Path ①:
$$\int_{(0,0)}^{(x_{1},y_{1})} \frac{E \cdot ds}{s} = \int_{0}^{x_{1}} E_{x}(x,0) dx + \int_{0}^{y_{1}} E_{y}(x,y) dy \quad (0,y_{1}) dy$$

$$= 0 + \int_{0}^{y_{1}} (3x_{1}^{2} - 3y^{2}) dy = 3x_{1}^{2} y_{1} - y_{1}^{3}$$
Path ②:
$$\int_{0,0}^{x_{1},y_{1}} \frac{E \cdot ds}{s} = \int_{0}^{y_{1}} E_{y}(0,y) dy + \int_{0}^{x_{1}} E_{x}(x,y_{1}) dx$$

$$= \int_{0}^{y_{1}} -3y^{2} dy + \int_{0}^{x_{1}} 6xy_{1} dx = -y_{1}^{3} + 3x_{1}^{2} y_{1}$$

The electric potential 9, if taken as zero at (0,0), is just the negative of this, since we define 9 by $-\int \mathbb{E} \cdot d\mathbf{x}$, or $\mathbb{E} = -\nabla 9$. That is, $9 = y^3 - 3x^2y$

Solve by iteration: We know y must be >1, 50 let's start with y=2 on the right. After 6 iterations we converge to y=1.6207... with no further change in the 5^{th} figure.

This is the potential of a spherical charge distribution, more briefly described by $\varphi = r^2 \text{ for } r \leqslant a ; \quad \varphi = -a^2 + 2a^3/r \text{ for } r > a.$ For $r = (x^2 + y^2 + z^2)^{1/2} < a$, $\nabla^2 \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2}$ $= 2 + 2 + 2 = 6. \quad \text{Using } \nabla^2 \varphi = -4\pi P, \text{ we find } P = -3/2\pi \text{ for } r \leqslant a.$ [In spherical polar coordinates $\nabla^2 \varphi = \frac{1}{r} \frac{d}{dr} r \frac{d\varphi}{dr} \text{ when } \varphi \text{ is a function of } r \text{ only. This }$ gives the same answer.] Outside the sphere of uniform charge density P is zero, as we find by computing $\nabla^2 (1/r), \text{ or just by recognizing } 2a^3/r \text{ as the }$ potential of point charge $2a^3$ at the origin. The electric field E_r at radius $r \leqslant a$ is that of a charge $(4\pi/3) r^3 P \text{ divided by } r^2 : E_r = (4\pi/3) Pr = -2r, r \leqslant a.$ This tells us there is a surface charge σ on the

sphere: $4\pi\sigma = 2a - (-2a)$. $\sigma = a/\pi$. The total

surface charge is $4\pi a^2 \sigma$, or $4a^3$. This is positive

and twice as large as the negative charge -2a3 distributed through the interior of the sphere. Thus

the external

field of the

sphere as a whole

is that of a positive

charge 2a3.

2.5 Assume the diameter is about 1 foot, 30 cm. 1000 volts is 3.3 statvolts. This is Q/r, where r = 15 cm. The charge Q is therefore 15×3.3 or -50 esu. The number of extra electrons per cm² is

$$\frac{50}{4\pi \times 15^2 \times 4.8 \times 10^{-10}} = 3.7 \times 10^7$$

2.6 Earth radius = $6 \times 10^6 \text{m}$; $4\pi\epsilon_0 = 1.11 \times 10^{-10}$

$$E = \frac{Q coulomb}{4\pi\epsilon_{o} r^{2}} \qquad Q = 1 coulomb$$

$$E = 2.5 \times 10^{-4} \text{ volt/m}$$
 $\varphi = 1500 \text{ volts}$

2.7

$$\phi_{\rm C} = -\frac{3}{5} + \frac{2}{7.07} = -0.317$$

$$\phi_{\rm D} = \frac{2}{5} - \frac{3}{7.07} = -0.024$$

$$\int_{C}^{D} \frac{E \cdot ds}{c} = \varphi_{C} - \varphi_{D} = -0.293$$
c stat volts

2.8

(a) Consider a cylinder of unit length, of radius r < a. Charge contained is $\pi r^2 f$. Area of surface is $2\pi r$; flux through surface is $2\pi r E$. Gauss's law says:

$$2\pi r E = 4\pi (\pi r^2 \rho)$$
, from which $E = 2\pi \rho r$.

