (41) leave the Einstein equations (33)�(34) and (39) invariant. 
The Riemann, Ricci and Einstein tensors are gauge-invariant for a weakly perturbed 
Minkowski spacetime. 
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However, the gravitational force equation (36) is not gauge-invariant. Under the 
gauge transformation of equations (40) and (41) it acquires additional terms: 

dp � � 
δ = E δg + v × δH = E (−ä + �ω × r + 2ω × v) . (43)

dt 

The reader will recognize these terms as exactly the fictitious forces arising from ac­
celeration and rotation relative to an inertial frame. The famous Coriolis acceleration 
is 2ω × v. (The centrifugal force term is absent because it is quadratic in the angular 
velocity and it vanishes in linear theory.) 

The Weak Equivalence Principle is explicit in equation (43): acceleration is equivalent 
to a uniform gravitational (gravitoelectric) field g. Moreover, we have also discovered 
that rotation is equivalent to a uniform gravitomagnetic field H. Uniform fields are 
special because they can be transformed away while remaining in transverse gauge. 

The observant reader may have noticed the word �inertial� used above and wondered 
about its meaning and relevance here. Doesn’t GR single out no preferred frames? That 
is absolutely correct; GR distinguishes no preferred frames. However, we singled out a 
class of frames (i.e. coordinates) by imposing the transverse gauge conditions (23) and 
(25). Transverse gauge provides the relativistic notion of inertial frames. This 
is not just one frame but a class of frames because equation (36) is invariant under (small 
constant velocity) Lorentz transformations: bi and dai/dt are absent from equation (43). 
Thus, the Galilean-invariance of Newton’s laws is extended to the Lorentz-invariance 
of the relativistic force law in transverse gauge. However, the gravitational force now 
includes magnetic and other terms not present in Newton’s laws. 

Although the gravitational force equation is not invariant, it is covariant. Fictitious 
forces are automatically incorporated into existing terms (g and H); the form of equa­
tion (36) is invariant even though the values of each term are not. This points out a 
profound fact of gravity in general relativity: nothing in the equations of motion 
distinguishes gravity from a fictitious force. 

Indeed, the curved spacetime perspective regards gravitation entirely as a fictitious 
force. Nonetheless, we can, by imposing the transverse gauge (or other gauge) conditions, 
make our own separation between physical and fictitious forces. (Here I must note the 
caveat that transverse gauge has not been extended to strong gravitational fields so I 
don’t know whether all the conclusions obtained here are restricted to weak gravitational 
fields.) Uniform gravitoelectric or gravitomagnetic fields can always be transformed away, 
hence they may be regarded as being due to acceleration or rotation rather than gravity. 
Spatially varying gravitoelectric and gravitomagnetic fields cannot be transformed away. 
They can only be caused by the stress-energy tensor and they are not coordinate artifacts. 

This separation between gravity and fictitious forces is somewhat unnatural in GR 
(and it requires a tremendous amount of preparation!), but it is helpful for building 
intuition by relating GR to Newtonian physics. 
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This discussion also sheds light on GR’s connection to Mach’s principle, which states 
that inertial frames are determined by the rest frame of distant matter in the universe 
(the �fixed stars�). This is not strictly true in GR. Non-rotating inertial frames would 
be ones in which H = 0 everywhere. Locally, any nonzero H can be transformed away 
by a suitable rotation, but the rotation rates may be different at different places in which 
case there can exist no coordinate system in which H = 0 everywhere. (In this case the 
coordinate lines would quickly tangle, cross and become unusable.) Transverse energy 
currents, due for example to rotating masses, produce gravitomagnetic fields that cannot 
be transformed away. (See the gravitational Ampere’s law in eqs. 39.) However, the 
gravitomagnetic fields may be very small, in which case there do exist special frames in 
which H ≈ 0 and there are no Coriolis terms in the force law. 

