CHAPTER Xl THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

First of all, we shall briefly review the predictions of the vector model of the atom
(in which the various angular momenta are treated like classical vectors) as far as the hyperfine
coupling between I and S is concerned. In a zero field, F = I 4+ S is a constant of the motion.
I and S precess about their resultant F with an angular velocity proportional to the coupling
constant &/ between I and S. If the system is, in addition, placed in a weak static field B,
parallel to Oz, onto the rapid precessional motion of I and S about F is superposed a slow
precessional motion of F about Oz (Larmor precession ; fig. 6).

FIGURE 6

The motion of S, I and F in the vector
model of the atom. S and 1 precess
rapidly about F under the effect of the
hyperfine coupling. In a weak field,
F slowly precesses about B (Larmor
precession).

F, is therefore a constant of the motion, while S, has a static part (the projection onto Oz
of the component of S parallel to F), and a part which is modulated by the hyperfine precession
frequency (the projection onto Oz of the component of S perpendicular to F, which precesses
about F).

Let us compare these semi-classical results with those of the quantum theory presented
earlier in this section. To do so, we must consider the time evolution of the mean values { F, )
and { S, >. According to the discussion of § D-2-d of chapter III, the mean value { G >(¢) of a
physical quantity G contains a series of components which oscillate at the various Bohr
frequencies (E — E')/h of the system. Also, a given Bohr frequency appears in { G )(¢) only
if the matrix element of G between the states corresponding to the two energies is different
from zero. In the problem which concerns us here, the eigenstates of the weak-field Hamiltonian
are the | F, mg ) states. Now consider the two matrices (E-10) and (E-11) which represent S,
and F, in this basis. Since F, has only diagonal matrix elements, no Bohr frequency different
from zero can appear in { F, »(t) : { F, ) is therefore static. On the other hand, S, has, not only
diagonal matrix elements (with which is associated a static component of S, ), but also a non-
diagonal element between the | F = 1, mp = 0) and | F = 0, m; = 0 ) states, whose energy
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E. THE ZEEMAN EFFECT OF THE HYPERFINE STRUCTURE

difference is o/ h?, according to table (E-15) (or figure 5). It follows that { S, ) has, in addition
to a static component, a component modulated at the angular frequency &/fi. This result
recalls the one obtained using the vector model of the atom*.

COMMENT:

A relation can be established between perturbation theory and the vector model
of the atom. The influence of a weak field B, onthe F = 1and F = 0levels can be obtained
by retaining in the Zeeman Hamiltonian 2w, S, only the matrix elements in the F = 1
and F = 0 levels, “forgetting” the matrix element of S, between | F = 1; mp = 0 ) and
| F = 0;mp = 0 ). Proceeding in this way, we also “forget” the modulated component
of { S, >, which is proportional to this matrix element. We therefore keep only the
component of { S ) parallel to ( F ).

Now, this is precisely what we do in the vector model of the atom when we want
to evaluate the interaction energy with the field B,. In a weak field, F does precess
about B, much more slowly than S does about F. The interaction of B, with the
component of S perpendicular to F therefore has no effect, on the average; only the
projection of S onto F counts. This is how, for example, the Landeé factor is calculated.

3. The strong-field Zeeman effect

We must now start by diagonalizing the Zeeman term.

a. EIGENSTATES AND EIGENVALUES OF THE ZEEMAN TERM

This term is diagonal in the { | mg, m; > } basis:

2w,S, | mg, m; y = 2mghw, | mg, my > (E-17)

Since mg = + 1/2, the eigenvalues are equal to + hw,. Each of them is therefore
two-fold degénerate, because of the two possible values of m,. We therefore have**:

2048, | =+ > = — hwg| —, +

2008, | +, £ > = + hag| +, + D (E-18)
nll)

* A parallel could also be established between the evolution of { F, >, { §, >, F, >, (S, >, and
that of the projections of the vectors F and S of figure 6 onto Ox and Oy. However, the motion of ( F )
and (S ) does not coincide perfectly with that of the classical angular momenta. In particular, the
modulus of { S ) is not necessarily constant (in quantum mechanics, { 82 > # (S )?); see discussion
of complement Fy.

** To simplify the notation, we shall often write | &, &, ) instead of | mg, m; >, where & and &,
are equal to + or —, depending on the signs of mg and m;,.
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CHAPTER Xl THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

b. EFFECTS OF THE HYPERFINE TERM CONSIDERED AS A PERTURBATION

The corrections to first order in o/ can be obtained by diagonalizing the
restrictions of the operator & 1. S to the two subspaces { |+, £>}and {| -, + )}
corresponding to the two different eigenvalues of 2w,,S,.

