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5.1

One-electron atoms: fine structure and
hyperfine structure

Our discussion of the energy levels and wave functions of one-electron atoms in
Chapter 3 was based on the simple, non-relativistic Hamiltonian
p2 Zez

=L 5.1
2u  (4ney)r e

where the first term represents the (non-relativistic) kinetic energy of the atom in
the centre of mass system, and the second term is the electrostatic (Coulomb)
interaction between the electron and the nucleus. Although the energy levels
obtained in Chapter 3 from the Hamiltonian (5.1) are in good agreement with
experiment, the very precise measurements carried out in atomic physics demon-
strate the existence of several effects which cannot be derived from the Hamiltonian
(5.1) and require the addition of correction terms to (5.1). In this chapter we shall
discuss these corrections.

We begin by analysing the relativistic corrections to (5.1), which give rise to a
splitting of the energy levels known as fine structure. We then describe a subtle
effect called the Lamb shift, which displaces the fine structure components and
is therefore responsible for additional splittings of the energy levels. Finally, we
consider various small corrections such as the hyperfine structure splitting and the
volume effect, which take into account the fact that the nucleus is not simply a point
charge, but has a finite size, and may possess an intrinsic angular momentum (spin),
a magnetic dipole moment, an electric quadrupole moment, and higher moments.

Fine structure of hydrogenic atoms

The fine structure of the energy levels of hydrogenic atoms is due to relativistic
effects. In order to analyse these effects we therefore need for the electron a
basic wave equation which satisfies the requirements of special relativity as well
as those of quantum mechanics. This is the Dirac equation, which is discussed
briefly in Appendix 7, and which provides the correct relativistic wave equation
for electrons.

The most rigorous way of obtaining the relativistic corrections to the
Schrodinger (Bohr) energy levels of one-electron atoms is to solve the Dirac
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equation for an electron in the central field V(r) = —Ze’/(4neyr) of the nucleus
which is assumed to be of infinite mass and at the origin of the coordinates. It
turns out that the Dirac equation for a central field can be separated in spherical
polar coordinates and that the resulting radial equations can be solved exactly
for the Coulomb potential V(r) =—Ze*/(4neyr) [1]. However, these calculations are
rather lengthy and since the relativistic corrections are very small (provided
that Z is not too large), it is convenient to use perturbation theory, keeping terms
up to order v*/c? in the Dirac Hamiltonian. We shall therefore start from the
Hamiltonian (A7.65) of Appendix 7 which we rewrite as

H=H,+H (5.2)
where
2 Z 2
H=2 -2 (5.3)
2m  (4mey)r
is simply the Hamiltonian (5.1) with g4 = m [2] and
H’' =H;+ H, + H; 5.4
with
, p'
Hi=- 5.5
1 Snc? (5.5)
1 1dv
H,=————L-S 5.6
2T om2c? r dr (56)
and
nh? | Ze?
H;= o(r 5.7
*T omic? [411’.80J (®) &7

The physical interpretation of the three terms which constitute H" is discussed
in Appendix 7. We simply note here that H7 is a relativistic correction to the
kinetic energy, H} represents the spin—orbit interaction and H is the Darwin term.

Before we proceed to the evaluation of the energy shifts due to these three
terms by using perturbation theory, we remark that the Schrédinger theory dis-
cussed in Chapter 3 does not include the spin of the electron. In order to calculate

[1] See Bransden and Joachain (2000).

[2] For the sake of simplicity we shall ignore all reduced mass effects in discussing the fine structure
calculations. It is of course straightforward to incorporate the reduced mass effect in #, and in the
corresponding unperturbed energy levels E, by replacing the electron mass m by its reduced mass 4.
On the other hand, the reduced mass effects arising in H’ cannot be obtained by just replacing m by
4 in the results of the perturbation calculation. Fortunately, these latter reduced mass effects are
very small since H’ is already a correction to H,.
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corrections involving the spin operator — such as those arising from H’ — we start
from the ‘unperturbed’ equation

HO v/nlm,m: = En ll/nlm,ms (5.8)

where E, are the Schrodinger eigenvalues (3.29) (with u = m) and the zero-order
wave functions ., are modified (two-component) Schrodinger wave functions
(also referred to as Pauli wave functions or ‘spin-orbitals’) given by

l/,nlm,m,(q) = ll/nlm,(r) ll 12,my (5'9)

where g denotes the space and spin variables collectively. The quantum number
m,; which can take the values -/, -/ + 1, ..., 4/ is the magnetic quantum number
previously denoted by m [3], y,,,,(r) is a one-electron Schrodinger wave function
(see (3.53)) such that

HOWnlm,(r) = En l»Unlm,(r) (5'10)

and g, are the spin eigenfunctions for spin one-half (s = 1/2) introduced in
Section 2.5, with m, = +1/2. We recall that y,,,, is a two-component spinor and
that the normalised spinors corresponding respectively to ‘spin up’ (m, = +1/2)
and ‘spin down’ (m, = —1/2) are conveniently denoted by

o= (éj and B = ((1)) (6.11)

Since H, does not act on the spin variable, the two-component wave functions
(5.9) are separable in space and spin variables. It is also worth noting that we now
have four quantum numbers (n, [, m, m,) to describe a one-electron atom, the
effect of the spin on the ‘unperturbed’ solutions being to double the degeneracy,
so that each Schrédinger energy level E, is now 2n* degenerate.

Energy shifts

We now calculate the energy corrections due to the three terms (5.5)—(5.7), using
the Pauli wave functions (5.9) as our zero-order wave functions.

4
1L.H=-—P__

amc (relativistic correction to the kinetic energy)

Since the unperturbed energy level E, is 2n? degenerate, we should use the degen-
erate perturbation theory discussed in Section 2.8. However, we first note that
H7 does not act on the spin variable. Moreover, it commutes with the components
of the orbital angular momentum (see Problem 2.13) so that the perturbation

[3] When no confusion is possible, we shall continue to write m instead of m, for the magnetic quantum
number associated with the operator L.
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H/ is already ‘diagonal’ in /, m; and m,. The energy correction AE; due to Hiis
therefore given in first-order perturbation theory by

4
AEI = <Wn!m,m5 m Wnlm,m‘>
4
= Wnlm, W lllnlm,
1
= = —— Wt | T Wi, ) (5.12)

2mc?

where T = p%/(2m) is the kinetic energy operator. From (5.3) we have

Ze?

(4ney)r

(5.13)

T=Hy+

and therefore

2 2
AE, =- ! WYoim, Ho'*'—ge—‘ H,+ Ze
2mc? (4mey)r (4mey)r

2 2 2
__ Y g [Z2(1) 42 L (5.14)
2mc? dme, J\r [~ \4ng el

where we have used (5.10). From the results (3.30), (3.76) and (3.77) (with u = m)
one obtains (Problem 5.1)

2 2
oy L Zaf Za[3
2 n? nz |4 1+12
Zo)? |3
Y C2:918 R (515
n? |4 1+12
, 1 1dv . .
2. Hy= iy ar L-S (spin—orbit term)

We shall first rewrite this term more simply as

H,=&(r)L-S (5.16)
where we have introduced the quantity
1 1dv
&(r) - (17

- 2m2ct r dr
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In our case V(r) = —Zée/(4ngyr), so that
1 Ze* 1
) 2m*c? 4ng, r? >18)

Since the operator L? does not act on the radial variable r nor on the spin
variable, and commutes with the components of L, we see from (5.16) that L’
commutes with Hj. It follows that the perturbation H; does not connect states
with different values of the orbital angular momentum /. For a given value of n
and [ there are 2(2/ + 1) degenerate eigenstates of H, (the factor of 2 arising from
the two spin states), so that the calculation of the energy shift due to Hj requires
the diagonalisation of 2(2/ + 1) x 2(2/ + 1) submatrices.