Considering a cylinder of radius r > a, which contains an amount of charge $\pi a^2 p$, we find

$$2\pi rE = 4\pi (\pi a^2 \beta)$$
, or $E = \frac{2\pi \beta a^2}{r}$

(b) Take Φ = 0 at r = 0:

for
$$r < a$$
, $\varphi = \int_{0}^{r} -2\pi \rho r' dr' = -\pi \rho r^{2}$

for
$$r > a$$
, $\varphi = -\pi \rho a^2 - \int_a^r \frac{2\pi \rho a^2 dr'}{r'} = -\pi \rho a^2 - 2\pi \rho a^2 \ln \frac{r}{a}$

$$0 = 4\sigma a \text{ (see Eq. 24, p.53)}$$

$$0 = 2\pi\sigma \left[\sqrt{y^2 + a^2} - y\right] \text{ (Eq. 20)}$$

$$0 = 0^7 \text{ To locate this point, we must find y}$$

$$0 = 0^7 \text{ Solving for y :}$$

$$\left(\frac{4a}{2\pi} + y\right)^2 = y^2 + a^2$$
 gives $y = a \frac{1 - \left(\frac{4}{2\pi}\right)^2}{\left(\frac{8}{2\pi}\right)} = 0.466a$

2.10
$$P_{1} \quad A+P_{1}: \phi = \int_{-d}^{d} \frac{\lambda dz}{2d-z} = -\lambda \ln(2d-z) \Big]_{-d}^{d}$$

$$dq = \lambda dz \qquad = -\lambda \ln \frac{d}{3d} = \lambda \ln 3$$

$$A+P_{2}: \phi = \int_{-d}^{d} \frac{\lambda dz}{\sqrt{x^{2}+z^{2}}} = \lambda \ln \frac{\sqrt{x^{2}+d^{2}}+d}{\sqrt{x^{2}+d^{2}}-d}$$

$$Setting \quad \frac{\sqrt{x^{2}+d^{2}}+d}{\sqrt{x^{2}+d^{2}}-d} = 3$$

gives
$$x = \sqrt{3} d$$
.

A+
$$(x,z)$$
: $\phi = \int_{-d}^{d} \frac{\lambda dz_1}{\sqrt{x^2 + (z-z_1)^2}}$

$$= \lambda \ln \frac{\sqrt{(-z+d)^2 + x^2} - z + d}{\sqrt{(-z-d)^2 + x^2} - z - d}$$
Now let $\frac{x^2}{a^2 - d^2} + \frac{z^2}{a^2} = 1$ Then
$$x^2 = \frac{(a^2 - z^2)(a^2 - d^2)}{a^2} \text{ and } x^2 + (d-z)^2 = \frac{1}{a^2}(a^2 - zd)^2$$

$$\varphi = \lambda \ln \frac{a^2 - zd + a(d-z)}{a^2 + zd - a(d+z)} = \lambda \ln \frac{a+d}{a-d}$$
. That

is, the value of φ is the same at every point x, z on the ellipse defined by $x^2/(a^2-d^2)+z^2/a^2=1$.

$$\frac{\partial}{\partial x} = \int_{0}^{b} dx \int_{0}^{\frac{xa}{b}} \frac{dy}{\sqrt{x^{2}+y^{2}}}$$

$$= \ln\left(\frac{a}{b} + \sqrt{1+\frac{a^{2}}{b^{2}}}\right)$$

$$\frac{a}{b} + \frac{\sqrt{a^{2}+b^{2}}}{b} = \frac{\sin\theta+1}{\cos\theta}$$

$$\frac{\partial}{\partial x} = \int_{0}^{b} \frac{dy}{\sqrt{x^{2}+y^{2}}}$$

$$\frac{\partial}{\partial x} = \int_{0}^{\frac{xa}{b}} \frac{dy}{\sqrt{x^{2}+y^{2}}}$$

