CHAPTER XIl THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM
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FIGURE 9

The Zeeman diagram (for an arbitrary field) of the ls ground state of the hydrogen atom :
my remains a good quantum number for any value of the field. We obtain two straight lines, of
opposite slopes, corresponding to the values + 1 and — 1 of mg, as well as a hyperbola whose two
branches are associated with the two m, = 0 levels. Figures 5 and 7 give, respectively, the tangents
at the origin and the asymptotes of the levels shown in this diagram.




D. THE HYPERFINE STRUCTURE OF THE n = 1 LEVEL

We see that the energy depends only on » and J, and not on /.
If we make a limited expansion of formula (C-27) in powers of o, we obtain:

1 mc? n 3
E,=mc® —-meta— - 2 (B _ g4 C-28
g = Mg 2mcoc T o (J+1/2 4)0: + ( )

The first term is the rest-mass-energy of the electron. The second term follows from the
theory of chapter VII. The third term gives the correction to first order in W, calculated
in this chapter.

(iv) Even in the absence of an external field and incident photons, a fluctuating electro-
magnetic field must be considered to exist in space (¢f. complement Ky, § 3-d-5). This
phenomenon is related to the quantum mechanical nature of the electromagnetic field,
which we have not taken into consideration here. The coupling of the atom with these
fluctuations of the electromagnetic field removes the degeneracy between the 2s,,,
and 2p,,, levels. The 2s,,, level is raised with respect to the 2p,,, level by a quantity
called the “Lamb shift” which is of the order of 1 060 MHz (fig. 4, page 1231).

The theoretical and experimental study of this phenomenon, which was discovered
in 1949, has been the object of a great deal of research, leading to the development of
modern quantum electrodynamics.

D. THE HYPERFINE STRUCTURE OF THE n =1 LEVEL

It would now seem 10g1ca1 to study the effect of W, inside the fine structure levels
25y /2, 2Py, and 2p; ,, in order to see if the interactions related to the proton spin I
cause a hyperfine structure to appear in each of these levels. However, since W, does
not remove the degeneracy of the ground state ls, it is simpler to study the effect
of W, on this state. The results obtained in this special case can easily be generalized
to the 25,2, 2Py )2 and 2p, , levels.

1. Statement of the problem

a.  THE DEGENERACY OF THE 1s LEVEL
For the 1s level, there is no orbital degeneracy (/ = 0). On the other hand,
the S, and I, components of S and I can still take on two values: mg = + 1/2

and m = = + 1/2 The degeneracy of the 1slevel is therefore equal to 4, and a possible
basis in this level is given by the vectors:

{.|n=1;l=0;mL=0;ms=i%;m,=i%>} (D-1)

b. THE 1s LEVEL HAS NO FINE STRUCTURE

We shall show that the W, term does not remove the degeneracy of the 1s level.
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CHAPTER XIl THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

The W, and W, terms do not act on mg and m,, and are represented in the
ls subspace by multiples of the unit matrix. We find (¢f. complement By,,):

< Wmv >1s = - % meC2d4 (D-2)
1 2.4
(W01 = Fmcia (D-3)

Finally, calculation of the matrix elements of the W, term involves the “ angular”
matrix elements (/= 0, m; =0|L_,, [/ =0, m, =0, which are obviously
zero (! = 0); therefore :

(W01, =0 (D-4)

In conclusion, W, merely shifts the 1s level as a whole by a quantity equal to:

(— —g— + %)mecza‘* = — % m,crat (D-5)
without splitting the level. This result could have been foreseen : since / = 0 and
s = 1/2, J can take on only one value, J = 1/2, and the 1s level therefore gives rise
to only one fine structure level, 1s, ,.

Since the Hamiltonian W, does not split the s level, we can now consider the
effect of the W term. To do so, we must first calculate the matrix which represents W, .
in the Ls level.

2, Matrix representation of W, in the 1s level

a. TERMS OTHER THAN THE CONTACT TERM

Let us show that the first two terms of W s [formula (B-20)] make no contri-
bution.