First of all, notice that, in each of these two subspaces, the two basis vectors

| +, 4+ >and |+, — > (or| —, + Y and | —, — ) are also eigenvectors of F,, but
do not correspond to the same value of m, = mg + m,. Since the operator
Z1.S = > (F> — 1> — S?) commutes with F,, it has no matrix elements between
the two states | +, + Yand | +, — ), or| —, + >and | —, — ). The two matrices
representing /1. S in the two subspaces { | +, + >} and {| —, + > } are then

diagonal, and their eigenvalues are simply the diagonal elements :

(mgsmp | V.S | mg; m, D,

which can also be written, using the relation:

.S =1Lgs, +%(1+s_ +1.5.) (E-19)

in the form:

Kmg,my | 1. S| mg, my >
= (mg,m| ALS, | mg, m; > = AW’mgm,  (E-20)

Finally,in a strong field, the eigenstates (to zeroeth order in .o7) and the eigen-
values (to first order in .o¢) are:

Eigenstates Eigenvalues

oA h?
4
A h?
4

|+,+><~—>ha)0+

|+,—-><—> ha)o—

e (E-21)

4
A h?
4

I——,+> <> —fla)o—

I——,—> <> ——fla)0+

In figure 7, the solid-line curves on the right-hand side (for fiw, > #h?) represent
the strong-field energy levels: we obtain two parallel straight lines of slope + 1,
separated by an energy «/h*/2, and two parallel straight lines of slope — 1, also
separated by 2/h?/2. The perturbation treatments presented in this section and the
preceding one therefore give the strong-field asymptotes and the tangents at the
origin of the energy levels.

1240



E. THE ZEEMAN EFFECT OF THE HYPERFINE STRUCTURE

E A &g & FIGURE 7
The strong-field Zeeman diagram of the s
+ + ground state of the hydrogen atom. For each
orientation of the electronic spin (¢ = + or
&g = —), we obtain two parallel straight lines
// separated by an energy ./ h2/2, each one
,/ corresponding to a different orientation of
yd the proton spin (¢, = + or ¢, = —).
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COMMENT:

The strong-field splitting &/ h?/2 of the two states, | +, + Yand | +, — >
or | —, + > and | —, — ), can be interpreted in the following way. We have
seen that only the term /.S, of expression (E-19) for 1. S is involved in a strong
field, when the hyperfine coupling is treated like a perturbation of the Zeeman
term. The total strong-field Hamiltonian (E-8) can therefore be written:

]

2w,S, + ALS, = 2<wo'+7 12>sz - (E-22)

2

It is as if the electronic spin “saw”, in addition to the external field B,,
a smaller “internal field”, arising from the hyperfine coupling between 1
and S and having two possible values, depending on whether the nuclear spin
points up or down. This field adds to or substracts from B, and is responsible
for the energy difference between | +, + > and | +, — ) or between | —, +
and | —, — ).
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CHAPTER XNl THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

c. THE BOHR FREQUENCIES INVOLVED IN THE EVOLUTION OF (S8.>

In a strong field, the Zeeman coupling of S with B, is more important than the hyperfine
coupling of S with L. If we start by neglecting this hyperfine coupling, the vector model of the
atom predicts that S will precess (very rapidly since |B0| is large) about the Oz direction of B,
(I remains motionless, since we have assumed w, to be negligible).

o

FIGURE 8

The motion of S in the vector model of the atom. In
I . a strong field, S precesses rapidly about B, (here we are

~ neglecting both the Zeeman. coupling between I and B,
and the hyperfine coupling between I and S, so that I
remains motionless).

Expression (E-19) for the hyperfine coupling remains valid for classical vectors. Because
of the very rapid precession of S, the terms S, and S_ oscillate very fast and have, on the
average, no effect, so that only the term 1.S; counts. The effect of the hyperfine coupling is
therefore to add a small field parallel to Oz and proportional to I, (cf. comment of the preceding
section), which accelerates or slows down the precession of S about Oz, depending on the
sign of I,. The vector model of the atom thus predicts that S, will be static in a strong field.

We shall show that quantum theory gives an analogous result for the mean value 8,
of-the observable S,. In a strong field, the well-defined energy states are, as we have seen,
the states | mg, m; >. Now, in this basis, the operator S, has only diagonal matrix elements.
No non-zero Bohr frequency can therefore appear in { S, ), which, consequently, is a static
quantity*, unlike its weak-field counterpart (cf. § E-2-c).