2.13)
$$E_x = 6xy$$
 $E_y = 3x^2 - 3y^2$ $E_z = 0$
(curl E_x) $_x = \frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} = 0$ (curl E_x) $_y = \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} = 0$
(curl E_x) $_z = \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} = 6x - 6x = 0$
div $E_x = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 6y - 6y = 0$

2.14
$$f(x,y) = x^2 + y^2$$
 $\nabla^2 f = 2 + 2 \neq 0$
 $g(x,y) = x^2 - y^2$ $\nabla^2 g = 2 - 2 = 0$
 $\nabla g = 2x \hat{x} - 2y \hat{y}$
 $at(1,0) \nabla g = +2 \hat{x}$
 $at(0,1) \nabla g = +2 \hat{y}$

2.15 (a)
$$\vec{F} = \hat{x}(x+y) + \hat{y}(-x+y) + \hat{z}(-2z)$$

 $\nabla \times \vec{F} = \hat{x}(0+0) + \hat{y}(0+0) + \hat{z}(-1-1) = -2\hat{z}$
 $\nabla \cdot \vec{F} = 1 + 1 - 2 = 0$

(b)
$$G = \hat{x}(2y) + \hat{y}(2x + 3z) + \hat{z}(3y)$$

 $\nabla \times G = \hat{x}(3-3) + \hat{y}(0+0) + \hat{z}(2-2) = 0$
 $\nabla \cdot G = 0 + 0 + 0 = 0$

Since $\nabla \times G = 0$ there exists an f such that $G = \nabla f$. To determine f, χ , compute the line integral of G from a fixed point, say (0,0,0), to a general point $\chi_1, \chi_1, \chi_2, \chi_3$ over any path. Using the path composed of lines ①, ② and ③:

$$G \int_{0}^{(x,y,z_{i})} G \int_{0}^{x_{i}} G_{x}(x,0,0) dx + \int_{0}^{y_{i}} G_{y}(x_{i},y_{i},0) dy + \int_{0}^{z_{i}} G_{z}(x_{i},y_{i},z) dz$$

$$= \int_{0}^{x_{i}} 0 dx + \int_{0}^{y_{i}} 2x_{i} dy + \int_{0}^{z_{i}} 3y_{i} dz = 2x_{i}y_{i} + 3y_{i}z_{i} = f$$

 x_1, y_1, z_1 was a general point, so we can drop the subscripts and write: f = 2xy + 3yz. To check that $\nabla f = G$:

$$\nabla f = 2y\hat{x} + (2x + 3z)\hat{y} + 3y\hat{z} = G$$

(c)
$$H = \hat{x}(x^2 - z^2) + \hat{y}(2) + \hat{z}(2xz)$$

 $\nabla \times H = x(0+0) + \hat{y}(-2z - 2z) + \hat{z}(0+0) = -4z\hat{y}$
 $\nabla \cdot H = 2x + 0 + 2x = 4x$

2.16 (a)
$$\nabla \cdot (\nabla \times \underline{A}) = \frac{\partial}{\partial x} (\nabla \times \underline{A})_{x} + \frac{\partial}{\partial y} (\nabla \times \underline{A})_{y} + \frac{\partial}{\partial z} (\nabla \times \underline{A})_{z}$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial A_{z}}{\partial y} - \frac{\partial A_{y}}{\partial z} \right) + \frac{\partial}{\partial y} \left(\frac{\partial A_{x}}{\partial z} - \frac{\partial A_{z}}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y} \right)$$

$$= \frac{\partial^{2} A_{z}}{\partial x \partial y} - \frac{\partial^{2} A_{y}}{\partial x \partial z} + \frac{\partial^{2} A_{x}}{\partial y \partial z} - \frac{\partial^{2} A_{z}}{\partial y \partial x} + \frac{\partial^{2} A_{y}}{\partial z \partial x} - \frac{\partial^{2} A_{x}}{\partial z \partial y} = 0,$$
because $\frac{\partial^{2} A_{z}}{\partial x \partial y} = \frac{\partial^{2} A_{z}}{\partial y \partial x}$ for any function A_{z} with continuous derivatives; likewise for A_{x} and A_{y} .

