A quantum bouncing ball
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The dynamics of a quantum wave packet bouncing on a hard surface under the influence of gravity
are studied. This is a system that might be realized experimentally with cold atoms dropped onto an
“atomic mirror.” The classical limit is discussed and interesting departures from classical behavior
are pointed out and explained. @99 American Association of Physics Teachers.

[. INTRODUCTION limits, and the use of a quasiclassical perspective allows one
B to derive some very useful results for the quantum problem

The solution of Schrdinger's equation for a particle as well.
bouncing on a perfectly reflecting surface under the influence The results reported here run the gamut from exact ana-

of gravity, that is, of a particle in the potential lytical expressions, to approximate ones, to fully numerical
B calculations. Impossible to present here, but available to any-
V(z)=mgz z>0 body interested, is a movie that was generated showing the

time evolution of the wave packet for some of the parameters
discussed in the text. It can be downloaded from the follow-

is an intermediate-difficulty problerfexactly solvable using "9 URL: http:/www.uark.edu/misc/julio/bouncingall
special functions which is discussed in a number of Pouncingball.html.

textbooks? Sakuraf® for instance, uses it as an example of

a system where the Wentzel-Kramens—Brillouin approxima-

tion gives an excellent approximation to the spectrum. Thél- SOLUTION OF THE TIME-INDEPENDENT

problem has also been treated in a number of pedagogicIROBLEM—SCALING

articles over the years in the pages of the American Journal
of Physics: see, for instance, Refs. 3-5. It was given th%1

=00, z<0, (1)

The time-dependent Schiimge equation for the potential

name “The quantum bouncer” by GibBswho also dis- ) reads
cussed a two-dimensional extension, to a particle rolling k2 92 oV
down an inclined plane(A more complicated kind of ~om 52 Tz =it —-, (2

“quantum bouncer” is obtained when the mirror at the bot-
tom is allowed to move; such a system may exhibit chaos irwith the boundary condition
the classical limit, as discussed in Ref) 6. W(01)=0 3)
In recent years, the development of techniques to cool and ’
manipulate atoms with high precision has made the simplatz=0. The solution will proceed via the usual expansion in
quantum bouncer experimentally realizabl€he reflecting  the basis of energy eigenfunctions:

surface is provided by a piece of glass “coated” with the o
evanescent field of a laser undergoing total internal reflection — —iEnt/h
on the other sid&(a magnetic mirror can also be ugédrhe Y(zY) nZl Cne ¥n(2), (4

atoms are dropped onto this surface from a small height, - . _—
typically a few millimeters. A number of interesting preci- Where the coefficient, are determined from the initial
sion measurements can be carried out in this way, includingondition ¥ (z,0), and the eigenfunctions,(z) are the so-

a determination of the van der Waals force between the atonytions of

and the glas’ Although for most of these experiments the #2 d2y,
atoms energies are such that they behave essentially as clas- — >m E;*l— mgzy,=E,,, (5)

sical particles, there is at least one experiment in which the

(quantum interference between parts of the wave packet rewith the boundary condition

flected at different times was observ&dThis may be re-

garded as a sort of first step toward a “matter wave cavity.” #¥n(0)=0. (6)
This paper presents a study of the dynamics of a bouncing To better exhibit the solution of5), it is convenient to

wave packet, initially Gaussian in shape, in the poterifial  rescale the position and energy variables as follows: Intro-

Apart from its relevance to possible future experiments ofgucing the characteristic “gravitational lengtth; defined as
the type described above, the problem is very interesting

