
A quantum bouncing ball
Julio Gea-Banacloche
University of Arkansas, Fayetteville, Arkansas 72701

~Received 3 August 1998; accepted 21 January 1999!

The dynamics of a quantum wave packet bouncing on a hard surface under the influence of gravity
are studied. This is a system that might be realized experimentally with cold atoms dropped onto an
‘‘atomic mirror.’’ The classical limit is discussed and interesting departures from classical behavior
are pointed out and explained. ©1999 American Association of Physics Teachers.
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I. INTRODUCTION

The solution of Schro¨dinger’s equation for a particle
bouncing on a perfectly reflecting surface under the influe
of gravity, that is, of a particle in the potential

V~z!5mgz, z.0

5`, z,0, ~1!

is an intermediate-difficulty problem~exactly solvable using
special functions! which is discussed in a number o
textbooks.1,2 Sakurai,2 for instance, uses it as an example
a system where the Wentzel-Kramens–Brillouin approxim
tion gives an excellent approximation to the spectrum. T
problem has also been treated in a number of pedagog
articles over the years in the pages of the American Jou
of Physics: see, for instance, Refs. 3–5. It was given
name ‘‘The quantum bouncer’’ by Gibbs,4 who also dis-
cussed a two-dimensional extension, to a particle roll
down an inclined plane.~A more complicated kind of
‘‘quantum bouncer’’ is obtained when the mirror at the bo
tom is allowed to move; such a system may exhibit chao
the classical limit, as discussed in Ref. 6.!

In recent years, the development of techniques to cool
manipulate atoms with high precision has made the sim
quantum bouncer experimentally realizable.7 The reflecting
surface is provided by a piece of glass ‘‘coated’’ with t
evanescent field of a laser undergoing total internal reflec
on the other side8 ~a magnetic mirror can also be used!.9 The
atoms are dropped onto this surface from a small hei
typically a few millimeters. A number of interesting prec
sion measurements can be carried out in this way, includ
a determination of the van der Waals force between the a
and the glass.10 Although for most of these experiments th
atoms energies are such that they behave essentially as
sical particles, there is at least one experiment in which
~quantum! interference between parts of the wave packet
flected at different times was observed.11 This may be re-
garded as a sort of first step toward a ‘‘matter wave cavit

This paper presents a study of the dynamics of a boun
wave packet, initially Gaussian in shape, in the potential~1!.
Apart from its relevance to possible future experiments
the type described above, the problem is very interes
from a pedagogical standpoint, as it showcases some o
differences between classical and quantum dynamics.
classical motion is periodic~since no energy dissipation i
assumed to take place!, repeating itself indefinitely, but the
quantum motion is aperiodic, and exhibits interesting c
lapses and revivals of the oscillations, similar to those
served in many other quantum systems. In spite of this, th
is a clear correspondence between the classical and qua
776 Am. J. Phys.67 ~9!, September 1999
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limits, and the use of a quasiclassical perspective allows
to derive some very useful results for the quantum probl
as well.

The results reported here run the gamut from exact a
lytical expressions, to approximate ones, to fully numeri
calculations. Impossible to present here, but available to a
body interested, is a movie that was generated showing
time evolution of the wave packet for some of the parame
discussed in the text. It can be downloaded from the follo
ing URL: http://www.uark.edu/misc/julio/bouncing–ball/
bouncing–ball.html.

II. SOLUTION OF THE TIME-INDEPENDENT
PROBLEM—SCALING

The time-dependent Schro¨dingér equation for the potentia
~1! reads

2
\2

2m

]2C

]z2 1mgzC5 i\
]C

]t
, ~2!

with the boundary condition

C~0,t !50 ~3!

at z50. The solution will proceed via the usual expansion
the basis of energy eigenfunctions:

C~z,t !5 (
n51

`

Cne2 iEnt/\cn~z!, ~4!

where the coefficientsCn are determined from the initia
condition C(z,0), and the eigenfunctionscn(z) are the so-
lutions of

2
\2

2m

d2cn

dz2 1mgzcn5Encn , ~5!

with the boundary condition

cn~0!50. ~6!

To better exhibit the solution of~5!, it is convenient to
rescale the position and energy variables as follows: In
ducing the characteristic ‘‘gravitational length’’l g defined as

l g5S \2

2gm2D 1/3

, ~7!

let z85z/ l g andE85E/(mglg), or

E85ES 2

\2mg2D 1/3

. ~8!