This diagonalisation is greatly simplified by using for the zero-order wave
functions a representation in which L-S is diagonal. It is clear that the functions
Vimm, given by (5.9), which are simultaneous eigenfunctions of the operators
H,, L?, 8%, L, and S,, are not adequate because L-S does not commute with L, or
S,. However, we shall now show that satisfactory zero-order wave functions may
be obtained by forming certain linear combinations of the functions y,,,,,. To this
end, we introduce the total angular momentum of the electron

J=L+S (5.19)
and we note that

J2=L1?+2L-S +§* (5.20)
so that

LS=1(J*-L*-%) (5.21)

Consider now wave functions v, which are eigenstates of the operators H,,
L2, 8%, J? and J,, the corresponding eigenvalues being E,, I(I + 1)#% s(s + 1)#?,
J(j + 1)#* and m. In this particular case we have s = 1/2 and therefore (see
Section 2.5)

j=1x172, [0

(5.22)
j=172, [=0
and
m=—j,—j+1,...,4f (5.23)

By using the methods of Section 2.5 and Appendix 4, we can form the functions
W,um, from linear combinations of the functions ¥y, [4]. Since L-S commutes

[4] Specifically, if we use the Dirac notation so that the ket |nlsmyn,) corresponds to the wave function
Wiimpm, and the ket |nlsjm,;) to the wave function Vi, (with s = 1/2), we have

Inisjm) =" Y (ismm,|jm) |nlsmm.)
mym,

The Clebsch-Gordan coefficients (Ismm | jm;) are not needed in the present calculation since we are
only interested in expectation values.
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with L%, $? J* and J, it is apparent that the new zero-order wave functions ¥,
form a satisfactory basis set in which the operator L-S (and hence the perturba-
tion H3) is diagonal. Using (5.16) and (5.21), we see that for [ # 0 the energy shift
due to the term f; is given by

ll/rzljmj>

= %(5(0{1’(1’ +1) -1l +1)~ ﬂ (529

1 2 _y2_Q2
Eﬁ(r)[J L* - §7]

AE, = <Wn1jm,

where (&(r)) denotes the average value of &(r) in the state v, . From (5.17) and
(3.78), we have

Zer |/ 1 1 Ze? z
— = .25
&y = mict (4n£‘)J<r3> 2m?c? [411?6‘0]613”31([ +1/2)(1 + 1) .

Thus, for [ # 0, one obtains from (5.24) and (5.25) (Problem 5.2)

_ mci(Za)? L for j=1+1/2
A+ 12)A+ 1) |- -1 for j=1-1/2
2 ;—
__E (Za) oL for j=1+172 (5.26)
i +12)(I+ 1) |-I=1 for j=1-1/2

For [ =0 the spin—orbit interaction (5.16) vanishes and therefore AE, =0 in that case.

3. Hj=

nh? ( Ze?

]G(r) (Darwin term)
4neg,

2m3c?

This term does not act on the spin variable, is diagonal in /, m, and m, and applies
only to the case / = 0. Calling AE; the corresponding energy correction and using
the result (3.65), we have

nh?  Ze?
AE3 = 2 2 2 4 (WnU() |5(r)| W1100>
h? Ze
2m Cz 4 nOO (O)lZ
[ 20y 2o
2 n? n
2
g9 (5.27)

n
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We may now combine the effects of Hi, H) and Hj to obtain the total energy
shift AE = AE, + AE, + AE; due to relativistic corrections. From (5.15), (5.26) and
(5.27) we have for all / (Problem 5.3)

2 2
e Ll e (s
2 nt n? \j+12 4

2
_p e n 3 (5.28)
nt \j+12 4

where the subscripts #j indicate that the correction depends on both the principal
quantum number n and the total angular momentum quantum number j, with
j=1/2,3/2,..., n - 1/2. To each value of j correspond two possible values of /
given by / =+ 1/2, except for j = n — 1/2 where one can only have /=j—12=n-1.

Adding the relativistic correction AE,; to the non-relativistic energy E,, we find
that the energy levels of one-electron atoms are now given by

E,=E, {1 + i-ZO‘—)Z[ n QH (5.29)

n? (j+12 4
so that the binding energy | E,;| of the electron is slightly increased with respect
to the non-relativistic value |E,|, the absolute value |AE, | of the energy shift
becoming smaller as » or j increases, and larger as Z increases. The formula (5.29)
can be shown (Problem 5.4) to agree up to order (Za)* with the result

-1/2
2

Eexacl — ch 1 + [ Za —_ 1 (5.30)

" n—j—12+[(+12)-Z2a? |2

obtained by solving the Dirac equation for the potential V(r) = —Ze*/(4ney) [1].

Fine structure splitting

Starting from non-relativistic energy levels E, which are 2n” times degenerate
(the factor of two arising from the spin) we see that in the Dirac theory this degen-
eracy is partly removed. In fact, a non-relativistic energy level E, depending only
on the principal quantum number # splits into n different levels in the Dirac
theory, one for each value j=1/2,3/2, ..., n — 1/2 of the total angular momentum
quantum number j. This splitting is called fine structure splitting, and the n levels
J=1/2,3/2,..., n~ 1/2 are said to form a fine structure multiplet. We note that
the dimensionless constant ¢ = 1/137 controls the scale of the splitting, and it is
for this reason that it has been called the fine structure constant.

The fine structure splitting of the energy levels corresponding to n =1, 2, 3 is
illustrated in Fig. 5.1. We have used in that figure the spectroscopic notation #/;
(with the usual association of the letters s, p, d, . . . with the values /=0, 1,2, . ..
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n=3 ——————.gsssioiToooooooot - 0.018em™  3ds,(j=5/2,1=2)
¥~0.036 cm™ 3psn(j=3/2,1=1); 3dy(j=312,1=2)
0.108 cm™

3500(j = 172, 1= 0); 3pia(j = 172, 1=1)

mE T LT 20091 em™  2p(j=3/2,1=1)

0.365 cm™!
2812(j = 1/2,1=0); 2py(j=1/2,1=1)

Is,n(j = 172, 1=0)

(a) (b)

Figure 5.1  Fine structure of the hydrogen atom. The non-relativistic levels are shown on the
left in column (a) and the split levels on the right in column (b), forn=1, 2 and 3. For clarity,
the scale in each diagram is different.

and an additional subscript for the value of j) to distinguish the various spectral
terms corresponding to the Dirac theory {5].

It is important to emphasise that in Dirac’s theory two states having the same
value of the quantum number # and j but with values of / such that /= + 1/2 have
the same energy. The parity of the solutions is still given by (-)". Thus to each
value of j correspond two series of (2 + 1) solutions of opposite parity, except for
j =n — 1/2 where there is only one series of solutions of parity (=)™, It is also
worth remarking that although the three separate contributions AE;, AE, and AE,
depend on [ (see (5.15), (5.26) and (5.27)), the total energy shift AE,; (given by
(5.28)) does not! This is illustrated in Fig. 5.2, where we show the splitting of the
n =2 levels of atomic hydrogen due to each of the three terms H{, H’ and H;,
as well as the resulting degeneracy of the 2s,, and 2p,, levels. We shall see in
Section 5.2 that this degeneracy of the levels with / = j + 1/2 is actually removed by
small quantum electrodynamics effects, known as radiative corrections, which are
responsible for additional energy shifts called Lamb shifts.

[5] A similar notation with capital letters, such as 18y, 25, 2P, 2Py, etc., is also frequently used.
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Figure 5.2 The contributions AE,, AE,, AL, to the splitting of the n = 2 level of the hydrogen
atom.

Another interesting point is that the three relativistic energy shifts AE,, AE,
and AE, we have obtained above have the same order of magnitude, and must
therefore be treated together. This is a special feature of hydrogenic atoms. For
many-electron atoms (and in particular for alkali atoms) we shall see in Chapter 8
that it is the spin—orbit effect (due here to the term H3) which is mainly responsible
for the fine structure splitting.