X . . /
from a pedagogical standpoint, as it showcases some of the | _ n? |\ @
differences between classical and quantum dynamics. The "9 |\2gm?)
classical motion is periodi¢since no energy dissipation is . .
assumed to take plagerepeating itself indefinitely, but the €12 =2/lq andE’=E/(mgly), or
guantum motion is aperiodic, and exhibits interesting col- 2 \13
lapses and revivals of the oscillations, similar to those ob- E’'=E m) ()

served in many other quantum systems. In spite of this, there
is a clear correspondence between the classical and quantumthese variables, Eq4) becomes
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The solution to Eq(9) is given by an Airy function, Ai or [N
Bi, of the variablez’' — E/,.*? Since the function Bi goes to 7t NN
infinity as its argument grows, it is not acceptable for this Vo N
problem, wherez is not bounded from above. The boundary 6f Vo '\
condition (6) then means thaE, must be chosen so that \\ )
Ai(—E/)=0. If one denotes the zeros of the Airy function 5t NI
by —z,, with n=1,2,..., andz,>0, one finds the solutions z /./'/’«\
at /,/' \\
Er,1:Zn’ (1039 ( ) \\
(2 =N, Ai(Z' —z2,), (10b 3 i S //)
: T
where,, is an appropriate normalization factor. R By
In what follows the primes on the energy and position ///”';-,_.__/__:/
variables will be dropped, and it will be understood that they 1} < - ”
are measured in the units introduced in E¢®. and (8) <,
above. It is also convenient to scale the time variable appear- 0 o —
ing in Egs. (2) and (3). The natural time scale id, -04 -00 0.4 0.8
=hl/(mgly), that is, Y(2)
24 \ 13 Fig. 1. The first four normalized eigenfunctiogig(z) of a particle in the
9= (W) , (ll) potential (1) are plotted on the horizontal axis. Solid Ii_nn::l (ground
statg. Dashed linen=2. Dotted line:n=3. Dash-dotted lin&=4.

and from now on the time will be understood to be really

t'=t/t,.
g
For reference, for a Cs atom one finds=0.226um, a For the normalization factot&/,, | have not been able to

. B _ 712 .
characteristic energingly=3.06< 10" ““eV (corresponding  finq even approximate expressions in the literature. Clearly,
to a temperature of aboutd10 8K), and a characteristic \yhat is needed is

time ty=0.22 ms, whereas for the much lighter Na atom one

findsly=0.727um, mgly=1.7x 10" '?eV (a temperature of A=

about 2< 10 8K), and a characteristic timg=0.39 ms. "
It is somewhat remarkable that all the eigenfunctions forF

this problem are “pieces” of the same function, the Airy using the asymptotic expansion of the Airy function. A little

function Ai, shifted in each case so that it has a zera@ at y asswork then yields the following, surprisingly accurate
=0, and with thez< 0 part truncated. The first fegmormal- (for largen) expression:

ized eigenfunctions are plotted in Fig. 1, along a horizontal

-1/2

fmAi %(z—1z,)dz (13
0

or largen, this expression may be manipulated somewhat

axis. Like all stationary states, they have the characteristics |\ 272 |6 14
of standing waves. Note how the wavelength of the oscilla- n \/?n ~|3(n—1/4) (14)

tions decreases toward the bottom, in accordance with the de
Broglie relationship. =h/mv, since the speed of the classi- Forn=5 the difference between the right-hand side$1&)

cal particle is greater there. The higher-order wave functiongnd (14) is only 0.0002, or 0.02%, and it improves as
correspond to the particle being “dropped” from progres-increases. The details of the “derivation” of E¢l4) are
sively greater heights. provided in the Appendix, in case they might inspire some-

Exact analytical expressions for the zemsand the nor-  body to find a better approximation.
malization factorsV,, are not available, but good approxima-  Last, for the full time-dependent soluti¢f) one needs the
tions can be given, especially for largéwhich corresponds expansion coefficient€,,, which depend on the initial con-
to the “quasiclassical” case to be discussed in this paper dition. For this paper | will assume an initial condition of the
For the zeros, one has form of a Gaussian wave packet with a widttand localized
at a heightzy above the “floor,” with zero initial momen-