* The study of ¢ S, ) and ¢ S, > presents no difficulty. We find two Bohr angular frequencies :
one, w, + /h/2,slightly larger than w,, and the other one, wo — /2, slightly smaller. They correspond
to the two possible orientations of the “internal field ”, produced by I, which adds to the external field B,.

Similarly, we find that I precesses about the “internal field” produced by S,.
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E. THE ZEEMAN EFFECT OF THE HYPERFINE STRUCTURE

4, The intermediate-field Zeeman effect

a. THE MATRIX WHICH REPRESENTS THE TOTAL PERTURBATION
IN THE {|F, m;)} BASIS

The | F, m; ) states are eigenstates of the operator o/ 1. S. The matrix which
represents this operator in the { | F, mg ) } basis is therefore diagonal. The diagonal
elements corresponding to F = 1 are equal to o/ h?/4, and those corresponding to
F =0, to — 3/ h?/4. Furthermore, we have already written, in (E-10), the matrix
representation of .S, in the same basis. It is now very simple to write the matrix which
represents the total perturbation (E-8). Arranging the basis vectors in the order
|1, 1) |1, =1 |1,0), 0,0, we thus obtain:

hz
‘gz + how, 0 0 0
2

0 “"4“ — ha, 0 0
— (E-23)

0 0 ) hw,
| 3a/h?

0 0 hw, -

COMMENT .

S, and F, commute; 2w,S, can therefore have non-zero matrix elements
only between two states with the same m. Thus, we could have predicted all
the zeros of matrix (E-23).

b. ENERGY VALUES IN AN ARBITRARY FIELD

Matrix (E-23) can be broken into two | x 1 matrices and one 2 x 2 matrix.
The two 1 x 1 matrices immediately yield two eigenvalues :

_ AR

E, = ) + ho,
e (E-24)
E, = i haw,

corresponding respectively to the state | 1,1 ) (that is, the state | +,+ >) and to
the state |1, — 1 ) (that is, the state | —, — )). In figure 9, the two straight lines of
slopes + 1 and — 1 passing through the point whose ordinate is + 2/h*/4 for a
zero field (for which the perturbation theory treatment gave only the initial and
asymptotic behavior) therefore represent, for any B, two of the Zeeman sublevels.
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FIGURE 9

The Zeeman diagram (for an arbitrary field) of the 1s ground state of the hydrogen atom :
m, remains a good quantum number for any value of the field. We obtain two straight lines, of
opposite slopes, corresponding to the values + 1 and — 1 of m,, as well as a hyperbola whose two
branches are associated with the two m, = 0 levels. Figures 5 and 7 give, respectively, the tangents
at the origin and the asymptotes of the levels shown in this diagram.

The eigenvalue equation of the remaining 2 x 2 matrix can be written:

()i e
The two roots of this equation can easily be found:

E, = — &/4,12 + \/(’Qghzf + htw} (E-26)

E, - — ﬂfz _ /(”;2)2 SPER: (E-27)
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E. THE ZEEMAN EFFECT OF THE HYPERFINE STRUCTURE

When hw, varies, the two points of abscissas hw, and ordinates E, and E, follow
the two branches of a hyperbola (fig. 9). The asymptotes of this hyperbola are the
two straight lines whose equation is £ = — (&/h%/4) + hw,, obtained in §3 above.
The two turning points of the hyperbola have abscissas of @, = 0 and ordinates of
— (/h*/4) + o/ h?/2, that is, o/ h?/4 and — 3./ h%/4. The tangents at both these
points are horizontal. This is in agreement with the results of §2 for the states
|F=1;my=0>and |F=0;m =0).

The preceding results are summarized in figure 9, which is the Zeeman
diagram of the ls ground state.

c. PARTIAL HYPERFINE DECOUPLING

In a weak field, the well-defined energy states are the states |F, mg »; In
a strong field, the states | mg, m; >; in an intermediate field, the eigenstates of
matrix (E-23), which are intermediate between the states | F, my » and the states
| mg, my >.

One thus moves continuously from a strong coupling between I and S (coupled
bases) to a total decoupling (uncoupled bases) via a partial coupling.

COMMENT

An analogous phenomenon exists for the Zeeman fine structure effect.
If, for simplicity, we neglect W, we know (§ C) that, in a zero field, the
eigenstates of the Hamiltonian H are the |J m, > states corresponding to
a strong coupling between L and S (the spin-orbit coupling). This property
remains valid as long as W, < W,. If, on the other hand, B, is strong enough
to make W, > W, we ﬁnd that the eigenstates of H are the | my, mg ) states
corresponding to a total decoupling of L and S. The intermediate zone
(W, =~ W;) corresponds to a partial coupling of L and S. See, for example,
complement Dy, in which we study the Zeeman effect of the 2p level (without
taking W, into account).
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The fine structure of the n = 2 level and the Lamb shift: Lamb and Retherford
(3.11); Frisch (3.13); Series (11.7), chaps. VI, VII and VIIL

The hyperfine structure of the ground state: Crampton et al (3.12).

