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where L
W3 = 2h vy, and v, = (1/2m)4/kjm [10-41
- The theory also gives the first-order wave function for the n — 2 level,
51’2:‘/’g+ao¢8+a1¢?+(0)‘/’g+aa‘/‘g+"' ['O—42

Each of the a;’s is given by [7-13],

+4-
a; = — [ [ v5* 1) g ax]s[ e — wi] [10-42a
—
We are interested, however, in explaining the transition from» = 0 to the n = 2
state due to a time-varying electric field near the frequency 2v,. It is apparent
that the presence of the a, 9 term in the first-order wave function belonging
to the level at n = 2 will explain the weak transition in question since

[42* xy8dx #0

and when we use time-dependent theory to calculate the normally forbidden
transition from the n = 0 state to the n = 2 state (see [10-26] and [10=31]).

+ ©
Hio = B2 [ % x g dx [10-43a

We will obtain a non-zero result.’® Even if the matrix element [[0-43 alis # 0,
the amplitude a, of the n = 2 state will not grow steadily (~ r2) unless, in
addition, the resonance requirement [ |0-26]

E, = E7 sin wy 1, Where wyy = (W, — Wy)/h [|0—43b

is also satisfied. i, and 4, are the frue wave functions belonging to the final
state and the initial state respectively. Neither are exact harmonic oscillator
eigenfunctions. ‘

Since ¥, is the lowest state, however, it will be nearly the pure state,

o = (Va/m} e 12 a = 2w vy m/h [10-44%

because f(x) is small at low vibrational amplitude. For simplicity, we assume
that [10-44] is the exact form of the wave function for the ground state. When
the first-order wave function [10-42] is used in the calculation of the matrix
element H,, of [10-43a], we see by [10-32] that only one term will be non-
zero—the one involving ¢9 and 3. Thus,
+
Hio = eE} [ af 9 x §§dv = at Hjy = eE2a%+/Tfa  [10-45

— o0

1% A small amount of W9 present in ¥, (the ground-state wave function) also contributes
the n = 0 — n = 2 transition. See Problem 10.11.
20 See Appendix 1.
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Thus, the absorption line from n = 0 to n = 2 whose intensity is proportional
to | Hy | % is |a, |2 times as intense as the main absorption line, which is
proportional to |H1’0 l 2, and since, in practice, a; < I, the absorption line
near 2v, is much weaker than the one at v,

By steady-state perturbation theory for a nondegenerate level [7-13],

_ 800 W,
- M-

a, where WY — W9 = — hy, [10-46

Thus, if the deviation f(x) from a parabolic potential energy curve of the
ideal harmonic oscillator has such a form that it “mixes” some of the n = 1
state with the n = 2 state (that is, if a, is not zero), then the dipole transition
from the n = 0 to the n = 2 state is no longer rigorously forbidden.

The same f(x), used in [10-40], must explain the experimental fact that
W, is slightly smaller than the value 2hv, predicted for the case of the ideal
oscillator.

From Appendix I, the zero-order wave functions for n =1 and n = 2
are

B = [DG/aTm 2y/a x) e=or,
B = [(1/8)y/afm) (dax® — 2) e=ea'n [10-47

Making use of the definite integral,

+
" 1-3-5-~-(2n—1)A/; _
x2n a2 gy = ~, n = a positive integer
J 27" a P #1048

— 0

we have, using [10-40],
Wa = W3 + (49 ¢)/(40?) ' [10-49
The bx® term does not contribute, since it is odd with respect to x = 0, and
Yo* JJ is even.
From [10-46] we obtain for the amplitude of 2 present in i,

a; = — (3b)/(a)* (hv,) [10-50

The cx* term does not contribute here due to symmetry properties. Thus the
absorption line whose energy is :

Wa— Wo = 2h v, + (49 0)f(da?) [10-51

(since W3 = (5/2) hvy and Wy W3 = hvy) has a lower intensity than the
main resonance, by the factor a’.

We note that the bx® term in the perturbation f(x) accounts for the n = 0
to n = 2 absorption line, while the cx* term accounts for the energy shift in
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the n = 2 level. Since experimentally the correction to W, is negative, ¢ must
be negative—that is, the x* term “flattens out” the potential well.

