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A simple derivation of the spin probability current density from the expectation value of the spin
operator is given. The properties of the spin probability current density are then examined in detail.
We show that the spin probability current is solenoidal, virtual, and gives null contribution to the
momentum of the particle. Expressions of the spin probability current density are derived for the
Gaussian wave packet and thes states of the hydrogen atom. ©2000 American Association of Physics
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I. INTRODUCTION

The spin current is a concept not often treated in textbo
of quantum mechanics, appearing in a very small numbe
texts. In the text by Landau and Lifshitz, the spin curre
density is derived, without mentioning its name, in an ana
sis of the current density for a charged particle moving in
external magnetic field.1 In a more recent text, Greiner intro
duces the spin current density ad hoc, and without an
ample, drawing an analogy with the magnetization curr
density of classical electromagnetic theory.2

The lack of coverage is also reflected in this journal. W
again find only a couple of papers on the spin current. Pa
derived the hyperfine structure Hamiltonian for hydrogen
evaluating the magnetic field at the nucleus due to the e
tron’s spin current density.3 In an attempt to obtain a con
crete physical picture of the spin, Ohanian used the s
current to argue that ‘‘the spin may be regarded as an ang
momentum generated by a circulating flow of energy in
wave field of the electron.’’4 His discussion is based on th
momentum density of the Dirac field obtained from the sy
metrized energy-momentum tensor. Though Ohanian’s
ture of the spin is intuitively appealing, it unfortunately go
beyond the level of undergraduate quantum mechanics,
is difficult to introduce in a classroom setting.

Except for Ohanian’s paper, in all of the references pre
ously cited, the spin current is introduced in conjunction w
a magnetic field, whether the field is external or the el
tron’s own. From this situation, one may acquire the impr
sion that the spin current exists only in the context of
magnetic properties of the electron. Such is not the case

In this article, we offer a straightforward derivation of th
spin probability current, within the scope of nonrelativis
quantum mechanics, without relying on the magnetic pr
erties of the electron~Sec. II!. We then investigate the prop
erties of the spin probability current~Sec. III!. We will show
that the spin probability current is solenoidal, virtual, a
gives null contribution to the particle’s momentum. Final
expressions of spin probability current densities are deri
for the Gaussian wave packet and thes states of the hydro-
gen atom, and their physical properties are examined~Sec.
IV !.

II. DERIVATION OF THE SPIN PROBABILITY
CURRENT DENSITY

For a quantum particle of massm, the expectation value o
the orbital angular momentum operatorL can be written in
the form
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^L &5mE
V0

r3 jd3r , ~1!

wherej is the probability current density defined by

j5
\

i2m
~c*“c2c“c* !, ~2!

andV0 denotes the entire space. The probability current d
sity j satisfies the equation of continuity

]

]t
~c* c!1“• j50, ~3!

expressing the local conservation of probability. Equation~1!
expresses the orbital angular momentum of a quantum
ticle in terms of the circulating probability current. Equatio
~1! is derived in Appendix A.

For a particle with spin\/2, we will rewrite the expecta-
tion value of the spin operator

^S&5
\

2 E
V0

c†scd3r ~4!

in the same form as the orbital probability current, as e
pressed in Eq.~1!. Following Ohanian, the idea is that th
spin is another form of angular momentum due to anot
kind of circulating ‘‘current.’’ The nature of this current i
investigated in Sec. III. In Eq.~4!, c denotes a two-
component spinor.

To carry this out, first observe the vector identity

“~A•B!5~B•“ !A1~A•“ !B1B3~“3A!

1A3~“3B!, ~5!

and letA5r andB5c†sc in Eq. ~5!. Then we obtain

c1sc5 1
2 r3@“3~c†sc!#2 1

2 “@r•~c†sc!#

1
1

2 (
i 51

3
]

]xi
@xi~c1sc!#. ~6!

Integrating Eq.~6! over the entire space, we have
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^S&5
\

4 E
V0

r3@“3~c†sc!#d3r 2
\

4 E
V0

“@r

•~c†sc!#d3r 1
\

4 (
i 51

3 E
V0

]

]xi
@xi~c†sc!#d3r .

~7!

