Virtual probability current associated with the spin
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A simple derivation of the spin probability current density from the expectation value of the spin
operator is given. The properties of the spin probability current density are then examined in detail.
We show that the spin probability current is solenoidal, virtual, and gives null contribution to the
momentum of the particle. Expressions of the spin probability current density are derived for the
Gaussian wave packet and thstates of the hydrogen atom. @00 American Association of Physics
Teachers.

[. INTRODUCTION
(L}sz rxjdir, 1)
The spin current is a concept not often treated in textbooks Vo
of quantum mechanics, appearing in a very small number of
texts. In the text by Landau and Lifshitz, the spin currentwherej is the probability current density defined by
density is derived, without mentioning its name, in an analy-
sis of the current density for a charged particle moving in an
external magnetic fieldIn a more recent text, Greiner intro- j=——(*Vi— gV y*), 2
duces the spin current density ad hoc, and without an ex- ~i2m
ample, drawing an analogy with the magnetization current
density of classical electromagnetic thedry. andV, denotes the entire space. The probability current den-
The lack of coverage is also reflected in this journal. Wesity j satisfies the equation of continuity
again find only a couple of papers on the spin current. Parker
derived the hyperfine structure Hamiltonian for hydrogen by
evaluating the magnetic field at the nucleus due to the elec- — (y* ¢)+V-j=0, (3
tron’s spin current densityIn an attempt to obtain a con- at
crete physical picture of the spin, Ohanian used the spin
current to argue that “the spin may be regarded as an angul&xpressing the local conservation of probability. Equatibn
momentum generated by a circulating flow of energy in theexpresses the orbital angular momentum of a quantum par-
wave field of the electron.? His discussion is based on the ticle in terms of the circulating probability current. Equation
momentum density of the Dirac field obtained from the sym-(1) is derived in Appendix A.
metrized energy-momentum tensor. Though Ohanian’s pic- For a particle with spirfi/2, we will rewrite the expecta-
ture of the spin is intuitively appealing, it unfortunately goestion value of the spin operator
beyond the level of undergraduate quantum mechanics, and
is difficult to introduce in a classroom setting. A
Except for Ohanian’s paper, in all of the references previ- (S)= Ef T oydr (4)
ously cited, the spin current is introduced in conjunction with Vo
a magnetic field, whether the field is external or the elec-
tron’s own. From this situation, one may acquire the impresin the same form as the orbital probability current, as ex-
sion that the spin current exists only in the context of thepressed in Eq(1). Following Ohanian, the idea is that the
magnetic properties of the electron. Such is not the case. spin is another form of angular momentum due to another
In this article, we offer a straightforward derivation of the kind of circulating “current.” The nature of this current is
spin probability current, within the scope of nonrelativistic investigated in Sec. Ill. In Eq{(4), & denotes a two-
guantum mechanics, without relying on the magnetic propcomponent spinor.
erties of the electroSec. 1). We then investigate the prop-  To carry this out, first observe the vector identity
erties of the spin probability curre®ec. Il1)). We will show
that the spin probability current is solenoidal, virtual, and V(A-B)=(B-V)A+(A-V)B+BX(VXA)
gives null contribution to the particle’s momentum. Finally,
expressions of spin probability current densities are derived +AX(VXB), (5)
for the Gaussian wave packet and thetates of the hydro-

Ig\?)n atom, and their physical properties are examif8t. 5nd |etA=r andB= ¢ oy in Eq. (5). Then we obtain

+ -1 T _1 (T
[I. DERIVATION OF THE SPIN PROBABILITY W= X LVX(eg)] - 2 VI (o]

CURRENT DENSITY 12
_ _ 52 [ o). ©®
For a quantum particle of masg the expectation value of =
the orbital angular momentum operatorcan be written in
the form Integrating Eq.6) over the entire space, we have
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The second integral on the right-hand side of Ef.is re- : : :
written as | | |
| { 1
P
f V[f'(l/me//)]dSFIJ r-(¢ o) dr, (8) pApl2 p p+Api2
Vo So

o Fig. 1. Infinitesimal rectanglA C on a meridian plane.
where S, denotes the surface at infinity, and an alternate

form of Gauss's theoremis used in Eq(8). This integral
vanishes ify/ oy— 0 faster than ¥/asr—o. Similarly, the o _ o o
integrals in the third term of Eq7) are all vanishing under density is never altered . This is in fact the case ffs is

the same condition. an effective probability current density without a transport of
Thus we may write probability density.

