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Abstract

A didactic discussion of the physics of rainbows is presented, with some emphasis on the history, especially
the contributions of Thomas Young nearly 200 years ago. We begin with the simple geometrical optics of
Descartes and Newton, including the reasons for Alexander's dark band between the main and secondary
bows. We then show how dispersion produces the familiar colorful spectacle. Interference between waves
emerging at the same angle, but traveling di!erent optical paths within the water drops, accounts for the
existence of distinct supernumerary rainbows under the right conditions (small drops, uniform in size).
Young's and Airy's contributions are given their due. ( 1999 Elsevier Science B.V. All rights reserved.

PACS: 01.30.Rr; 42.15.Dp; 42.25.Fx; 42.68.Ge

*This pedagogical piece on rainbows is dedicated to Lev B. Okun, colleague and friend, on his 70th
birthday. On an extended visit to Berkeley in 1990, Lev saw on my ozce wall a picture of a double
rainbow with at least three supernumerary bows visible inside the main bow. As part of my `lecturea on
the photograph, I showed Lev a copy of these 1987 handwritten notes prepared for a class. He said, `Are
these published somewhere?a My answer was no, but now they are, in augmented form. Lev is an
amazing man, a physicist-mensch } a brilliant researcher, mentor, and warm human being. I have
a vivid memory of a wonderful trip to Yosemite National Park with an allegedly ailing Lev. In the early
morning hours, we found Lev outside our tent in Curry Village perched on a sloping rock doing vigorous
calisthenics! Lev, may you have Many Happy Returns!+

The rainbow has fascinated since ancient times. Aristotle o!ered an explanation (not correct), as
did clerics and scholars through the ages. Newton and Descartes established the elementary theory,
according to what e now know as geometrical optics. But long before Newton and Descartes, as
early as the 13th century, the puzzling occasional phenomenon of supernumerary rainbows was
noted. These `aberrationsa were inexplicable in terms of geometrical optics. It was not until the
beginning of the 19th century that Thomas Young, promoting the wave theory of light against
acolytes of Newton, o!ered the correct explanation of the supernumeraries as results of interfer-
ence. Airy put the theory on a "rm mathematical footing in 1836. A scholarly treatment of the
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history of the attempts to understand the rainbow by Boyer [1] contains much of interest,
including striking paintings and photographs with the rainbow as subject. A semi-popular account
of the theory of rainbows is presented by Nussenzveig [2].

The discussion that follows traces the theory of the rainbow from the simple Cartesian}
Newtonian description to the interference-di!raction-caustic treatment of Airy.

1. Geometrical optics, no dispersion

A light ray is incident on a water drop of radius a at impact parameter b, as shown in Fig. 1. The
index of refraction of water at the wavelength of the sodium D lines (j"5890, 5896As ) and at 203C
is closely n"4

3
. The ray has an angle of incidence i whose sine is sin i"b/a,x. The angle of

refraction r is given by Snell's law as r"sin~1(x/n).
The scattering angle h for the emerging light ray (de"ned here as the angle of emergence of the

ray relative to the incident direction) can be computed by adding up the angular bends made by the
ray:

The entering bend is (i!r)
Each internal re#ection bend is (p!2r)
The exiting bend is (i!r)

For m internal re#ections, the scattering angle is thus

h
m
"D2(i!r)#m(p!2r)D [Modulo 2p] . (1)

The primary rainbow has m"1, the secondary, m"2, and so on. Fig. 2 shows the scattering
angle as a function of sin i"b/a for m"1 and m"2. At the extremes, the angle is either 0 or p,

Fig. 1. Geometrical optics of a primary rainbow.
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but for intermediate b/a values, the light is scattered at various angles. Note the gap between
1293 and 1383. This is a region of negligible scattering (from higher orders) and appears as a
dark space between the primary and secondary rainbows (known as Alexander's dark space,
after Alexander of Aphrodisias, a follower of Aristotle and head of the Lyceum in Athens around
200 AD).

The feature that causes the rainbow is the extremum in angle as a function of impact parameter.
For the primary rainbow (upper curve in Fig. 2), the minimum angle is h

0
"1383 at x

0
"0.86066

for n"4
3
. Classically, the scattering cross section is

dp/dX"Dbdb/(sinhdh)D (2)

At the extremum, db/dh is in"nite, corresponding to a (classically) in"nite cross section. Wave
aspects prevent the in"nity, of course, but it is indicative of a large cross section. The singular
behavior is an example of a caustic.

To examine the vicinity of the extremum and see its dependence on the index of refraction, we
make a Taylor series expansion around the minimum. For the primary bow (m"1), we have

h"p#2 sin~1x!4 sin~1(x/n) , (3)

where x"b/a. The "rst two derivatives are

dh
dx

"

2

J1!x2
!