3_7T<n_ E) (12) tum. That is, the particle is “dropped” from a height and

2 4 bounces on thereafter. As long @<z, the following form

These are also the angular frequencies of the time—dependevr\ﬂII be, to a good approximation, normalized to unity in the

problem(4) when the scaled tim¥ is used. A very impor- 2=0 to infinity range:
tant difference with the simple harmonic oscillator is that

these frequencies are not evenly spaced; that is, the differ- ¥(z,0)=
encez, . ,—z, depends om. This means that the quantum

motion is not, in general, periodic, even though the classicalFor such a wave function the spread in position= /2, so
motion is. This will be explored in much greater detail in the o can be thought of as the “full width” of the wave packet.
following sections. The coefficientC, are then given by

2/3
Zy=

2 1/4 _
—(z—z9)lo
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1/4 2
e —(z—z )2/(r2 1 t
C,=N, g . Ai(z—z,e 0o dz, (16) z(t)=4z, 2-\Fn]
Approximate expressions for th@, can be calculated from T B
(16) by using the following representation of the Airy func- nT<t-s<(m+LT, n=01... (21
tion:

This periodic motion can be expanded in a Fourier series,
dt. 17 "
Z(t): E Ape—prit/T, (22)
p:—oo

|(z)—; . co 3 z
Substituting(17) in (16) and carrying out the integration with

respect taz (extending the lower limit to—«) yields
with coefficients

C N( 2 )1/40 et t3+( t|dt
n=N, m \/_;Jo e co § Zo—Z, . 1JT o 220
A== z(t)e 2PUTdt=(—1)P , p#0
19) T, (t) (=1 p2m? p
Now, if o is sufficiently large, meaning that the wave packet =27,, p=0. (23

is initially a few timesl 4 in width, one can simplify Eq(18)
by expanding the® term, since the exponential will ensure This Fourier series expansion actually applies, with small
that t is never too large. The resulting integrals can all bemodifications, to all the possible initial conditions for this

evaluated exactly. Keeping only terms througtyields problem, including the cases when the particle is initially
5 |\ U 20-7 8 (zg—2.)3 thrown upwards or downwards, provideg is taken to be
Cn:Nn(_z) (1_4 0 My not the initial, but the maximum height; when scaled gy
o o 3 o andT, the trajectories corresponding to different initial con-
—(2g—2,)2I ditions are, in fact, all identical except for a shift in the origin
Xe o (19 of time, which can be accounted for by shifting the phases of
This is accurate to about 1% fag=10, o=3, and to about the coefficientsA . _
10% forzy=10, o= 2. For sufficiently large values ef and The result(21) for the classical problem may be compared

2, the whole term in large parentheses can be replaced by {0 the corresponding time-dependent expectation value of the
The main usefulness of Eq19) is that, in conjunction ~POSition operatoe for the quantum problem, calculated from
with Eq. (12), it allows one to estimate how many wave the.wave function(4). Using (109 one finds, in the scaled
functions need to be included in an approximate evaluatioif@"ables,
of the infinite sum(4), for given initial conditions. This is %
discussed further in the subsequent sections. _ * —i(zy— 2zt
Although the case where< 1 (that is, Az<1) will not be (2(0)= 2, CoCiimizinje ! 9
considered here, a few words about it may be in order. Since
|4 is the approximate width of the ground state, it is also thevhere the matrix elementsn|z|n) are given by
length scale for which the produ&tzAp is close to the .
minimum va!ue allowed by the unc_ertainty principle for this (m|Z|n>=NnNmf zAi(z—2z,)Ai(z—z,)dz. (25)
problem. This means that decreasitg beyond this value 0
will lead to a wave packet with a large momentum spread. ] o )
For such a wave packet it is harder to get an intuitive feeling TO see how, and in what limit, the classical res@g)
for what the quasiclassical limit should look like; in particu- follows from (24), consider first the energy differences
lar, if the momentum spread is large, the notion that theZn—Zyn appearing in(24). One expects the classical limit to
particle is being “dropped” with near zero momentum be- hold when the energies are large, and hence whandm
comes untenable. For this reason, only wave packets withre large. Specifically, for a givery one expects, from Eq.
o>1 will be considered here. (19), that the values of,,z,, contributing to the sun{24)
will all be within a range of a few times from z,. One can
define a numben, as the order of the zero of the Airy
function Ai which is closest to—z,. By the approximate