We now show that the spin probability current is effective,

<S>:mJ rxjsdr, (99  or virtual, and has nothing to do with the motion of a par-

Vo ticle. For this purpose, let the wave function of the particle

where with spin be in the form

js=VXVg, (10) g (r,)=g(r,t) x=, (13
with wherey .. are eigenspinors of the spin opera&rgiven by
h -t -2 14
VszmwTadL (12) X+=\o X-T{1/ (14

Comparing Egs(1) and (9), we see thats may be regarded Then the vector potential of the spin current becomes

as a form of probability current density, giving rise to the oo

spin of the particle. For this reason, we will referjtoas the Vse =70 9l X ox- . (15)
spin probability current density, in contrast to the orbital _.
probability current density appearing in Ed). ThenVg in Since

Eq. (11) is recognized as the vector potential of the spin XT: ox+=7K, (16)
probability current densitys.

The spin probability current density given in E¢$0) and
(11) differs by a constant factor from the definition of the lgl2=yly., (17
spin current density given by Greiner or Parker. These au-
thors define the spin current as the electric current that give‘é’
rise to the correct magnetic moment of the electron including h-
the g factor of 2. In this paper, we defifg as the virtual Vsr =2k, (18)
probability current density that gives rise to the spin angular
momentum of the electron. If we assume that the electrigvhere
current density is given by the electron charge timeand 4
calculate the magnetic moment of the electron, we obtain the \ . =7 ¢1 1/ (19
guantity without theg factor. Hence the proper gyromagnetic
ratio of the particle cannot be obtained in the context of our In order to examine the meaning of the spin probability
analysis based on nonrelativistic quantum mechdhitts. current, consider an infinitesimal rectandl€, as shown in
seems that some sort of additional physical mechanisnFig. 1, on a meridian plane surrounding a poktof the
whether it is relativity or otherwiséjs necessary to obtain coordinates g, ¢,2), wherep=x2+yZ and ¢ =tan X(y/x).
the proper gyromagnetic ratio of the electron. We will consider the spin-up currefd, only. The extension

of the analysis to the spin-down case is trivial, the only dif-
Ill. PROPERTIES OF THE SPIN PROBABILITY ference being the reversed direction of the current. The flux
CURRENT DENSITY of the spin-up currenfs, through the infinitesimal surface

We next investigate the properties of the spin probabilityd S=ApAz is given by

wherek is the unit vector along the axis, and

e obtain

current density derived in Sec. Il. First, since the divergence 1
of a curl is always vanishing, we have f jsy -da= ff; Vg, -dr= E[(M)Q—(M)R]Az,
AS AC
V-js=0, (12 (20)

andjs is intrinsically solenoidal. In view of the equation of where Eqs(10), (18), and the Stokes’s theorem are used to
continuity given by Eq(3), this implies that the probability obtain Eq.(20). From Eq.(20), it follows that

260 Am. J. Phys., Vol. 68, No. 3, March 2000 Katsunori Mita 260



under the condition described after E§).

The spin probability current is a virtual current which does
not give rise to the particle’s momentum. From this, it is
natural to assume that does not contribute to the particle’s
kinetic energy, either. Though it is difficult to examine this
point in the context of the nonrelativistic quantum mechanics
without making a conjecture, we mention that Belinfante
showed some time ago that the spin energy-momentum ten-
sor of arbitrary fields does not give any contribution to the
energy of the particlé.