From the experimental HCI spectrum of. Figure 3.6 we see, using [0-45],
that a, is ~/60 and, using [10-50], we can find the constant b.

Hertzberg gives the experimental value of the n = 2 energy level as
5668 cm~! which is 1.8 per cent lower than twice the main resonance at 2886
cm~'. If we assume that the latter value (converted to ergs and divided by k)
is the characteristic frequency v, of the ideal harmonic oscillator, we can use
[10-51] to obtain the value of the constant c¢. Pauling and Wilson?? derive a
general formula for the energy level corrections, which depends only upon the
constant c.

It has been found that quantum theory gives a consistent account of the
vibration spectrum, including many other effects not mentioned here, such as
the rotational energy levels, the influence of the nuclei (particularly when they
are identical isotopes and show exchange-symmetry properties), etc.

We close this section by pointing out that it is also possible for a classical
perturbed oscillator to absorb energy at about twice its (low-amplitude) re-
sonance frequency. Suppose that the oscillator is vibrating at an appreciable
amplitude. The mass point of an ideal oscillator will have its velocity propor-
tional to an exact sinusoidal function such as cos 2v,t, but the nonideal poten-
tial will cause the velocity, although exactly periodic with period T near (1/v,),
to deviate from a pure sinusoidal form, the deviation being expressible as a
Fourier series,

v(t) = a, cos 2n/T) t + a, cos 227/T) t + ag cos 32n/T)t + - -- [IO—SZ

where, for small deformations of the potential from 1/2 kx?, a, and a, are
small compared to a,. If a force along the x-axis,

F(t) = F? cos 2Q2#/T) ¢ [10-53

which is periodic, with twice the basic frequency of the oscillator, is applied
to the mass, work may be done on the mass. Over one complete period 7,

T
work = f F() o(2) dt [10-54
0
where v df = dx, the distance moved in the time dt.

If [10-53] is the force and [10-52] is the velocity, then the mtegral in
[10-54] is non-zero for one term,

T
a, F° fcos2 22#/T) t dt
1]

! G. Hertzberg, Molecular Spectra and Molecular Structure (1939, Prentice-Hall, Inc.,
New York). I: Diatomic Molecules, p. 58.
22 L. Pauling and E. B. Wilson, op. cit., p. 160.
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Thus, it is possible for the mass to absorb energy (or, release energy) at twice
its basic frequency 1/T, providing that its velocity is not purely sinusoidal in
such a way that a, £ 0*.23 For the HCI molecule, however, we have seen that at
room temperature only one molecule in 10°® has an energy equal to the first
quantum level, and only one molecule in 10'? has an energy equal to the second
quantum level, so that, even if a, =~ a, for molecules whose energy is in the
range of hv, (a very large nonlinearity), the classically predicted absorption
line near 2v, is much weaker than the experimental value. In addition, the
classical line should be broadened in frequency—due to the lack of quantiza-
tion—in contrast to the sharp experimental value.

The diatomic molecule vibration spectrum provides an excellent example
of the application of both stationary and time-dependent perturbation theory
to a case of physical interest and, in addition, shows the distinctive differences
between the (experimentally verified) quantum theory and the incorrect classical
theory.

10.6. The importance of time-dependent perturbations

We see, then, that time-dependent perturbations can cause a system to
change its wave function in a significant and observable manner. These per-
turbations can cause either increases or decreases in the expectation value of
the energy of a system, implying either an inflow of energy to the system or
an outflow of energy from the system.

Similarly, time-dependent perturbations can cause the expectation value
of the magnitude of the angular momentum, or the magnitude of the z-compo-
nent of the angular momentum, to change. In either case, the system is inter-
changing angular momentum with its environment, since the angular momentum
vector is not constant in time. ,

Thus, it is through time-dependent perturbations that a system ‘‘interacts
with its environment.” This, of course, is the realm of experiment and observa-
tion, so that the great importance of the theory is clear.