(b) If \underline{A} is any vector field, $\int_{\underline{A}} \cdot d\underline{s} \to 0$ over a curve such as C which consists of <u>adjacent</u> paths running in opposite directions. This path bounds the shaded surface S. Hence, by Stokes' theorem, $\int_{\underline{A}} (\nabla \times \underline{A}) \cdot d\underline{a} = 0$

But the slit is a negligible part of the whole <u>closed</u> surface S', so the

same conclusion must apply to $S': \int_{S'} (\nabla x \underline{A}) \cdot d\underline{a} = 0$

S' could have been any surface, so we have concluded that the vector function $(\nabla X \underline{A})$ has zero surface integral over any arbitrary closed surface. It follows from Gauss's theorem that div $(\nabla X \underline{A}) = 0$ everywhere, for if the divergence were different from zero in any small region, a surface surrounding just that region would necessarily have a non-zero surface integral. (Of course, we can apply such an argument only to "well-behaved" functions.)

2.17 To show that $U = \frac{1}{8\pi} \int E^2 dv$ and $U = \frac{1}{2} \int \rho \rho dv$ are equivalent, using the identity $\nabla (\rho \nabla \phi) = (\nabla \phi)^2 + \rho \nabla^2 \phi$. $E^2 = (\nabla \phi)^2$ and $-4\pi \rho = \nabla^2 \phi$ (Poisson's Eq.) $(\nabla \phi)^2 = -\phi \nabla^2 \phi + \nabla (\phi \nabla \phi) = 4\pi \rho \phi + \nabla (\phi \nabla \phi)$ $\frac{1}{8\pi} \int E^2 dv = \frac{1}{2} \int \rho \phi dv + \frac{1}{8\pi} \int \nabla (\phi \nabla \phi) dv$

The last integral is the volume integral of the divergence of the vector $\P \lor \P$, or $-\P \sqsubseteq$. We can replace it with a surface integral over an enclosing surface S. Suppose all sources lie within a finite region, say a sphere of radius r. Then let S be a gigantic sphere of radius $R \gg r$. As $R \nrightarrow \infty$ E will vanish at least as fast as $1/R^2$ and \P will vanish at least as fast as 1/R. So the surface integral over S will vanish as $R \nrightarrow \infty$ and the equivalence is proved. (But if the sources were not confined to a finite region we could not be sure that any of these integrals would converge when extended over all space.)

2.18

Total charge Q uniformly distributed. Charge in ring of width dx = $dQ = Q \frac{dx}{b}$. All charge in such a ring is equidistant from a point on the axis, so the ring is a convenient charge element to use in computing

the potential at axial points. Let's find potential at a general axial point, distance xo from mid-point. Locate origin at the point in question:

origin at the point in question.

$$x = \frac{b}{2} + x_{0}$$

$$\phi = \int \frac{dQ}{r} = \int \frac{Q}{r} \left(\frac{Q}{r}\right) \frac{1}{\sqrt{a^{2} + x^{2}}}$$

$$-\frac{b}{2} + x_{0}$$

$$-\frac{b}{2} + x_{0}$$

$$x = -\frac{b}{2} + x_{0}$$

$$x = -\frac{b}{2} + x_{0}$$

$$\phi = \frac{Q}{b} \left[ln \left(\sqrt{a^{2} + x^{2}} + x \right) \right]_{-\frac{b}{2} + x_{0}}^{\frac{b}{2} + x_{0}}$$

For potential at mid-point, set $x_0 = 0$:

$$\phi_A = \frac{Q}{b} \ln \frac{\sqrt{\alpha^2 + b^2/4} + b/2}{\sqrt{\alpha^2 + b^2/4} - b/2}$$

For potential at end, set $x_0 = \frac{b}{2}$: $\phi_B = \frac{Q}{b} ln \frac{\sqrt{a^2 + b^2} + b}{2}$

$$\Phi_{B} = \frac{Q}{b} \ln \frac{\sqrt{Q^2 + b^2} + b}{Q}$$

Then
$$\phi_A - \phi_B = \frac{Q}{b} \ln \frac{a(\sqrt{a^2 + b^2/4} + b/2)}{(\sqrt{a^2 + b^2/4} - b/2)(\sqrt{a^2 + b^2} + b)}$$

