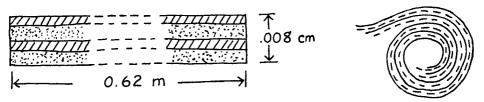
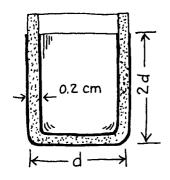
10.1
$$C = \epsilon \frac{A}{5}$$
 $\epsilon = 2.3 \epsilon_0 = 2.3 \times 8.85 \times 10^{-12}$
= 2.04 × 10⁻¹¹ farad/meter

s = .001 inch = 2.54×10^{-5} m $C = 5 \times 10^{-8}$ farad A = sC/ε = .062 m² ribbon width = .05 m Length of dielectric tape needed = .062/.05 = 1.24 m You need an equal length of aluminum tape, not twice as much. Roll up a sandwich 62 cm long :



Area of cross-section = 0.5 cm^2 ; overall diameter about 1 cm.

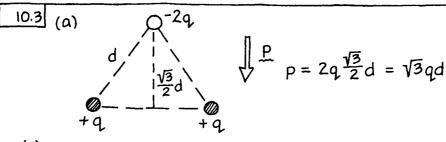
10.2) Assume height = 2d (result will depend somewhat on proportions assumed).



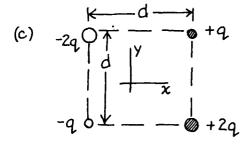
1 liter = 10^3 cm³ = $2d \times \frac{\pi}{4}d^2$, or d = 8.6 cm area of capacitor = $\pi d \times 2d + \frac{\pi}{4}d^2 = \frac{9}{4}\pi d^2$ = 522 cm²

$$C = \frac{522 \times 4}{4\pi \times 0.2} = 830 \text{ cm}$$

This is the capacitance of a sphere of 830 cm radius, or about 54 feet diameter.



(b)
$$p = 0$$



$$P_{x} = +3qd$$

$$P_{y} = -qd$$

$$P_{y} = -qd$$

$$P_{y} = \sqrt{10}qd = 3.16 qd$$

$$P_{y} = \sqrt{10}qd = 3.16 qd$$

 $p = 1.28 \times 10^{-8} \text{cm} \times 4.8 \times 10^{-10} \text{ esu}$ $+ e = 6.15 \times 10^{-18} \text{ esu} - \text{cm},$ which is about six times the $\text{actual dipole moment, 1.03 \times 10^{-18}}.$

By the "center" of a charge distribution we mean the point with respect to which, as origin, $\int_{-\infty}^{\infty} \rho \, dv = 0$. Considering the positive charges by themselves, the center lies $\frac{1}{18}$ (1.28 × 10⁻⁸ cm) from the CL nucleus:

$$\frac{1.28}{18} = .071 \times 10^{-8} \text{ cm}$$

+17e $\frac{1.28}{18} = .071 \times 10^{-8} \text{ cm}$

center of negative charge distribution, total charge -18e, must lie to left of center of + charge by distance x such that $18ex = 1.03 \times 10^{-18}$, or

$$\chi = \frac{1.03 \times 10^{-18}}{18 \times 4.8 \times 10^{-10}} = .0119 \times 10^{-8} \text{ cm}$$

$$E = \frac{2p}{z^3} = \frac{2 \times 1.03 \times 10^{-18}}{(10^{-7})^3}$$

$$= 2.06 \times 10^3 \frac{\text{statvolts}}{\text{cm}}$$

$$E = \frac{p}{y^3}$$

$$= 1.03 \times 10^3 \frac{\text{statvolts}}{\text{cm}}$$

10.6

| A | Q = CV = 250 × 6 = 1500 esu |
| P = QS = 1500 × 1.5 = 2250 esu - cm |
| A+ A, E =
$$\frac{2P}{\Gamma^3}$$
 = $\frac{2 \times 2250}{(300)^3}$ |
| A+ B, E = $\frac{P}{\Gamma^3}$ = 0.833 × 10⁻⁴ statvolts/cm