We happen to live in a universe with small transverse energy currents: the distant 
matter is not rotating. (Sensitive limits are placed by the isotropy of the cosmic mi­
crowave background radiation.) Thus, due good fortune, Mach was partly correct. How­
ever, were he to stand close to a rapidly rotating black hole, and remain fixed relative to 
the distant stars, he would get dizzy from the gravitomagnetic field. (He would literally 
feel like he was spinning.) Thus, Mach’s principle is not built into GR but rather is a 
consequence of the fact that we live in a non-rotating (or very slowly rotating) universe. 
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Introduction 

The deflection of light by massive bodies is an old problem having few pedagogical treat­
ments. The full machinery of general relativity seems like a sledge hammer when applied 
to weak gravitational fields. On the other hand, photons are relativistic particles and 
their propagation over cosmological distances demands more than Newtonian dynamics. 
In fact, for weak gravitational fields or for small perturbations of a simple cosmologi­
cal model, it is possible to discuss gravitational lensing in a weak-field limit similar to 
Newtonian dynamics, albeit with light being deflected twice as much by gravity as a 
nonrelativistic particle. 

The most common formalism for deriving the equations of gravitational lensing is 
based on Fermat’s principle: light follows paths that minimize the time of arrival (Schei­
der et al. 1992). As we will show, light is deflected by weak static gravitational fields as 
though it travels in a medium with variable index of refraction n = 1 − 2φ where φ is 
the dimensionless gravitational potential. 

With the framework of Hamiltonian dynamics given in the notes Hamiltonian Dy­
namics of Particle Motion, here we present a synopsis of the theory of gravitational 
lensing. The Hamiltonian formulation begins with general relativity and makes clear 
the approximations which are made at each step. It allows us to derive Fermat’s least 
time principle in a weak gravitational field and to calculate the relative time delay when 
lensing produces multiple images. It is easily applied to lensing in cosmology, including 
a correct treatment of the inhomogeneity along the line of sight, by taking advantage of 
the standard formalism for perturbed cosmological models. 

Portions of these notes are based on a chapter in the PhD thesis of Barkana (1997). 
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2 Hamiltonian Dynamics of Light 

Starting from the notes Hamiltonian Dynamics of Particle Motion (Bertschinger 1999), 
we recall that geodesic motion of a particle of mass m in a metric gµν is equivalent to 
Hamiltonian motion in 3 + 1 spacetime with Hamiltonian 

0i g pi
H(pi, x

j , t) = −p0 = 
g pi 

+
(gij pipj + m2)

+ 

� 
0i

�2 
�1/2 

. (1) 
g00 −g00 g00 

2This Hamiltonian is obtained by solving gµν pµpν = −m for p0. The spacetime coor­
dinates xµ = (t, xi) are arbitrary aside from the requirement that g00 < 0 so that t is 
timelike and is therefore a good parameter for timelike and null curves. The canonical 
momenta are the spatial components of the 4-momentum one-form pµ. The inverse met­
ric components gµν are, in general, functions of xi and t. With this Hamiltonian, the 
exact spacetime geodesics are given by the solutions of Hamilton’s equations 

dxi ∂H dpi ∂H 
= = . (2)

dt ∂pi 
, 

dt 
− 
∂xi 

Our next step is to determine the Hamiltonian for the problem at hand, which requires 
specifying a metric. Because we haven’t yet derived the Einstein field equations, all we 
can do is to pick an ad hoc metric. In order to obtain useful results, we will choose 
a physical metric representing a realistic cosmological model, an expanding Big Bang 
cosmology (a Robertson-Walker spacetime) superposed with small-amplitude spacetime 
curvature fluctuations arising from spatial variations in the matter density. For now, the 
reader will have to accept the exact form of the metric without proof. 

The line element for our metric is 

2ds2 = a (t) −(1 + 2φ)dt2 + (1 − 2φ)γij dx
idxj . (3) 

In the literature, t is called �conformal� time and xi are �comoving� spatial coordinates. 
The cosmic expansion scale factor is a(t) and is related to the redshift of light emitted 
at time t by a(t) = 1/(1 + z). To get the non-cosmological limit (weak gravitational 
fields in Minkowski spacetime), one simply sets a = 1. The Newtonian gravitational 
potential φ(xi, t) obeys (to a good approximation) the Poisson equation. (In cosmology, 
the source for φ is not ρ but rather ρ − ρ̄ where ρ̄ is the mean mass density; we will show 
this in more detail later in the course.) We assume |φ| � 1 which is consistent with 
cosmological observations implying φ ∼ 10−5 . 

In equation (3) we write γij (xk ) as the 3-metric of spatial hypersurfaces in the unper­
turbed Robertson-Walker space. For a flat space (the most popular model with theorists, 
and consistent with observations to date), we could adopt Cartesian coordinates for 
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which γij = δij . However, to allow for easy generalization to nonflat spaces as well as 
non-Cartesian coordinates in flat space we shall leave γij unspecified for the moment. 

