Fermi's Two Golden Rules

Many authors have pointed out that Fermi's Golden Rules were first derived by Dirac and should
therefore be attributed to Dirac.

Fermi knew this, of course. He wasn't taking credit for them, he was simply pointing out how
important they are to the practice of quantum mechanics. In his only published reference to
them---in the book on Nuclear Physics that his students compiled based on Fermi's course at the
University of Chicago from January to June 1949---Fermi refers to Schiff's Quantum Mechanics
book for their derivation.

Fermi's point was simply that the two Golden Rules are the most important tools for a practicing
physicist. Fermi's impact as a teacher was legendary. His students honored him by referring to
the two rules as Fermi's Golden Rules.

Fermi called them Golden Rule #1 and Golden Rule #2.

Curiously, modern authors seem unaware that Fermi had two Golden Rules.
They seem only to know about his second Golden Rule.

Fermi's First Golden Rule is the result of applying second-order time-dependent perturbation
theory to quantum scattering and resonances.

Fermi's Second Golden Rule is the result of applying second-order time-dependent perturbation
theory to absorption.

Why did Fermi refer to the second-order result as the First Rule? | would like to think that it was
because Fermi considered scattering more important than absorption.

Quantum mechanics---Perturbation theory, first and second order (Fermi's golden rules).

George Nickel's "What Makes A Qualified Physicist?"
Editorial Note: Dr. Edward Teller, in teaching a quantum mechanics class at Berkeley in 1955 (in
which the editor was in attendance), mentioned that this was actually Fermi's golden rule 2. Since
Teller did not subscribe to golden rule 1, the class was not informed what rule 1 was.

From Modern Quantum Mechanics by J.J. Sakurai
Practicing the Golden Rule without a license is a common offense, although it tends to pale
compared to the misuse of the uncertainty relations.

Herbert Kroemer
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with some directional terms.

Unfortunately it is impossible %o find a solution for
Schrddinger's equation when the potential diverges faster
than 1/r< at the origin. Where 1/rd terms appear, the field must
be arbitrarily cut off in a finite ¥Olume, but +this makes it
impossible to formulate the problem in a relativistically invari-
ant way.

Because of these difficulties there are as yet no self-con-
sistent results from meson theory.

In order to point out another important difficulty in meson
theory, we must now discuss, exceedingly briefly, the quantum-
mechanical formulation of the problem. As an eXample we shall
take one of the"reactions" postulated on pP. 134. We have illus-

P+ + p, _
E, N, = P AT (A——>c_)

E -
EA_ WieT, P, rN, 8 T+ P —> N, (c_ - 8)

trated in the sketch at left that the intermediate state (Cc) is
energetically impossible for nucleons at rest, since it "costs"
145 Mev to create a = In quantum mechanical perturbation theory,
however, states with energies above or below that of the system
are important as intermediate, or virtual, states. We shall make
extensive use of intermediate states (for example in Ch. VIII to
derive the Breit-Wigner formula). Since the mean life of the
intermediate state is short (¥ o {/saE by the uncertainty prin-
ciple) there is no violation of conservation of energy.

The transition probability and energy perturbation can be
calculated with the help of perturbation theory (ie,, there is no
better way known). Since the direct matrix element coupling the
initial and final states is assured to be zero, we use "Golden
Rule #1" for the second order transition:

H‘ =5 Hec Hen
88 T T Ep-Ec

Now we can point out the difficulty. It turns out that only
the first non-vanishing matrix element (in this example the se-
cond-order one) is finite, but that the higher order elements are
sumg that are not negligible- 1in fact they diverge. The diver-
gences in the correspvonding terms in the electromagnetic case can
be removed relativistically by the recent advances in quantum
mechanies, but the way out of the difficulty has not been found
in meson theory.