The time constant was $T = RC = \frac{\rho s}{A} \cdot \frac{A}{4\pi s} = \frac{\rho}{4\pi}$

With dielectric constant E, C is increased by that factor, so $\tau = \frac{\rho e}{4\pi}$

If C, per cm^2 , is 10^{-6} farad, this implies a dielectric thickness S such that

$$10^{-6} \times 9 \times 10^{11} = \frac{\epsilon}{4\pi s}$$
 or $s = \frac{3}{4\pi \times 9 \times 10^5} = 2.6 \times 10^{-7} cm$

T = RC = 1000 ohms $\times 10^{-6}$ farads = 10^{-3} sec. (independent of area, since $C \sim \text{area}$, $R \sim \text{area}^{-1}$).

$$\rho = \frac{1000}{2.6 \times 10^{-7}} \approx 4 \times 10^{9} \text{ ohm - cm}.$$

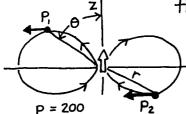
$$\varphi = \frac{p \cos \theta}{\Gamma^2} \qquad \varphi_A = \frac{p}{a^2}$$

$$\varphi_B = p \times \frac{.707}{(a^2/2)} = \frac{1.414 p}{a^2}$$

$$\varphi_B = p \times \frac{.707}{(a^2/2)} = \frac{0.414 p}{a^2}$$

$$\varphi_B = p \times \frac{.707}{(a^2/2)} = \frac{0.414 p}{a^2}$$

A point where the dipole's field = -5 \(\text{y} \) must lie in



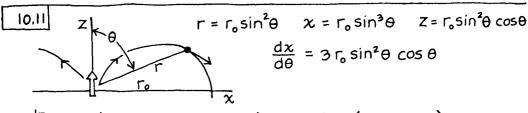
the y-z plane. There are only 2 such points, P_1 and P_2 , where $E_z = 0$ and $E_y = -5$.

If $E_z = 0$, $3\cos^2\theta - 1 = 0$, or $\cos^2\theta = \frac{1}{3}\sin^2\theta = \frac{2}{3}$

 $E_y = \frac{3p \sin \theta \cos \theta}{\Gamma^3} = 5 \text{ with } p = 200$

$$r^3 = \frac{3 \times 200}{5} \sqrt{\frac{1}{3} \times \frac{2}{3}} = 56.57$$
 $r = 3.84$ cm

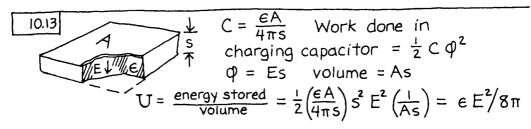
At p, $y = -r \sin \theta = -3.135 \text{ cm}$; $Z = r \cos \theta = 2.216 \text{ cm}$



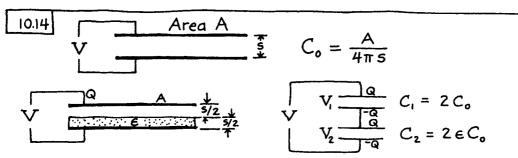
$$\frac{dz}{d\theta} = \Gamma_0 \left(2 \sin \theta \cos^2 \theta - \sin^3 \theta \right) = \Gamma_0 \sin \theta \left(3 \cos^2 \theta - 1 \right)$$

$$\frac{dz}{dx} = \frac{3 \cos^2 \theta - 1}{3 \sin \theta \cos \theta} = \frac{E_z}{E_x} \text{ in field of dipole } p \frac{\hat{Z}}{\hat{Z}}.$$