According to (5.28), for any Z and n # 1, the energy difference between the two
extreme components of a fine structure multiplet (corresponding respectively to
the values j, =n — 1/2 and j, = 1/2) is given by

SE(jy=n—1/2,j,=112) = |E,|(Za)* =

nz
_a*Z%n-1)

Py au., n#l (5.31)
n

We may also use (5.28) to obtain for any Z, n # 1 and / # 0 the energy separation
between two levels corresponding respectively to j, =1+ 1/2 and j, = [ - 1/2. The
result is

(Za)?
nl(l + 1)
o’z

T 2n¥( + 1)

SE(ji=1+102,j,=1-1/2) =|E,|

(5.32)

For example, in the case of atomic hydrogen the splitting of the levels j = 3/2 and
j=1/2for n=2 and n = 3 is, respectively, 0.365 cm™ (4.52 x 10~° ¢V) and 0.108 cm™
(1.34 x 107° eV), while the splitting of the levels j = 5/2 and j = 3/2 for n =3 is
0.036 cm™ (4.48 x 107° V) as shown in Fig. 5.1.

Fine structure of spectral lines

The set of spectral lines due to the transitions nlj — n’l’j’ between the fine struc-
ture components of the levels n/ and n’l” is known as a multiplet of lines. Since the
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Figure 17-1. Splitting of the n = 2 levels by (1) the spin-orbit coupling
(which leaves the S state unaffected) and (2) the relativistic effect. The
final degeneracy of the *S,,, and 2P, ,, states is actually lifted by quantum
electrodynamic effects. The tiny upward shift of the 25,,, state is called
the Lamb shift.
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Figure 5.3  Allowed transitions in the multiplets (a) np — n’s and (b) nd - n’p.

electric dipole operator D = —er does not depend on the spin, the selection rule
derived in Chapter 4 for the quantum number / (in the dipole approximation)
remains

Al=+1 (5.33)
from which it follows that the selection rule with respect to the quantum number j is
Aj=0,+1 (5.34)

Using (5.33) and (5.34), it is a simple matter to establish the character of the
fine structure splitting of the hydrogenic atom spectral lines. For example, we see
from Fig. 5.3 that the multiplet np-#n’s has two components. Thus each line of the
Lyman series (lower state n = 1) is split by the fine structure into a pair of lines
called a doublet, corresponding to the transitions

npi—181, npsp—1sip

This is illustrated in Fig. 5.4 for the Lyman « line (upper state n = 2).

Referring to Fig. 5.3, we see that the multiplet np—n's has two components,
while the multiplet nd-n’p has three components. Thus, in the case of the Balmer
series {lower state n = 2) the following seven transitions are allowed:

APy =281, nps—28y

n81,~2Pysa, nS1,—-2pPs3,

ndy,—2py 5, nds;—2ps;
nds;—2ps;
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j=312
j=112

n=1 j=12

s p

Figure 5.4  Allowed transitions between the n = 2 and n =1 levels of atomic hydrogen giving
rise to the Lyman alpha doublet (L,).

However, since the levels #s,, and np,, coincide, as well as the levels np,, and
nd,,, each Balmer line only contains five distinct components. This is illustrated
in Fig. 5.5 for the case of the fine structure of the H,, line, that is the red line of the
Balmer series at 6563 A, corresponding to the transition between the upper state
n =3 and the lower state n = 2.

Because the energy differences (5.31) or (5.32) rapidly decrease with increasing
n, the fine structure splitting of a spectral line corresponding to a transition
between two levels of different » is mainly due to the fine structure of the lower
level, with additional (finer) fine structure arising from the smaller splitting of
the upper level. For example, each line of the Balmer series essentially consists
of a doublet, or more precisely of two groups of closely spaced lines. The distance
between these two groups is approximately given by the fine structure splitting of
the lower (n = 2) level (that is, about 0.365 cm™) and this distance is constant for
all the lines of the series. Within each of the two groups the magnitude of the
(small) residual splitting due to the fine structure of the upper level rapidly falls
off as n increases, that is as one goes to higher lines of the series. Similarly, each
line of the Paschen series (lower state n = 3) consists of three groups of closely
spaced lines, etc. Finally, we remark that for hydrogenic ions the fine structure
splitting is more important than for hydrogen since the energy shift AE,; given by
(5.28) is proportional to Z*.

Intensities of fine structure lines

Since the radial integrals in (4.113) are the same for both the transitions np,,—n’s,,
and np,,—n’s;, it is easy to obtain from the angular parts of those integrals (that
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Figure 5.5 (a) Transitions contributing to the Balmer alpha (H,) line between the n = 3 and
n = 2 levels of atomic hydrogen.

(b) The observed relative intensities of the lines (a), (b)~(g). Note that (b) and (g) have the
same upper level, so that the wave number difference between the lines is determined by the
2p,;, — 2p3; energy difference and is 0.36 cm™. In the same way, the wave number difference
between lines (a) and (e) is also 0.36 cm™. The lines (d) and (e) should coincide according to
Dirac theory, as well as the lines (f) and (g); the differences are due to the Lamb shift.

<ty

is, from angular momentum considerations) the ratio of the two transition prob-
abilities, which is found to be equal to 2 (Problem 5.5). More generally, the ratios
of the transition probabilities for the most important special cases are (Bethe and
Salpeter, 1957)

for sp transitions: s;,—Ps,:S;,—Pin = 2:1

pd transitions: ps,—ds,:Psp—dspipia—dap = 9:1:5

df transitions: ds;,—f;,:ds,—fs,:d5—fs, = 20:1:14 (5.35)
Under most circumstances the initial states are excited in proportion to their

statistical weights, that is the (2j + 1) degenerate levels corresponding to an initial
state with a given value of j (but differing in m; = —j, —j + 1,..., 4j) are equally
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populated. In this case the ratios of line intensities are the same as those of the
corresponding transition probabilities. The relative intensities of the fine structure
components of the H, line are shown in Fig. 5.5.

Comparison with experiment

Many spectroscopic studies of the fine structure of atomic hydrogen and hydrogenic
ions (in particular He") were made to test the Dirac theory, but no definite con-
clusion had been reached by 1940. Although there was some evidence strongly
supporting the theory, the measurements performed by W.V. Houston in 1937
and R.C. Williams in 1938 were interpreted in 1938 by S. Pasternack as indicating
that the 2s,,, and 2p,, levels did not coincide exactly, but that there existed a slight
upward shift of the 2s,, level with respect to the 2p,, level of about 0.03 cm™.
However, the experimental attempts to obtain accurate information about the fine
structure of hydrogenic atoms were frustrated by the broadening of the spectral
lines, due mainly to the Doppler effect. In fact, other spectroscopists disagreed
with the results of Houston and Williams, and found no discrepancy with the
Dirac theory.

The question was settled in 1947 by W.E. Lamb and R.C. Retherford, who
demonstrated in a decisive way the existence of an energy difference between the
two levels 2s,, and 2p,,. This ‘Lamb shift’, to which we have already alluded in the
discussion following (5.30), will now be considered.