This must vanish for an extremum in U. But q/R_1 is just the potential θ_1 of that sphere and $(Q-q)/R_2$ is the potential θ_2 of the other sphere. So the condition can be expressed as equality of potential. It is easy to see that the extremum is a minimum in U, not a maximum: if $R_1 = R_2$, equal division of charge involves half as much energy as piling all of Q on one sphere.

total charge Q uniformly distributed.

charge inside radius $r = Q \frac{r^3}{Q^3}$ $E_r = Qr/q^3$, $r < q = E_r = \frac{Q}{r^2}$, r > q $\int_0^{\alpha} E_r dr = \varphi(0) - \varphi(\alpha) = \frac{Q}{Q^3} \int_0^{\alpha} r dr = \frac{Q}{2q}$ $\int_0^{\infty} E_r dr = \varphi(q) - \varphi(\infty) = Q \int_0^{\infty} \frac{dr}{r^2} = \frac{Q}{q}$ $\int_0^{\infty} E_r dr = \frac{Q}{q} (q) - \frac{Q}{q} (q) = Q \int_0^{\infty} \frac{dr}{r^2} = \frac{Q}{q} (q) - \frac{Q}{q} (q) = \frac{3Q}{2q}$ $\frac{3Q}{2q} = \frac{3 \times 79 \times 4.8 \times 10^{-10}}{2 \times 6 \times 10^{-13}} = 9.5 \times 10^4 \text{ statvolts}$

= 28.5 megavolts

$$\Phi_{A} = \frac{8}{\sqrt{3}} = 4.6188$$

$$\Phi_{B} = \frac{4}{\sqrt{2}} + \frac{4}{\sqrt{6}} = 4.4614$$

Clearly B is below A and it is certainly downhill from there on out, for the fields of all 8 charges will be pushing our proton

to the right. But is it all downhill on the path from A to B? To check that we might calculate the potential ϕ_c , halfway between A and B:

$$\phi_{\rm C} = \frac{4}{\sqrt{|^2 + |^2 + 1.5^2}} + \frac{4}{\sqrt{|^2 + |^2 + 0.5^2}} = 4.6069$$

$$\frac{2.22}{-0.15 \text{ volt}} = \frac{Q}{4\pi\epsilon_0 r} ; 4\pi\epsilon_0 = 1.11 \times 10^{-10} \text{ } r = 3 \times 10^{-7} \text{ }$$

Q = $-0.15 \times 1.11 \times 10^{-10} \times 3 \times 10^{-7} = 0.5 \times 10^{-17}$ coulomb n = $0.5 \times 10^{-17}/1.6 \times 10^{-19} = 30$ electrons E = $\phi/r = .015 \text{ volt}/3 \times 10^{-7} \text{m} = 5 \times 10^{5} \text{ volt/meter}$

2.23

$$5 \times 10^{6} q_{1} = 41 q_{2} \text{ charge on Ag nucleus} = 47e$$

initial K.E. of proton

$$r = \frac{47 \times 1.6 \times 10^{-19}}{1.11 \times 10^{-10} \times 5 \times 10^{6}} = 1.35 \times 10^{-14} \text{ meter}$$

This is somewhat larger than the radius of the silver nucleus, which is about 5×10^{-15} meter, so it was reasonable to consider coulomb repulsion only.

Given that $\oint_{\underline{E}}^{A} \cdot d\underline{s} = 0$ for any A path, consider

It follows that
$$(II) = -(II) = -(II)$$

Curve B crosses the x axis, and itself, close to x = 3.5. At that point the potential is

$$\phi_{B} = \frac{4}{\sqrt{2^2 + 3.5^2}} - \frac{1}{2.5} - \frac{1}{4.5} = 0.370$$

Curve C crosses itself at the origin, where the potential is $\phi_c = 4/2 - 2/1 = 0$

Equipotentials cross only at saddle points, where E = 0. There is here a saddle point at the origin, where E is zero because of symmetry. The saddle point near x = 3.5, traversed by curve B, is more precisely located at x = 3.44. There is, of course, another saddle point at x = -3.44.