But what is the environment? Is it not another system with its own zero-
order vibrations and resonant modes? If energy flows out of ‘“‘the system under
observation” which we have been analyzing, it must flow into the system .
making up the environment. The environmental system is usually large—for
example, a box containing slits, an optical grating, and a photographic film—so
that it generally has many, closely spaced resonant modes. As the amplitudes
of vibraton of two of the modes of the atomic wave functions shift, causing
the expectation value of the energy of the atomic system energy to drop, we
expect that there will be some corresponding shift among the amplitudes of
the many modes of the environment, causing its cnergy to rise a corresponding

23 Note: 1/T will in general differ slightly from v,, the frequency of oscillation at very low
amplitude.
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amount. Suppose, for example, that there were many atoms, originally in a
pure state with energy W). A perturbation causes these atoms to build up
some finite amplitude of the state of energy, W7, with a consequent loss (or
gain) in the expectation value of the atomic energy. During this process, the
electromagnetic vibrations in the environment of frequency, wyn/27, will
become more intense (or less intense). If the atoms are losing energy, the electro-
magnetic vibrations will interact with the grating, and finally result in a black
line on the photographic plate at the place where the grating causes the electro-
magnetic waves to superimpose in phase. Once permanent, macroscopic changes
~are made (such as the exposed photographic film), the environmental system
can be examined at will without altering it significantly. Thus, observation,
considered carefully, is a very complex process.

This very brief outline of a typical experiment shows the many problems
involved in a really complete quantum-mechanical theory of experiment. The
student is referred to other sources for a further discussion of this important
and interesting problem.

There are many interesting discussions of the nature of measurement and
the philosophical implications of quantum mechanics which the student is now
in a position to appreciate. One of them is an extremely interesting article,
““Are There Quantum Jumps, 7’2 by Erwin Schrodinger.

Some of the other founders of the theory of quantum mechanics explain
their attitude toward the quantum phenomena in the following relatively non-
mathematical articles and books:

Niels Bohr, “Discussion with Einstein on Epistemological Problems in
Atomic Physics,” Paul A. Schelpp (ed.), in Albert Einstein, Philo-
sopher-Scientist (1949, The Library of Living Philosophers, Evanston,
Illinois): p. 201.

Louis de Broglie, The Revolution in Physics (1953, The Noonday Press,
New York).

Max Born, Physics in my Generation (1956, Pergamon Press, London).

There are two technical books of both historical and current interest:
E. Schrédinger, Four Lectures on Wave Mechanics (1929, Blackie and Son,
Ltd., London).

- W. Heisenberg (Tr..by C. Eckart & F. Hoyt), The Physical Principles of
Quantum Theory (1930, University of Chicago Press, Chicago, Ill.,
also Dover Publications Inc., New York). '

There are few subjects so fascinating and so puzzling as the interpretation
of quantum phenomena, and it is clear that the last word has not yet been said.
Now that the student has been introduced to what quantum mechanics is, he
will find the study of what it means both stimulating and rewarding.

* D. Bohm, Quantum Theory (1951, Prentice-Hall, Inc., New York): p. 583.

* E. Schrodinger, “What Is Life,”” and Other Scientific Essays (1956, Doubleday Anchor
Co., Garden City, New York): p. 132. (Originally published in the Brir. J. Phil. Sci., 3:
nos. 10 & 11, 1952)
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10.7. Summary

The complete time-dependent wave equation is
(H*+ HYY = — (#/i) 0¥ /ot [IO—S

where H’ may depend upon space, momentum, and time, and where the time-
independent part of the equation is

HO Y2 = — (i) ¥t = WO, since W9 = y0 e=iWat/h [10-3a

In order to solve the wave equation [10-5] when H’ is time-dependent,
it is necessary to be given the wave function ¥(x, t,) at some time ¢ = f,. Any
reasonable form of W(x, ¢,) can be synthesized by the orthogonal series

IF(X, to) = Z a'n(to) \Fg(xa to) [5—9
n

where

an(te) = [¥ilx, 1) ¥(x, 1) dx [5-12

The complete list of an’s, at t = t,, gives an exact description of the wave
function at ¢ = ¢,