Calculation of the contribution from the first term, — 5—0% L .M, leads
nm
to the “angular” matrix elements < / = 0, m, =0|L|/=0, mLe= 0 >, which are
obviously zero (! = 0).
Similarly, it can be shown (¢f. complement By, § 3) that the matrix elements
of the second term (the dipole-dipole interaction) are zero because of the spherical
symmetry of the ls state.

b. THE CONTACT TERM

The matrix elements of the last term of (B-20), that is, of the contact term,
are of the form:

“‘Z%MS.M,(S(R)In= 1;1=0;m, =0;mg;m ) (D-6)

1228



D. THE HYPERFINE STRUCTURE OF THE n =1 LEVEL

If we go into the { |r ) } representation, we can separate the ‘orbital and
spin parts of this matrix element and put it in the form:

o {mg; my |1.S | mg; my > (D-7)
where . is a number given by :

2
=0T (n=1;1=0;m =0|6R)|n=1;1=0;m =0)
3eoc> mM,
2
- % 1R oo
3¢oc> m M, 4n

_ig Me 2ot 1 + e ﬂi (D-8)
37" M, ¢ M 2

4 p

We have used the expressions relating Mg and M, to S and I [¢f. (B-18)], as well as

the expression for the radial function R,,(r) given in §C-4-c of chapter VII*.
The orbital variables have therefore completely disappeared, and we are left

with a problem of two spin 1/2’s, I and S, coupled by an interaction of the form:

A1.S (D-9)

where &7 is a constant.

c. EIGENSTATES AND EIGENVALUES OF THE CONTACT TERM

To represent the operator &1 . S, we have thus far considered only the basis:

|s=1;1=1;m;m> -
2 2 S I (DIO)

formed by the eigenvectors common to S?, I?, S_, I.. We can also, by introducing
the total angular momentum**: '

F=S+1 | (D-11)

use the basis:

{|s=%;l=%;F;mp>} (D-12)

formed by the eigenstates common to S?, I, F2 F,. Since s = I = 1/2, F can take
on only the two values F = 0 and F = 1. We can easily pass from one basis to the
other by means of (B-22) and (B-23) of chapter X. '

* The factor (l' + m,/M,)"> in (D-8) arises from the fact that it is the reduced mass yu which
enters into R,,(0). It so happens that, for the contact term, it is correct to take the nuclear finite mass
effect into account in this way.

** The total angular momentum is actually F = L + S + I, that is, F = J + I. However, for
the ground state, the orbital angular momentum is zero, so F reduces to (D-11).
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CHAPTER XIl THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

The { | F, m; > } basis is better adapted than the { | mg, m; > } basis to the
study of the operator #/1.S, as this operator is represented in the {|F,mg )}
basis by a diagonal matrix (for the sake of simplicity, we do not explicitly write
s = 1/2 and I = 1/2). This is true, since we obtain, from (D-11):

"4

ALS = (F* - I* - §?) (D-13)

It follows that the states | F, m, ) are eigenstates of /1. S:

Ah?

A1.S|F,mp> = >

[F(F +1) — Il +1) — S(S + 1)]| F,mp> (D-14)

We see from (D-14) that the eigenvalues depend only on F, and not on mpg. They are
equal to:

A2 3 3] wm?
2 [2‘2—2]—“4— (D-15)
for F =1, and:
AR 3 3 3o4h?
3 [O—z—z]—‘ 7 (D-16)
for F = 0.

The four-fold degeneracy of the 1s level is therefore partially removed by W, -
We obtain a three-fold degenerate F = 1 level and a non-degenerate F = 0 level.
The (2F + 1)-fold degeneracy of the F = 1 level is essential and is related to the
invariance of W;, under a rotation of the total system.

3. The hyperfine structure of the 1s level

a. POSITIONS OF THE LEVELS

Under the effect of W, the energy of the ls level is lowered by a quantity
m,c*a*/8 with respect to the value — uc2x?/2 calculated in chapter VIL. W, then
splits the 1s, , level into two hyperfine levels, separated by an energy «/h” (fig. 3).
2/ h? is often called the “hyperfine structure of the ground state”.

COMMENT:

It could be found, similarly, that W, splits each of the fine structure
levels 2s, ,, 2p,,, and 2p;, into a series of hyperfine levels, corresponding to
all the values of F separated by one unit and included between J + I and
|/ —~ 1|. For the 2s,,, and 2p,,; levels, we have J = 1/2. Therefore, F takes
on the two values F = 1 and F = 0. For the 2p;,, level, J = 3/2, and, conse-
quently, we have F = 2 and F = 1 (c¢f. fig. 4).
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D. THE HYPERFINE STRUCTURE OF THE n =1 LEVEL

ls FIGURE 3

The hyperfine structure of the
n =1 level of the hydrogen
atom. Under the effect of W/,
the n = 1 level undergoes
a global shift equal to
— m_c*a%/8;
_1 m c?at o’/
8 J can take on only one value,
J = 1/2. When the hyperfine
coupling W;, is taken into
account, the ls,, level splits
into two hyperfine levels, F = 1
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FIGURE 4