The Lamb shift

Instead of attempting to resolve the fine structure of hydrogen by investigating
its optical spectrum, Lamb and Retherford used microwave techniques [6] to
stimulate a direct radio-frequency transition between the 2s,, and 2p,, levels.
As we noted in Section 4.5 there is no selection rule on the principal quantum
number n for electric dipole transitions. In particular, these transitions can occur
between levels having the same principal quantum number. This fact was pointed
out as carly as 1928 by W. Grotrian, who suggested that it should be possible with
radio waves to induce such transitions among the excited states of the hydrogen
atom. For example, in the case of the transition 2s,,~2ps,, the energy separation
OF = 4.52 x 10™ eV = 0.365 cm™ which we obtained in (5.32) corresponds to a
wavelength of 2.74 cm or a frequency of 10949 MHz. Because the frequencies
of radio waves are much smaller than those corresponding to optical lines (such
as the H, line), the Doppler broadening, which is proportional to the frequency
(see (4.192)), is considerably reduced in radio-frequency experiments, and could
in fact be neglected in the experiment of Lamb and Retherford. Of course, since

[6] A detailed account of microwave spectroscopy may be found in Townes and Schawlow (1975).
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Oven Electron Interaction region
beam
| Tungsten
ribbon
detector
sy, 1812, 2812 |

Figure 5.6 Schematic diagram of the Lamb-Retherford experiment. A collimated beam of
hydrogen atoms emerges from an oven. A fraction of the atoms is excited to the n = 2 level by
electron bombardment. The beam then passes through a region of radio-frequency electric
field and a variable magnetic field, and is detected by an apparatus which records only atoms
in the n = 2 level.

the frequencies of radio waves are small, the transition rates for spontaneous
emission, which are proportional to v’ (see (4.80)) are very small. However,
stimulated (induced) transitions can occur if the atoms are sent through a region
where there is an electric field oscillating at the appropriate frequency cor-
responding to the transition to be studied. In the experiment of Lamb and
Retherford such stimulated transitions are observed between the levels 2s,,-2p;,
and 2s,,,—2ps,. Since the transition rates for stimulated absorption and emission
are equal (see (4.50)), it is necessary that the two states between which the trans-
itions are studied should be unequally populated.

The experimental method of Lamb and Retherford is based on the fact that the
2s,, level is metastable. Indeed, as we have seen in Chapter 4, the electric dipole
transition from the state 2s,,, to the ground state 1s,,, is forbidden by the selection
rule A/ =+1. The most probable decay mechanism of the 2s,,, state is two-photon
emission, with a lifetime of 1/7 s. Thus, in the absence of perturbations, the life-
time of the 2s,, state is very long compared to that of the 2p states, which is about
1.6 x 107 s. In the apparatus of Lamb and Retherford, shown in Fig. 5.6, a beam
of atomic hydrogen containing atoms in the metastable 2s,, state is produced
by first dissociating molecular hydrogen in a tungsten oven (at a temperature of
2500 K where the dissociation is about 64 per cent complete), selecting a jet of
atoms by means of slits, and bombarding this jet with a beam of electrons having
a kinetic energy somewhat larger than 10.2 eV, which is the threshold energy for
excitation of the n = 2 levels of atomic hydrogen. In this way a small fraction of
hydrogen atoms (about one in 10%) is excited to the 2s;,, 2p,, and 2p,, states. The
average velocity of the atomic beam is about 8 x 10° cm s™'. Because of their long
lifetime, the atoms in the metastable 2s,,, state can easily reach a detector placed
at a distance of about 10 cm from the region where they are produced. On the
other hand the atoms which are excited in the 2p,, or 2p,, states quickly decay to
the ground state 1s,, in 1.6 x 10~ s, moving only about 1.3 x 10~ cm in that time, so
that they cannot reach the detector. This detector is a metallic surface (a tungsten
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ribbon), from which the atoms in the metastable state 2s,, can eject electrons
by giving up their excitation energy. Atoms in the ground state are not detected,
the measured electronic current being proportional to the number of metastable
atoms reaching the detector. Now, if the beam containing the metastable 2s,,
atoms passes through an ‘interaction region’ in which a radio-frequency field of
the proper frequency is applied, the metastable atoms will undergo induced trans-
itions to the 2p,,, and 2p;,, states, and decay to the ground state 1s,, in which they
are not detected. As a result, there is a reduction of the number of metastable
(2s,,) atoms registered by the detector at the (resonant) radio frequencies cor-
responding to the frequencies of the 2s,,-2p,, and 2s,,—2ps, transitions. In the
‘interaction region’ the atomic beam also passes in a variable magnetic field. In
this way Lamb and Retherford could not only separate the Zeeman components
of the 2s,,, 2p,, and 2ps, levels, but also reduce the probability of fortuitious
depletion of the 2s,, state due to Stark effect mixing of the 2s,, and the 2p levels
caused by perturbing electric fields, as we shall see in Chapter 6. Moreover, the
use of a variable external magnetic field avoids the difficulty of producing a radio-
frequency field with a variable frequency but a constant radio-frequency power.
Instead, Lamb and Retherford could operate at a fixed frequency of the radio-
frequency field and obtain the passage through the resonance by varying the
magnetic field. The resonance frequency for zero magnetic field was found by
extrapolation. In this way Lamb and Retherford found in 1947 that the 2s,,, level
lies above the 2p,,, level by an amount of about 1000 MHz. Further experiments
carried out in 1953 by S. Triebwasser, E.S. Dayhoff and W.E. Lamb gave the very
precise value (1057.77 £ 0. 10) MHz for this energy difference, which is now called
a ‘Lamb shift’. We note that this value, which corresponds to 4.374 62 x 107 eV
or 0.035283 4 cm™, is about one-tenth of the fine structure splitting of the n =2
term.

The need to explain the Lamb shift stimulated numerous theoretical develop-
ments which led H.A. Bethe, S. Tomonaga, J. Schwinger, R.P. Feynman and
F.J. Dyson to fundamental revisions of physical concepts (such as the renormal-
isation of mass) and to the formulation of the theory of quantum electrodynamics
(QED). In this theory, ‘radiative corrections’ to the Dirac theory are obtained by
taking into account the interaction of the electron with the quantised electromag-
netic field. These calculations are outside the scope of this book, and we only men-
tion the following qualitative explanation of the Lamb shift given in 1948 by T.A.
Welton. A quantised radiation field in its lowest energy state is not one with zero
electromagnetic fields, but there exist zero-point oscillations similar to those we
discussed for the case of the harmonic oscillator in Section 2.4. This means that
even in the vacuum there are fluctuations in this zero-point radiation field which
can act on the electron, causing it to execute rapid oscillatory motions so that
its charge is ‘smeared out’ and the point electron effectively becomes a sphere of
a certain radius. If the electron is bound by a non-uniform electric field, as in
atomic systems, it will therefore experience a potential which is slightly different
from that corresponding to its mean position. In particular, the electron in a
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Figure 5.7 Diagram (not to scale) showing the calculated energy shifts due to radiative
corrections to the Dirac theory for the n = 2 levels of atomic hydrogen.

one-electron atom is not so strongly attracted to the nucleus at short distances. As
a result, s states (which are most sensitive to short-distance modifications because
| w(0)|* # O for these states) are raised in energy with respect to other states, for
which the corresponding modifications are much smaller.

The calculated energy shifts for the 2s,,, 2p;, and 2p;, levels with respect to
the Dirac theory are illustrated in Fig. 5.7 for the case of atomic hydrogen. The
theoretical value for the Lamb shift (the energy difference between the 2s,, and
2p.» levels) calculated in 1971 by G.W. Erickson is (1057.916 + 0.010) MHz and
that obtained in 1975 by P.J. Mohr is (1057.864 + 0.014) MHz. Both calculations
are in excellent agreement with the experimental value of (1057.77 + 0.10) MHz
measured in 1953 by Lamb and his co-workers, and with more recent
experiments [7]. In particular, R.T. Robiscoe and T.W. Shyn measured in 1970
the value (1057.90 £ 0.06) MHz, S.R. Lundeen and F.M. Pipkin found the result
(1057.893 + 0.020) MHz and D.A. Andrews and G. Newton found the value
(1057.862 £ 0.020) MHz.

It is also possible to measure the Lamb shift by resolving the Balmer alpha (H,)
line (see Fig. 5.5) using the method of saturation (Doppler-free) spectroscopy,
which will be described in Section 15.2. We show in Fig. 5.8 the results obtained
in this way by T.W. Hénsch, LS. Shahin and A.L. Schawlow in 1972, compared
with the Doppler-broadened H,, line, as it can be observed at room temperature
using conventional spectroscopy.