At any time ¢ the (well-behaved and bounded) wave function may be

characterized by some particular set of a,’s which will synthesize ¥'(x, r) at
that instant,

F(x, 1) = T a.(0) Vlx, 1) [10-9
The objective of the calculation is this: Given a set of a,’s at ¢,, find the new

set of a,’s at any arbitrary time ¢. To find the a,’s at 7, we substitute [10-9]
into the true wave equation [|0-5], giving

S a0 HUYS+ a0 H¥e = — 15[ at) |1 N PRGIAL
[10-10

The sums on the extreme left and the extreme right cancel term by term (by
the zero-order equation [10-3a]). Multiplying the remainder of [10-10] from

the left by W2* and performing the operation f dr on each term, [10-10]
becomes the set of equations,

d i % 17 :
7 4m() = —ﬁZn]an(t) f‘P?n H'Y) dr [10-11

m=12,3, ---

There is one equation [|0-11] for each value of m, and for each equation, n
ranges over all the values needed to identify each member of the complete set
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of eigenfunctions of the time-independent equation [10-3a]. There is no ap-
proximation in the set of equations [10~11]. It is fully equivalent to the wave
equation [10-5]. The set is written out in more detail in [10-12]. Given all the
ay’s at t = 0, it is possible to integrate the set of differential equations [|0-| N
from ¢ = 0 to ¢, obtaining, thereby, each of the a,’s at ¢. In practice this opera-
tion is difficult mathematically, and so we turn to a first-order perturbation
calculation.
If we substitute
H = HY - M [10-13
and
an(t) = ap + Aa, [10-14

in [10-11] or [10-12], we obtain, equating the coefficients of A, the result that
all the a%’s are constant in time. Equating the coefficients of A, we obtain the
set of first-order equations,

— (i) dagjdt = 3 a2 [WOX H'¥dr,  m=1,2,3, - [0-16

which are written out more fully in Section 10.1. This set of approximate
equations may be most easily solved for the case where, at ¢ = 0, ap =1 and
all the other ap’s are zero. For one dimension, dr = dx. Since at 7 = 0 all
the al’s (except a,) are zero, a,(t) = an(t), and the integral of [10-16] is:

t
i ' , d .
am(t) = f [_‘ ";l f l,lfg,* einUt/h H (x, 5}, t) l,llg e“’W/?‘/" dx | dt
0 space
where H' may depend upon x, 9/0x (i.e., momentum) or ¢. There is the usual
first-order restriction | a.(f) | < 1.
an(t) is calculated for two different forms for H':
(@) H' = f(x), a constant perturbation, starting at t =0, then
Hpp (e“met — 1)
Ap(t) = —
== am [10-18

m=1,2,3, -, m#Ek wn=Ws— Wk Hyp= [§3*f(0) Y dx

' (b) H' = A(x) sin wyt, starting at 1 = 0, then

_ H;nk[ (ei(a)mk+wo)t . 1) _ (ei(wmk—-wo)t _ 1)
Zh Wk + Wy Wy — Wy [Io—zs

m=1,2,39 Y mika wmlc=(Wr3—ng)/ﬁa

am(t) =

and
Hui = [45* AG) 4} dx
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PROBLEMS

Problem 10.1. A particle of mass = 9 x 10-2® gm is trapped
in an infinite-wall, one-dimensional box of width a = 1 x 10~8 cm.
The lowest state of this system (n = 1) has a characteristic energy
W =38 e.v. Also, W3 = 152 e.v., W} = 342¢.v., and W9 = 608 e.v.

At t = 0, the particle is known to be in the state for which
n=1.

(a) At r=0, a rectangular potential well, V, = — 10* e.v,,
centered at a/2 and of width 10-'2 cm, is suddenly introduced
into the well and kept there for 5 x 10-1® second, at which
time it is removed. After removal of the perturbation, what
is the chance that the system will be found in each of the
states n = 2, n = 3, and n = 47 (The height and width of
the potential well is characteristic of a neutron interacting
with an electron.)