Substituting the metric implied by equation (3) into equation (1) with m = 0 yields 
the Hamiltonian for a photon: 

H(pi, x
j , t) = p(1 + 2φ) , p ≡ 

� 
γij pipj 

�1/2 
. (4) 

g

We have neglected all terms of higher order than linear in φ. Not surprisingly, in a 
perturbed spacetime the Hamiltonian equals the momentum plus a small correction for 
gravity. However, it differs from the proper energy measured by a stationary observer, 
E = −V µpµ, because the 4-velocity of such an observer is V µ = (a(1 − φ), 0, 0, 0) (since 
µν V µV ν = −1) so that E = a−1p(1 + φ). The latter expression is easy to understand 
because a−1 converts comoving to proper energy (the cosmological redshift) and in the 
Newtonian limit φ is the gravitational energy per unit mass (energy). 

Why is the Hamiltonian not equal to the energy? The answer is because it is conjugate 
to the time coordinate t which does not measure proper time. The job of the Hamiltonian 
is to provide the equations of motion and not to equal the energy. The factor of 2 in 
equation (4) is important � it is responsible for the fact that light is deflected twice as 
much as nonrelativistic particles in a gravitational field. 

To first order in φ, Hamilton’s equations applied to equation (4) yield 

dxi
i dpi i 

dt 
= n (1 + 2φ) , 

dt 
= −2p�iφ + γk

ij pk n
j (1 + 2φ) , n ≡ 

γij 

p

pj 
. (5) 

We will drop terms O(φ2) throughout. We have defined a unit three-vector ni in the 
photon’s direction of motion (normalized so that γij ninj = 1). The symbol γk

ij = 
1 γkl(∂iγjl + ∂j γil − ∂lγij ) is a connection coefficient for the spatial metric that vanishes 
2 
if we are in flat space and use Cartesian coordinates. Beware that �i is the covariant 
derivative with respect to the 3-metric γij and not the covariant derivative with respect 
to γµν , although there is no difference for a spatial scalar field: �iφ = ∂iφ. 

Note that the cosmological expansion factor has dropped out of equations (5). These 
equations are identical to what would be obtained for the deflection of light in a perturbed 
Minkowski spacetime. The reason for this is that the metric of equation (3) differs from 
the non-cosmological one solely by the factor a2(t) multiplying every term. This is called 
a conformal factor because it leaves angles invariant. In particular, it leaves null cones 
invariant, and therefore is absent from the equations of motion for massless particles. 

In the following sections we shall represent three-vectors (and two-vectors) in the 
3-space with metric γij using arrows above the symbol. To lowest order in φ, we may 
interpret these formulae as giving the deflection of light in an unperturbed spacetime 
due to gravitational forces, just as in Newtonian mechanics. The difference is that our 
results are fully consistent with general relativity. 
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3 Fermat’s Principle 

When ∂tφ = 0, the Hamiltonian (eq. 4) is conserved along phase space trajectories and 
the equations of motion follow from an alternative variational principle, Maupertuis’ 
principle (Bertschinger 1999). Maupertuis’ principle states that if ∂H(pi, qj , t)/∂t = 0, 
then the solution trajectories of the full Hamiltonian evolution are given by extrema of 
the reduced action pi dq

i with fixed endpoints. This occurs because 

pi dq
i − H dt = pi dq

i − d(Ht) + t dH . (6) 

The Ht term, being a total derivative, vanishes for variations with fixed endpoints. The 
t dH term vanishes for trajectories that satisfy energy conservation, and we already know 
(from the Hamilton’s equations of the full action) that only such trajectories need be 
considered when ∂H/∂t = 0. Thus, the condition δ pi dq

i = 0, when supplemented by 
conservation of H, is equivalent to the original action principle. 

Expressing pi in terms of dxi/dt using Hamilton’s equations (5) in the full phase space 
for the Hamiltonian of equation (4), the reduced action becomes 

pi dx
i = pγij n

j dxi = H(1 − 2φ)γij n i dxj = H dt . (7) 

Using H = constant ≡ h, Mauptertuis’ principle yields Fermat’s principle of least time, 
� � � �1/2

dxi dxj 

δ dt = δ [1 − 2φ(x)] γij ds = 0 (8)
ds ds 

for light paths parameterized by s. We leave it as an exercise for the reader to show, 
using the Euler-Lagrange equations, that if s measures path length, equation (8) yields 
equations (5) exactly (to lowest order in φ) when ∂tφ = 0. In comparing with equation 
(5), one must be careful to note that there the trajectory is parameterized by dt = 
(1 − 2φ)ds so that �n = d�x/ds is a unit vector. 