The hyperfine structure of the n = 2 level of the hydrogen atom. The separation & between the
two levels 25, , and 2p, , is the Lamb shift, which is about ten times smaller than the fine structure
splitting AE separating the two levels 2p, , and 2p, , (¥ ~ 1057.8 MHz; 4E ~ 10 969.1 MHz).
When the hyperfine coupling W, is taken into account, each level splits into two hyperfine sublevels
(the corresponding value of the quantum number F is indicated on the right-hand side of the figure).
The hyperfine splittings are equal to 23.7 MHz for the 2p, , level, 177.56 MHz for the 2s,,, level
and 59.19 MHz for the 2p, , level (for the sake of clarity, the figure is not drawn to scale).
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CHAPTER Xl THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

b. IMPORTANCE OF THE HYPERFINE STRUCTURE OF THE 1s LEVEL

The hyperfine structure of the ground state of the hydrogen atom is currently
the physical quantity which is known experimentally to the highest number of
significant figures. Expressed in Hz, it is equal to*:

“‘;;: — 1420405 751. 768 + 0.001 Hz (D-17)

Such a high degree of experimental accuracy was made possible by the
development of the « hydrogen maser” in 1963. The principle of such a device is,
very schematically, the following: hydrogen atoms, previously sorted (by a magnetic
selection of the Stern-Gerlach type) so as to choose those in the upper hyperfine
level F = 1, are stored in a glass cell (the arrangement is similar to the one shown
in figure 6 of complement F,,). This constitutes an amplifying medium for the
F =1) — E(F = 0)

h
to the hyperfine frequency, and if the losses of the cavity are small enough for the
gain to be greater than the losses, the system becomes unstable and can oscillate :
we obtain an “atomic oscillator” (a maser). The frequency of the oscillator is very
stable and of great spectral purity. Its measurement gives directly the value of
the hyperfine splitting, expressed in Hz.

Note, finally, that hydrogen atoms in interstellar space are detected in
radioastronomy by the radiation they emit spontaneously when they fall from the
F = 1 hyperfine level to the F = 0 hyperfine level of the ground state (this transition
corresponds to a wave length of 21 cm). Most of the information we possess about
interstellar hydrogen clouds is supplied by the study of this 21 cm line.

hyperfine frequency . If the cell is placed in a cavity tuned

E. THE ZEEMAN EFFECT
OF THE 1s GROUND STATE HYPERFINE STRUCTURE

1. Statement of the problem
a. THE ZEEMAN HAMILTONIAN W

We now assume the atom to be placed in a static uniform magnetic field B,
.parallel to Oz. This field interacts with the various magnetic moments present in

the atom : the orbital and spin magnetic moments of the electron, M; = 251 L and
M = mi S, and the magnetic moment of the nucleus, M ;= — —2%“]41’-1 [¢f. expres-
14

sion (B-18)].

* The calculations presented in this chapter are obviously completely incapable of predicting
all these significant figures. Moreover, even the most advanced theories cannot, at the present time,
explain more than the first five or six figures of (D-17).
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E. THE ZEEMAN EFFECT OF THE HYPERFINE STRUCTURE

The Zeeman Hamiltonian W, which describes the interaction energy of the
atom with the field B, can then be written:

= wO(Lz + 2Sz) + wnIz (E-l)

where @, (the Larmor angular frequency in the field B,) and w, are defined by:

@y = — 32— By (E-2)
w ==L 4B J (E-3)
n 2Mp p~ 0

Since M, > m,, we clearly have:

[@o| > e, (E-4)

COMMENT

Rigorously, W, contains another term, which is quadratic in B, (the
diamagnetic term). This term does not act on the electronic and nuclear spin
variables and merely shifts the ls level as a whole, without modifying its
Zeeman diagram, which we shall study later. Moreover, it is much smaller
than (E-1). Recall that a detailed study of the effect of the diamagnetic term
is presented in complement Dy,

b. THE PERTURBATION "SEEN"” BY THE 1s LEVEL

In this section, we propose to study the effect of W, on the ls ground state
of the hydrogen atom (the case of the n = 2 level is slightly more complicated since,
in a zero magnetic field, this level possesses both a fine and a hyperfine structure,
while the n = 1 level has only a hyperfine structure; the principle of the calculation
is nevertheless the same). Even with the strongest magnetic fields that can be pro-
duced in the laboratory, W} is much smaller than the distance between the ls level
and the other levels; consequently, its effect can be treated by perturbation theory.