(b) Let the above perturbation continue for a sequence of
different time intervals, ranging up to 30 or 40 x 108 sec.
Plot the | amplitude |2 of the n = 3 state over this interval.
What would be the result of an experiment designed to
identify the presence of the n = 3 state, if it were performed
about 27 x 108 sec after the onset of the perturbation?

Problem 10.2

(a) Using the identity, 2 cos x = e‘* -+ e~i# show that the cross
terms, neglected in both [10-26] and [10-27] (time-dependent
part, only), are equal to

(—2) cos 2ag t; +1—C08 (wmp— wp) t; —COS (wpux + wo) 1y
(Wmr — wo)(wmk + wy)

(b) Show that when w,, — w,<<1, the cross terms become,
approximately,

- (Wmr — @) 2
(Wmi + wy) !

(¢) Under what conditions, therefore, are [10-26] and [10-27]
good approximations?

Problem 10.3. Consider, once again, the system of Problem
10.1 where the particle is known to be initially in the state n = 1.
Now, however, the potential well is perfectly flat from x =0 to
x = a. Add a perturbation, H' = A4 sin wyt, from t =0 to t = 1,,
where A4 is a constant, equal to 1 e.v. (= 1.60 x 1012 erg), independent
of both x and t. This causes the entire bottom of the well to be raised
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and lowered sinusoidally with the frequency v, = w,/2w. Assume that
the frequency v, is 2.8 X 10! cps [so that hv, = 114 e.v., the energy
needed to reach the first excited state at (n = 2)]. Show that no excita-
tion will occur either for n = 2 or for any other level.

Problem 10.4. Change the perturbation of Problem 10.3 into
the following,
H' = A(x) sin wgyt
where
A(x) = — 1 e.v. from x = 0 to x = a/2

AXx) =+ lev.fromx =a/2tox =a

and where v, is still 2.8 x 10+ ¢ps, the difference in characteristic
frequency between the n = 1 and the n = 2 states.

Let the above perturbation continue for 3.56 x 10-'¢ second,
that is, for 10 complete cycles, and then be removed.

Find | amplitude | % of vibration of (a) the n = 2 state, (b) the
n = 3 state, and (c) the n = 4 state.

Problem 10.5. Equation [10-29] gives the potential energy of
a charge e in an electric field E,, as eE (x — x,), where X, 1S a constant.
In Section 10.4 we set x, = 0, but suppose that this had not been
done, so that H' = e(x — x,) E sin w,t, rather than [10-30]. Show
in the two cases discussed in Figure 10.4 that the presence of x, in
H' does not change the predictions regarding the shifts in excitation
of the states of the oscillator.

Problem 10.6. The harmonic oscillator of natural frequency v
of Figure 10.4 is assumed to be initially in the pure state $%, and ex-
periences an electric field, along the x-axis, whose frequency is equal
to v. According to [10-32], the vibrations in the upper state, for which
m = 2, should grow more rapidly than those in the ground state
m = 0.

(a) Using the harmonic oscillator eigenfunctions given in

Section 3.5, show, for this case, that [10-32] is correct.
(The integrals involved are composed of the gamma func-
tions, I'(n + %), which can be found in a table of definite
integrals.)

(b) Let v=1vy,=10" cycles per second, e = 1.6 x 10-1*
coulomb, m = 20 X 10-*" kg (the approximate mass of a
nitrogen atom), and E) = 100 volt/m, or nt/coulomb.
Calculate the time needed for the most strongly excited of
the two states to build up to an intensity of 1 per cent of the
excitation of the initial state.




(Chap. 10)

(c)

PROBLEMS - 275

Show that in this problem H’(max.) < hv, that is, the maxi-
mum value of the perturbation energy is small compared to
the energy difference between levels. [Suggestion: estimate
the maximum value of x from the harmonic oscillator wave
function (see Figure 3.10). Does this value of x(max.) agree
with the known size of small molecules (2 or 3 x 10-8 cm)?]