Thus, for a static potential φ (even in a non-static cosmological model with expansion 
factor a(t)), light travels along paths that minimize travel time but not path length 
(as measured by the spatial metric γij ). The null geodesics behave as though traveling 
through a medium with index of refraction 1 − 2φ. To minimize travel time, light rays 
will tend to avoid regions of negative φ; therefore light will be deflected around massive 
bodies. 

Fermat’s principle is exact for gravitational lensing only with static potentials. In 
most astrophysical applications, the potentials are sufficiently relaxed so that ∂tφ may 
be neglected relative to ni�iφ and Fermat’s principle still applies. The one notable ex­
ception is microlensing, where the lensing is caused by stars (or other condensed objects) 
moving across the line of sight. In this case, one may still apply Fermat’s principle after 
boosting to the rest frame of the lens. 
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4 Reduction to the Image Plane 

In equation (8), the action is invariant under an arbitrary change of parameter, s s�(s)→
with ds�/ds > 0. This is not a physical symmetry of the dynamics, and as a consequence 
we may eliminate a degree of freedom by using one of the coordinates to parameterize 
the trajectories. A similar procedure was used to eliminate t in going from equation (6) 
to equation (8). Here, as there, the Lagrangian is independent of the time parameter, 
enabling a reduction of order. However, for reasons that will soon become clear, this 
reduction cannot be done using the reduced action (Maupertuis’ principle) but instead 
follows from reparameterization of the Lagrangian. 

To clarify the steps, we start with 
� 

dxi dxj �1/2 
iL3(x , dxj /ds) = [1 − 2φ(x)] γij (9)

ds ds 

for the Lagrangian in the three-dimensional configuration space (eq. 8). Because the 
Lagrangian does not depend explicitly on s, the Hamiltonian is conserved and we may 
attempt to reduce the order as in the previous section. The first step is to construct the 
Hamiltonian. Under a Legendre transformation, L3 → H3(pi, xj , s) = pi(dxi/ds) − L3 

iwhere pi = ∂L3/∂(dx
i/ds) is the momentum conjugate to x . But we quickly run into 

trouble: as the reader may easily show, H3 vanishes identically. 
What causes this horror? The answer is that L3 is homogeneous of first degree in 

the coordinate velocity dxi/ds, which is equivalent to the statement that the action of 
equation (8) is invariant under reparameterization. Physically, the Hamiltonian vanishes 
because of the extra symmetry of the Lagrangian, which is unrelated to the dynamics. 
The physical Hamiltonian should include only the physical degrees of freedom, so we 
must eliminate the reparameterization-invariance if we are to use Hamiltonian methods. 

This is done very simply by rewriting the action (eq. 8) using one of the coordinates 
as the parameter. The radial distance from the observer is a good choice: for small 
deflections of rays traveling nearly in the radial direction toward the observer, r will be 
single-valued along a trajectory. 

To fix the parameterization we must write the spatial line element in a Robertson-
Walker space in terms of r and two angular coordinates: 

dl2 ≡ γij dx
idxj = dr2 + R2(r)γab(ξ)dξ

adξb . (10) 

Here 1 ≤ a, b ≤ 2 and γab is the metric of a unit 2-sphere. The coordinates ξa are angles 
and are dimensionless. Note that r measures radial distance (γrr = 1) and R(r) measures 
angular distance. We will not give the exact form of R(r) here except to note that for 
a flat space, R(r) = r. In the standard spherical coordinates, γθθ = 1 and γφφ = sin2 θ. 
We will leave the coordinates in the sphere arbitrary for the moment, and use γab and 
its inverse γab to lower and raise indices of two-vectors and one-forms in the sphere. 
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Our action, equation (8), is the total elapsed light-travel time t (using our original 
spacetime coordinates, eq. 3). The reparameterization means that now we express the 
action as a functional of the two-dimensional trajectory ξa(r): 

� rS 
� �1/2

dxa dxb 

t[ξa(r)] = [1 − 2φ(ξ, r)] 1 + R2(r)γab dr . (11)
dr dr0 

This action is to be varied subject δξa = 0 at r = 0 (the observer) and r = rS (the 
source). 

