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the end of Sec. 28 which relates allowed multipole moments to the total
angular momentum quantum number.

320JTHE VARIATION METHOD

The variation method can be used for the approximate determination of
the lowest or ground-state energy level of a system when there is no
closely related problem that is capable of exact solution, so that the per-
turbation method is inapplicable. It can also be applied to systems
that are described by a nonseparable Schrédinger equation, in which
case numerical solutions are extremely arduous and the WKB method
(Sec. 34) cannot be used. :

EXPECTATION VALUE OF THE ENERGY

It was shown in Sec. 10 that, if an arbitrary normalized function ¢ is
expanded in energy eigenfunctions

¥ = Z Agug where Hug = Eug (32.1)
E

and the ux form a complete orthonormal set, the expectation value of H
for the function ¢ is given by

(H) = [y*Hy dr = Y E|Ag|* (32.2)
E

where the integration is extended over the entire range of all the coordi-
nates of the system. It is assumed for convenience in Eqs. (32.1) and
(32.2) that the energy eigenvalues are all discrete; this can be accom-
plished by enclosing the system in a box (Sec. 10), or the summation can
be replaced by the symbol S (Sec. 23).

A useful inequality can be derived from Eq. (32.2) by replacing
each eigenvalue E in the summation on the right side by the lowest
eigenvalue E:

(H) 2 E Eo|dg|* = Eoz |4 g|? (32.3)
E E

Since Z [Agl? = 1 for a normalized function ¢, as was shown in Sec. 10,
E _

(32.3) yields the inequality
E, < [y*Hy dr (32.4)

In the event that ¢ is not normalized, (32.4) evidently can be rewritten

as
*Hy dr
E, < % (32.5)



padiLin 6

jo sseooad oYy, ‘19jowwiBd SWOS JO sAnBA judtdylp Juiasy
£q paysm3upsip Ljuo 918 - - - ‘P %P 14 suonounj 9y} UNJQ
0 4{ O3 1S04BIU BY) S1 BUO JSAMO[ Y} 8YY) 08 4 LJidua 3y} usy)
1018043 1 57 Jo sanjBA 9s3Yy)} Jo yowa uey} ‘way) o) Juipuodses
=100 .+ - . ‘Sgr ‘Tpr ‘Upr SON[EA BY) 9)B[NO[BO PumB . . . ‘®Pp ‘P ¢
SUOI)OUNJ UOIJBLIBA JO JOqUInNU ¥ 8SOOUD am JI ‘wajsds B Jo
|9A9] AB19ud 1somo| ay) jo enfea 9jsuwixordds ayj Jo uoryev[noevd
9y} J0J POYIOW UOBUIBA Y} JO SISBQ 9Y) S| WAI0dY] SIY],

(2-92) M<a

‘st 98] {044 03 ] 1addn ue sABM[E ST 7 18Y)
poaoad 210J013Y) 9ABY 9\ ‘043z J0 aansod sy g9z uorjunby jo
apIs 14311 9y) ‘019z 10 9A1ISOd [[8 9SINOI O AIB “D,D SJUSIIYJI0D
9Y) pun u Jo sanjua [[B 10] 0 4 07 [¥nba 10 uvy) 1078a1d s1 ¥ Y P0UIg

(9-92) O = M) =0 — i
50413 sapis yjoq woaj ‘anjea LF1aua jsamo ayy Oy Funporwaqng

(s-92) M o= bl

suonenba sy} £Jsies “4 suoryouny ay) §8 Yonwssvug

(02) o = praifeo = u

uonyenba
3Y)} 09 SpTI| i Joj [eaFajul 3y} uy uotsurdxa S|y} jo uonNIEqNg

(e-92) 1= _.c..hcw UM s\»..sw = ¢
Furureyqo

Cae AL 4 A suopoung BuoBoylao ‘pazijBuliou Jo jo8
99o1dwiod ay) jo swiey ut ¢ puedxa Lvw am °4 09 [8nbo jou st ¢ JI

...S,oxz = c\sm
aauls

(z-92) M = pohy S

d
‘st 98y
041 18nba pnom g ‘9)e3s 15am0[ 9Y) JO %4 UOIOUN AABM BN} AY)
‘uonpounf uoyvrive ) pa[eo ‘¢ uOIPUN] INO I0j pIsn M Jf
O M £8raue oyy yowvoidde g [Im A[350[0 BI10UW BY) UISOYD ST 1
£[estM a1o0w ayy Inq ‘L1eiiqis 9ynb aq Avw 9010yd 8§91 {pojounys