The Zeeman effect and the vector model of the atom: Cagnac and Pebay-
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Interstellar hydrogen: Roberts (11.17); Encrenaz (12.11), chap. IV.
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CHAPTER XiI THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

A. INTRODUCTION

The most important forces inside atoms are Coulomb electrostatic forces. We took
them into account in chapter VII by choosing as the hydrogen atom Hamiltonian:

PZ
Ho =5 + V(R) | . (A-1)

The first term represents the kinetic energy of the atom in the center of mass frame
(# is the reduced mass). The second term:
q*> 1

— A-2
4ney R (A-2)

e2
represents the electrostatic interaction energy between the electron and the proton
(g is the electron charge). In §C of chapter VII, we calculated in detail the
eigenstates and eigenvalues of H,,.

Actually, expression (A-1) is only approximate: it does not take any
relativistic effects into account. In particular, all the magnetic effects related to the
electron spin are ignored. Moreover, we have not introduced the proton spin
and the corresponding magnetic interactions. The error is, in reality, very small,
since the hydrogen atom is a weakly relativistic system (recall that, in the Bohr
model, the velocity v in the first orbit n = 1 satisfies v/c = e*/hc = 1/137 < 1).
In addition, the magnetic moment of the proton is very small.

However, the considerable accuracy of spectroscopic experiments makes it
possible to observe effects that cannot be explained in terms of the Hamiltonian (A-1).
Therefore, we shall take into account the corrections we have just mentioned by
writing the complete hydrogen atom Hamiltonian in the form :

H=H,+ W (A-3)

where H, is given by (A-1) and where W represents all the terms neglected thus far.
Since W is much smaller than H,, it is possible to calculate its effects by using the
perturbation theory presented in chapter XI. This is what we propose to do in this
chapter. We shall show that W is responsible for a “fine structure”, as well as for a

“hyperfine structure” of the various energy levels calculated in chapter VII.
Furthermore, these structures can be measured experimentally with very great
accuracy (the hyperfine structure of the 1s ground state of the hydrogen atom is the
physical quantity currently known to the largest number of significant figures).
We shall also consider, in this chapter and its complements, the influence of an
external static magnetic or electric field on the various levels of the hydrogen atom
(the Zeeman effect and the Stark effect).

This chapter actually has two goals. On the one hand, we want to use a concrete
and realistic case to illustrate the general stationary perturbation theory discussed
in the preceding chapter. On the other hand, this study, which bears on one of the
most fundamental systems of physics (the hydrogen atom), brings out certain
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! A. INTRODUCTION

concepts which are basic to atomic physics. For example, §B is devoted to a
thorough discussion of various relativistic and magnetic corrections. This chapter,
while not indispensable for the study of the last two chapters, presents concepts
fundamental to atomic physics.

B. ADDITIONAL TERMS IN THE HAMILTONIAN

The first problem to be solved obviously consists of finding the expression for W.

1. The fine-structure Hamiltonian

a. THE DIRAC EQUATION IN THE WEAKLY RELATIVISTIC DOMAIN

In chapter IX, we mentioned that the spin appears naturally when we try to
establish an equation for the electron which satisfies both the postulates of special
relativity and those of quantum mechanics. Such an equation exists: it is the
Dirac equation, which makes it possible to account for numerous phenomena (elec-
tron spin, the fine structure of hydrogen, etc.) and to predict the existence of posi-

trons.
The most rigorous way of obtaining the expression for the relativistic

corrections [appearing in the term W of (A-3)] therefore consists of first writing
the Dirac equation for an electron placed in the potential V' (r) created by the proton
(considered to be infinitely heavy and motionless at the coordinate origin). One then
looks for its limiting form when the system is weakly relativistic, as is the case
for the hydrogen atom. We then recognize that the description of the electron state
must include a two-component spinor (¢f. chap. IX, § C-1). The spin operators S,
S,, S,, introduced in chapter IX then appear naturally. Finally, we obtain an
expression such as (A-3) for the Hamiltonian H, in which W appears in the form of
a power series expansion in v/c which we can evaluate.