The second integral on the right-hand side of Eq.~7! is re-
written as

E
V0

“@r•~c†sc!#d3r 5E
S0

r•~c†sc!d3r , ~8!

where S0 denotes the surface at infinity, and an altern
form of Gauss’s theorem5 is used in Eq.~8!. This integral
vanishes ifc†sc→0 faster than 1/r asr→`. Similarly, the
integrals in the third term of Eq.~7! are all vanishing unde
the same condition.

Thus we may write

^S&5mE
V0

r3 jSd3r , ~9!

where

jS5“3VS , ~10!

with

VS5
\

4m
c†sc. ~11!

Comparing Eqs.~1! and~9!, we see thatjS may be regarded
as a form of probability current density, giving rise to th
spin of the particle. For this reason, we will refer tojS as the
spin probability current density, in contrast to the orbi
probability current density appearing in Eq.~1!. ThenVS in
Eq. ~11! is recognized as the vector potential of the sp
probability current densityjS .

The spin probability current density given in Eqs.~10! and
~11! differs by a constant factor from the definition of th
spin current density given by Greiner or Parker. These
thors define the spin current as the electric current that g
rise to the correct magnetic moment of the electron includ
the g factor of 2. In this paper, we definejS as the virtual
probability current density that gives rise to the spin angu
momentum of the electron. If we assume that the elec
current density is given by the electron charge timesjS and
calculate the magnetic moment of the electron, we obtain
quantity without theg factor. Hence the proper gyromagnet
ratio of the particle cannot be obtained in the context of
analysis based on nonrelativistic quantum mechanics.6 It
seems that some sort of additional physical mechani
whether it is relativity or otherwise,7 is necessary to obtain
the proper gyromagnetic ratio of the electron.

III. PROPERTIES OF THE SPIN PROBABILITY
CURRENT DENSITY

We next investigate the properties of the spin probabi
current density derived in Sec. II. First, since the diverge
of a curl is always vanishing, we have

“• jS50, ~12!

and jS is intrinsically solenoidal. In view of the equation o
continuity given by Eq.~3!, this implies that the probability
260 Am. J. Phys., Vol. 68, No. 3, March 2000
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density is never altered byjS . This is in fact the case ifjS is
an effective probability current density without a transport
probability density.

We now show that the spin probability current is effectiv
or virtual, and has nothing to do with the motion of a pa
ticle. For this purpose, let the wave function of the partic
with spin be in the form

c6~r ,t !5g~r ,t !x6 , ~13!

wherex6 are eigenspinors of the spin operatorSz given by

x15S 1
0D , x25S 0

1D . ~14!

Then the vector potential of the spin current becomes

VS65
\

4m
ugu2x6

† sx6 . ~15!

Since

x6
† sx656k, ~16!

wherek is the unit vector along thez axis, and

ugu25c6
† c6 , ~17!

we obtain

VS656k
l6

m
, ~18!

where

l65
\

4
c6

† c6 . ~19!

In order to examine the meaning of the spin probabil
current, consider an infinitesimal rectangleDC, as shown in
Fig. 1, on a meridian plane surrounding a pointP of the
coordinates (r,w,z), wherer5Ax21y2 andw5tan21(y/x).
We will consider the spin-up currentjS1 only. The extension
of the analysis to the spin-down case is trivial, the only d
ference being the reversed direction of the current. The
of the spin-up currentjS1 through the infinitesimal surface
DS5DrDz is given by

E
DS

jS1•da5 R
DC

VS1•dr5
1

m
@~l1!Q2~l1!R#Dz,

~20!

where Eqs.~10!, ~18!, and the Stokes’s theorem are used
obtain Eq.~20!. From Eq.~20!, it follows that

Fig. 1. Infinitesimal rectangleDC on a meridian plane.
260Katsunori Mita



th

o-

’ a
th

t
e
n
i

h
o

t
or
nt
ge
ir
s-
it
o

nt

u-
en

es
is
s
is
ics
te
ten-
he

nd
of
ts
b-
le
ted
lec-

o

e

of
,

c-

f

~ j S1!P5
1

m
lim

Dr→0

~l1!Q2~l1!R

Dr
. ~21!