Ill. THE CLASSICAL PROBLEM AND THE . .
expression(12), one finds

QUASICLASSICAL LIMIT

If the scalings introduced in Sec. Il are applied to the Np~ ——+ —, (26)
classical equation of motiod?z/dt>= —g, the result is, in 3w 4

effect, equivalent to setting the acceleration of grawty

equal to 2. The classical motion of a particle dropped from &'here itis understood thag is, in fact, the integer closest to
height z, is simply characterized by a perict equal to the real number on the right-hand side(26). If this number

twice the time needed to reach the ground, whichgfer2 is is large, the difference between it ang will be negligible,
relatively speaking.

simpl
i One can then expand the frequendggiven by Eq.(12)
T=2Vz, (20 aroundng: that is, setz,=z, (n-n, and expand inn
Then one has —ng. The three lowest-order terms are
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2 with the classical coefficient4, given by Eq.(23) above.

a
Zp=2, + ——(n—ng)— Ef(n—no)2 It may be worth.pointing out that E¢33) is a very non-
\Zn, ny trivial result, and, in fact, | was only able to guess at it by
5 considering the classical limit, as indicated above. Using
T

™ Egs.(25) and(13) to recast it in terms of the Airy function,
:ZO+\/?O(n_nO)_4_Z(2)(n_nO)2' (27) it?eads y

The range of values of, An, appearing in(27) can be fmzAi(z—zn)Ai(z—zm)dz
estimated as follows. From the linear term(Rv), one can 0
see thathn~ \zyAz,. From Eq.(19), the range of,, Az,,

—1)h—m o0 o 12
can be expected to be of the order of a few timvearound :2% f Aiz(z—zn)dzf Ai%(z—z,)dz|
Zg. Thus one expects (Zn— 12z 0 0

An~oz,. (28) n+m, (359

With this, the order of magnitude of the three terms on the (= 2 z
right-hand side of27) is seen to be . ZAIN(z=2,)dz= 32, . Ai«(z-z,)dz, (35b)
2
25,0, 7 (29 where —z, and —z,, are any of the zeros of the function
2y Ai(z). | have not been able to find either of these identities
The condition for the quadratic term to be negligible versudn the literature, and | have not been able to prove them
the linear one is, therefore, analytically, either, but numerical calculations show them to
be “exact” that is, true to an arbitrary precision, for arbitrary
0<2p; (30 values ofn andm.

this is, a well-localized wave packet, which is just what one, T1€ c!als(jsical limit now follows fairly easily. Use ¢84)
would expect for the classical limit to hold. Note also that!n (32) yields

(28) and (26) imply that, when the conditiof30) holds, the o 0
range of important values of An, would be much smaller (z(t)= > > Cins+pChy | Ape™2PmT,
thann, itself. p=- \ m=max1.1-p)

Assuming that(30) holds and neglecting the quadratic (36)

term in (27) for the moment(its effects will be discussed at For the particular initial condition considered here, one may
great length in Sec. IV one can see that the frequency dif- use Eq.(19) for the coefficientsCy,, with the term in the
ferencesz,— z,,, appearing in(24) are approximately given |arge parentheses replaced by 1 in the classical limit. Also,

by one may use the linear term i27) to expressz,—z, in
- o terms ofn—ngy, and note that, since the resulting Gaussian

Zy—Zp=—(N—m)= —(n—m), (3)  functions ofm are sharply peaked aroung andny— p with
\/Z—o T ny>1, there is no harm in formally extending the sum range

where T is the classical period, given by E@0). This © — from below. Using also the asymptotic for(h4) of
shows that, indeed, in this limit the quantum expectatiorin® coefficients\Vy,, with z,=zq, finally yields
value (24) has the same periodic time dependence as the =

classical positiori22). The sum in(24) can be rearranged, in > Cm+pCh
this limit, to read m=max1,1-p)
_ - - * — 2_77 i e 772[(m7no)2+(m+pfn0)2]/02zo
(z(t))—p;w m:m% - Cm+pCi(mlzlm+p) \/ 722y m™