The Lamb shift has also been measured and calculated for other levels of
atomic hydrogen and for other hydrogenic systems such as deuterium, He" and
hydrogen-like multiply charged ions. As an example, we show in Fig. 5.9 the

[7] A detailed account of Lamb shift experiments and calculations can be found in Series (1988).
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Figure 5.8 (a) The structure of the Balmer alpha (H,) line, as observed by conventional
spectroscopy with Doppler broadening at room temperature (300 K). The lines marked (a),
(b)-(q) refer to those shown in Fig. 5.5.
(b) The fully resolved structure of the H, line obtained by saturation spectroscopy (after
T.W. Hénsch et al.).

n=1and n =2 energy levels of hydrogen-like U™ according to the Dirac theory,
and with QED corrections. The size of these corrections increases rapidly with
increasing Z. In particular, the value of the 2s,,~2p,,, Lamb shift is 75 eV for U™,
It is interesting to note that for one-electron ions with high Z the dominant
decay mechanism of the 2s,,, state is not two-photon emission, but single photon
emission through a magnetic dipole (M1) transition. The measured values of the
2psp = 1sy and 2s,,,, 2p,, — 1s,, energy differences in U*", obtained in 1993 by
Th. Stohiker et al. (who performed X-ray experiments using a heavy ion storage
ring), are given by 102.209 keV and 97.706 keV, respectively. The corresponding
theoretical values, calculated in 1985 by W.R. Johnson and G. Soff, are 102.180 keV
and 97.673 keV.
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Figure 5.9 The n=1 and n = 2 energy levels of U?'* according to the Dirac theory and with
QED corrections.

Hyperfine structure and isotope shifts

Atomic nuclei have radii of the order of 10 A (10" m) which are very small
compared with typical distances of an electron from the nucleus (~1 A). The
nuclei are also much heavier (about 10 times) than electrons. It is therefore a very
good approximation to consider the nuclei to be positive point charges of infinite
mass. However, the high-precision experiments which can be carried out in
atomic physics reveal the existence of tiny effects on the electronic energy levels,
which cannot be explained if the nuclei are considered to be point charges of
infinite mass. These effects, first observed by A. Michelson in 1891 and C. Fabry
and A. Perot in 1897, are called hyperfine effects, because they produce shifts
of the electronic energy levels which are usually much smaller than those cor-
responding to the fine structure studied in Section 5.1.

It is convenient to classify the hyperfine effects into those which give rise to
splittings of the electronic energy levels, and those which slightly shift the energy
levels, but without giving rise to splittings. The former are called hyperfine struc-
ture effects while the latter are known as isotope shifts (or isotope effects) since
they can usually be detected only by examining their variation between two
or more isotopes. We have already encountered examples of isotopic shifts in
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Chapters 1 and 3, when we studied the modification of the energy levels of
hydrogenic atoms due to the fact that the nuclear mass is finite (reduced mass
effect). In particular, we saw that the introduction of the reduced mass gives a
very good account of the frequency difference between the spectral lines of
‘ordinary’ atomic hydrogen (proton + electron) and its heavy isotope, deuterium
(deuteron + electron). Another isotope shift is the volume effect, which arises
because the nuclear charge is distributed within a finite volume, so that the poten-
tial felt by the electron is modified at short distances. We shall briefly consider this
effect at the end of this section.

Let us now turn our attention to the hyperfine structure effects, which are
responsible for splittings (extending over the range from 107 to 1 cm™) of the
energy levels of the atoms. These effects result from the fact that a nucleus may
possess electromagnetic multipole moments (of higher order than the electric
monopole) which can interact with the electromagnetic field produced at the
nucleus by the electrons. By using general symmetry arguments of parity and time-
reversal invariance it may be shown [8] that the number of possible multipole
(2 pole) nuclear moments is severely restricted. Indeed, the only non-vanishing
nuclear multipole moments are the magnetic moments for odd k and the electric
moments for even k, namely the magnetic dipole (k = 1), electric quadrupole (k =2),
magnetic octupole (k = 3) and so on. The most important of these moments are
the magnetic dipole moment (associated with the nuclear spin) and the electric
quadrupole moment (caused by the departure from a spherical charge distribution
in the nucleus). We shall first examine the hyperfine structure due to the magnetic
dipole interaction and then discuss briefly the electric quadrupole interaction.

Magnetic dipole hyperfine structure

In 1924 W. Pauli suggested that a nucleus has a total angular momentum I (called
‘nuclear spin’) and that hyperfine structure effects might be due to magnetic
interactions between the nucleus and the moving electrons of the atom, depend-
ent upon the orientation of this nuclear spin. The eigenvalues of the operator
I’ will be written as I(I + 1)4% where [ is the nuclear spin quantum number (also
often called the spin of the nucleus) or in other words the maximum possible com-
ponent of I (measured in units of %) in any given direction. Now the nucleus is a
compound structure of nucleons (protons and neutrons) which have an intrinsic
spin 1/2 and may participate in orbital motion within the nucleus. Thus the nuclear
spin is compounded from the spins of the nucleons, and can also contain an orbital
component. The corresponding spin quantum number / may have integer (including
zero) or half-odd integer values. In the former case the nucleus is a boson (obeying
Bose-Elnstein statistics) while in the latter case it is a fermion (obeying Fermi-
Dirac statistics). We shall also denote by M,% the eigenvalues of the operator I,
so that the possible values of M, are M, =-I,~-I+1,..., L

[8] See for example Ramsey (1953).
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As we pointed out above, a nucleus may possess 2“-pole moments, with k odd for
magnetic moments and k even for electric moments. Furthermore, it may be shown
[8] that a nucleus of spin quantum number / cannot have a multipole moment of order
2", where n is greater than 21. We shall begin by considering the nucleus as a point
dipole with a magnetic dipole moment My proportional to the nuclear spin L. That is,

My = g d/h (5.36)

where g, is a dimensionless number (whose order of magnitude is unity) called the
nuclear g factor or nuclear Landé factor. We note that g, is positive if My lies along
I. The quantity yy which appears in (5.36) is called the nuclear magneton; it is
defined by

#
en _ m L (5.37)

ToM, M,

Hx

where m is the mass of the electron, M, the mass of the proton and g the Bohr
magneton. Thus the nuclear magneton gy is smaller than the Bohr magneton g
by the factor m/M, = 1/1836.15. The numerical value of the nuclear magneton is

Uy = 5.050 78 x 107 joule/tesla (5.38)
It is worth noting that (5.36) is sometimes written in units of Bohr magnetons as
My = giusl/n (5.39)

in which case

’ #N m 81
=Ny - o = 5.40
81 i 81 M 81 1836.15 (5.40)

P

is a very small number. Since /# is the maximum component of I in a given direc-
tion, we may also write (5.36) as

My = [—J‘%] I'n (5.41)

where My is the value of the nuclear magnetic moment. In units of nuclear
magnetons, we have

My=gI (5.42)

The values of the spin quantum number I, the nuclear Landé factor g; and the
nuclear magnetic moment Ly are given in Table 5.1 for the nucleons and a few nuclei.

Let us consider a hydrogenic atom with a nucleus of charge Ze such that Za <1,
and a magnetic dipole moment My. We shall write the Hamiltonian of this system as

H=H,+Hip G43)

where the zero-order Hamiltonian H, now includes the Coulomb interaction
—Zé*(4neyr) and the relativistic (fine structure) corrections discussed in Section 5.1
(which are of order (Za)*, as seen from (5.29)) while H{yp is a perturbative
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Table 5.1 Values of the spin, Landé factor and magnetic moment of the nucleons and some
nuclei. The notation is such that X represents a nucleus with a total of a nucleons, b of which
are protons.