4

Jn2!x2
, (4)

d2h
dx2

"

2x
(1!x2)3@2

!

4x
(n2!x2)3@2

. (5)

The extremum occurs for dh/dx"0, i.e., Jn2!x2
0
"2J1!x2

0
, or x

0
"J(4!n2)/3 and

J1!x2
0
"J(n2!1)/3.

Fig. 2. Rainbow scattering angles according to geometrical optics for index of refraction n"1.34. As indicated by the
dotted lines, the dark band is somewhat wider in violet light, for which n"1.345. Typical m"1 and m"2 rays are
shown in Fig. 4(a).
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The second derivative at x"x
0

is of interest:

hA,
d2h
dx2 K

x/x0

"

9
2

J4!n2

(n2!1)3@2
. (6)

For n"4
3
, hA"9.780, and h

0
"137.973.

For x near x
0
, we have hKh

0
#hA(x!x

0
)2/2. In passing, we note that near h"h

0
, the classical

scattering cross section is

dp
dX

Ka2S
2

hA(h!h
0
)
]

x
0

sin h
0

. (7)

As sketched in Fig. 4(b), scattering is concentrated at h"h
0
, but also occurs for h'h

0
. This

is what causes the white appearance `insidea the primary bow (and `outsidea the secondary
bow).

2. Colors of the rainbow, dispersion

The beautiful colors of the rainbow are a consequence of the variation of the index of refraction
of water with wavelength of the light. This dispersion, as it is called, is shown quantitatively in
Fig. 3. If we arbitrarily de"ne the visible range of wavelength to be from 400 nm (violet) to 700 nm
(red), we "nd that the index of refraction di!ers by *n"1.3]10~2 from one end of the range to the
other.

Now consider the e!ect of a change in n on h:

dh
dn

"!4
R
Rn[sin~1(x/n)]"

4x

nJn2!x2
. (8)

Fig. 3. Index of refraction of water as a function of wavelength. The visible light interval is between 400 and 700 nm.

30 J.D. Jackson / Physics Reports 320 (1999) 27}36



Fig. 4. Sketches to accompany the text.

At the rainbow angle,

A
dh
dnB

x0

"

2
nS

4!n2

n2!1
(9)

For n"4/3, dh/dnD
x0
"2.536. With *n"1.3]10~2, we "nd *h

0
"3.3]10~2 radians "1.893.

The colors of the rainbow are spread over about 23 out of the 423 away from the anti-solar
point (1803!1383). Since dn/dj(0, the red light emerges at a smaller angle than the violet.
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The viewer thus sees the rainbow with the red at the outer side of the arc and the violet on
the inner side, as indicated in Fig. 4(c). For the secondary bow, the order of the colors is
opposite.

3. Consequences of the wave nature of light, supernumerary rainbows

For rays incident at impact parameters close to b
0
"x

0
a, the scattering angle is equal to h

0
,

correct to "rst order inclusive. In fact, because of the quadratic dependence of h!h
0

on
*x"x!x

0
, two rays incident at impact parameters greater and less than b

0
by an amount

D*xD will emerge with the same scattering angle. In the wave picture, as observed by Young [3] in
1803, these two waves emerging in the same direction can interfere. Whether the interference is
constructive or destructive depends on the di!erent in optical path length of the two rays. This
varies as a function of *x and so provides the potential for interference e!ects in addition to
dispersion in rainbows.

Referring to Fig. 1, we see as the solid line the critical ray, which emerges at h"h
0
. On either

side are shown neighboring rays with small D*xD that emerge at angles di!ering from h
0

only in
O(*x)2. The surfaces AA@ and BB@ are convenient ones for de"ning the optical path of a ray in the
neighborhood of the critical ray. The optical path, or more appropriately, the phase accumulated
along the ray, is given by

/(x)"2ka(1!cos i#2n cos r) , (10)

where the 2(1!cos i) represents the sum of the distances from AA@ to the drop's surface and
similarly for the exit leg, while 4n cos r is the length (times n) of the path interior to the drop. The
free-space wave number is k"u/c"2p/j. In terms of x"b/a, the phase is

/(x)"2ka[1!J1!x2#2Jn2!x2] . (11)

We are interested in the behavior of /(x) near x!x
0
. Consider the derivative,

d/
dx

"2kaC
x

J1!x2
!