The effect of a magnetic field on an atomic energy level is called the “Zeeman
effect”. When B, is plotted on the x-axis and the energies of the various sublevels
it creates are plotted on the y-axis, a Zeeman diagram is obtained.

If B, is sufficiently strong, the Zeeman Hamiltonian W, can be of the same
order of magnitude as the hyperfine Hamiltonian W, . *, or even larger. On the other
hand, if B, is very weak, W, < W ,. Therefore, in general it is not possible to
establish the relative importance of W, and W;,. To obtain the energies of the
various sublevels, (W, + W, ) must be diagonalized inside the n = 1 level.

* Recall that W, shifts the ls level as a whole; it therefore also shifts the Zeeman diagram as
a whole.
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CHAPTER Xil THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

We showed in § D-2 that the restriction of W, to the n = 1 level could be put
in the form &/ 1. S. Using expression (E-1) for W, we see that we must also calculate
matrix elements of the form:

(n=1;1=0;m, =0;mg; my|wy(L, + 2S,) + w,l,
|ln=1;1=0;m, =0;mg;m > (E-5)

The contribution of w,L, is zero, since / and m, are zero. Since 2w,S, + w,/, acts
only on the spin variables, we can, for this term, separate the orbital part of the
matrix element:

(n=1;1=0;m =0|n=1;/=0;m, =0) =1 (E-6)

from the spin part.
In conclusion, therefore, we must, ignoring the quantum numbers n, /, m,,
diagonalize the operator:

A1.S + 20,8, + o,l, (E-7)

which acts only on the spin degrees of freedom. To do so, we can use either the
{ | mg, m; > } basis or the { | F, my ) } basis.

According to (E-4), the last term of (E-7) is much smaller than the second one.
To simplify the discussion, we shall neglect the term w,/, from now on (it would be
possible, however, to take it into account*). The perturbation “seen” by the
ls level can therefore be written, finally :

L1.S + 20,8, (E-8)

c. DIFFERENT DOMAINS OF FIELD STRENGTH

By varying B,, we can continuously modify the magnitude of the Zeeman
term 2w,S,. We shall consider three different field strengths, determined by the
respective orders of magnitude of the hyperfine term and the Zeeman term:

(1) hw, < o h* : weak fields

(i) hwy > L h? : strong fields

(i) hw, ~ o/ h? : intermediate fields
We shall later see that it is possible to diagonalize operator (E-8) exactly. However,
in order to give a particularly simple example of perturbation theory, we shall use
a slightly different method in cases (i) and (ii). In case (i), we shall treat 2m,S, like
a perturbation with respect to /1. S. On the other hand, in case (i), we shall treat
</ 1.8 like a perturbation with respect to 2w,S,. The exact diagonalization of the

set of two operators, indispensable in case (iii), will allow us to check the preceding
. results. ~

2. The weak-field Zeeman effect

The eigenstates and eigenvalues of o 1. S have already been determined (§ D-2).
We therefore obtain two different levels : the three-fold degenerate level,

{|F=1;mg=~1,0,+1)},

* This is what we do in complement Cy,;, in which we study the hydrogen-like systems (muonium,
positronium) for which it is not possible to neglect the magnetic moment of one of the two particles.
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E. THE ZEEMAN EFFECT OF THE HYPERFINE STRUCTURE

of energy ./ h*/4, and the non-degenerate level, { | F=0; m, =0)}, of energy
— 3./ h%/4. Since we are treating 2w,S, like a perturbation with respect to &1 . S,
we must now separately diagonalize the two matrices representing 2w,S, in the two
levels, F = 1 and F = 0, corresponding to two distinct eigenvalues of .« 1. S.

a. MATRIX REPRESENTATION OF S, IN THE {|F, m, )} BASIS

Since we shall need it later, we shall begin by writing the matrix which
represents S, in the { | F, m; ) } basis (for the problem which concerns us here,
it would suffice to write the two submatrices corresponding to the F = 1 and
F = 0 subspaces).