[Note: NH,; has a mode of vibration at about 3 x 10 °

cps—referred to at the end of Section 3.3 in connection with
barrier penetration. The N atom vibrates from one side of
the triangular H, structure to the other, through a barrier,

$o it is not a harmonic oscillator, but it does have an electric

dipole moment and can, therefore, react with the electric
field of the cavity. It is used in Townes’s “Maser” (see
footnote in Section 10.4).]

Problem 10.7. We consider a particle of mass 20 x 10-27 kg
and charge e = 1.6 x 10~"° coulombs to be in an infinite-wall, one-
dimensional box of length L.

(a)

(b)

(c)

What must be the value of L in order that the first excited
state lie an amount Av above the ground state, where v — 101°
cps?

This system, initially in its first excited state, is introduced,
at t =0, into a microwave cavity which is resonating at
101 cps. In the region occupied by the small system, the
electric field (assumed to be parallel to the x-axis of the
small system) has the amplitude E?= 100 volt/m. How
long will it take for the ground-state vibrations to attain an
intensity of | percent of the initial state vibrations? (Sug-
gestion: It is convenient, although not essential, to let x = 0
in the center of the one-dimensional box and re-write the
eigenfunctions accordingly.)

At the time calculated in (b), what is the intensity of vibration

of the second excited state? (Assume that [10-26] holds,

although it cannot be strictly correct owing to the distance
from resonance.) What must be happening to the expectation
value of the system energy for the small oscillator ?

Problem 10.8

(a)

(b)

Show that a system whose wave function is the superposition
of two pure states V', and ¥, given in [10-33], has the
periodically varying electric dipole moment given in
[10-34].

Show that if a charged particle in a one-dimensional infinite-
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wall box is in a superposition of ¥, and ¥,, one should
expect radiation to occur.

(c) What would one expect if the system were in a superposition
of ¥, and ¥';? (Suggestion: Place the origin in the center of
the box.)

Problem 10.9. 1In Chapter 9 it was mentioned that any system
which originally has a given exchange symmetry must keep it always.
Let the perturbation H’ be unchanged by the interchange of x, and x,,
the coordinates of two identical particles. Let the initial state of the
system be ¥ (x}, x,), and the final state be ¥ ,(x,, x,). Assume that
one of these states is symmetrical to interchange of x, and x,, while
the other is antisymmetrical. Show that if this is true,

Hr;lk = ff IP'm(xl, x,) H' \Fk(xl’ Xp) dx, dx,

must equal zero, that is, transitions between states of different ex-
change symmetry do not occur. (Hints: Interchange of variables in a
definite integral cannot change its value. When a number equals its
own negative, it must be zero.)

Problem 10.10. Using the theory in Section 10.5, calculate the
numerical values of b and ¢ for the HCI molecule. (Let v, be given by
hvy = 2886/(5 x 10%) erg and let m, the reduced mass, be 1.6 x 1024

gm.)

Problem 10.11. Using the perturbation f(x) = bx3 + cx* for
the harmonic oscillator:

(a) Calculate an expression giving the correction to the energy
of the n = 0 state. :

(b) Calculate an expression for the amplitude a9 of the n = 1
state which is “‘mixed” into i, by the perturbation above.

(c) Calculate the contribution to the absorption line located
near 2hv, of the term a© 9, present in ¢, (Note: The a,.
used in Section 10.5, should more properly be written a3,
since it refers to the amplitude of ¢ present in the first-order
wave function ¢,, for which n = 2.)

Proplem 10.12. A particle of mass m = 1027 gm and charge,
e =4.8 X 107!° esu forms a harmonic oscillator whose resonant
frequency is vy = 1.0 x 104 cps. At t = 0, the oscillator is known to
be in the state n = 0, and an electric field,

E = Eysin 2aft, f = 1.1 x 10 cps
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parallel to the axis of vibration of the oscillator, is applied to the
system. Ey = 100 stat-volts/cm. (Note: stat-volts times esu = ergs.)

(a) Atz =135 x 10714 sec, what is the probability that the system
will be found in the state n = 1?

(b) Atz =10 x 1014 sec, what is the probability that the system
will be found in the state n = 1?

(c) On the average, how much energy does this “‘off-resonance”’
system absorb from the electric radiation field ?