10.12) Refer to Sect. 10.10. Eq. 46 gives the polarization of the dielectric sphere: $P = \frac{3}{4\pi} \frac{\varepsilon - 1}{\varepsilon + 2} E_o$. In the limit $\varepsilon \to \infty$, this becomes $P = \frac{3}{4\pi} E_o$. The field strength inside the dielectric sphere, $E = \frac{3}{2+\varepsilon} E_o$ (Eq. 45) goes to zero as $\varepsilon \to \infty$. In the limit the sphere becomes an equipotential, which is correct for a conducting sphere. $P = volume \times P = \frac{4\pi}{3} a^3 \times \frac{3}{4\pi} E_o = a^3 E_o$. Hence the polarizability α , defined by $P = \alpha E_o$, is just a^3 for the conducting sphere of radius $a = 0.66 \times 10^{-24} \, cm^3$ (Table 10.2) A conducting sphere of equal polarizability has a radius $(0.66 \times 10^{-24})^{V_3} = 0.87 \times 10^{-8} \, cm$.



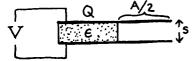
In the electromagnetic wave in the dielectric, if the amplitude of the electric field is Eo, that of the magnetic field is Bo = $\sqrt{\varepsilon}$ Eo. Hence the energy density in the magnetic field, B²/8π, is equal to that in the electric field, as in a wave in vacuum.

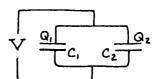


This is equivalent to two capacitors, C, and C2 in series.

$$V_1 = \frac{Q}{C_1} = \frac{Q}{2C_0} \qquad V_2 = \frac{Q}{C_2} = \frac{Q}{2\epsilon C_0} \qquad V = V_1 + V_2 = \frac{Q}{2C_0} \left(1 + \frac{1}{\epsilon}\right)$$

The capacitance of the combination is:
$$C = \frac{Q}{V} = \frac{2C_0}{1+\frac{1}{\epsilon}} = \frac{2\epsilon}{\epsilon+1} C_0$$





This is equivalent to two

capacitors, C1 and C2 in parallel.

$$C_1 = \frac{\epsilon C_0}{2}$$
 $C_2 = \frac{C_0}{2}$ $Q_1 = C_1 V = \frac{\epsilon}{2} C_0 V$ $Q_2 = C_2 V = \frac{C_0}{2} V$

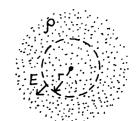
The capacitance of the combination is :

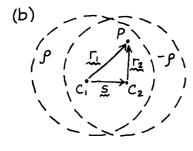
$$C = \frac{Q}{V} = \frac{Q_1 + Q_2}{V} = \frac{\epsilon + 1}{2} C_0$$

10.15 The number of water molecules in 1 cm³ is $n = 6 \times 10^{23}/18 = 3.3 \times 10^{22} \text{ cm}^{-3}$ $P = np = 3.3 \times 10^{22} \text{ cm}^{-3} \times 1.84 \times 10^{-18} \text{ esu} - \text{cm}$ = 6.1×10^4 esu cm⁻² This is equivalent to $6.1 \times 10^4/4.8 \times 10^{-10}$, or 1.3×10^4 electrons per cm².

Note that this is somewhat smaller than the number of surface molecules per cm2, which must be something like $n^{2/3} \approx 1.0 \times 10^{15} \text{ cm}^{-2}$.

10.16 (a) Apply Gauss's law to sphere of radius
$$r$$
: charge enclosed = $\frac{4\pi}{3}r^3\rho$; $4\pi r^2 E = 4\pi q = 4\pi \left(\frac{4\pi}{3}r^3\rho\right)$ $E = \frac{4\pi}{3}\rho r$





Let \underline{s} be the vector displacement from C_1 to C_2 . At the point P, \underline{s} C_2 | $\underline{E}_1 = \frac{4\pi}{3} \rho \underline{\Gamma}_1$ and $\underline{E}_2 = \frac{4\pi}{3} (-\rho) \underline{\Gamma}_2$ The total field is thus $\underline{E} = \underline{E}_1 + \underline{E}_2 = \frac{4\pi}{3} \rho (\underline{\Gamma}_1 - \underline{\Gamma}_2)$

But $\Gamma_1 - \Gamma_2 = S$ Hence $E = \frac{4\pi\rho}{3} S$

This holds for any point inside both distributions. Note that $-\underline{s}$ is the displacement of the positive charge distribution with respect to the negative, so that the volume polarization is $\underline{P} = -\underline{\rho}\underline{s}$. Therefore,

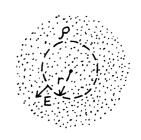
$$E = \frac{4\pi P S}{3} = -\frac{4\pi}{3} P$$
 in agreement with Eq. 43.