Even if the divergences of the individual higher-order tran-
sitions could be removed there is another difficulty. Pertur-
bation theory applied to the electromagnetic case gives an expan-
slon of successive orders of the interaction Hamiltonian in
powers of (e2/fc) = 1/137. This parameter is quite small, so
that there is hope that the whole series will oconverge. ut
meson perturbation theory is an expansion in powers of (g</Hc).
This cannot be made smaller than about 1/5 if the theory is to
give the right magnitude of nuclear forces. There is consider-
ably less hope that the entire series will converge, even if
the individual terms can be made finite. -
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The explanation of this phenomenon i1s based on the assump-
tion that the transition A + a—B + b occurs through an inter-
medlate state C:

A+a-~—»C —» B+D

State C 18 the "Compound nucleus". The idea of the compound nuc-
leus 1s due to Bohr.¥*

The 1dea of how resonances in cross sectlon result from this
assumption can be obtained from the quantum mechantics of second
order transitions. The probabllity of transition, per unit time,
is given by "Golden Rule No., 1":##

2 [ energy
trans. prob./sec = 2T ):‘_fi_):‘ii x(densﬂg)' d) VIII.19
Ea-Ec states

provided there are no direct transitions from A to B. The cross
section is, from VIII.O,

|
Cive = 77 | {11
which becomes, analogously,

_ | )*cA)%BC
8T Rt Ea-E,

Near Ej = Eq, (resonance), ¥ is large. This formula gives infin-

ite 0 at the resonance energy, but the formula doed not take into
account the short lifetime of the compound state. A correct
formula 1is derived in section F.

The life-time of the compound state 1s long enough for the
nucleus C to "forget" how it wes formed,*¥*#and this results in a
basic simplification in the interpretation.

From the Helsenberg relation AtAE Z ¥, the lifetime of the
compound mucleus and the uncertainty [ 1n its energy are related
by

2
2
/’ab_ VIII.9'
W, Uy,

2 J%f

%Y

VIII.20

%

> K
V2 et VIII.21

The reasons why the compound nucleus has a lifetime greater
than zero are the followlng:

1) For charged particle decay, the bharrier factor (VIII.12)
reduces the rate of decay.

2) Decay by ¥ radiation is very slow compared to the times
in which the nucleus changes 1ts organization: the lifetime
against ¥ emission is ~ 10713 - 10”14 mec. The characteristic
time of the nucleus, 1.e., the time for a nucleon to cross the
nucleus, is ~{size)/(velocity) =~ 10-13/109, or about 10-22 sec.

3) A particularly lmportant reason is the tendency toward
equipartition of energy in the nucleus. The excess energy due to
the absorption of the bombarding particle is distributed among
all the nucleong. It is rare that there is a fluctuation in
which a large fraction of the excess energy is on one nucleon.

4) Selection rules forbid some modes of decay.

# Bohr, Nature 137 344 (1936)

##* Schiff, p. 196, eq. (29.20)

#%# Discussed in Pelerl's review article ln Reports on the Propress
in Physics VIII (1940), Phys. Soc. of London, 1941.
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state m and the final state k, the second need not. It is not difficult to
see that the second bracket term arises from the 1 in the numerator of
(29.9), which in turn comes from the initial condition at zero time. This
initial condition means that the perturbation is turned on suddenly; thus
the mathematical formulation suggests that the second-order transitions
that do not conserve energy are caused by the sudden turning on of the
perturbation. This is in agreement with Eqs. (29.8) and (29.17), which
show that a perturbation that has nonzero frequency Fourier components
can give up energy to or absorb energy from the system that it perturbs.
In the case we are now considering, these Fourier components are not
marked enough to produce in first order a transition probability that is
proportional to the time, but they do in second order.

In most practical problems, the sudden turning on of the perturbation
is introduced as a mathematical artifice that simplifies the calculation.
Actually, in such cases, the perturbation either is always present, or is
turned on very slowly, and we are concerned with transitions that con-
serve energy between initial and final states. Problems that can be
treated by the sudden approximation (see end of Sec. 31) are an excep-
tion; there energy need not be conserved. Throughout this section and
the next, we assume that only transitions that conserve the energy actu-
ally oceur (wim =2 0).