In writing equation (11), we have neglected ∂φ/∂t and we have neglected terms O(φ2) 
(weak-field approximation). As we will see, the angular term inside the Lagrangian is 
small when the potential is small, and therefore we can expand the square root, dropping 
all but the lowest-order terms. To the same order of approximation, we may neglect 
the curvature of the unit sphere, and set γab = δab. (We can always orient spherical 
coordinates so that γab = δab plus second-order corrections in ξ.) These approxima­
tions together constitute the small-angle approximation. In practice it is well satisfied; 
observed angular deflections of astrophysical lenses are much less than 10−3 . 

With the weak-field and small-angle approximations, the action becomes 

� rS 
� � 

dξb 1 dξa dξb 

t[ξa(r)] = rS + L2 dr , L2 ξa , , r = R2(r)δab 
dr dr 

− 2φ(ξa , r) . (12)
dr 20 

Note that the Lagrangian now depends on the �time� parameter, so we have eliminated 
the parameterization-invariance. 

To get a Hamiltonian system, we make the Legendre transformation of the Lagrangian 
L2. The conjugate momentum is pa = R2(r)δabdξ

b/dr. The Hamiltonian becomes 

2 

H(pa, ξ
b , r) = 

2R

p
2(r) 

+ 2φ(�ξ, r) . (13) 

On account of the small-angle approximation, �
≡ δab

p and ξ� are two-dimensional vectors in 
Euclidean space (p2 papb). Noting that r plays the role of time, this Hamiltonian 
represents two-dimensional motion with a time-varying mass R2(r) and a time-dependent 
potential 2φ. 

With the Hamiltonian of equation (13), Hamilton’s equations give 

dξ� p p� d� ∂φ 
dr 

= 
R2(r) 

, 
dr 

= −2 
∂ξ�

. (14) 

These equations and the action may be integrated subject to the �initial� conditions 
ξ = ξ0, �p = 0 and t = t0 at the observer, r = 0: 
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� r2 
ξ�(r) = ξ�0 − 

R(r) 
R(r − r�) ∂φ 

(ξ�(r�), r�) dr� 
R(r�) ∂ξ�0

� r ∂φ 
p(r) = −2 (ξ�(r�), r�) dr� (15) 

0 ∂ξ�
� r � 

p2(r�)
t(r) = t0 − r − 

R2(r ) 
− 2φ(ξ�(r�), r�) dr� . 

0 
�

Note that here t is the coordinate time along the past light cone; the elapsed time (the 
action) is t0 − t. The two terms in the time delay integral arise from geometric path 
length (the p2 term) and gravity. Half of the gravitational potential part comes from the 
slowing down of clocks in a gravitational field (gravitational redshift) and the other half 
comes from the extra proper distance caused by the gravitational distortion of space. 

Equations (15) provide only a formal solution, since φ is evaluated on the unknown 
path ξ�(r�). The reader may verify the solution by inserting into equations (14). One 
needs the following identity for the angular distance in a Robertson-Walker space, which 
we present without proof: 

� 
∂ R(r − r�)

= 
1 

. (16)
∂r R(r)R(r�) R2(r) 

It is easy to verify this for the flat case R(r) = r. 
When the potential varies with time, we cannot use Fermat’s principle or the further 

reduction achieved in this section. Instead, one has to integrate the original equations of 
motion (5). It can be shown (Barkana 1997) that, under the small-angle approximation, 
these equations also have the formal solution given by equation (15), with the single 
change that φ also becomes a function of t and that t must be evaluated along the 
trajectory: φ(ξ�(r�), r�, t(r�)). Thus, we obtain the physical result that the potential is to 
be evaluated along the backward light cone. 

Astrophysical Gravitational Lensing 

The astrophysical application of gravitational lensing is based on the following consid­
erations. Given an observed image position ξ�0, we wish to deduce the source position 
ξS ≡ ξ�(rS ) using equation (15) to relate ξ�(rS ) to ξ�0. The result is a mapping from the 
image plane ξ�0 to the source plane ξ�S ). This mapping is called the lens equation. 

By integrating the deflection ξ�S − ξ�0 for a given distribution of mass (hence potential) 
along the line of sight from the observer, and for a given cosmological model (hence 
angular distance R(r)), one can compute the source plane positions for the observed 
images. 
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In practice, we wish to solve the inverse problem, namely to deduce properties of the 
mass and spatial geometry along the line of sight from observed lens systems. How can 
this be done if we know only the image positions but not the source positions? 