IV. EXAMPLES: GAUSSIAN WAVE PACKET AND S
STATES OF THE HYDROGEN ATOM

We now present examples of spin probability currents and
show how this concept offers an intuitive view of the spin of
a particle. To illustrate the spin probability current in its
Fig. 2. Spin probability current density, induced by the inhomogeneity of  simplest form, it is a good idea to eliminate the orbital prob-
the angular momentum densiky, . ability current. Thus we first consider the motion of a particle
with spin, say an electron, along a straight line represented
by a three-dimensional, Gaussian wave packet. If the elec-

(A1)g— (A1) tron is moving along the positive axis with a velocityv
(Is+)p=rp lim ———— (2)  =nky/m,, with its spin directed parallel or antiparallel to
Ap—0 p the z axis, the wave packet may be expressed as

Alternatively, by evaluating the curl of E418), we have

1 2102
1 N Pu(r )= ———==e el edrtPy_ (25
T 22 Vel
where ¢, is the unit vector along the increasing azimuth Wherewo=7kg/2m,
angle ¢. Equations(21) and (22) are equivalent to each E2=x2+y2+ (z—vot)?, (26)

other. Note that , is the angular momentum density pro-

portional to the probability density” ¢, andVs, is pro-  and

portional to\ , directed in the positive direction every- £t 3 T

where. It appears that, at a given time, the particle “spins” at B= 221 Eta” e
each point in space at a different rate proportional to the ) o ] o
probability density, pointing in the positivedirection. And The spread of the Gaussian distributierat timet is given
according to Eq(21) or Eq.(22), the spin probability current by

(27)

is induced by the imbalance of the angular momentum den- 2
sity from one point to another along the radial direction. e=eo\/1+ =, (28)
Figure 2 gives the pictorial representation of this situation in T

the V|C|n|ty of the poth In this figure, the radius of each Whereéo denotes the Spread at time 0, and the time con-
circle is proportional to the magnitude of the angular mo-siant+ is given by
mentum density. 5

The physical situation described above is very similar to _ Me€g
how the magnetization current is induced by the nonunifor- 7~ "7
mity of the magnetizatiof Just as the magnetization current o i i
is an effective electric current without an electric chargeSubstituting Eq(25) into Egs.(18) and(19), we obtain the

transport, the spin probability current is an effective, or vir-Vector potential

(29

tual, probability current without a probability density trans- 7

port. Since there is no transport of the probability density V., —+k—— g &/¢ (30)
. . K . J S+ 3 ’

associated with the spin probability current, there is no mo- Amg( e )

tion of the particle from one point of space to another.
In other words, while the convection probability current
densityj gives the particle momentum in that

with the corresponding spin current density

h 2, .2
jgr=+@g————pe &, (31)
J37 ¢02me(\/;)365p

(P)sz jd3r, (23

Vo due to EQ.(22). Figure 3 shows the spin current of the

the spin probability current density yields the null contribu- SPin-up wave packet at time=0 on thexy plane withz

tion to the momentum of the particle. This point is seen=0. The circulating current forms a vortex and the center of

directly from the vortex is located &D,0,0 at timet=0. As time elapses,
the center of the vortex moves along thexis with a con-

mj jsd3r:mf vasd3r:mf daxVg=0, (24) stant velocity ofv, as the size of the vortex increases ac-
Vo Vo So cording to Egqs(28) and(29). Though the size of the vortex
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+ h 2
(Vs)ns::—kﬁ[Rn,l(r)] ) (36)

*

*

X

1Y

: wherem here denotes the reduced mass of the system. Since
t the proton mass is much larger than the electron mass, we
; may approximaten as the electron mass. Taking the curl of

/
/
’

(Vg)ns+ » We have
\_..////

_ Ao d
N ) (Js)nsi=IqoomSIn@m[Rn,o(r)]z- (37)

Equation(37) gives the spin probability current density for
all s states of arbitrary.
For n=1, the spin probability current density is given by

Fig. 3. Spin probability current of the spin-up wave packetad on thexy
plane withz=0.