(c) For the cylindrical distribution, Gauss's law applied to unit length of cylinder is:

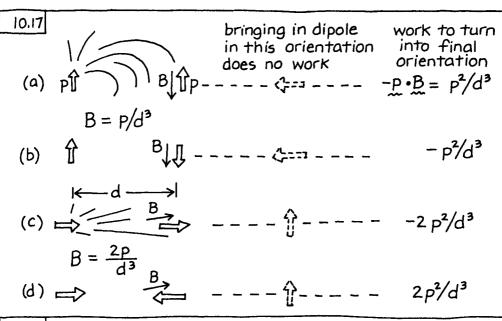
$$2\pi rE = 4\pi (\pi r^2 \rho)$$
, or $E = 2\pi r \rho$

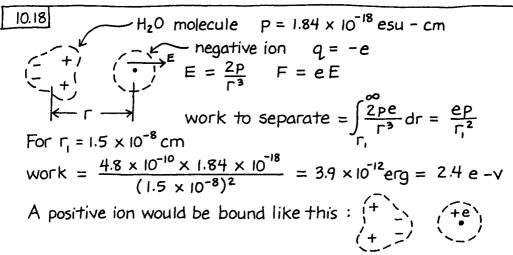
As in (b):
$$\underline{E}_1 = 2\pi P \Gamma_1$$

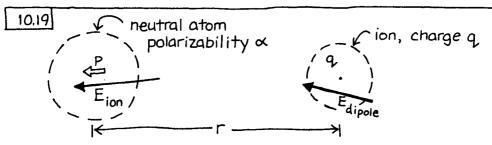
 $\underline{E}_2 = 2\pi (-P) \Gamma_2$



Thus $E = E_1 + E_2 = 2\pi p(\underline{r}_1 - \underline{r}_2) = 2\pi p\underline{s}$. In this case also, $\underline{p} = -p\underline{s}$ so we obtain, for the field inside a cylinder with uniform transverse polarization:







Field of ion, $E_{ion} = \frac{q}{r^2}$, induces dipole $p = \propto E_{ion}$ in neutral atom. Field of induced dipole, $E_{dipole} = \frac{2p}{r^3}$,

causes force $F = q E_{dipole}$ on ion: $F = q \left(\frac{2p}{r^3}\right) = \frac{2q}{r^3} \times \frac{\alpha q}{r^2} = \frac{2 \alpha q^2}{r^5}.$ This force is attractive for either sign of q. Work to separate from distance $r_i = \int_{r_i}^{\infty} F dr = \frac{\alpha q^2}{2r_i^4}$ If q = e and $\alpha = 27 \times 10^{-24} \text{cm}^3$ this is 4×10^{-14} erg for $r_i = \left[\frac{27 \times 10^{-24} \times (4.8 \times 10^{-10})^2}{2 \times 10^{-14}}\right] = 9 \times 10^{-8} \text{ cm}$

the symmetry is "spontaneously broken".