X e—2p7rit/T_ (32) ~e~ 71-2p2/20220_ (37)

One would expect that, in the appropriate quasiclassical limitn the last step, the sum overhas been approximated by an
(zo>0>1), the term in parentheses [82) would reduce to  integral. The full expression is therefore

the appropriateA, coefficient of Eq.(22), and it seemsa o
priori that there are a number of ways in which this could be  (7(t))= > e 7P¥2r*20p g 2pmitIT (38)
accomplished. p=-— P

What | have foundnumerically for this problem is that
the matrix elemen{m|z|m+p) is, in fact, given by a very
simple result strongly reminiscent of the classical re€8}:

When compared t§22) one can see that the high temporal
frequencieglarge p) in the quantum expectation value may
be suppressed, because of averaging over the wave packet's

2 width. In any event, the classical res(#?) is clearly recov-
(m|z|m+ p)=(—1)pﬁ, p#0 ered in the limit of largez,.
m fmep For values ofz, that are not too large, however, the quan-
=2z, p=0. (33 tum result may look substantially different from the classical

one as a function of time, as Fig. 2 illustrates for the cases
zo=10, 0=2(a) and z,=20, o=3. (b) The particle’s first
(mlzlm+p)=A,, (34  few bounces are clearly well defined, but after a while the

Note how, in the limit wher(31) holds, this reduces to
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o [using(28) for an estimate ofAn]. The collapse time can be
] estimated then from the time it takes this term to be of the

y order ofir.
@ ¢f ' It is also possible, and instructive, to understand the col-
l 1 ; lapse through purely quasiclassical arguments. For this,
4 @ { imagine that the wave packet with a widthrepresents an
| M ensemble of particles that are all dropped simultaneously
0 20 40 60 80 100 120 140 160 180 from slightly different heights. Since the frequency of the
! bouncing motion depends on the heigkg. (20)], eventu-

ally all these imaginary particles get out of phase. Specifi-
cally, as Eq.(20) implies w=7/\zy, Sw=m620/223%, and
setting 6zp~ o one finds the different parts of the wave

packet should get out of phase after a timeof the order of

SwT~, or
N N s . N . 223/2 T3
0 100 200 300 400 500 600 ~—— =, (42)
o 4o

!

Fig. 2. Expectation value of the position as a function of time for a Wavelndeed’ th? coIIapse t'me_ seen in F'.g' 2, as well as those
packet with(a) z,=10, o-=2, and(b) zy=20, o=3. Time is in units oft,, ot_Jserved in other nume_rlc_al calc_ulatlons, agrees very well
length is in units ofl. with the estimatg41). This is the time when the lower half

of the wave packet has gotten approximately half a cycle
ahead of the upper half. Clearly, this also agrees with the
guantum-mechanically derived estimate(49) above.

Unlike the collapse, the revival of the oscillations, which
is also apparent in Fig. 2, has no simple quasiclassical expla-
nation, and is best seen as a purely quantum phenomenon,
ultimately due to the discreteness of the energy levels of the
bouncing particle. The main point is thaandmin Eq. (39)

bounces cease and the expectation value @mains very
close to the time average of the classical trajectozy/2
[Eq. (23)]. Further, after yet some more time the oscillations
revive and the particle begins to bounce again.