In these variables, Eq.~4! becomes
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d2cn

dz82 2~z82En8!cn50. ~9!

The solution to Eq.~9! is given by an Airy function, Ai or
Bi, of the variablez82En8 .12 Since the function Bi goes to
infinity as its argument grows, it is not acceptable for th
problem, wherez is not bounded from above. The bounda
condition ~6! then means thatEn must be chosen so tha
Ai( 2En8)50. If one denotes the zeros of the Airy functio
by 2zn , with n51,2,..., andzn.0, one finds the solutions

En85zn , ~10a!

cn~z8!5Nn Ai ~z82zn!, ~10b!

whereNn is an appropriate normalization factor.
In what follows the primes on the energy and positi

variables will be dropped, and it will be understood that th
are measured in the units introduced in Eqs.~7! and ~8!
above. It is also convenient to scale the time variable app
ing in Eqs. ~2! and ~3!. The natural time scale istg

5\/(mglg), that is,

tg5S 2\

mg2D 1/3

, ~11!

and from now on the time will be understood to be rea
t85t/tg .

For reference, for a Cs atom one findsl g50.226mm, a
characteristic energymglg53.06310212eV ~corresponding
to a temperature of about 431028 K), and a characteristic
time tg50.22 ms, whereas for the much lighter Na atom o
finds l g50.727mm, mglg51.7310212eV ~a temperature of
about 231028 K!, and a characteristic timetg50.39 ms.

It is somewhat remarkable that all the eigenfunctions
this problem are ‘‘pieces’’ of the same function, the Ai
function Ai, shifted in each case so that it has a zero az
50, and with thez,0 part truncated. The first few~normal-
ized! eigenfunctions are plotted in Fig. 1, along a horizon
axis. Like all stationary states, they have the characteris
of standing waves. Note how the wavelength of the osci
tions decreases toward the bottom, in accordance with th
Broglie relationshipl5h/mv, since the speed of the class
cal particle is greater there. The higher-order wave functi
correspond to the particle being ‘‘dropped’’ from progre
sively greater heights.

Exact analytical expressions for the zeroszn and the nor-
malization factorsNn are not available, but good approxim
tions can be given, especially for largen ~which corresponds
to the ‘‘quasiclassical’’ case to be discussed in this pap!.
For the zeros, one has

zn.F3p

2 S n2
1

4D G2/3

. ~12!

These are also the angular frequencies of the time-depen
problem~4! when the scaled timet8 is used. A very impor-
tant difference with the simple harmonic oscillator is th
these frequencies are not evenly spaced; that is, the di
encezn112zn depends onn. This means that the quantum
motion is not, in general, periodic, even though the class
motion is. This will be explored in much greater detail in t
following sections.
777 Am. J. Phys., Vol. 67, No. 9, September 1999
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For the normalization factorsNn , I have not been able to
find even approximate expressions in the literature. Clea
what is needed is

Nn5F E
0

`

Ai2~z2zn!dzG21/2

. ~13!

For largen, this expression may be manipulated somew
using the asymptotic expansion of the Airy function. A litt
guesswork then yields the following, surprisingly accura
~for largen! expression:

Nn.S p

Azn
D 1/2

.F 2p2

3~n21/4!G
1/6

. ~14!

For n55 the difference between the right-hand sides of~13!
and ~14! is only 0.0002, or 0.02%, and it improves asn
increases. The details of the ‘‘derivation’’ of Eq.~14! are
provided in the Appendix, in case they might inspire som
body to find a better approximation.

Last, for the full time-dependent solution~4! one needs the
expansion coefficientsCn , which depend on the initial con
dition. For this paper I will assume an initial condition of th
form of a Gaussian wave packet with a widths and localized
at a heightz0 above the ‘‘floor,’’ with zero initial momen-
tum. That is, the particle is ‘‘dropped’’ from a heightz0 and
bounces on thereafter. As long ass!z0 , the following form
will be, to a good approximation, normalized to unity in th
z50 to infinity range:

C~z,0!5S 2

ps2D 1/4

e2~z2z0!2/s2
. ~15!