2x

Jn2!x2D . (12)

Comparison with dh/dx in part(a) shows the relation,

d//dx"kaxdh/dx . (13)

Writing x"x
0
#m, we can put this equation in the form,

d//dm"ka[x
0

dh/dm#mdh/dm] . (14)

Integration on both sides from 0 to m yields

/(m)!/
0
"kaCx0

(h!h
0
)#P

m

0

m@
dh
dm@

dm@D (15)

"kaCx0
(h!h

0
)#mh!P

m

0

h(m@) dm@D . (16)
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Inserting h(m)"h
0
#hAm2/2#O(m3) in the integral, we "nd

/(m)"/
0
#ka[x

0
(h!h

0
)#hAm3/3#O(m4)] . (17)

For two rays, a and b, as shown in Fig. 1, with equal and opposite small m values, the phase
di!erence is

d"/(m)!/(!m)"2kahAm3/3 . (18)

If we equate this phase di!erence to 2pN and express m in terms of h!h
0
, we "nd the angles of

constructive interference to be

h
N
!h

0
K[(hA)1@3/2](3pN/ka)2@3 . (19)

(Actually, a more correct procedure has N#1
4

replacing N. See Ref. [4, p. 243] and Section 3.21.)
The angles of constructive interference mark the positions of additional rainbows, called

supernumerary rainbows. They lie at larger angles than h
0

and so fall `insidea the main bow. Their
colors are in the same order as in the primary bow. They are rarely seen because conditions must be
optimized for them to appear unobscured or not washed out. The angle (h

N
!h

0
) depends on the

droplet size, varying as (ka)~2@3. For large drops, the angle becomes very small and the super-
numerary bows fall inside the various colors of the primary bow. Using N"5/4, hA"9.780,
and (h!h

0
)
.*/

"3]10~2 radians (corresponding to the spread caused by dispersion), we "nd
(ka)

.!9
K2.5]103. With k appropriate to the sodium D lines, we obtain a

.!9
K0.28mm. Larger

drops will cause the supernumeraries to be obscured by the e!ects of dispersion.
Variation in drop size, even if the drops are small enough, also causes the maxima of the

supernumerary bows to be washed out in angle. Thus, one needs small drops, uniform in size, in
order to see clearly the supernumeraries. All this was understood by Young [3].

For very small drop size, a(50 lm, the whole pattern of primary peak (N"1
4
) and supernumer-

ary peaks for a given wavelength is so spread in angle that dispersion e!ects are unimportant. All
the colors have broad primary peaks lying almost on top of each other in angle. The result is
a `white rainbowa or `fog bowa.

4. Huygens: construction for the rainbow, Airy integral

The scalar di!raction theory of Huygens, Young, Fresnel and Kirchho! [5, Section 10.5] can be
used to obtain an approximate description of the rainbow in wave theory, as was "rst done by
George B. Airy (1836). Consider the line BB@ in Fig. 1, where we have evaluated the expression for
the phase /(m). A wave along this line will have the form

tJexp[ik
,
z#ik

M
) r

M
#i/(m)] , (20)

where we choose our axes so that z is in the direction of scattering at h
0

and r
M

is measured along
BB@, with value ax

0
at the critical ray. If the wave is propagating in the direction h, then

k
M
) r

M
"!ka(h!h

0
)x , (21)
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where the negative sign comes from the fact that k
M

and r
M

are antiparallel (h'h
0
). Since z is

constant on BB@, the relevant parts of the wave's overall phase are

k
M
) r

M
#/(m)"ka[(h!h

0
)(x

0
!x)#(hA/3)m3]#/

0
(22)

"ka[!m(h!h
0
)#(hA/3)m3]#/

0
. (23)

With the approximation, h!h
0
"hAm2/2, we "nd

k
M
) r

M
#/(m)!/

0
"!(ka/6)hAm3#O(m4) . (24)

Along the line BB@, the wave amplitude in the neighborhood of x"x
0

or m"0 has the form

t(m)"exp(!ikahAm3/6) (25)

assuming the slowly varying amplitude function is a constant.
We can now use the simplest version of the Kirchho! integral for di!raction,

t
S#!55

"

k
2piP

e*kR
R

t(x@) da@ . (26)

With kRKkr!k ) x@ in the usual way, we "nd a scattering amplitude,

t
S#!55

JP
=

~=

e*ka(h~h0 )me~*kahAm3@6dm . (27)

This can be put in the form of the Airy integral Ai(!g), as de"ned by Abramowitz and Stegun
[6, p. 447]:

Ai(!g)"
1
pP

=

0

cos(t3/3!gt) dt , (28)

where g"(2k2a2/hA)1@3(h!h
0
). This function is shown in Fig. 4(d). For positive g, Ai(!g)

oscillates with an amplitude that decreases as g~1@4. For negative g, Ai(!g) is exponential in
character, falling rapidly to zero for !g'1. The maxima and minima occur successively at

g"1.0188 (1.1155), 3.2482 (3.2616), 4.8201 (4.8263), 6.1633 (6.1671),

7.3722 (7.3748) .