By using formulas (B-22) and (B-23) of chapter X, we easily obtain:

-

h
S, |F=1;mp =1 =§|F=1;m,,=1>
h
S, |F=1,mz=0) =§|F=0;mF=0)
< " (E-9)
SAF=1im=—1>= —Z|F=1;m =15
h
S,|F=0,m,=0) =§|F=1;mF=0>
which gives the following expression for the matrix representing S, in the
{| F, mp >} basis (the basis vectors are arranged in the order |1,1), |1,0),
ll, —1>,10,05):
110101]0
s lololol1
(s.) =5 x (E-10)
0(0|—1]0
0| 1({0]0O0
COMMENT:

It is instructive to compare the preceding matrix with the one which represents F,
in the same basis: '

11olofo
0olo|o]o

(F,)=h x o o o1l (E-11)
olojofo
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We see, first of all, that the two matrices are not proportional: the (F,) matrix
is diagonal, while the (S,) one is not.

However, if we confine ourselves to the restrictions of the two matrices in the F = 1
subspace [limited by the darker line in expressions (E-10) and (E-11)], we see that they
are proportional. Denoting by P, the projector onto the F = 1 subspace (c¢f. comple-
ment B;), we have:

1
P,S.P,=>P F,P, (E-12)

It would be simple to show that the same relation exists between S, and F, on the one
. hand, and S, and F,, on the other.

We have thus found a special case of the Wigner-Eckart theorem (complement Dy),
according to which, in a given eigensubspace of the total angular momentum, all the
matrices which represent vector operators are proportional. It is clear from this example
that this proportionality exists only for the restrictions of operators to a given eigen-
subspace of the total angular momentum, and not for the operators themselves.

Moreover, the proportionality coefficient 1/2 which appears in (E-12) can be
obtained immediately from the projection theorem. According to formula (30) of
complement E,, this coefficient is equal to:

(S.Fd, FF +1)+ss+1)—II +1)

(F25,_, - 2F(F +1) (E-13)

Since s = I = 1/2, (E-13) is indeed equal to 1/2.

b. WEAK-FIELD EIGENSTATES AND EIGENVALUES

According to the results of §a, the matrix which represents 2w,S, in the
F = 1 level can be written :

hw, 0 0
0 0 0 (E-14)
0 0 | — ho, /

In the F = 0 level, this matrix reduces to a number, equal to 0.
Since these two matrices are diagonal, we can immediately find the weak-field
eigenstates (to zeroeth order in w,) and the eigenvalues (to first order in w,):

Eigenstates Eigenvalues
2
|F=1;mp=1) e"i” + ho,
2
|F=1,mF=0> > Jzih +0
E-15
h? ( )
|F=1,mF:—l><——> 1 — hw,
2
|F=0,mF:0> <—>—3d4h +0
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E. THE ZEEMAN EFFECT OF THE HYPERFINE STRUCTURE

In figure 5, we have plotted hw, on the x-axis and the energies of the four
Zeeman sublevels on the y-axis (Zeeman diagram). In a zero field, we have the two
hyperfine levels, F = 1 and F = 0. When the field B, is turned on, the | F=0,m,=0)
sublevel, which is not degenerate, starts horizontally; as for the F = 1 level, its
three-fold degeneracy is completely removed : three equidistant sublevels are
obtained, varying linearly with fiw,, with slopes of + 1, 0, — 1 respectively.

Ey
mg
+1
AF=1 0

/h?

FIGURE 5

YF = () b 0 ,

The weak-field Zeeman diagram of the ls
ground state of the hydrogen atom. The
hyperfine F = 1 level splits into three equi-
distant levels, each of which corresponds to
a well-defined value of the quantum number m.
The F = 0 level does not undergo any shift
to first order in w,. '

The preceding treatment is valid as long as the difference hw, between two
adjacent Zeeman sublevels of the F = 1 level remains much smaller than the zero-
field difference between the F = 1 and F = 0 levels (the hyperfine structure).

COMMENT:

The Wigner-Eckart theorem, mentioned above, makes it possible to show that,
in a given level F of the total angular momentum, the Zeeman Hamiltonian wy(L, + 2S,)
is represented by a matrix proportional to F,. Thus, we can write, denoting the projector
onto the F level by Pg: '

Pplwy(L, + 2Sz)]PF = grWo PpF Py - (E-16)

gr 1s called the Landé factor of the F state. In the case which concerns us here, g,_, = 1.

c. THE BOHR FREQUENCIES INVOLVED IN THE EVOLUTION OF (F)
AND (S). COMPARISON WITH THE VECTOR MODEL OF THE ATOM

- In this section, we shall determine the different Bohr frequencies which appear in the
evolution of { F > and { S ), and show that certain aspects of the results obtained recall those
found by using the vector model of the atom (¢f. complement Fy).
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