This collapse and revival of classically periodic motion is

a well-known feature of many quantum systefhdt is . , -
clearly not predicted by38); in fact, it can be explained, at above are integers, which means that at some specialttime

4_ . . .
least in its most salient features, by a careful study of thé’"uf:h that 4rt/T°=1 the last term in39) wil b_e a mulnple
quadratic term in Eq(27), which was neglected in going of i for aII.vaIues ofnandm, a_nd no dephasing W|II_ result.
from (24) to (32). This is discussed in detail in Sec. IV. (Why it suffices to have a multiple of, and not Zr, will be

explained below.
Consider then the “revival time'T, defined by
IV. QUANTUM DYNAMICS: COLLAPSES AND . ’
REVIVALS LS
e 42
When the quadratic term i{27) is kept in expressiof24)
for the quantum expectation value, the argument of the exand a time nearbyt=t,+ st. The value of the last term in

ponential becomes (39) is at that time
(20 2) =~ 2 (=) mt
—i(zy=2Zy) =—i—=—(n—m .
nom T '?[(n—no)z—(m—no)z]
4wt 2 2 —i — -2
+i—=[(n=ng)*~ (m=ng)?]. (39 =im(n—=m)(n+m—2n)
2
Clearly, for sufficiently large times the last term (@9) will +i 774 (n—m)(n+m—2ny). (43
not be negligible, and it may cause the various Fourier com- T

ponents in Eq(24) to drift out of phase and cancel each
other out. The only surviving terms will be those with
=m, i.e., the ones giving thé&lassical time average. This
leads to the collapse of the oscillations seen in Fig. 2.

The size of the second term in this expression can be esti-
mated, as before, to be, for the slowest nonvanishing fre-
guency oi=m=1), of the order ofét/T., whereT, is the

The size of the second term (89) depends om—m, that collapse time. Fobt<T,, it could be neglected. Thus, for a

is, on the Fourier component, or oscillation frequency, one i{g‘ange of t|(rjn?s of .tggg)ord.irbdfc ?rourf]d_ the reV|\{aI t'tmé-r ’
looking at. Higher frequencies dephase faster. The collaps; € secon l(_erlm : oy Wi fe,ho af air approximation, an
that is most readily apparent in Fig. 2 is that of the oscilla-Nt€ger multiple of iar, of the form im(n—m)(n+m

tions at the slowest nonvanishing frequency;/Z, corre- —2no). ]
sponding ton=m= 1. For this case, the second term(89) The factor i—m)(n+m—2no) has the same paritpdd
reads or even) asn—m itself. Whenn—m is odd, an odd multiple

4t 82t of 7r can be pulled out of the first term {89) by shifting the
ar o g I 1 1 i

. " _ . a2 timet by half a periodT/2. Thus around the revival time one
- [F2(m=no) + 1]~ == An~idm"mzt (40 )y approximaté39) by
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Fig. 4. Same as Fig. 2, but around the revival titae129.3 (20 classical
Fig. 3. The first bounce for a wave packet with=10, o0=2 [as in Fig. bounces
2(a)]. The closed circle represents the position of the corresponding classical
particle. The quantum probability distributid®(z)=|¥|? is plotted along

the horizontal axis. Lengths are in unitslgf The number at the top of each . . - .
frame keeps track of the number of classical bounces up to that time, and Figure 4 CorreSpondS to the revival region. FIQUI(a)4

changes immediately after the classical particle hits the floor. Shows the classicgl particle jus_t I’iSiI’]g from the floor afte'_’ 20
bounces; ther radians dephasing with the quantum particle
is evident. Figure &) shows it at the top of the 20th bounce,
at the timet=20.5T calculated earlier; and Fig(€) again at

2t the bottom. The figures show that the revival of the initial
—i(Zp—zp)t=—I T(n— m) wave function isn’'t quite perfect, but for these parametars

fairly narrow initial wave packetit is actually pretty good.