There are several methods that can be used to deduce astrophysical information from 
gravitational lenses (Blandford and Narayan 1992). First, the lens mapping ξ�S(ξ�0) can 
become multivalued so that a given source produces multiple images. In this case, the 
images provide constraints on lensing potential and geometry because all the ray paths 
must coincide in the source plane. This method can strongly constrain the mass of a 
lens, especially when the symmetry is high so that an Einstein ring or arc is produced. 

Another method uses information from t(r). If the source is time-varying and pro­
duces multiple images, then each image must undergo the same time variation, offset 
by the t − t0 + r integral in equation (15). Because this method involves measurement 
of a physical length scale (the time delay between images, multiplied by the speed of 
light), it offers the prospect of measuring cosmological distances in physical units, from 
which one can determine the Hubble constant. This is a favorite technique with MIT 
astrophysicists. 

Another way to get a timescale occurs if the lens moves across the line of sight, in the 
phenomenon called microlensing. Gravitational lensing magnifies the image according 
to the determinant of the (inverse) magnification matrix


a
S∂ξ

∂ξb 
0 
. If the angular position


of the lens is close to ξS so that the rays pass close to the lens, the magnification can 
be substantial (e.g. a factor of ten). A lens moving transverse to the line of sight will 
therefore cause a systematic increase, then decrease, of the total flux from a source. From 
a statistical analysis of the event rates, magnifications and durations, it is possible to 
deduce some of the properties of a class of lensing objects, such as dim stars (or stellar 
remnants) in the halo surrounding our galaxy (more colorfully known as MACHOs for 
�MAssive Compact Halo Objects�). 

A fourth method, called weak lensing, uses statistical information about image dis­
tortions for the case where the deflections are not large enough to produce multiple 
images, but are large enough to produce detectable distortion. This method can provide 
statistical information about the lensing potential. It is a favorite method for trying to 
deduce the spectrum of dark matter density fluctuations. 

There are many other applications of gravitational lensing. The study and observation 
of gravitationl lenses is one of the major areas of current research in astronomy. 

Thin Lens Approximation 

Our derivation of the lens equations (15) made the following, well-justified approxi­
mations: the spacetime is a weakly perturbed Roberston-Walker model with small-
amplitude curvature fluctuations (φ2 � 1), the perturbing mass distribution is slowly­
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evolving (∂tφ neglected), and the angular deflections are small ( ξS − ξ�0 ∼ φ < 10−3). 
Nearly all calculations of lensing are made with an additional approximation, the 

thin-lens approximation. This approximation supposes that the image deflection occurs 
in a small range of distance δr about r = rL. In this case, the first of equations (15) 
gives the thin lens equation 

∂φ 
(�

dr� 

R
ξ�S = ξ0 − 

RLS 
�γ(ξ�0, RL) , �γ(ξ, R) = 2 ξ, r�) , (17) 

S ∂ξ� R 

where RS ≡ R(rS ), RL ≡ R(rL) and RLS ≡ R(rS − rL). The deflection angle �γ = 
−2 �g dr where �g = − � = −(1/R)∂φ/∂ξ� is the Newtonian gravity vector (up to �⊥φ 
factors of a from the cosmology). 

Let us estimate the deflection angle γ for a source directly behind a Newtonian point 
mass with g = GM/r2 (here r is the proper distance from the point mass to a point 
on the light ray). The impact parameter in the thin-lens approximation is b = ξ0RL. 
Because the deflection is small, the path is nearly a straight line past the lens, and the 
integral of g along the path gives, crudely, 2bg(b) = 2GM/b = 2GM/(ξ0RL). (The factor 
of two is chosen so that this is, in fact, the exact result of a careful calculation.) With 
the source lying directly behind the lens, ξS = 0. 

Substituting this deflection into the thin lens equation (17) gives 

RLS 4GM 
0 = ξ0 − . (18)

RLRS ξ0 

Vectors are suppressed because this lens equation holds at all positions around a ring of 
radius ξ0 = |ξ�0 in the image plane. An image directly behind a point mass produces an |
Einstein ring. Solving for ξ0 gives the Einstein ring radius: 

� �1/2
4GMRLS

ξ0 = 
RLRS c2 

.	 (19) 
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