For such a wave function the spread in positionDz5s/2, so
s can be thought of as the ‘‘full width’’ of the wave packe

The coefficientsCn are then given by

Fig. 1. The first four normalized eigenfunctionscn(z) of a particle in the
potential ~1! are plotted on the horizontal axis. Solid line:n51 ~ground
state!. Dashed line:n52. Dotted line:n53. Dash-dotted linen54.
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Cn5NnS 2

ps2D 1/4E
0

`

Ai ~z2zn!e2~z2z0!2/s2
dz. ~16!

Approximate expressions for theCn can be calculated from
~16! by using the following representation of the Airy fun
tion:

Ai ~z!5
1

p E
0

`

cosS t3

3
1ztDdt. ~17!

Substituting~17! in ~16! and carrying out the integration wit
respect toz ~extending the lower limit to2`! yields

Cn.NnS 2

ps2D 1/4 s

Ap
E

0

`

e2t2s2/4 cosS t3

3
1~z02zn!t Ddt.

~18!

Now, if s is sufficiently large, meaning that the wave pack
is initially a few timesl g in width, one can simplify Eq.~18!
by expanding thet3 term, since the exponential will ensur
that t is never too large. The resulting integrals can all
evaluated exactly. Keeping only terms throught3 yields

Cn.NnS 2

ps2D 1/4S 124
z02zn

s4 1
8

3

~z02zn!3

s6 D
3e2~z02zn!2/s2

. ~19!

This is accurate to about 1% forz0510, s53, and to about
10% forz0510, s52. For sufficiently large values ofs and
z0 , the whole term in large parentheses can be replaced b

The main usefulness of Eq.~19! is that, in conjunction
with Eq. ~12!, it allows one to estimate how many wav
functions need to be included in an approximate evalua
of the infinite sum~4!, for given initial conditions. This is
discussed further in the subsequent sections.

Although the case wheres,1 ~that is,Dz, l g! will not be
considered here, a few words about it may be in order. S
l g is the approximate width of the ground state, it is also
length scale for which the productDzDp is close to the
minimum value allowed by the uncertainty principle for th
problem. This means that decreasingDz beyond this value
will lead to a wave packet with a large momentum spre
For such a wave packet it is harder to get an intuitive feel
for what the quasiclassical limit should look like; in partic
lar, if the momentum spread is large, the notion that
particle is being ‘‘dropped’’ with near zero momentum b
comes untenable. For this reason, only wave packets
s.1 will be considered here.

III. THE CLASSICAL PROBLEM AND THE
QUASICLASSICAL LIMIT

If the scalings introduced in Sec. II are applied to t
classical equation of motiond2z/dt252g, the result is, in
effect, equivalent to setting the acceleration of gravityg
equal to 2. The classical motion of a particle dropped from
height z0 is simply characterized by a periodT, equal to
twice the time needed to reach the ground, which forg52 is
simply

T52Az0. ~20!

Then one has
778 Am. J. Phys., Vol. 67, No. 9, September 1999
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z~ t !54z0F1

4
2S t

T
2nD 2G ,

nT<t2
T

2
<~n11!T, n50,1,... . ~21!

This periodic motion can be expanded in a Fourier serie

z~ t !5 (
p52`

`

Ape22pp i t /T, ~22!

with coefficients

Ap5
1

T E
0

T

z~ t !e22pp i t /T dt5~21!p
2z0

p2p2 , pÞ0

5 2
3z0 , p50. ~23!

This Fourier series expansion actually applies, with sm
modifications, to all the possible initial conditions for th
problem, including the cases when the particle is initia
thrown upwards or downwards, providedz0 is taken to be
not the initial, but the maximum height; when scaled byz0
andT, the trajectories corresponding to different initial co
ditions are, in fact, all identical except for a shift in the orig
of time, which can be accounted for by shifting the phases
the coefficientsAp .

The result~21! for the classical problem may be compar
to the corresponding time-dependent expectation value of
position operatorz for the quantum problem, calculated from
the wave function~4!. Using ~10a! one finds, in the scaled
variables,

^z~ t !&5 (
n,m51

`

CnCm* ^muzun&e2 i ~zn2zm!t, ~24!

where the matrix elementŝmuzun& are given by

^muzun&5NnNmE
0

`

z Ai ~z2zn!Ai ~z2zm!dz. ~25!