Suppose now that the perturbation produces no transitions in first
order; this means that there are no states n that conserve energy (wn» = 0)
for which the matrix element H’,, # 0. Since win =2 0, this means also
that H’, = 0 whenever wi, =~ 0. In this case, the second term in the
bracket of (29.19) is never appreciable. The calculation of w is carried
through as before, except that a@® replaces a’; thus (29.12) can be used
if the matrix element Hy}, is replaced by the second-order matrix element

;an:nn
S Jo— (29.20)

Effect of First-order Transitions. In the event that transitions can
occur in first order, but they are not to the state in which we are inter-
ested, we can proceed as follows. It is still true that the second term in
the bracket of (29.19) is negligible for states n that have energies appreci-
ably different from E; (or E,.), since then w, is large. However, there
may now be states n for which E,, E,., and E; are all close together and
neither H}, nor H',, is zero. The second bracket term cannot be ignored,
for without it the summation or integration over n would have a singu-
larity when w,, is zero. It is not difficult to see that for any value of
wem (zero or otherwise), the entire bracket is proportional to w,.. (which
is equal t0 wim — win) When w., is small; this cancels out the wus
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transition = number of transitions per unit time = w is given by
"Golden Rule No. 2": #

2dn )
W—_—_%]),(f ez VIII.2

where ¥ 1is the matrix element of the perturbation causing the
transition, and dn/dE = energy density of final states, counting
each degenerate state separately.

]2 may be the same for all energetically possible final
states; more often it depends on the state. (For 1nstance,;ﬂ12
may depend on the direction of emission.) Then /®|?2 in the form-
ula is a sultable average over the possible final states.#sk

dn/dE = o for a contimum of states. But in that case
'¥|—> 0, so that the expression |H|® dn/dE has the indeterminate

form O x co. This difficulty is removed by limiting space to a
box of volume JL . M| 1s then small but finite and dn/dE large
but finite. L drops out of the result. The number of final
states equals the number of states of the emitted particle. This
1s because a change in momentum of one particle compels a change
in momentum of the other, by conservation of linear and angular
momentum of the system.

It was shown in Chapter IV, p. 76 that the number of states
available to a free particle, "b", with momentum between p and

p + dp, confined to a box of volume Jf2, , 1is

2
dn = Mgi‘:%fb“& VIII.3

This must be multiplied by the multiplicity in the final statew®
caused by spln orientation, which is given by the factor (21b+1)x
(2Ig+1), where Iy, is the spin of the emitted particle and Ip the
spin of the nucleus. If b is a photon, (2Ip+1) i1s put equal to
two , ¥

dE = vy, dpp (true relativistically) VIII.4

where and vy, are the momentum and velocity in the center of
maggs frame of “reference of the final (B+b) state. Since "B" is
usually massive compared with "b", py and vy, can usually be meas-

ured in the laboratory frame. Combining thése two equations:

dn _ATRD (51 4)(2Tg4 VIII.5
de  Q@w® (21 v 2 7e)

From this and VIII.2 we get

e
No. transitions per unit time :#ﬁ_%;g—ﬂ’)"lz(nbﬂ)(z.[a* ‘) VIII.6
b

The following equation 1s essentially a definition of the cross-
section CSA—»B per A nucleus:

* Derived in Schiff, Quantum Mechanics, p. 193. ("dolden Rule No. 1"
1s on page 148 of this text).

#*#* This 1s discussed in greater detaill in section C, this chapter.
%*%% This point is dilscussed by Bethe and Placzek, Phys.Rev. 51

450, Appendix, p. 483. Multiplicity is caused by the two possible
independent polarizations.

3¢ See page 214 for more complete discussion.
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to note that conservation of energy, suitably modified by the uncertainty
principle, is an automatic consequence of the calculation and does not
have to be inserted as a separate assumption.

Transition Probability. In order to obtain an explicit expression
for w, it is convenient to assume that the system is contained in a large
cubical box of dimensions L that has periodic boundary conditions at its
walls (Sec. 10). Then the eigenfunctions u, form a discrete set and can
be normalized to unity in the volume 3. We now consider a particular
group of final states & that have nearly the same energy as the initial
state m and for which the matrix element Hj, of the perturbation is a
slowly varying function of k. We define a density of final states p(k)
such that p(k)dE) is the number of such states in the energy range dE;,
and assume that p(k) is also a slowly varying function of k.

The transition probability per unit time to one or another of this group
of states can then be written

- oY P OF = o [lapkaeiE @0

when the box L is large enough so that the summation over & can be
replaced by the integration over E. Since H}, and p(k) are slowly vary-
ing and most of the contribution to the integral comes from a narrow
range of energy about E;, = E,, they can be taken outside of the integral,
and (29.10) can be rewritten as

1t‘”H enl” / sin’ gomt ;- (29.11)

wkm

where the index k now refers to a typical one of the group of states having
about the energy E,,. Theintegralin (29.11)is / 27 2sin? xdx = i,
so that we finally obtain

w = 2T (k) [ H 2 (20.12)

which is independent of ¢, as expected.