Alternatively, by evaluating the curl of Eq.~18!, we have

jS15
1

m
w0S 2

]l1

]r D , ~22!

where w0 is the unit vector along the increasing azimu
angle w. Equations~21! and ~22! are equivalent to each
other. Note thatl1 is the angular momentum density pr
portional to the probability densityc1

† c1, andVS1 is pro-
portional to l1 directed in the positivez direction every-
where. It appears that, at a given time, the particle ‘‘spins’
each point in space at a different rate proportional to
probability density, pointing in the positivez direction. And
according to Eq.~21! or Eq.~22!, the spin probability curren
is induced by the imbalance of the angular momentum d
sity from one point to another along the radial directio
Figure 2 gives the pictorial representation of this situation
the vicinity of the pointP. In this figure, the radius of eac
circle is proportional to the magnitude of the angular m
mentum density.

The physical situation described above is very similar
how the magnetization current is induced by the nonunif
mity of the magnetization.8 Just as the magnetization curre
is an effective electric current without an electric char
transport, the spin probability current is an effective, or v
tual, probability current without a probability density tran
port. Since there is no transport of the probability dens
associated with the spin probability current, there is no m
tion of the particle from one point of space to another.

In other words, while the convection probability curre
densityj gives the particle momentum in that

^P&5mE
V0

jd3r , ~23!

the spin probability current density yields the null contrib
tion to the momentum of the particle. This point is se
directly from

mE
V0

jSd3r 5mE
V0

“3VSd3r 5mE
S0

da3VS50, ~24!

Fig. 2. Spin probability current densityjS1 induced by the inhomogeneity o
the angular momentum densityl1 .
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under the condition described after Eq.~8!.
The spin probability current is a virtual current which do

not give rise to the particle’s momentum. From this, it
natural to assume thatjS does not contribute to the particle’
kinetic energy, either. Though it is difficult to examine th
point in the context of the nonrelativistic quantum mechan
without making a conjecture, we mention that Belinfan
showed some time ago that the spin energy-momentum
sor of arbitrary fields does not give any contribution to t
energy of the particle.9

IV. EXAMPLES: GAUSSIAN WAVE PACKET AND S
STATES OF THE HYDROGEN ATOM

We now present examples of spin probability currents a
show how this concept offers an intuitive view of the spin
a particle. To illustrate the spin probability current in i
simplest form, it is a good idea to eliminate the orbital pro
ability current. Thus we first consider the motion of a partic
with spin, say an electron, along a straight line represen
by a three-dimensional, Gaussian wave packet. If the e
tron is moving along the positivez axis with a velocityv0

5\k0 /me , with its spin directed parallel or antiparallel t
the z axis, the wave packet may be expressed as

c6~r ,t !5
1

A~eAp!3
e2j2/2e2

ei ~k0z2v0tm1b!x6 , ~25!

wherev05\k0
2/2m,

j25x21y21~z2v0t !2, ~26!

and

b5
j2

2e2

t

t
2

3

2
tan21S t

t D . ~27!

The spread of the Gaussian distributione at time t is given
by

e5e0A11
t2

t2, ~28!

wheree0 denotes the spread at timet50, and the time con-
stantt is given by

t5
mee0

2

\
. ~29!

Substituting Eq.~25! into Eqs.~18! and ~19!, we obtain the
vector potential

VS656k
\

4me~eAp!3
e2j2/e2

, ~30!

with the corresponding spin current density

jS656w0

\

2me~Ap!3e5
re2j2/e2

, ~31!

due to Eq.~22!. Figure 3 shows the spin current of th
spin-up wave packet at timet50 on thexy plane with z
50. The circulating current forms a vortex and the center
the vortex is located at~0,0,0! at timet50. As time elapses
the center of the vortex moves along thez axis with a con-
stant velocity ofv0 as the size of the vortex increases a
cording to Eqs.~28! and~29!. Though the size of the vortex
261Katsunori Mita



u

e
ic
e

bi

op
al

in

-
n

i

ince
, we
of

r

y

k-

ility
for
is

he
and
nt

t
-

on-
n

y
t of
increases, the total angular momentum of the vortex m
remain the same. To check this point, we evaluate

meE
V0

r3 jS6d3r 56k
\

e5Ap
E

0

`

r3e2r2/e2
dr

3E
2`

`

e2~z2v0t !2/e2
dz56k

\

2
, ~32!

and the spin angular momentum is independent of tim
though the integrand of the second integral in Eq.~32! con-
tains time dependence.

