Physics 541 Exam 1

 Due April 28, 2008Explain the physics for each topic below in your own words.
You do not have to write a perfect essay on each topic, but do write enough to convince me that you really understand the topic. You will only need to write a paragraph to convince me. However, do not forget that equations, pictures, and graphs are more effective than words. If a picture is worth a thousand words, and an equation is worth a thousand pictures, then In other words, include the relevant equations and pictures.

1	The orbital angular momentum L and the eigenvectors and eigenvalues of $\mathrm{L} \mathrm{\wedge} \wedge 2$ and Lz
2	The spin angular momentum S and the eigenvectors and eigenvalues of $\mathrm{S} \wedge 2$ and Sz
3	The total angular momentum J and the eigenvectors and eigenvalues of $\mathrm{J} \mathrm{\wedge 2}$ and Jz
4	The commutation relations for L, S, and J
5	The uncertainty relations for L, S, and J
6	The ladder operators for L, S, and J
7	The Pauli spin matrices and spinors
8	The magnetic dipole moment of the electron and of the proton
9	The gyromagnetic ratio of the electron and of the proton
10	The Larmor precession frequency of the electron and of the proton
11	The Stern-Gerlach experiment
12	Spin up and spin down
13	The addition of spin $3 / 2$ and spin 2
14	The addition of spin 2 and spin 3
15	The ladder of Jz angular momentum states for integer J and for half-integer J
16	Singlets, doublets, triplets, quartets, quintets, sextets, septets, octets, nonets, decets,
17	The Clebsch-Gordan coefficients
18	The semiclassical vector model
19	The individual particle angular momentum basis (aka, the L and S basis)
20	The total angular momentum basis (aka, the J basis)

Problem 1. The Quantum Mechanics of Spin

Consider the quantum mechanical behavior of a spin $1 / 2$ particle that starts out with the zero time state vector

$$
\left\lvert\, \psi(0)>=>N\binom{3+2 i}{2-3 i}\right.
$$

(a) Calculate the normalization constant N .
(b) Calculate the zero-time expectation values $<S_{x}(0)>,<S_{y}(0)>$, and $<S_{z}(0)>$.
(c) If S_{x}, S_{y}, and S_{z} were measured for the zero-time state vector $\mid \psi(0)>$, what would be the respective possibilities and probabilities that would be obtained? Show that your results here agree with your zero-time expectation values from part b.
(d) Now suppose that a static magnetic field $\vec{B}=B_{0} \hat{z}$ is turned on at $t=0$. Calculate the time-dependent state vector $\mid \psi(t)>$. The Hamiltonian is $H=-\gamma \vec{S} \cdot \vec{B}$.
(e) Calculate the time-dependent expectation values $<S_{x}(t)>,<S_{y}(t)>$, and $<S_{z}(t)>$ of the spin in the magnetic field.
(f) Make a sketch that shows the behavior of the spin versus time using the semiclassical vector model. Explain what the semiclassical spin does: What axis does it rotate around? How fast does it rotate? What are the time averages of S_{x}, S_{y}, and S_{z} ? Explain how the time evolution of the semiclassical vector model is related to the time-dependent expectation values that you calculated in part e.

Problem 2. Angular Momentum Addition

Consider an electron in a hydrogen atom in the state

$$
N\left(\begin{array}{cc}
R_{32} & Y_{2-2} \\
R_{43} & Y_{33}
\end{array}\right)
$$

(a) Calculate the normalization constant N .
(b) Sketch the radial probability distribution for a spin up electron. Sketch the radial probability distribution for a spin down electron.

If you measure the following quantitites, what are the possible values that you could obtain, and with what probabilities would you obtain them?
(c) L^{2} and L_{z}
(d) S^{2} and S_{z}
(e) J^{2} and J_{z}
(f) the energy

