Physics 541 Exam 1 Due April 28, 2008

Explain the physics for each topic below in your own words.

You do not have to write a perfect essay on each topic, but do write enough to convince me that you really understand the topic. You will only need to write a paragraph to convince me. However, do not forget that equations, pictures, and graphs are more effective than words. If a picture is worth a thousand words, and an equation is worth a thousand pictures, then In other words, include the relevant equations and pictures.

1	The orbital angular momentum L and the eigenvectors and eigenvalues of L^2 and Lz
2	The spin angular momentum S and the eigenvectors and eigenvalues of S^2 and Sz
3	The total angular momentum J and the eigenvectors and eigenvalues of J^2 and Jz
4	The commutation relations for L, S, and J
5	The uncertainty relations for L, S, and J
6	The ladder operators for L, S, and J
7	The Pauli spin matrices and spinors
8	The magnetic dipole moment of the electron and of the proton
9	The gyromagnetic ratio of the electron and of the proton
10	The Larmor precession frequency of the electron and of the proton
11	The Stern-Gerlach experiment
12	Spin up and spin down
13	The addition of spin 3/2 and spin 2
14	The addition of spin 2 and spin 3
15	The ladder of Jz angular momentum states for integer J and for half-integer J
16	Singlets, doublets, triplets, quartets, quintets, sextets, septets, octets, nonets, decets,
17	The Clebsch-Gordan coefficients
18	The semiclassical vector model
19	The individual particle angular momentum basis (aka, the L and S basis)
20	The total angular momentum basis (aka, the J basis)

Problem 1. The Quantum Mechanics of Spin

Consider the quantum mechanical behavior of a spin 1/2 particle that starts out with the zero time state vector

$$\mid \psi(0) > => N \left(\begin{matrix} 3+2i \\ 2-3i \end{matrix} \right)$$

- (a) Calculate the normalization constant N.
- (b) Calculate the zero-time expectation values $\langle S_x(0) \rangle$, $\langle S_y(0) \rangle$, and $\langle S_z(0) \rangle$.
- (c) If S_x , S_y , and S_z were measured for the zero-time state vector $|\psi(0)\rangle$, what would be the respective possibilities and probabilities that would be obtained? Show that your results here agree with your zero-time expectation values from part b.
- (d) Now suppose that a static magnetic field $\vec{B} = B_0 \hat{z}$ is turned on at t = 0. Calculate the time-dependent state vector $|\psi(t)\rangle$. The Hamiltonian is $H = -\gamma \vec{S} \cdot \vec{B}$.
- (e) Calculate the time-dependent expectation values $\langle S_x(t) \rangle$, $\langle S_y(t) \rangle$, and $\langle S_z(t) \rangle$ of the spin in the magnetic field.
- (f) Make a sketch that shows the behavior of the spin versus time using the semiclassical vector model. Explain what the semiclassical spin does: What axis does it rotate around? How fast does it rotate? What are the time averages of S_x , S_y , and S_z ? Explain how the time evolution of the semiclassical vector model is related to the time-dependent expectation values that you calculated in part e.

Problem 2. Angular Momentum Addition

Consider an electron in a hydrogen atom in the state

$$N\left(\begin{array}{c}R_{32} Y_{2-2}\\R_{43} Y_{33}\end{array}\right)$$

- (a) Calculate the normalization constant N.
- (b) Sketch the radial probability distribution for a spin up electron. Sketch the radial probability distribution for a spin down electron.

If you measure the following quantitites, what are the possible values that you could obtain, and with what probabilities would you obtain them?

- (c) L^2 and L_z
- (d) S^2 and S_z
- (e) J^2 and J_z
- (f) the energy