As another example of the spin probability current, w
look at the stationary states of the hydrogen atom. In part
lar, we examine thes states of the hydrogen atom with th
spin of the electron included. For thes states,l 50 and the
orbital probability currents are absent. But the spin proba
ity currents do exist and we will see a novel property ofjS
not possessed by the orbital probability currents. This pr
erty is a consequence of the fact that the expectation v
^s2& is constant for any state, unlike the case of^L2&.

For thes state with the principal quantum numbern of the
hydrogen atom, the wave functions for the spin-up and sp
down electron are given by

cns6~r !5
1

A4p
Rn,0~r !x6 , ~33!

wherer 5Ax21y21z2. We will use the spherical polar co
ordinates~r,u,w! in the following discussion of the hydroge
atom. The radial part of the hydrogen atom wave function
given by

Rn,l~r !5A 4~n2 l 21!!

n3a0
3n~n1 l !! S 2r

na0
D l

Ln2 l 21
2l 11 ~2r /na0!e2r /na0,

~34!

whereLp
q(j) are the associated Laguerre polynomials anda0

is the Bohr radius. In particular,Rn,0(r ) appearing in Eq.
~33! is given by

Rn,0~r !52
1

An3a0

e2r /na0
d

dr
@Ln~2r /na0!#, ~35!

whereLp(j) are the Laguerre polynomials.
Substituting Eq.~33! into Eq. ~11!, we obtain the vector

potential

Fig. 3. Spin probability current of the spin-up wave packet att50 on thexy
plane withz50.
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~VS!ns656k
\

16pm
@Rn,l~r !#2, ~36!

wherem here denotes the reduced mass of the system. S
the proton mass is much larger than the electron mass
may approximatem as the electron mass. Taking the curl
(VS)ns6 , we have

~ jS!ns657w0

\

16pm
sinu

d

dr
@Rn,0~r !#2. ~37!

Equation~37! gives the spin probability current density fo
all s states of arbitraryn.

For n51, the spin probability current density is given b

~ jS!1s656w0

\

2pma0
4 e22r /a0 sinu. ~38!

The angular momentum due to (jS)1s1 is evaluated as

mE
V0

r3~ jS!1s1d3r 5kE
0

`

~LS!1s1dr5k
\

2
, ~39!

where

~LS!1s15
4\

3a0
4 r 3e22r /a0 ~40!

is the angular momentum of the spherical shell of unit thic
ness located at the radiusr from the origin. The spin prob-
ability current density in Eq.~38! flows in a manner similar
to that of the Gaussian wave packet at a given time.

While the flow of the spin probability current for the 1s
state is similar to that of the wave packet,jS for the 2s state
is another story. The contrast between the orbital probab
current and the spin probability current becomes striking
n52. For the 2s state, the spin probability current density
given by

~ jS!2s65w0

\

16pma0
4 S 12

r

2a0
D S 12

r

4a0
De2r /a0 sinu.

~41!

Figure 4~a! depicts the cross section of (jS)2s1 on the yz
plane. In this figure, axes are in units of the Bohr radius. T
white region means that the current flows into the paper
the black region, out of the paper. Very little or no curre
flows through the gray area. As we see in Fig. 4~a!, an in-
triguing point is that the current changes its direction ar
52a0 and again atr 54a0 . It seems that this is the mecha
nism that maintains the total angular momentum at a c
stant value of\/2 as the arm of the probability distributio
increases for higher principal quantum numbern. From Eq.
~B2! in Appendix B, it is clear that the orbital probabilit
current does not change its direction for a particular se
quantum numbers$n,l ,ml%.

The angular momentum carried by (jS)2s1 is calculated as

mE
V0

r3~ jS!2s1d3r 5kE
0

`

~LS!2s1dr5k
\

2
, ~42!

where
262Katsunori Mita
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~LS!2s15
\

6a0
4 r 3S 12

r

2a0
D S 12

r

4a0
De2r /a0. ~43!