The numbers in parentheses are values of [(3p/2)(N#1
4
)]2@3 for N"0, 1, 2,2, from our previous

discussion of the angles for constructive interference. For larger N values, the agreement is
excellent.

It is of interest to compare the angular positions of the supernumerary rainbows implicit in the
tabulated g values with the examples quoted by Young [3]. Notorious for not giving details of his
calculations, he only quotes answers. He states that for drops 1

76
inches in diameter, the reds of the

"rst and fourth supernumerary bows are approximately 23 and 43 inside the red of the primary
(the "rst just clearing the violet of the primary). With hA"9.912 and j"700 nm for red light, we
"nd ka"1.50]103 and g"1.34 (h!h

0
), with the angles measured in degrees. With *g"2.23

and 6.35 for the "rst and fourth supernumeraries, we obtain *h"1.7 and 4.7 degrees, in rough
agreement with Young. Incidentally, the fact that gO0 for N"0 (primary bow) explains the
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long-standing puzzle that the angular positions of some rainbows were observed to vary appreci-
ably away from the Cartesian}Newtonian angle h

0
(evidently dependent on drop size).

The peak intensities of the supernumerary bows, relative to the primary bow, are
0.612, 0.504, 0.446, 0.408,2, falling o! only as g~1@2 or (N#1

4
)~1@3. Note that the g~1@2 behavior is

just what our classical cross section gave. The wave aspect rounds the corners and gives interfer-
ence. The intensity pattern for red and violet light is sketched in Fig. 4(e) for a"64lm (ka+103
for violet light). The "rst supernumerary bow would be visible, but subsequent ones would not.
Add some variation in drop size and everything except the primary bow will wash out.

An approximate cross section for a given ka can be written in terms of Airy's integral by
normalizing the average intensity at large g to the classical cross section. From Abramowitz and
Stegun [6], one "nds that for large g the leading term in an asymptotic series is

Ai(!g)K(1/Jp)(1/g1@4)sin(2
3
g3@2#p/4) . (29)

The average value of its square is SDAi(!g)D2T"1/(2pJg). With the expression for g in terms of
h!h

0
, this becomes

SDAi(!g)D2T"
1
2pA

hA
2 B

2@3

A
1
kaB

1@3

S
2

hA(h!h
0
)
. (30)

Comparison with the classical cross section, near h"h
0
,

dp
#-

dX
Ka2

x
0

sin h
0
S

2
hA(h!h

0
)
, (31)

leads to the cross section in the Airy approximation,

dp
dX

K2pa2
x
0

sin h
0
A

2
hAB

2@3
(ka)1@3DAi(!g)D2 . (32)

(See Fig. 4(f ).) For n"4
3
, h

0
"137.973, sin h

0
"0.66952, x

0
"0.86066, and hA"9.780. Ignoring

the loss of intensity from the refractions and re#ection, the cross section for a given component of
the rainbow of "xed ka is thus

dp
dX

K2.80(ka)1@3DAi(!g)D2a2 . (33)

At the peak of the rainbow, dp/dX"0.803(ka)1@3a2. For ka"103, this cross section is 32 times
as great as an isotropic cross section, dp/dX"a2/4.

5. Comment on polarizations and loss of intensity

After Young, but before Airy, David Brewster showed in 1812 that the scattered rainbow light
was almost completely polarized, con"rming earlier observations of Biot (of the Biot}Savart law in
magnetism). The polarization comes about because the refracted and re#ected intensities at each of
the interfaces are di!erent for di!erent polarizations. The formulas of pp. 305}306 of Jackson [5]
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can be used to show that at h"h
0
, the ratios of scattered amplitude to incident amplitude are

E
S#!55

E
*/#

"

i
g
j
g
k

8/27 for E
M

plane of incidence ,

2A
2n

n2#2B
2

A
2!n2

2#n2B for E
,

plane of incidence .
(34)

For n"4
3
, the intensity of perpendicular polarization is 8.78]10~2 of the incident, while the

intensity of the parallel polarization relative to the perpendicular is 3.9]10~2. The cross section
quoted above must therefore be multiplied by approximately 1

2
]1.039]8.78]10~2 for un-

polarized light incident.

6. Note on notation

Van de Hulst [4] de"nes his Airy integral to be

f (z)"P
=

0

cosC
p
2
(zt!t3)Ddt . (35)

His z and our g are related by z"(12/p2)1@3g. His function f (z) is f (z)"(2p2/3)1@3Ai(!g). Note
that other notations are used for the Airy integral. For example, see [7, Section 59].
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