It is out of the question here to study the Dirac equation, or to establish its
form in the weakly relativistic domain. We shall confine ourselves to giving the
first terms of the power series expansion in v/c of W and their interpretation.

2 P4 2 :
H=me +2— + V(R - L LAVR) g v P ApR) + .
2m, 8mlc*  2mic* R dR 8m?2c?
. \—V__I ;v_/ ¥ - — \ v _
HO . Wmu WSO WD

(B-1)

We recognize in (B-1) the rest-mass energy m,c? of the electron (the first term)
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CHAPTER XII THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

and the non-relativistic Hamiltonian H, (the second and third terms)*. The
following terms are called fine structure terms.

COMMENT!:

Note that it is possible to solve the Dirac equation exactly for an electron placed
in a Coulomb potential. We thus obtain the energy levels of the hydrogen atom without
having to make a limited power series expansion in v/c of the eigenstates and eigenvalues
of H. The “perturbation” point of view which we are adopting here is, however, very
useful in bringing out the form and physical meaning of the various interactions which
exist inside an atom. This will later permit a generalization to the case of many-electron
atoms (for which we do not know how to write the equivalent of the Dirac equation).

b. INTERPRETATION OF THE VARIOUS TERMS
OF THE FINE-STRUCTURE HAMILTONIAN

o.  Variation of the mass with the velocity (W,,, term)

(#) The physical origin

The physical origin of the W, term is very simple. If we start with the
relativistic expression for the energy of a classical particle of rest-mass m, and
momentum p:

E = c\/p* + mic? (B-2)

and perform a limited expansion of E in powers of |p|/mc, we obtain:

2 4
E = mc? + 2 P (B-3)

3.2
2m, 8m,c

In addition to the rest-mass energy (m,?) and the non-relativistic kinetic energy
(p?/2m,), we find the term — p*/8mJ}c?, which appears in (B-1). This term represents
the first energy correction, due to the relativistic variation of the mass with the
velocity. |

(éi) Order of magnitude

To evaluate the size of this correction, we shall calculate the order of
magnitude of the ratio W, /H,:

p4
3.2 2 2 2 )
Wmv ~ 8meC _ . p - 1(_’1) ~ az ~ <_1__) (B-4)
H, p2 dmic® 4 \c 137
2m

e

* Expression (B-1) was obtained by assuming the proton to be infinitely heavy. This is why it is
the mass m, of the electron that appears, and not, as in (A-l),/the reduced mass p of the atom. As far as
H, is concerned, the proton finite mass effect is taken into account by replacing m, by u. However,
we shall neglect this effect in the subsequent terms of H, which are already corrections. It would, moreover,
be difficult to evaluate, since the relativistic description of a system of two interacting particles poses
serious problems [it is not sufficient to replace m, by u in the last terms of (B-1)].
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since we have already mentioned that, for the hydrogen atom, v/c ~ a. Since
H, ~ 10 eV, we see that W, ~ 1073 eV.

B.  Spin-orbit coupling (W, term)

(/) The physical origin
The electron moves at a velocity v = p/m, in the electrostatic field E created
by the proton. Special relativity indicates that there then appears, in the electron
frame, a magnetic field B’ given by:
: 1
B = — e vX E (B-5)

to first order in v/c. Since the electron possesses an intrinsic magnetic moment
M = ¢S/m,, it interacts with this field B’. The corresponding interaction energy
can be written:

W, - - MS . B’ (B-6)

Let us express W' more explicitly. The electrostatic field E appearing in (B-5) is
1dV 2 .

equal to — E—d_fr—)_:_’ where V(r) = — 87 is the electrostatic energy of the electron.

From this, we get:

1 1dvyp

B = B-7
gt r dr m, (B-7)
In the corresponding quantum mechanical operator, there appears:
PxR=-L (B-8)
Finally, we obtain:
1 1dV(R) e 1
W = — L.S= —L.S (B-9)
m2c* R dR m2c? R?

Thus we find, to within the factor 1/2*, the spin-orbit term W, which appears
in (B-1). This term then represents the interaction of the magnetic moment of
the electron spin with the magnetic field “seen” by the electron because of its
motion in the electrostatic field of the proton.

(1) Order of magnitude

Since L and S are of the order of h, we have:

e2 hz

m2c? R?

Wso = (B-10)

* It can be shown that the factor 1/2 is due to the fact that the motion of the electron about the
proton is not rectilinear. The electron spin therefore rotates with respect to the laboratory reference
frame (Thomas precession; see Jackson (7.5) section 11-8, Omnés (16.13) chap. 4 §2, or Bacry (10.31)
chap. 7 §5-d).
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