181 AOHLAIV NOILVINVA HHL {e9E-11A

1°1
“LOE6T) 828 ‘98 49y ‘sfiyq '1uVIOY D ¢

-arun £[eyadwoo om_?sﬁm Sl ¢ uopounj 9yJ, °uOYIUNj IABM
£10198]S1)88 8 10} 96 UOI}DAG JO SUOI)IPU0I AIBI[IXNE aY) Ju1A)s138s
waIsAs 9y} JO S9)BUIPIOOI BY) JO UOIOUNJ PAZI[BULIOU AuB I
(b)¢ pue (vg1 *09g) UOISSNOSIP JApUN WA)SLS Y} 10§ Aa .Wm Mm H
J0jeiado umwuoyiusy ojejdwion oy} sty ‘uonenba sy} uj
"Wi9IBAS B JO 9388 159MO] 9Y[} JO O 44 AB1oud ay) 0} Jrunf saddn ue st

(1-92) pPH [ =

[8adajur ay) 98Y) UOIIIAE §1Y} UY ,MOYS
I1eys ap\—-sanzadosd s)1 pue [813a)u] jeuOnvLIBA 9YL °‘BYZ

JOHLAW NOLLVIMVA HHL '9%

‘swafqoad [Bo1wIoyd Ul )saI9jUL
jsowr JO 99818 Y} S YOIYm ‘waisAs 8y} jo 93838 LB19ua somo|
9y} 0} o[quoldde Ljewadse 81 poyjew sIy) 88 YONWISBUL ‘poyous
uoywLva Y4 03 U013 a8[noKyIed Fuihed ‘asay) jo awos ssnIsIp
[18Ye am 197deyd sy} u] "pandwiod oq 09 WA)SAS Y} JO §I}W)S
9y} Jo upee0 Jo £310us 9y) 10j sanyBA 9)swixordds ojqBUD YoIyM
J[qE[IBAB SPOYJIW AIB a19y) ‘Iaasmoy ‘suoreordde Lusw uy

*18913 A[pwd1)xa St
suonpeunxoxdde 1oydy oyj Surysno[sd jo 10qB[ aY) apiym yEnoud
2)BIN2o% jou s1 uonvunxoidde 9sig oy} 9snBIAQ A10}08)s13BSUN
81 L1009y} uonmvqinyred jo uoysondds ay) pus ‘woys siy) 10j
punoj usaq swy uwoyenba oAavm oY) Juiajos Jo poyjaur jo0aap
ON ‘waisfs ¥ yons st ‘19ydwyo jxou oyj ul passnosip ‘wojs
wnyay oy, ‘Lr09y) uolpsqunyiad jo asn oy} £q 10 uoryenba
9ABM 93U} JOo uonn[os 92aIp Aq JIYj@ PpayBal) A[IUIUSAUOD
3q JOUUBI YOIYM SITUBYOAIW dABM JO swdlqoad Luvwu a8 219y,

SAOHLIN HLVNWIXOUddV
YIHLO ANV JOHLIW NOILVIYVA dHL

IIA 94.LdVHD



Approximate methods of caicuiaiion 231

since mw? = K, the spring constant. The energies are thus shifted
by an amount which is independent of the oscillator’s state.

Problem 8.21 [I‘ill in the mathematical steps leading to (8.61).

Problem 8.22 The problem we have just treated approximately
is one for which a simple exact solution is available. Insert into
the original equation (4.95b) the new perturbing energy, and note
that by changing z to a new variable £ + A, with a suitable value
for \, one can cancel the perturbing A®, leaving the whole problem
substantially in its unperturbed form. Show that the new energy is
exactly equal to (8.61), so that all higher-order perturbations must
vanish exactly.

Problem 8.23 I'ind the perturbed energy and wave function for
the oscillator in its ground state, using the method developed in the
first part of this section.

Problem 8.24 Calculate the third term of the series (8.19) and
compare the result with (8.20).