To see how, and in what limit, the classical result~22!
follows from ~24!, consider first the energy difference
zn2zm appearing in~24!. One expects the classical limit t
hold when the energies are large, and hence whenn and m
are large. Specifically, for a givenz0 one expects, from Eq
~19!, that the values ofzn ,zm contributing to the sum~24!
will all be within a range of a few timess from z0 . One can
define a numbern0 as the order of the zero of the Air
function Ai which is closest to2z0 . By the approximate
expression~12!, one finds

n0.
2z0

3/2

3p
1

1

4
, ~26!

where it is understood thatn0 is, in fact, the integer closest t
the real number on the right-hand side of~26!. If this number
is large, the difference between it andn0 will be negligible,
relatively speaking.

One can then expand the frequencieszn given by Eq.~12!
around n0 : that is, setzn5zn01(n2n0) and expand inn

2n0 . The three lowest-order terms are
778Julio Gea-Banacloche
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Azn0

~n2n0!2
p2

4zn0

2 ~n2n0!2

.z01
p

Az0

~n2n0!2
p2

4z0
2 ~n2n0!2. ~27!

The range of values ofn, Dn, appearing in~27! can be
estimated as follows. From the linear term in~27!, one can
see thatDn;Az0Dzn . From Eq.~19!, the range ofzn , Dzn ,
can be expected to be of the order of a few timess around
z0 . Thus one expects

Dn;sAz0. ~28!

With this, the order of magnitude of the three terms on
right-hand side of~27! is seen to be

z0 ,s,
s2

z0
. ~29!

The condition for the quadratic term to be negligible vers
the linear one is, therefore,

s!z0 ; ~30!

this is, a well-localized wave packet, which is just what o
would expect for the classical limit to hold. Note also th
~28! and ~26! imply that, when the condition~30! holds, the
range of important values ofn, Dn, would be much smaller
thann0 itself.

Assuming that~30! holds and neglecting the quadrat
term in ~27! for the moment~its effects will be discussed a
great length in Sec. IV!, one can see that the frequency d
ferenceszn2zm appearing in~24! are approximately given
by

zn2zm.
p

Az0

~n2m!5
2p

T
~n2m!, ~31!

where T is the classical period, given by Eq.~20!. This
shows that, indeed, in this limit the quantum expectat
value ~24! has the same periodic time dependence as
classical position~22!. The sum in~24! can be rearranged, in
this limit, to read

^z~ t !&5 (
p52`

` S (
m5max~1,12p!

`

Cm1pCm* ^muzum1p& D
3e22pp i t /T. ~32!

One would expect that, in the appropriate quasiclassical l
(z0@s@1), the term in parentheses in~32! would reduce to
the appropriateAp coefficient of Eq.~22!, and it seemsa
priori that there are a number of ways in which this could
accomplished.

What I have found~numerically! for this problem is that
the matrix element̂muzum1p& is, in fact, given by a very
simple result strongly reminiscent of the classical result~23!:

^muzum1p&5~21!p
2

~zm2zm1p!2 , pÞ0

5 2
3zm , p50. ~33!

Note how, in the limit when~31! holds, this reduces to

^muzum1p&.Ap , ~34!
779 Am. J. Phys., Vol. 67, No. 9, September 1999
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with the classical coefficientsAp given by Eq.~23! above.
It may be worth pointing out that Eq.~33! is a very non-

trivial result, and, in fact, I was only able to guess at it
considering the classical limit, as indicated above. Us
Eqs.~25! and ~13! to recast it in terms of the Airy function
it reads

E
0

`

zAi ~z2zn!Ai ~z2zm!dz

52
~21!n2m

~zn2zm!2 F E
0

`

Ai2~z2zn!dzE
0

`

Ai2~z2zm!dzG1/2

,

nÞm, ~35a!

E
0

`

zAi2~z2zn!dz5
2

3
znE

0

`

Ai2~z2zn!dz, ~35b!

where 2zn and 2zm are any of the zeros of the functio
Ai( z). I have not been able to find either of these identit
in the literature, and I have not been able to prove th
analytically, either, but numerical calculations show them
be ‘‘exact’’ that is, true to an arbitrary precision, for arbitra
values ofn andm.

The classical limit now follows fairly easily. Use of~34!
in ~32! yields

^z~ t !&5 (
p52`

` S (
m5max~1,12p!

`

Cm1pCm* D Ape22pp i t /T.

~36!