Nucleus Spin 1 Landé factor g, Magnetic moment M,
(in nuclear magnetons)

proton p 1/2 5.588 3 2.792 78
neutron n 1/2 -3.826 3 -1.91315
deuteron 2D 1 0.857 42 0.857 42
3He 1/2 -4.255 -2.1276
He 0 - 0

2 0 - 0

1*C 1/2 1.404 82 0.702 41
%0 0 - 0

9F 1/2 5.257 732 2.628 866
3p 1/2 2.263 20 11316
K 3/2 0.260 9 0.391 4
77n 5/2 0.350 28 0.8757
Rb 52 0.541 08 1.3527
12%e 1/2 -1.5536 -0.776 8
3¢ 7/2 0.736 9 2.579
%Hg 1/2 1.005 4 0.502 7
2Hg 3/2 -0.37113 -0.556 7

term due to the presence of the magnetic dipole moment My. This term will
clearly lead to even smaller corrections than those corresponding to the fine struc-
ture, since the magnetic moment of the nucleus is much smaller than that of the
electron. We may therefore assume that we can deal with an isolated electronic
level labelled by the total electronic angular momentum quantum number j. The
zero-order wave functions (eigenfunctions of H,) are separable in the electronic
and nuclear variables and are eigenfunctions of J2, J,, I and I, (where J=L + S
is the total electronic angular momentum operator). Using the Dirac notation, we
shall write them as | yjm;/IM,), where the symbol yrepresents additional quantum
numbers. These zero-order wave functions are (2j + 1)(27 + 1)-fold degenerate in
m; and M,;. We also remark that in the Pauli approximation (see Appendix 7) —
which we shall adopt here — the zero-order wave functions are also eigenfunctions
of L? and 8%, and will thus be written more explicitly as |Isjm,IM,).

We now examine the perturbation H, due to the magnetic dipole moment My
of the nucleus. The magnetic field due to this dipole moment will interact with
both the orbital angular momentum L and the spin S of the atomic electron. We
shall denote the former interaction by H; and the second by H3, so that

Hyp=H{+ Hj 5.44)
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The term H7 is readily evaluated as follows. The vector potential A(r) due to a
point dipole located at the origin is (Jackson, 1998)

A(r) = _%[M” x VGH

— A0 (o x r)ri} (549

Neglecting for a moment the spin of the electron, the interaction term due to the
presence of the vector potential A(r) is (see (4.28))

=1 Ay (5.46)
m

Inserting (5.45) into (5.46) one obtains (Problem 5.6)

_Ho 2 1
RS Y
YT h/JB 3 N
2 1
= gttty L (5.4)

where we have used (5.36) and we recall that L = r X p. We remark that the term
H7} may be interpreted as the interaction of the nuclear dipole moment My with
the magnetic field ~[g,/(47)]eL/(mr?) created at the nucleus by the rotation of the
electronic charge. We also note that H{ has non-zero matrix elements only
between states for which / # 0.

Next, we find the contribution H; arising from the electron spin S. The
magnetic field associated with the vector potential (5.45) is

B=VxA-= —i’—;[MNVZ [}] ~ V(M -V)% (5.48)

The spin magnetic moment of the electron is M, = —g,uzS/ so that the corres-
ponding interaction energy is (with g, =2)

M B =2u,S B (5.49)

or

H, = ”O[M M Vz[—]—(M V)(My V)}

= _&_gnuBIJN [S'I & (1] -(5-v)I@- V)l} (5.50)
4z h? r r

where we have used (5.36).
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It is convenient to examine the term Hj separately for the two cases r # 0
and r = 0. Since the hydrogenic wave functions behave like ' at the origin, the
expression of Hj at r = 0 will only be relevant for states with [ = 0 (s states). We
first note that since

V2 [1J =—4m 8(r) (5.51)

the first term in square brackets in (5.50) vanishes for r # 0. It can also be shown
(Problem 5.7) that for r # 0

(S-V)(I-V)%:—%{S~l—3W}, r#0 (5.52)

Hence, using (5.50) and (5.52), we have

, Mg 2 (S'r)(l-r)
H; ——4_ﬁ—2g1#B#N |is I- r_2

{M My w} F#£0 (5.53)

47{7‘ ¥

which represents the dipole—dipole interaction between the magnetic moments of
the electron and the nucleus. Adding the results (5.47) and (5.53), the interaction
between the nuclear magnetic dipole moment and an electron for which / # 0 is
seen to be

Hip = i‘ hzz PR 13{L-I—S~I+3W}, r#0 (5.54)

Let us now return to the expression (5.50) of H3 and consider the case r = 0,
which is important for s states (/ = 0). We have already seen that the first term
in square brackets in (5.50) is proportional to §(r). The second term in square
brackets contains a similar term proportional to §(r), as we now show. Indeed, for
matrix elements involving spherically symmetric states (with /= 0) we remark that
out of the expression (with x, =x, x, =y, x; = 7)

3 3 a 1
SVIV— S 5.55
(S-V)(1-V) ;,,”aax[] (5.55)

all terms will vanish except those with i = j. Each of the matrix elements of

s (1) 21 2
Bxl ’ ox3\r) oxiir

must have the same value, so that for [=0
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1

(S~V)(I~V)1:§(S~I)V2[—]z—i—ns-l S(r) (5.56)

From these equations and the fact that the term H7 does not contribute for
states with / = 0, we deduce that the interaction between the nuclear magnetic
dipole moment and an s electron is given by

U, 2 8n
Hip=—— —6(r)S-1
MD = 8ripiin 3 (r)

_ Mo BTy M S(r),  1=0 (5.57)
4n 3

This expression, which is proportional to &(r), is called the Fermi contact interaction.
We now proceed to the calculation of the first-order energy shifts due to the

perturbations (5.54) and (5.57). We begin by considering the case / # 0, and write
(5.54) more simply as

) 2 1
MD = f:_:[h_zgi.uB.uN r—3G.I (5.58)
where
G=L-s+380Dr (5.59)

r2

We have seen above that the zero-order wave functions |lsjmIM;) are
(2j + 1)(2I + 1)-fold degenerate in m; and M, By analogy with the spin-orbit
coupling discussed in Section 5.1, the diagonalisation of the perturbation is
greatly simplified by introducing the total angular momentum of the atom
(nucleus + electron)

F=I+J (5.60)

We shall denote by F(F + 1)#* the eigenvalues of the operator F* and by M,#
those of F,, with M.=—F,—F+1,...,+F. From the rules concerning the addition
of angular momenta, the possible values of the quantum number F are given by

F=I—-j,[I-jl+1,....,I+j=-1,1+j (5.61)

Since F and M, remain good quantum numbers under the application of the
perturbation Hyp, it is convenient to form new zero-order functions |lsjIFMp)
which are linear combinations of the functions |/sjmIM;). The energy shift due to
the perturbation (5.58) is then

iG-I
4r #? r’

pE=F 2 g <lstFMF Is/IFM, > [#0 (5.62)
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Using the identity (A4.58) of Appendix 4 we can replace the matrix element
of G-I taken between states with equal j by that of [j(; + D#’](G-J)I-J).
Moreover, since

FP=1*+21-J +J? (5.63)
so that
1LI=3(F-1-J) (5.64)
we have
C .
AEzz[F(FwL D -II+1)-j(j+1)] (5.65)
with
Ho 1 1
C=="2 —(—=G-J), [#0 5.66
in 8ripHn G+ )it <r3 > #* ( )

and we have used the simplified notation () for the expectation value.