There may be several different groups of final states &, all of which
have about the energy E, but for which the perturbation matrix ele-
ments H,, and the densities of states p(k), while nearly constant within a
group, differ from one group to another. Then (29.12) gives the transi-
tions per unit time to a particular group; similar expressions of the same
form give the rates of transition to other groups.

Scattering Cross Section. As a first application of Eq. (29.12), we
calculate w when the initial and final states are free-particle momentum
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PREFACE

This material is a reproduction, with some amplification, of
our notes on lectures in Physics 262-3: Nuclear Physics, given by
Enrico Fermi, Jan.-June 1949. The course covered a large number
of topics, both experimental and theoretical.

The lectures presupposed a familiarity with physics generally
acquired by a student who has completed one course in quantum
mechanics (this to include a discussion of the Paulil spin ope-
rators and of perturbation theory, both time-independent and time=-
dependent). We shall make some use of elementary concepts of
such topics as statistical mechanics and electrodynamics, but we
give references, and a reader could probably pick up the neces-
sary ideas as he goes alongy or he could omit a few sections.

Dr. Fermi has not read this materlal; he is not responsible
for errors. We have made some attempt to confine the classroom
presentation to the text proper, putting much of our amplifica-
tions in footnotes, appendices, and in the solutions to the prob-
lems. Most of the problems were assigned in class, but the solu-
tions are not due to Dr. Fermi.

The literature references in the text apply to the list on
page 239. At the end of the book there is also a summary of the

notation and a list of pertinent constants, values, and relation-
ships.

We would very much appreciate your calling errors to our
attention; we would like to hear any suggestions and comments
that you may have.

May we thank warmly all those who have helped us to prepare
these notes.

Jay Orear
A.H. Rosenfeld
R.A. Schluter

January, 1950

This second printing of these notes differs from the first in
that corrections and minor revisions have been made on approximately
70 pages in the first nine chapters, and mejor revisions have been
mede in the chapter on coemic rays. We are grateful to the many
people who have given suggestions and corrections; in particular,
we are indebted to Prof. Marcel Schein for his suggestions and
generous aid in revision of Chapter X.

JO, AHR, RAS

September 1950

An attempt to bring this second printing of the revised edition up to
date has been made by adding new footnotes and two pages (257,258) of
recent developments. Corrections and minor revisions have been made on
approximately 40 pages.

JO, AHR, RAS



CHAPTER VII. MESONS
A. PROPERTIES KNOWN FROM EXPERIMENT

In this section we shall discuss briefly same of the facts
known about mesons, and summarize them in a table; except for
one of the problems, however, we shall not discuss the experi-
ments behind the facts*.

By mesons we mean unstable particles of mass greater than
that of the electron, less than that of the nucleon. The only ones
directly observable so far have either a positive or negative
fundamental charge.

Mesons were postulated by Yukawa in 1935, and soon there-
after p-mesons (they will be called "p's"
or muons from here on) were observed as
secondary particle s in cosmic rediation***.
In 1948 w-mesons (f's or pions) were
created artificially by bombarding vari-
ous targets in the Berkeley eyclotron**,
During 1949-50, overwhelming evidence has
been found for the existence of a neutral
pion w° This 1s discussed further on

p. 237

So far only two sorts of mesons, T
and p, have been identifled beyond all
doubt, but there are rumors of others.

Production of #'s in a .
cyclotron. The names p and ¢ are also used in

the literature. This is because the

various kinds of meson tracks observed
were classified phenomenologically by Powell and his assoclates
according to what was observed at the end of the tracks. This
nomenclature is confusing because the number of different kinds
of mesons turned out to be less than the number of categories
chosen, so that identical mesons may be called by different
nanes «

A o meson is one which 1s observed to stop in the emulsion
without producing any observable product. This is a rather time-
dependent definitlion, since more sensitive films are currently
being developed. Thus previously unobservable singly-charged
relativistic particles (particles travelling at "minimum ioni~
zation" -- see Fig. II.4, p. 33) may now be detected.

A o meson (o for "star-producing") denotes a meson which
produces a nuclear disintegration at the end of its track.