For the particular initial condition considered here, one m
use Eq.~19! for the coefficientsCm , with the term in the
large parentheses replaced by 1 in the classical limit. A
one may use the linear term in~27! to expresszn2z0 in
terms ofn2n0 , and note that, since the resulting Gauss
functions ofm are sharply peaked aroundn0 andn02p with
n0@1, there is no harm in formally extending the sum ran
to 2` from below. Using also the asymptotic form~14! of
the coefficientsNn , with zn.z0 , finally yields

(
m5max~1,12p!

`

Cm1pCm*

.A 2p

s2z0
(

m52`

`

e2p2@~m2n0!21~m1p2n0!2#/s2z0

.e2p2p2/2s2z0. ~37!

In the last step, the sum overm has been approximated by a
integral. The full expression is therefore

^z~ t !&. (
p52`

`

e2p2p2/2s2z0Ape22pp i t /T. ~38!

When compared to~22! one can see that the high tempor
frequencies~largep! in the quantum expectation value ma
be suppressed, because of averaging over the wave pac
width. In any event, the classical result~22! is clearly recov-
ered in the limit of largez0 .

For values ofz0 that are not too large, however, the qua
tum result may look substantially different from the classic
one as a function of time, as Fig. 2 illustrates for the ca
z0510, s52(a) and z0520, s53. ~b! The particle’s first
few bounces are clearly well defined, but after a while t
779Julio Gea-Banacloche
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bounces cease and the expectation value ofz remains very
close to the time average of the classical trajectory, 2z0/3
@Eq. ~23!#. Further, after yet some more time the oscillatio
revive and the particle begins to bounce again.

This collapse and revival of classically periodic motion
a well-known feature of many quantum systems.13 It is
clearly not predicted by~38!; in fact, it can be explained, a
least in its most salient features, by a careful study of
quadratic term in Eq.~27!, which was neglected in going
from ~24! to ~32!. This is discussed in detail in Sec. IV.

IV. QUANTUM DYNAMICS: COLLAPSES AND
REVIVALS

When the quadratic term in~27! is kept in expression~24!
for the quantum expectation value, the argument of the
ponential becomes

2 i ~zn2zm! .2 i
2pt

T
~n2m!

1 i
4p2t

T4 @~n2n0!22~m2n0!2#. ~39!

Clearly, for sufficiently large times the last term in~39! will
not be negligible, and it may cause the various Fourier co
ponents in Eq.~24! to drift out of phase and cancel eac
other out. The only surviving terms will be those withn
5m, i.e., the ones giving the~classical! time average. This
leads to the collapse of the oscillations seen in Fig. 2.

The size of the second term in~39! depends onn2m, that
is, on the Fourier component, or oscillation frequency, on
looking at. Higher frequencies dephase faster. The colla
that is most readily apparent in Fig. 2 is that of the oscil
tions at the slowest nonvanishing frequency, 2p/T, corre-
sponding ton5m61. For this case, the second term in~39!
reads

i
4p2t

T4 @62~m2n0!11#; i
8p2t

T4 Dn; i4p2
s

T3 t ~40!

Fig. 2. Expectation value of the position as a function of time for a wa
packet with~a! z0510, s52, and~b! z0520, s53. Time is in units oftg ,
length is in units ofl g .
780 Am. J. Phys., Vol. 67, No. 9, September 1999
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@using~28! for an estimate ofDn#. The collapse time can be
estimated then from the time it takes this term to be of
order of ip.

It is also possible, and instructive, to understand the c
lapse through purely quasiclassical arguments. For t
imagine that the wave packet with a widths represents an
ensemble of particles that are all dropped simultaneou
from slightly different heights. Since the frequency of th
bouncing motion depends on the height@Eq. ~20!#, eventu-
ally all these imaginary particles get out of phase. Spec
cally, as Eq.~20! implies v5p/Az0, dv5pdz0/2z0

3/2, and
setting dz0;s one finds the different parts of the wav
packet should get out of phase after a timeTc of the order of
dvTc;p, or

Tc;
2z0

3/2

s
5

T3

4s
. ~41!

Indeed, the collapse time seen in Fig. 2, as well as th
observed in other numerical calculations, agrees very w
with the estimate~41!. This is the time when the lower hal
of the wave packet has gotten approximately half a cy
ahead of the upper half. Clearly, this also agrees with
quantum-mechanically derived estimate in~40! above.