L6 22ging. (39

(jg)rs+== ‘POZ’JTmaO

increases, the total angular momentum of the vortex must
remain the same. To check this point, we evaluate
The angular momentum due tps);5 is evaluated as

H 3 h ” 3 —pz/e2
Mg VrXJStdr=ik Gy Ope dp . o 3
° N\ m [ xGoudr=k [ Aguar=kz, (@9
w ) s A Vo 0
—(z—vqt)“/e — _
xf_me 0 dz ikz, (32 where
and the spin angular momentum is independent of time, a4t 5 ol
though the integrand of the second integral in Bf) con- (As)1s+=yf e % (40
0

tains time dependence.

As another example of the spin probability current, we
look at the stationary states of the hydrogen atom. In particu
lar, we examine the states of the hydrogen atom with the ity current density in Eq(38) flows in a manner similar
spin of the electron included. For tisestates| =0 and the {5 that of the Gaussian wave packet at a given time.
orbital probability currents are absent. But the spin probabil- \y/hile the flow of the spin probability current for thes1

ity currents do exist and we will see a novel propernty&f  giate is similar to that of the wave packgffor the 2s state
Pis another story. The contrast between the orbital probability
Eurrent and the spin probability current becomes striking for

2 . -
(s?) is constant for any state, unlike the casg(bf). n=2. For the 3 state, the spin probability current density is
For thes state with the principal quantum numbeof the given by

hydrogen atom, the wave functions for the spin-up and spin=

is the angular momentum of the spherical shell of unit thick-
ness located at the radiudrom the origin. The spin prob-

down electron are given by r r /
. _ _ _ —rlag oj
1 (Js)2s= ¢0—16’7Tm83 ( 1 2a, 4ag e siné.
'pnsi(r) = \/E Rn,O(r)Xir ’ (33) (41)

e . . Figure 4a) depicts the cross section ofgf,s4+ on theyz
wherer = yx+y”+2". We will use the spherical polar co- plane. In this figure, axes are in units of the Bohr radius. The

ordinates(r,6,¢) in the following discussion of the hydrogen yypite region means that the current flows into the paper and
atom. The radial part of the hydrogen atom wave function 'She black region, out of the paper. Very little or no current

given by flows through the gray area. As we see in Fig)4an in-
an—1—1)1 [ 2r ' triguing point is that the current changes its directiorr at
Ry (r)= W( E) Lﬁ'_ﬁl_l(Zr/nao)e’””aO, =2a, and again at =4a,. It seems that this is the mecha-

(34) nism that maintains the total angular momentum at a con-
stant value ofi/2 as the arm of the probability distribution
whereLg(g) are the associated Laguerre polynomials apd increases for higher principal quantum numbeFrom Eq.

(33) is given by ’ current does not change its direction for a particular set of

quantum numberén,l,m;}.

R (1) 1 rinag d (L. (2r/nag)] (35 The angular momentum carried bjs),s+ is calculated as
ry=-— e — r/n ,

n,0 \/n3—a0 dr n aO B 5

whereL () are the Laguerre polynomials. meOrX(JS)ZS*d ' kfo (Ag)zssdr=kz, (42)
Substituting Eq(33) into Eq. (11), we obtain the vector

potential where
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The expectation value of the orbital angular momentum
operatorL is given by

<L>=fV y* Lyd?r, (A1)

whereV, denotes the entire space. The integrand in(Ed)
can be rewritten in the form

h
l//*Ll//:mer-i-ErXV(l//*l//), (A2)

wherej is the probability current density defined in HE).
Then(L) is given as

(a) _ iq3 E * 3
(Ly=m | rXjdr+: rxX V(> g)d°r. (A3)
Vo 12 Vo
As . . . .
0.12 The integral in the second term of E@\3) is rewritten as
e f rXV(¢*¢p)d3r=—J VX (rg* ) dor
0.08 Vo Vo
0.06
0.08 == f P* yr X da, (A4)
0.02 %
/\ . where S, is the surface at infinity, and an alternate form of
A.\i/ 5 7.5 10 12.5 15 17.5 Gauss’s theorem is used to obtain the third expression in Eq.
-0.02 (A4). Now the integral vanishes under one of the following
-0.08 two conditions: first, when the quantum system in question
(b) possesses spherical symmetry so tiiatryda, wherer