The quantity (G -J) is readily obtained as follows. We first note that since
L-r =0, we may write
(S o)r

r2

G-J=(L—S+3 ]~(L+S)

. 2
—12-8+ 3@ (5.67)
r

It is easily shown (Problem 5.7) that
(8r)? _

2

§2-3

0 (5.68)

s

so that G-J =L? and

<%G-J> — I+ 1) <ri3> (5.69)

Thus we have

W+1/1
C =2 ( )<r—3>

an TN G+
I(+1) 73

_Ho, 1£0 (5.70)

g BN S 1)+ 1)

where we have used the expectation value of 7 given by (3.78), and we recall that
a, = ay(m/u), p being the reduced mass of the electron with respect to the nucleus.
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Turning now to the case of s states (/= 0), the first-order energy shift due to the
perturbation (5.57) is

My 2 8n _
AE = Eh_zglluBuN ’;(6(1') S-D), [=0 (5.71)
As L =0, we have F=1+ 8§, from which
SI=1(F-IF-§) (5.72)
and therefore
C, 1
AE:Y[F(FJr1)—1(I+1)—s(s+1)], s =5 (5.73)
with
8n
Co=L2 2,1 22 8()), 1=0 (5:74)
4n 3
Now
(&) = f | Wi 8(8) dir = | 0 (0) F = —2— (579)
na,n
where we have used the result (3.65). Thus
My 16 z3
Co= E?gi‘uBuN m (5.76)

u

Comparing (5.65) and (5.73), and recalling that j = s = 1/2 for s states, we see
that for both cases [/ # 0 and / = 0 we have

AE:%[F(F+1)—I(I+ 1) —j(j+1)] (5.77)
with
Ho 1 z:
c="4 5.78
4r SrHnky j(+ D@L+ 1) and .78)

Using atomic units and introducing the fine structure constant ¢, we may also display
this result (writing explicitly the electron mass m) as

| m Z? [ﬁ] F(F+1) = I(I+1) - jj +1)

g o a.u (5.79)
2 M n® \m jG+DI+1)

For a given nucleus having a spin quantum number /, a fine structure atomic
energy level corresponding to fixed values of / and j is therefore split further into
hyperfine components labelled by F. Since the energy correction does not depend
on M;, each of these hyperfine energy levels is (2F + 1)-fold degenerate. The
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possible values of Fbeing [I—j|, |I—j|+1,...,1+j(see (5.61)), the number of
hyperfine structure components corresponding to a fine structure energy level is
the smaller of the two numbers (2j + 1) and (21 + 1). These components are said
to form a hyperfine structure multiplet. As an example, we show in Fig. 5.10 a
schematic drawing of the hyperfine structure splitting of the n =1 and n = 2 levels
of ‘ordinary’ hydrogen (H) and deuterium (D). For ‘ordinary’ hydrogen the spin of
the nucleus is just the spin of the proton, /=1/2, and since j = 1/2, 32, . . . we always
have hyperfine doublets. On the other hand, for deuterium the spin of the nucleus
is I = 1, so that we have doublets for j = 1/2 and triplets for the other values of j.

We remark from (5.78) that since the quantity C is independent of F the
energy difference between two neighbouring hyperfine levels — called hyperfine
separation — is just

AE(F) - AE(F—1) = CF (5.80)

and is thus proportional to F. This is an example of an interval rule. From (5.79)
we also see that the energy separation 6E between the two outermost components
of the hyperfine multiplet (corresponding to the values F; =1 +jand F, =|I - j| of
the quantum number F) is given in atomic units by

— 1+1/2 for j=1
m o

u
O =——| ——— X| [(j 581
M [mJ 81 n3(_;+1)(2l+1) M for ]21 ( )
J

P

The hyperfine structure of spectral lines resulting from the magnetic dipole
interaction may be obtained (in a way similar to the fine structure discussed in
Section 5.1) by combining the above results with the selection rules for elec-
tromagnetic transitions between energy levels. For electric dipole transitions the
selection rules obtained in Section 5.1 (Al =41 an. A\j=0, £1) remain valid, and in
addition it may be shown that the quantum number F obeys the selection rule

AF=0,%1 (5.82)

the transition F =0 — F =0 being excluded. Examples of allowed hyperfine trans-
itions are shown in Fig. 5.11. We note that transitions between levels having the
same value of j but different values of F can also take place. These transitions are
in the microwave region and are generally weak, so that they are best observed by
using stimulated emission techniques.

The hyperfine transitions, observed by optical or microwave spectroscopy, can
be used to determine the spin / and magnetic dipole moment Jy = g,/ of the
nucleus. Indeed, the maximum hyperfine multiplicity of levels with large enough j
gives (27 + 1) and the hyperfine separation allows the determination of the nuclear
Landé factor g;. Using the generalisation of the above equations for complex atoms
(see Chapter 9), the dipole magnetic moments of many nuclei have been obtained.

The hyperfine structure of the 1s,, ground state of ‘ordinary’ hydrogen (H) is of
particular interest, because in this case very elaborate calculations can be carried
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Figure 5.11 Allowed dipole transitions between n’p and ns levels of hydrogen. There is no
restriction on n” and n, and the case n’ = n is allowed.

out and compared with extremely high-precision measurements, performed by
using atomic beam magnetic resonance methods [9]. Since the proton spin is
I=1/2 and the level 1s,, has a total electronic angular momentum quantum num-
ber j = 1/2, this level splits into two hyperfine components corresponding to the
values /"= 0 and F = 1, the state with F = 0 being the ground state (see Fig. 5.10).
Using (5.81) we see that the energy difference between the two hyperfine levels is
given in atomic units by

3
4 m(u
SE=——|=| g.a? 5.83

3Mp[m] 8 (5:83)

where g, = 5.5883 is the Land¢ factor of the proton. From this result we find that
the frequency v = 8E/h of the transition between the two hyperfine levels (which
is a magnetic dipole transition) is v = 1420 MHz, the corresponding wavelength
being A = 21 cm. The ‘hydrogen maser’, invented in 1960 by H.M. Goldenberg,
D. Kleppner and N.F. Ramsey (see Section 15.1), has given very accurate data for
the hyperfine frequency v. By comparing with the frequency of a caesium atomic
clock (see Section 16.5) used as a reference, the best value of v obtained by using
the hydrogen maser is

v= (1420405 751.766 7 + 0.000 9) Hz (5.84)

which is one of the most accurately measured quantities in physics.
It is gratifying to note that the simple theory presented above agrees with this
result to within about 0.1 per cent. Much better agreement between theory and

[9] Magnetic resonance methods are discussed in Chapter 16. See also Ramsey (1953).
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experiment can be obtained by including various corrections in the theoretical
calculations. The most important of these is the introduction of the anomalous
magnetic moment of the electron, according to which the spin gyromagnetic ratio
g, of the electron is slightly different from the value g, = 2 predicted by the Dirac
theory [10].

We also remark that the transition between the two hyperfine levels F =1
and F = 0 of the ground state of hydrogen plays a very important role in radio-
astronomy. Indeed, from the analysis of the intensity of the 21 cm radio-frequency
radiation received, the astronomers have been able to learn a great deal about
the distribution of neutral hydrogen atoms in interstellar space, as we shall see in
Chapter 16.

Electric quadrupole hyperfine structure

A second important characteristic of the structure of a nucleus is the electric
quadrupole moment. It is a symmetric, second-order tensor whose components Q;
are defined in the following way. Let R, be the coordinate of a proton with respect
to the centre of mass of the nucleus, and let X, = X, X, = Y,, X3 = Z, be its
Cartesian components. Then

Q= 23Xpiij -8R, (i,j=1,2,3) (5.85)
P

where the sum is over all the protons in the nucleus. It is customary to define the
magnitude Q of the electric quadrupole moment as the average value of the com-
ponent Q,, = Qs in the state |1, M;=1I). That is,

Q=<11MI:I|Q71|]7MI:I>

=(I,M,=1I LM,=1 (5.86)

237,- R
p

The quantity Q has the dimensions of an area and is often measured in barns
(10 c¢m?). For example, the deuteron has an electric quadrupole moment of
magnitude Q = 0.0028 barns. It is clear from (5.86) that a nucleus whose charge
distribution is spherically symmetric has no electric quadrupole moment, since
then the average value of 3Z} is equal to that of R; = X; + Y} + Z]. In fact the
value of Q gives a measure of the deviation from a spherical charge distribution
in the nucleus. If the nuclear charge distribution is elongated along the direction
of I (prolate), then Q > 0; on the other hand Q < 0 if the charge distribution is
flattened (oblate).