Unlike the collapse, the revival of the oscillations, whic
is also apparent in Fig. 2, has no simple quasiclassical ex
nation, and is best seen as a purely quantum phenome
ultimately due to the discreteness of the energy levels of
bouncing particle. The main point is thatn andm in Eq. ~39!
above are integers, which means that at some special tit
such that 4pt/T451 the last term in~39! will be a multiple
of ip for all values ofn andm, and no dephasing will result
~Why it suffices to have a multiple ofp, and not 2p, will be
explained below.!

Consider then the ‘‘revival time’’Tr defined by

Tr5
T4

4p
5

4z0
2

p
~42!

and a time nearby,t5t r1dt. The value of the last term in
~39! is at that time

i
4p2t

T4 @~n2n0!22~m2n0!2#

5 ip~n2m!~n1m22n0!

1 i
4p2dt

T4 ~n2m!~n1m22n0!. ~43!

The size of the second term in this expression can be e
mated, as before, to be, for the slowest nonvanishing
quency (n5m61), of the order ofdt/Tc , whereTc is the
collapse time. Fordt!Tc , it could be neglected. Thus, for
range of times of the order ofTc around the revival timeTr ,
the second term in~39! will be, to a fair approximation, an
integer multiple of ip, of the form ip(n2m)(n1m
22n0).

The factor (n2m)(n1m22n0) has the same parity~odd
or even! asn2m itself. Whenn2m is odd, an odd multiple
of p can be pulled out of the first term in~39! by shifting the
time t by half a period,T/2. Thus around the revival time on
could approximate~39! by

e

780Julio Gea-Banacloche
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2 i ~zn2zm!t.2 i
2pt

T
~n2m!

1 i
4p2t

T4 @~n2n0!22~m2n0!2#

.2 i
2p~ t2T/2!

T
~n2m!

1 ip~n2m!~n1m1122n0! ~44!

and the last term in this expression is always an even m
tiple of ip. Hence, around the revival time one sees
quantum particle bouncing again, onlyhalf a period out of
phasewith the classical motion.

For the example in Fig. 2~a!, for instance, the period is
T56.32, and the revival time isTr5127 ~note that, unlike
the collapse time, the revival time is independent of
width s of the initial wave packet, although the overal dur
tion and fidelity of the revival does depend ons!. The peak
of the oscillation aroundt5129.3, near the revival maxi
mum, corresponds to 129.3/6.32.20.5 periods; that is, it
would have been a minimum of the classical motion.@This is
also true for Fig. 2~b!, provided one uses the more near
correct value 2Azn0

, rather than 2Az0, for the period of the
quantum motion, as it makes a difference when calcula
the dephasing over the very long times shown in the figu
cf. Eq. ~27!.#

The dephasing is also clearly seen in the animat
available at http://www.uark.edu/misc/julio/bouncing–ball/
bouncing–ball.html. Figures 3 and 4 show several fram
from this animation, where the quantum probability distrib
tion is plotted along the horizontal axis, and a circle on
right represents the position of the classical particle. T
number at the top is the number of the classical boun
Figure 3 shows the first bounce: 3~a! is the initial state, 3~b!
is the particle just reaching the floor~note the interference, in
the quantum-mechanical wave function, between the par
the wave packet going down and the part being reflected
see Ref. 14 for a recent, pedagogical discussion of this
of interference!, and 3~c! is half a period later, the top of th
first bounce.

Fig. 3. The first bounce for a wave packet withz0510, s52 @as in Fig.
2~a!#. The closed circle represents the position of the corresponding clas
particle. The quantum probability distributionP(z)5uCu2 is plotted along
the horizontal axis. Lengths are in units ofl g . The number at the top of eac
frame keeps track of the number of classical bounces up to that time,
changes immediately after the classical particle hits the floor.
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Figure 4 corresponds to the revival region. Figure 4~a!
shows the classical particle just rising from the floor after
bounces; thep radians dephasing with the quantum partic
is evident. Figure 4~b! shows it at the top of the 20th bounc
at the timet520.5T calculated earlier; and Fig. 4~c! again at
the bottom. The figures show that the revival of the init
wave function isn’t quite perfect, but for these parameters~a
fairly narrow initial wave packet! it is actually pretty good.