denotes the unit vector in the radial direction. This may be in
Fig. 4. Spin-up 2 state of the hydrogen atone) cross-sectional view of  fact the case if the probability current is to be circulating;
the spin probability current density on tle plane;(b) angular momentum second, when the probability densiW‘ i decreases faster
density of the spherical shell. ’ . .

than 1f asr—oo. In many cases where an orbital probability
current exists, the two conditions above may be simulta-
neously satisfied.

e a0, (43)

h 3
(As)25+:6—agr 1-5—

Figure 4b) shows the plot of £ 5) 5. . As shown in Appen-  APPENDIX B: ORBITAL PROBABILITY CURRENT

dix B, for the orbital probability current, the angular momen- peNSITIES FOR THE HYDROGEN ATOM
tum of the spherical shell of unit thickness becomes maxi-

mum for the radius of the Bohr orbit,=4a, in this case. In this appendix, we examine properties of the orbital
But for the spin probability current, Xg),s. =0 for r probability current density for the hydrogen atom so that
=4a,. Also, the angular momentum carried by the “posi- these properties may be contrasted to those of the spin prob-
tive current” centered around=4a, is almost canceled by ability current destiny.

the “negative current” centered around=3a,, and the The wave function for the stationary states of the hydro-
dominant contribution to the spin angular momentum stem@€n atom without electron spin is given by

from the next “positive current” centered aroume-7a,. Y (1) = Rn,|(r)Y,m'(9,<P), (B1)
ACKNOWLEDGMENTS whereR,, |(r) is the radial part of the wave function given in

Eq. (39 andYg(G,cp) is the spherical harmonic. Substituting
The author would like to thank C. Adler, T. Darkhosh, andgq. (B1) into Eq. (2), we obtain
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APPENDIX A: DERIVATION OF EQ. (1) The angular momentum due to this probability current den-

In this appendix, we derive Ed1). Levy-Leblond used sity is evaluated as

this equation to show a case of the correspondence principle . 3 o
for a particle in a spherically symmetric potentialThe mfv rXJn1md rzkfo A m(r)ydr=kmd, (B3)
equation also appears in the textbook by Cohen-Tannoudji, 0

Diu, and Lalde'* None of them, however, derived E4) or  where
stated the conditions under which this equation holds valid. B 2 5
For this reason, we include the derivation of this equation. Antm (1) =M R, ()17 (B4)
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The quantity Ap mdr is the angular momentum of the

spherical shell of thicknes#r located at the radiusfrom the
origin. To findr 4 for which An,l,m| becomes maximum, we

let
dAn,I,mI
dar

which gives

d
Rn,l(§)+§d_§Rn,l(§):01

where
2r
&= nag’
Owing to

d
sd—g[Lﬁtﬂl(é)F(n—l—1)L§'f£1<f>,

the solution to Eq(B6) is given byé=2n or

F max=N2ag.

HenceAn,,,mI assumes the maximum value for the radius of.

the Bohr orbit.
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NIGHTMARES

G. H. Hardy,A Mathematician’s ApologyCambridge University Press, 1969; reprint of 1940 edjtign 83.

| can remember Bertrand Russell telling me of a horrible dream. He was in the top floor of the
University Library, about A.D. 2100. A library assistant was going round the shelves carrying an
enormous bucket, taking down book after book, glancing at them, restoring them to the shelves or
dumping them into the bucket. At last he came to three large volumes which Russell could
recognize as the last surviving copymfincipia mathematicaHe took down one of the volumes,
turned over a few pages, seemed puzzled for a moment by the curious symbolism, closed the
volume, balanced it in his hand and hesitated. ...
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