[10] The quantity a = (g, — 2) has been measured with very high accuracy by R.S. Van Dyck, Ir,

P.B. Schwinberg and H.G. Dehmelt in 1987 to give the value @ = (1.159 652 188 4 £ 0.000 000 004 3)
x 107°. The current theoretical result, calculated by using quantum electrodynamics, is (1.159 652 2 +
0.000 000 2) x 107, the main source of inaccuracy being uncertainties of the order of 1077 in the
value of the fine structure constant o.
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The interaction energy Hg, between the electric quadrupole moment of the
nucleus and the electrostatic potential V, created by an electron at the nucleus
was first obtained by H. Casimir. Provided I and j are both good quantum num-
bers, it is given in atomic units by [11]

) SEICRLIT +1) - 2P

H{,=B 87
£e 21(21 - 1)j(2j - 1) 57

where the quadrupole coupling constant B is given by

B- Q<32V€> (589)

07?2
j’m;=j>=_<j7mj=j

is the average gradient of the electric field produced by the electron at the
nucleus.
The first-order energy shift due to the electric quadrupole interaction (5.87) is

Here

322 . r2

r5

2
e

av.\ /| |,
S )\

- jom, = j> (5.89)

AE = (JIFM | Hio| JIFM )

B SK(K +1) =211 + 1)j(j + 1)

(5.90)
4 121 - 1)j(2j - 1)

where
K=F(F+1)-I(I+1)-j(j+1) (5.91)

Since (3’V,/dz*) vanishes when the electron charge distribution is spherically sym-
metric, there is no quadrupole energy shift for s states. We recall that the nuclei
having no spin (I = 0) or a spin I = 1/2 have no electric quadrupole moment, so
that the energy shift (5.90) also vanishes in this case.

Adding the electric quadrupole correction (5.90) to the magnetic dipole energy
shift (5.77) we find that the total hyperfine structure energy correction is given by

KK+ 1) =-2I + Dj(j +1
Ap=C g BKK+) 20U+ 1)jG+1)

(5.92)
2 4 121 - 1)j(2j - 1)

Because its dependence on the quantum number F is different from that of the
magnetic dipole correction (5.77), we see that the electric quadrupole correction
causes a departure from the interval rule (5.80).

[11] See for example Casimir (1963) or Ramsey (1953).
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It is worth noting that the hyperfine energy levels obtained after the correction
(5.92) has been applied are still independent of the quantum number M, and
hence are (2F + 1)-fold degenerate. This degeneracy can be removed by applying
an external magnetic field. We shall return to this Zeeman effect in hyperfine struc-
ture in Chapter 9.

Isotope shifts

We now consider briefly the isofope shifts, which do not give rise to splittings of the
energy levels. As we pointed out above, these isotope shifts are caused by two effects:
the mass effect (due to the fact that the nuclear mass is finite) and the volume
effect (arising from the distribution of the nuclear charge within a finite volume).

For one-electron atoms the mass effect is readily taken into account by the
introduction of the reduced mass yt = mM/(m + M), as we saw in Chapters 1 and
3. For the case of atoms with more than one electron the finiteness of the nuclear
mass gives rise to an additional energy shift called the mass polarisation correction,
which will be examined in Chapter 7.

W. Pauli and R. Peierls first pointed out in 1931 that the difference in nuclear
volume between isotopes can produce an isotope shift. Indeed, since the protons
in the nucleus are distributed in a finite nuclear volume, the electrostatic potential
inside the nucleus deviates from the 1/r law, and depends on the proton distribu-
tion within the nucleus. In order to obtain an estimate of this volume effect, let us
consider a simple model of the nucleus, such that the nuclear charge is distributed
in a uniform way within a sphere of radius

R=rA" (5.93)

where A is the mass number of the nucleus, and 7, is a constant whose value is given
approximately by r, = 1.2 x 107" m. In this model, the electrostatic potential V(r)
due to the nucleus is easily shown to be (Problem 5.8)

Z—ez r’ -3 r<R
(4ng,)2R\ R?

_Ze
(4mey)r

V(r) (5.94)

r=R

To simplify the problem further, we shall assume that the unperturbed
Hamilionian Hj is the hydrogenic Hamiltonian (5.1) and that the perturbation
H’ is just the difference between the interaction (5.94) and the Coulomb
interaction —Ze?/(4ngyr). Thus all other effects (such as the relativistic corrections)
are neglected and we have

Ze? r? 2R
_2e | 22 3] <R
H' =|(4ne 2R\ R 7

0 r=R

(5.95)
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The first-order energy shift due to this perturbation is
AE = <Wn1m l H’ I l//nlm>

r

)ZRJ’ [R, () [—2—+2—R —3] dr (5.96)

where we have used (3.53) and the fact that the spherical harmonics are normalised
on the unit sphere. Inside the small region r < R we may write R,(r) = R,,(0).
Moreover, since R,,(0) vanishes except for s states (/= 0), we have, after a straight-
forward calculation (Problem 5.9),

Ze* R?
AE = 25 2 R (O)F
4 0 10' nO( )I
2
=2 A R ()P, 1=0 5.97)
4n£0 5

while AE = 0 for states with [ # 0. Using (3.65) we have explicitly
ez _2_ R2 Z4

3,37
dney 5 apn

AE = =0 (5.98)

The quantity which is measured experimentally is the difference SE of energy
shifts between two isotopes, whose charge distributions have radii R and R + 6R,
respectively. We thus find to first order in 6R

Ze? 411:
OE = £ W00 (0 20
4me, 5 Vool )I
2 4
~ ¢ A 2 R (5.99)

4ne, 5 ayn® R

We note that the isotope with the larger radius has the higher energy value, and
this is confirmed by experiment. We also see that 8E increases when Z increases
and n decreases, so that the most important volume effects occur for low-lying
s states (and in particular the ground state) of hydrogenic atoms with larger Z.

So far we have only considered ‘ordinary’ hydrogenic atoms (ions) containing
a nucleus and an electron. As we pointed out in Chapter 3, there exist also ‘exotic
atoms’ such as muonic atoms, in which a muon p~ forms a bound system with a
nucleus. We also noticed in Chapter 3 that since the mass of the muon p~ is about
207 times larger than the electron mass, the Bohr radius associated with muonic
atoms is much smaller than for ‘ordinary’ (electronic) atoms (see Table 3.2). We
therefore expect that hyperfine effects will be much larger for muonic atoms than
for the corresponding ordinary atoms. In particular, using the fact that the quantity
a, is roughly 200 times smaller for a muonic atom than for an ordinary atom, we
deduce from the foregoing discussion that the volume effect will be considerably
magnified for muonic atoms, as we pointed out in Section 3.6.
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Problems

5.1 Starting from (5.14), obtain the result (5.15) for the energy shift AE,.

5.2 Using (5.24) and (5.25), obtain the expressions (5.26) for the energy
shift AE,.

53 Obtain the total relativistic energy shift (5.28) by using (5.15), (5.26)
and (5.27).

5.4 Show that the expression (5.29) agrees up to order (Z)* with the formula
(5.30) obtained by solving the Dirac equation.

5.5 Show that the ratio of the probabilities of the transitions in atomic
hydrogen nps, — n’s,, and np,, — n’s,, is 2:1.

5.6 Verify that the expression (5.47) follows from (5.45) and (5.46).
57 Prove the relations (5.52) and (5.68).

58 Consider an electron in the electrostatic field of a nucleus of charge Ze,
and of mass number A. If the nuclear charge is distributed uniformly within a
sphere of radius R = r,A"® where r, = 1.2 x 10 m,

(a) show that the potential is given by (5.94);
(b) verify that the first-order energy shift due to the perturbation (5.95) is given
by (5.97).