The behavior of the wave function in the collapse region
harder to visualize from still frames, and generally harder
interpret. A naive interpretation of the expectation val
plots shown in Fig. 2 might suggest that the particle is j
hovering in mid-air! In fact, at times, as in Fig. 5~a!, the
wave packet appears to be fairly cleanly split into two piec
moving in opposite directions. They interfere constructive
aroundz52z0/3 @Fig. 5~b!#. At other times the wave packe
is more uniformly spread out and resembles more a stan
wave @Fig. 5~c!#.

V. CONCLUSIONS

The dynamics of the quantum bouncing ball are an int
esting problem which shows, once more, that the class
limit of a quantum mechanical system is not necessa
trivial. The collapse of the oscillations admits of a simp
quasiclassical explanation, whereas the revivals are pu
quantum, a consequence of the discrete energy spectru
the problem. In the classical limit, asz0˜`, both the col-
lapse and revival times go to infinity, but they do so ov
different scales~the revival goes away much faster!. Also,

al

nd

Fig. 4. Same as Fig. 2, but around the revival timet5129.3 ~20 classical
bounces!.

Fig. 5. Same as Fig. 2, but around the middle of the collapse regiot
;63– 70).
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although the quantum problem is intrinsically aperiodic, t
correspondence between the Fourier coefficients of the c
sical motion and the matrix elements of the position opera
@Eqs.~33! and ~34!# is remarkable and instructive.

The revivals can also be interpreted as an interference
nomenon between the various parts of the wave pa
which have bounced a different number of times. This s
gests that they could be sensitive to the presence of
phase-shifting elements along the path of the bouncing b
or to phase shifts experienced by the wave packet upon
flection on the surface. This is an interesting possibi
which may be worth looking into.

The main problem in observing the effects described h
experimentally are the very low energies required. The ato
would have to be very cold, on the order of tens
nanokelvins. While low, these temperatures are certainly
unreachable: Raman cooling of Cs to below 3 nK was
ready demonstrated three years ago.15 What may be harder is
to cool and drop the atoms from a very small height~only a
few microns! above the mirror. This is necessary if on
wants to be able to observe a full collapse and revival, si
the revival time scales asT4, which means that the numbe
of bounces needed to observe a full revival goes asT3

;z0
3/2, and a number of atoms will inevitably be lost in ea

bounce. A possible way to increase the effective grav
tional lengthl g and relax this constraint somewhat might
to place the atoms in a strong electric or magnetic field t
would provide a vertical constant force to partially compe
sate for gravity, in effect lowering the value ofg.

A note on the numerical calculations: For many of t
results reported here, and, in particular, to generate the
mation, the commercial packageMATHEMATICA was used on
a personal computer~thanks are due to T. D. Snyder for he
in making a cross-platform, browser-viewable version of
animation!. For other calculations, the Airy function wa
computed using the numerical routines given in Ref. 16.

APPENDIX: APPROXIMATE EXPRESSION FOR
THE NORMALIZATION FACTORS

Since all the eigenfunctions for this problem are pieces
the function Ai(z), the difference between two consecuti
normalization factors~13! is given by

1

Nn11
2 2

1

Nn
2 5E

2zn11

2zn
Ai2~z!dz. ~A1!

For sufficiently largen, one may use the asymptotic form

Ai ~z!.
1

p1/2

1

z1/4cosS 2

3
z3/22

p

4 D ~A2!

to evaluate the right-hand side of~A1! approximately. With
the change of variableu5(2/3)z3/2, and using the approxi
mation ~12! for the zeroszn @which is consistent with the
form ~A2!#, one obtains

1

N n11
2 2

1

N n
2 .

1

p E
~n21/4!p

~n13/4!p 1

~3u/2!2/3cos2S u2
p

4 Ddu

.
1

p F3p

2 S n2
1

4D G22/3E
2p/2

p/2

cos2 u du

5
1

2p F3p

2 S n2
1

4D G22/3

. ~A3!
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One can then say that for largen,

d

dn

1

N n
2 .

1

2p F3p

2 S n2
1

4D G22/3

~A4!

and integrate this formally with respect ton to get something
like

1

N n
2 .

1

p F3p

2 S n2
1

4D G1/3

1C.
Azn

n
1C ~A5!

for some constantC. As it happens, numerical evaluation o
~13! shows that the expression~A5! is basically accurate
with C a number smaller than 0.004~for n51! and decreas-
ing steadily asn increases.
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