 p_B is induced by the field of dipole p_A : $p_B = \propto \frac{2p_A}{r^3}$

 P_A is induced by the field of dipole $P_B: P_A = \propto \frac{2\,P_B}{\Gamma^3}$. Then $P_A = \frac{4\,\alpha^2}{\Gamma^6}\,P_A$, which is satisfied by $P_A = 0$ or by any value of P_A if $\Gamma^6 = 4\,\alpha^2$. If $\Gamma^6 < 4\,\alpha^2$, P_A (and P_B) would increase until limited by nonlinearity of polarizability. The critical distance Γ_c is $(2\,\alpha)^{1/3}$. Atomic polarizability α is typically, in order of magnitude, an atomic volume. (Section 10.5). Thus Γ_c is not much larger than an atomic radius, so the object we are concerned with looks like this: \(\frac{1}{2}\) \(\frac{1}{2}\) Whether the lowest state of this system \(\frac{1}{2}\) is a spontaneously polarized structure cannot be decided by considering only the interactions of dipoles. Ordinarily the lowest state of two similar atoms would be symmetrical with $P_A + P_B = 0$. But we cannot exclude the possibility that

In SI:
$$E_{max} = \frac{1.4 \times 10^4 \text{ volt}}{2.54 \times 10^{-5} \text{ m}} = 5.5 \times 10^8 \text{ volt/m}$$

stored energy = $\frac{3.25 \, \varepsilon_o \, E^2}{2} = 4.3 \times 10^6 \, \text{J/m}^3$
stored energy per kg = $\frac{4.3 \times 10^6 \, \text{J/m}^{-3}}{1400 \, \text{kg m}^{-3}} = 3100 \, \text{J/kg}$
gh = .75 × 3100 h = $\frac{.75 \times 3100}{9.8} = 240 \, \text{meters}$

The "D" cell in Prob. 4.29 stored 1.8×10^5 J/kg, 60 times as much as this mylar capacitor. But the capacitor can deliver all the stored energy in less than a microsecond!

10.22	$\chi = \frac{\epsilon - 1}{4\pi}$	$= \frac{CNp^2}{kT}$	kT = 4x 10 ⁻¹⁴ erg	
	E	N .	Р	C
H ₂ O	80	$3.3 \times 10^{22} \text{cm}^{-3}$	1.84 × 10 ⁻¹⁸ esu cm	2.2
NH ₃	23	2.9 × 10 ²²	1.43 × 10 ⁻¹⁸	1.2
CH301	н 34	2.5 × 10 ²²	1.70 × 10 ⁻¹⁸	1.4

10.23 Energy stored in unit volume =
$$\frac{\epsilon E_0^2}{8\pi}$$

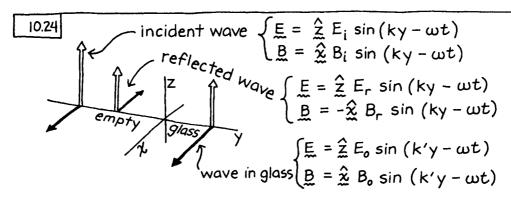
Power dissipated in ohmic resistance, per unit volume, $= E^2 \sigma$ Time average dissipation $= \frac{1}{2} E_0^2 \sigma$

$$Q = \frac{\omega \times \text{energy stored}}{\text{power loss}} = \frac{\omega \varepsilon}{4\pi \sigma}$$

For sea water $\sigma = 0.04 (ohm - cm)^{-1} = 3.6 \times 10^{10} sec^{-1}$

For
$$10^9 \, \text{Hz}$$
 Q = $\frac{2\pi \times 10^9 \times 80}{4\pi \times 3.6 \times 10^{10}} = 1.1$

[Energy is lost before wave has time to travel more than a fraction of a wavelength. Microwave radar won't find submarines!]



At y = 0, E and B must be continuous (no jump in either at the surface of the glass).

$$E_i + E_r = E_o$$
 $B_i - B_r = B_o$
 $B_i = E_i$ $B_r = E_r$ $B_o = nE_o$

$$\begin{bmatrix}
E_i + E_r = E_o \\
E_i - E_r = nE_o
\end{bmatrix}$$

$$\begin{bmatrix}
E_o = \frac{2}{1+n} E_i \\
E_r = \frac{1-n}{1+n} E_i
\end{bmatrix}$$

If
$$n = 1.6$$
, $\frac{E_r^2}{E_o^2} = \left(\frac{1-n}{1+n}\right)^2 = 0.053$