*For nice discuseions see "Mesons 0ld and New" by Keller, Am. Jour. Phys. 17,
%56 (Sept. 1949) and a 10-page article by Snyder, Nucleonics 3, L2 (July '49).
See also Occhialini and Powell, "Nuclear Physics in Photographs" (1947); and
all the references on p. 239 of this book.

**Gardner and Lattes, Phys. Rev. 74, 1236 ('48), Science 107, 270 ('48);
Burfening and Lattes, Phys. Rev. 75, 382 (149).

***Neddermeyer and Andersor, Phys. Rev. 51, 884 ('37),
Street and Stevenson, Phys. Rev. 51, 1005 ('37).

131
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The m-Meson (m for "primary" -- for a summary of 1ts properties,
see TABLE VII.I1):
1. Charged Piouns. »
The mean life, T ~ 1078 sec » glven in the table, applies
in the c-m system of the m. Observed in the laboratory system,
this time appears dilated by a factor of y = (i1-p2)"" = V@ﬂca

Therefore a nf formed with an energy of several Bev during a col-

lision of a high energy cosmic ray particle and a nucleus could

travel, at a speed approaching that of light, many meters before

i1t decays. 1In thls case it will probably decay at high energy

(before it slows down), into a high-energy p and a neutrino (7).
If a ntslows down before decaying (or is formed at low energy)

then as it slows down to about 10 Mev, its rate of lonization

increases slowly to about five times minimum ionization, at

which point 1t becomes visible even in the older nuclear films.

The last 10 Mev of 1ts path is about 2500 microns long.

A nt, which is repelled by nuclel, simply comes to rest and
decays. But a slow n~ 1s attracted****and frequently absorbed by
a nucleus, giving up its rest energy and probably boiling off
several nucleons. These two sorts of tracks are illustrated in
FIC., VII.1.

When not captured by a nucleon,

1 a 1 decays as follows:
\\'K + /0_‘ sec + P
u* v v - N+
—-—*‘-“--&g? where ¥' is thought to be a neutrino

+
T » (we shall refer to it as such). As
1llustrated in problem 1, p. 138, Myc?
is known to be < 15 Mew.

FIG., VII.1 Tracks of =
Mesons in Emulsion. 2. Neutral Plons -- see p. 237.

The p-Meson (again, see TABLE VII.I for mass, etc.):

If the decay reaction mentioned just above takes place while
the m 1s at rest, the p has a kinetlc energy of 4.1 Mev and trav-
els almost exactly 615 microms in Ilford emulsions. Of course,
most of the p's in cosmlc radiation are formed when m's decay at
high energy, so thelr range is >> 615 micronsX**

On most film the end of the path looks blank, but with
cloud chambers, g-m tubes, or minimum ionization film, it has
been determined that, when there are no heavy nuclei around, one

of the products of the p-disintegration 1s an electron which
may have one of several energies and is thought to have a con-
tinuous spectrum from 9 to 55 Mev¥*¥¥, ©No other particles have
been detected during the reaction, so that the most logical
guess 18 /U't —-—Pz'/sj““ C: + 2V (/‘.(- ot least 2:-’) in vacuo .

The electron 1s so light compared to the p that, on the
average, we can think of the energy as being essentlally divided
equally among the three particles, all extremely relativistic.

*Richardson, Phys. Rev. T4, 1720 ('48)

**An energy spectrum of cosmic ray p's is given in FIG. X.5, p.220.

***Steinberger, Phys. Rev. 75, 1136 ('49) and
Leighton, Anderson, Seriff, Phys. Rev. 75, 1432 ('49): Current data is in-
adequate for differentiation between several discreet energies (as for «'g)
and a continuum,

****See the discussion at the top of p. 133,
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The qualification "in vacuo" concerning the mean life of u's
is needed because, in matter, a positive meson is repelled by
nueclei, but a negative meson may fall into a stable Bohr orbit
just as an electron does***, The orbits have radius and energy

_ (mh)? £=— M(-‘z’ez)z
T MieZ 2(nk)?

where M 1s the reduced mass. The p orblt 1s smaller than the
corresponding electronic orblt by a factor of 216, and the bind-
ing energy 1s increased by the same factor. For heavy elements,
the smallest orbit is only slightly larger than the nucleus it-
self, so that the y spends a large fraction of its time inside
the nucleus. If the u interacted strongly with the nucleons

(as a w does) it would be immediately captured by the nucleus,
but we find that the interaction is very weak. Ticho * glves
a curve showing that 7,-drops from 2.15 msec for Z = 1 to

0.7 psec for 2 =16, wﬁere the capture probability has started
to compete serlously with the natural decay. Remember that these
mean lives apply to the c-m system of the meson.