Tt The behavior of the wave function in the collapse region is

+i ?[(n— No)?—(m—ng)?] harder to visualize from still frames, and generally harder to

interpret. A naive interpretation of the expectation value

2mw(t—T/2) plots shown in Fig. 2 might suggest that the particle is just
=i 0O-m hovering in mid-air! In fact, at times, as in Fig(a, the

wave packet appears to be fairly cleanly split into two pieces,

+im(n—m)(n+m+1—2ng) (44) moving in opposite directions. They interfere constructively

aroundz=2z,/3 [Fig. 5(b)]. At other times the wave packet

and the last term in this expression is always an even muks more uniformly spread out and resembles more a standing
tiple of i7. Hence, around the revival time one sees thewave[Fig. 5c)].

guantum particle bouncing again, orthalf a period out of
phasewith the classical motion.
For the example in Fig. (@), for instance, the period is V. CONCLUSIONS

T=6.32, and the revival time i$, =127 (note that, unlike The dynamics of the quantum bouncing ball are an inter-
the collapse time, the revival time is independent of theesting problem which shows, once more, that the classical
width o of the initial wave packet, although the overal dura-|imit of a quantum mechanical system is not necessarily
tion and fidelity of the revival does depend o The peak trivial. The collapse of the oscillations admits of a simple
of the oscillation around=129.3, near the revival maxi- quasiclassical explanation, whereas the revivals are purely
mum, corresponds to 129.3/6:320.5 periods; that is, it quantum, a consequence of the discrete energy spectrum of
would have been a minimum of the classical motidrhisis  the problem. In the classical limit, @&— <, both the col-

also true for Fig. ), provided one uses the more nearly lapse and revival times go to infinity, but they do so over
correct value Zn,, rather than 2/z,, for the period of the different scalegthe revival goes away much fasteAlso,

guantum motion, as it makes a difference when calculating

the dephasing over the very long times shown in the figure;

cf. Eq.(27).] 10 10 it
The dephasing is also clearly seen in the animation 14 @ 14 ) 14 ©

available at http://www.uark.edu/misc/julio/bouncirgall/ 12 12 12

bouncing ball.html. Figures 3 and 4 show several frames 10 ° IOS 10

from this animation, where the quantum probability distribu- e

tion is plotted along the horizontal axis, and a circle on the £

right represents the position of the classical particle. The

number at the top is the number of the classical bounce.

Figure 3 shows the first bounce(@Bis the initial state, &)

is the particle just reaching the flogrote the interference, in

the quantum-mechanical wave function, between the part of

the wave packet going down and the part being reflected up; P(2)

see Ref. 14 for a recent, pedagogical discussion of this type

Qf interferencg and 3c) is half a period later, the top of the Fig. 5. Same as Fig. 2, but around the middle of the collapse region (
first bounce. ~63-70).

P A O o
o B O
N OB o ®
VAVAY,

\ \\/\/"\j\/
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although the quantum problem is intrinsically aperiodic, theOne can then say that for large

correspondence between the Fourier coefficients of the clas-

sical motion and the matrix elements of the position operator _3

[Egs.(33) and(34)] is remarkable and instructive. i 1 2i[3_77( _ E” (Ad)
The revivals can also be interpreted as an interference phe- dn A2~ 27| 2 4

nomenon between the various parts of the wave packet

which have bounced a different number of times. This sug- . , , )

gests that they could be sensitive to the presence of ar@“d integrate this formally with respectiido get something

phase-shifting elements along the path of the bouncing ball'k€

or to phase shifts experienced by the wave packet upon re-

flection on the surface. This is an interesting possibility 1 1 [377( 1

1/3 \/—

Zn
+C:T+C (AS)

which may be worth looking into. ==
The main problem in observing the effects described here Ny 7

experimentally are the very low energies required. The atoms

would hz_ive to .be very cold, on the order of tens Offor some constant. As it happens, numerical evaluation of

nanokelvins. While low, these temperatures are certainly no 3 sh that th i#5) is basicall ¢

unreachable: Raman cooling of Cs to below 3 nK was al-": shows that the express 'S basically accurate,

ready demonstrated three years ay@hat may be harder is with C a number smaller than 0.0@for n=1) and decreas-

to cool and drop the atoms from a very small heiggnily a "9 Steadily as increases.

few microng above the mirror. This is necessary if one

wants to be able to observe a full collapse and revival, since

the revival time scales a&*, which means that the number

of bounces needed to observe a full revival goesTas L ) )
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