2.26 Apply the result of Problem 2.12 to each of the

8 triangles, with $\theta = 45^{\circ}$ and b = s/2:

$$\phi_{n} = 8 \sigma \frac{s}{2} ln \left(\frac{1 + sin 45^{\circ}}{cos 45^{\circ}} \right)$$

$$= 3.5255 \sigma s$$

$$\phi_0 = \int_0^{d/2} \frac{2\pi r \sigma dr}{r} = \pi \sigma d$$

$$\pi \sigma d = 3.5255 \sigma s$$
 if $\frac{d}{s} = 1.1222$

As was to be expected, the disk is larger than the inscribed circle, but smaller than the circumscribed circle.

2.27 The potential at the rim of a charged disk is 4σr. Adding a ring of charge σ2πrdr costs, in energy, \$\frac{1}{2}\$ dq or

$$\sigma \times 2\pi r dr \times 4\sigma r$$
: $dE = 8\pi \sigma^2 r^2 dr$

$$\int_{r=0}^{r=0} dE = \frac{8\pi}{3} \sigma^2 a^3$$

$$Q^2 = (\pi a^2 \sigma)^2 \text{ so}$$

$$E = \frac{8Q^2}{3\pi a}$$
 is the total energy required

to assemble the disk of charge.

Electron's final K.E. = $e \phi = 4.8 \times 10^{-10} \times 16\pi = 2.41 \times 10^{-8}$ erg Electron rest energy mc² = 81×10^{-8} erg. Since K.E./mc² ≈ 0.03 a non-relativistic calculation should be good enough:

$$U = \left(\frac{2 \text{ K.E.}}{\text{m}}\right)^{1/2} = \frac{2 \times 2.41 \times 10^{-8}}{9 \times 10^{-28}} = 7.32 \times 10^{9} \text{ cm/sec}$$

A relativistic calculation using the same constants:

$$\gamma = 1 + \frac{K.E.}{mc^2} = 1 + \frac{2.41 \times 10^{-8}}{8.1 \times 10^{-7}} = 1.0298$$

$$\beta = (1 - 1/r^2)^{1/2} = 0.2388 \quad \gamma = \beta C = 7.16 \times 10^9 \text{ cm/sec}$$

2.29 Outside both shells the electric field is that of two point charges. Inside each shell the field is that of a point charge at the center of the other shell.

The external field of A alone is that of point charge Q. To move shell B to infinity takes the same amount of work as moving the point charge Q to infinity with B stationary. But that takes just Q2/2a for that point charge Q is initially a distance of 2a from the center of shell B.

2.30 For given charge density β the potential at the center of a cube of side s must be proportional to Q/s where Q is the total charge βs^3 . Hence φ is proportional to $\beta s^3/s$, or to s^2 for fixed β . If we assemble 8 cubes

of side b we make a cube of side 2b. The potential at its center is 89,, the sum of 8 corner potentials of the side b cube. But this must be

4 times the center potential of the side b cube. So we have 80, = 40 or : 9 = 20, .

$$\frac{\partial^{2} \phi}{\partial x^{2}} = -k^{2} \phi_{0} \cos kx e^{-kz} \qquad \frac{\partial \phi}{\partial x} = -k \phi_{0} \sin kx e^{-kz} = -E_{x}$$

$$\frac{\partial^{2} \phi}{\partial x^{2}} = -k^{2} \phi_{0} \cos kx e^{-kz} \qquad \frac{\partial \phi}{\partial z} = -k \phi_{0} \cos kx e^{-kz} = -E_{z}$$

$$\frac{\partial^{2} \phi}{\partial z^{2}} = k^{2} \phi_{0} \cos kx e^{-kz}$$

$$\nabla^{2} \phi = \frac{\partial^{2} \phi}{\partial x^{2}} + \frac{\partial^{2} \phi}{\partial y^{2}} + \frac{\partial^{2} \phi}{\partial z^{2}} = 0$$

$$z \qquad \pi/k$$

$$\sigma = \frac{1}{2\pi} E_{z} \text{ at } z = 0 \qquad \sigma = \frac{k}{2\pi} \phi_{0} \cos kx$$

2.32 If the direction of
$$\hat{n}$$
 is reversed the left hand side must change sign. But the right hand side can only be positive.