Figure 4~b! shows the plot of (LS)2s1 . As shown in Appen-
dix B, for the orbital probability current, the angular mome
tum of the spherical shell of unit thickness becomes ma
mum for the radius of the Bohr orbit,r 54a0 in this case.
But for the spin probability current, (LS)2s150 for r
54a0 . Also, the angular momentum carried by the ‘‘pos
tive current’’ centered aroundr 54a0 is almost canceled by
the ‘‘negative current’’ centered aroundr 53a0 , and the
dominant contribution to the spin angular momentum ste
from the next ‘‘positive current’’ centered aroundr 57a0 .
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APPENDIX A: DERIVATION OF EQ. „1…

In this appendix, we derive Eq.~1!. Lévy-Leblond used
this equation to show a case of the correspondence princ
for a particle in a spherically symmetric potential.10 The
equation also appears in the textbook by Cohen-Tannou
Diu, and Laloe¨.11 None of them, however, derived Eq.~1! or
stated the conditions under which this equation holds va
For this reason, we include the derivation of this equatio

Fig. 4. Spin-up 2s state of the hydrogen atom:~a! cross-sectional view of
the spin probability current density on theyz plane;~b! angular momentum
density of the spherical shell.
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The expectation value of the orbital angular moment
operatorL is given by

^L &5E
V0

c* Lcd3r , ~A1!

whereV0 denotes the entire space. The integrand in Eq.~A1!
can be rewritten in the form

c* Lc5mr3 j1
\

i2
r3“~c* c!, ~A2!

wherej is the probability current density defined in Eq.~2!.
Then ^L & is given as

^L &5mE
V0

r3 jd3r 1
\

i2 EV0

r3“~c* c!d3r . ~A3!

The integral in the second term of Eq.~A3! is rewritten as

E
V0

r3“~c* c!d3r 52E
V0

“3~rc* c!d3r

52E
S0

c* cr3da, ~A4!

whereS0 is the surface at infinity, and an alternate form
Gauss’s theorem is used to obtain the third expression in
~A4!. Now the integral vanishes under one of the followin
two conditions: first, when the quantum system in quest
possesses spherical symmetry so thatda5r0da, where r0
denotes the unit vector in the radial direction. This may be
fact the case if the probability current is to be circulatin
second, when the probability densityc* c decreases faste
than 1/r asr→`. In many cases where an orbital probabili
current exists, the two conditions above may be simu
neously satisfied.

APPENDIX B: ORBITAL PROBABILITY CURRENT
DENSITIES FOR THE HYDROGEN ATOM

In this appendix, we examine properties of the orbi
probability current density for the hydrogen atom so th
these properties may be contrasted to those of the spin p
ability current destiny.

The wave function for the stationary states of the hyd
gen atom without electron spin is given by

cn,l ,ml
~r !5Rn,l~r !Yl

ml~u,w!, ~B1!

whereRn,l(r ) is the radial part of the wave function given i
Eq. ~34! andYp

q(u,w) is the spherical harmonic. Substitutin
Eq. ~B1! into Eq. ~2!, we obtain

jn,l ,nl
5w0

\

m

ml

r sinu
ucn,l ,ml

u2. ~B2!

The angular momentum due to this probability current d
sity is evaluated as

mE
V0

r3 jn,l ,ml
d3r 5kE

0

`

Ln,l ,ml
~r !dr5kml\, ~B3!

where

Ln,l ,ml
~r !5ml\r 2@Rn,l~r !#2. ~B4!
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The quantity Ln,l ,ml
dr is the angular momentum of th

spherical shell of thicknessdr located at the radiusr from the
origin. To findr max for which Ln,l ,ml

becomes maximum, we
let

dLn,l ,ml

dr
50, ~B5!

which gives

Rn,l~j!1j
d

dj
Rn,l~j!50, ~B6!

where

j5
2r

na0
. ~B7!

Owing to

j
d

dj
@Ln2 l 21

2l 11 ~j!#5~n2 l 21!Ln2 l 21
2l 11 ~j!, ~B8!

the solution to Eq.~B6! is given byj52n or

r max5n2a0 . ~B9!

HenceLn,l ,ml
assumes the maximum value for the radius

the Bohr orbit.
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