8.6 The Variation Principle

An entirely different approach to the problem of finding approxi-
mate wave functions and energies is suggested by the question:
“If I can guess a wave function of reasonable form which contains
one or two adjustable parameters, how can I choose the parameters
so as to get the best fit?”’ First, we need to decide exactly what is
meant by ‘“the best fit,”” and this is most easily seen if for a moment
we restrict attention to finding the ground state of the system (this
is what one usually wants anyhow). Let us pose the following prob-
lem: If instead of the correct normalized wave function ¢, (the
subseript referring to the lowest energy state) we use an erroneous,
but still normalized function ¢, how does the energy of the state ¢
compare with the true energy E,? This question can be answered
at once. Let ¢, be the nth exact normalized eigenfunction of A (of
course, we do not know what it is), and expand ¢ in terms of the ¥,

¥ = Zca¥n

where, because of the normalization of ¥, we have
Zlea|? =1

by (5.5). The expectation value of A in the state ¢ is, by (5.6),
W =(HA)y = Z|c.|?En

If E, is the ground-state energy, we have the inequality

W > Z|ca|2Eo

pan il

(8.62)

(8.63)

(8.64)
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E=3 5 ata, j wrHy, dt (9.36)

Since Hy, = Ey,, and the y’s are orthogonal, Eq. (9.36) becomes
E = ; aja,E, 9.37)

The sum over all j of afa, is 1, and therefore E > E,;; E is equal to E,
only if the g, are zero for all j % 0, in which case ® = y, which means that
we have chosen the true wave function for @. The worse the choice made for
®, the greater will be the admixture of states above the ground state, leading
to higher estimates of E.

In general, ® should be chosen to resemble as closely as possible the
form to be expected on physical grounds. For example, for nuclear problems
a rapidly attenuating wave function should be used, such as an exponentially
decaying wave function. A good approximate wave function is a known
wave function appropriate to a very similar potential, that is, an unperturbed
ground state wave function whose potential energy is assumed only slightly
different from the actual potential energy. The only alteration required
in the known wave function is to make ® a function of some unspecified
parameter, say «. The integral in Eq. (9.34) is then calculated as a function
of @ and the result minimized with respect to a, the resultant E being the
closest estimate obtainable with the chosen wave function. If we use un-
normalized wave functions, Eq. (9.34) may be rewritten

L [, r)( %?; Ve 4 V)cp(a, r)dz
- [@*(@. no@, nde

(9.38)

FIGURE 9.1 Illustration of how an approximate wave function ® = re-2r may
be adjusted to represent most closely an illustrative true wave function y,,,, (dashed
line) by choice of the value of the parameter & that minimizes £ given by Eq. (9.38)
[ PHD® dz/| D2 d*.
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The Variational and 16
WKB Methods

16.1. The Variational Method

More often than not, it is impossible to find exact solutions to the cigenvalue
problem of the Hamiltonian. One then turns to approximation methods, some of
which will be described in this and the following chapters. In this section we consider
a few examples that illustrate the variational method.

Our starting point is the inequality

RN

>FE, 16.1.1
Cwlw) ° ( )

where E, is the lowest eigenvalue of H, i.e., the ground-state energy. Although this
result was proved earlier, let us recall the idea behind it. E [w] is just the mean value
of the energy in the state |y ). The inequality states that the mean value cannot be
less than the lowest value that enters the average. More formally, if | y) is expanded
in terms of the eigenfunctions |E,) of H, ‘

YENENWH?  EYIKE w)|?
E = > =
Y S EISE > SIE o

E (16.1.2)

This inequality suggests a way (at least in principle) of determining the ground-
state energy and eigenket. We take all the kets in the Hilbert space one by one and
make a table of the corresponding Ely]. At the end we read off the lowest entry
and the ket that goes with it. Clearly this is not a practical algorithm. What one
does in practice is to consider just a subset (not necessarily a subspace) of vectors
which are parametrized by some variables (a, B, 7,...) and which have the general
features one expects of the true ground-state ket. In this limited search E{y] reduces

a function of the parameters, E(a, 8, . . .). We then find the values (ao, fo, . . .)
which minimize E. This minimun E(a,, B,, . . .) provides an upper bound on E,.



CHAPTER 7

THE VARIATIONAL PRINCIPLE

7.1 THEORY

Suppose you want to calculate the ground state energy, Egs, for a system described
by the Hamiltonian H, but you are unable to solve the (time-independent)
Schrodinger equation. The variational principle will get you an upper bound for
Egs, which is sometimes all you need, and often, if you’re clever about it, very
close to the exact value. Here’s how it works: Pick any normalized function
whatsoever; 1 claim that

Egs < (|H|y) = (H). (7.1]

That is, the expectation value of H, in the (presumably incorrect) state ¥ is certain
to overestimate the ground state energy. Of course, if i just happens to be one
of the excited states, then obviously (H) exceeds Eg; the point is that the same
holds for any i whatsoever.

Proof: Since the (unknown) eigenfunctions of H form a complete set, we can
express ¥ as a linear combination of them:!

Y= cathn, with Hyy = En.

U1f the Hamiltonian admits scattering states, as well as bound states, then we’ll need an integral
as well as a sum, but the argument is unchanged.
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