TARLE VII.I summarizes the material discussed in this section:

Electron Mcz Probable| MEAN Life Interaction with Nuclei
Masses Spin in Vacuo

+ -8

-] 2766 |136 Mev O or 1l | ~10 sec Strong, — exchange forces

4] 210t 4 |107 Mev

Wl

° zizééégV 135 Mev 0 <10-1% sec | strong,—-ordinary forces
Path Length in Emulsion Decay Products
7 | Lop-relativistic ~2500u. | -, usualiy"’“ar in fllm
(see text) 7 —> pt (4.1 Mev) + ¥
P 615 p (u = micron) et (¢85 Mev) + 2% (?)
me not observable 2 photons

TABLE VII.I Mesons **

B. MESON THEORY

From electrostatics we know that two particles attract or
repel one another according to Coulomb's law. For a classical
treatment we say that this force arises from the potential field
¢ = e/T of one of the particles. However if we wish to take into
account the corpuscular nature of light, we can describe this
interaction by saying that one particle"emits™ a photon which is
subsequently absorbed by the other.

Mnalogously, the interaction of two nucleons can be par-
tially intervreted by the picture of one nucleon "emitting" a
quantum which is Dromntlwhbsorbed by the second nucleon. These
guante are called mesons, and we shall call them T-mesons in
this discussion. ‘'the reason for this nomenclature is that we
know experimentally that nucleons interact

*Phve. Rev. 74, 1337 ('48
2Ave. fev
**This footnote hLes been expanded and put on p. 237

***Fermi and Teller, Phys. Rev. 72, 399 ('47), J.A. Wheeler, Rev. Mod.Phys.
21, 133 ('49)

2.15 usec Weak, - exchange forces
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more strongly with 's than with n's. If we are goling to attrib-
ute nuclear forces to one sort of meson, we might as well call it
a ff.

If the ff is uncharged then we can write the "reaction®
N+ e 4 P /
N=2>N +1m", n° + P, - P,

The charge of the individual nucleons (they may be similar or
different) undergoes no change during the "reaction' and it
turns out that nuclear forces arising from w's are of the non-
exchange, or ordinary type. On the other hand,if the « is char-
ged we have either

M, > P+ T, T+ 7, == N, 3
or Pn""l‘“+1 ‘Tf+~:.—"’1~

In this case it turns out that the mt produces an exchange force.

Since there is evidence that nuclear forces are a mixture
of both exchange and ordinary forces, an .acceptable theory will
probably have to involve both charged and neutral mesons.

Tukawa introduced the meson in 1935, and found that he had
to assign it a rest mass of 100-200 m in order to fit the experi-
mental data on the range of nuclear forces.

Fields whose quanta have zero rest mass are long-range;
those with quanta of finite mass decrease exponentially. We can
illustrate this statement classically as follows:

The potential field of a single electric charge fixed at the

origin, P = ed(®) vit.
obeys Laplace's equation,

Vg - é’gﬁ = - 40 ¢d(%) vit. 2’
and e '

¢s‘fa1‘{c = & vit. 3
If there is a second charge e at a distance r, the interaction
energy U =¢e@ = e?/r. v, 4
A scalar neutral meson field generated by a nucleon of

strength g, at the origin , 2 g §(%) Vilel
obeys the Klein-Gordon equation*

vi4 -k L P = - 4mg d(z) vit. 2
and e_Kh

‘éffdﬁc "3 Y vit .3

*The Klein-Gordon equation may be obtained directly by substituting the ope-

rators _ & 2 %
E = i ot ! £ = ;.Z
into the equation for total relativistic energy

2
W = MchW- p"cz

where M is the rest mass and p the momentum of the meson.

2
—'h.19%2 M*c" . BP9 e = o
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If we place a second nucleon at r, it may be shown that**
- KA
- = ey e
Uz —g¢ g* = VII.4
e

m
The "range" of ¢ is 1/k = X comptonpy = 3.86 X 10-11 :43 cm.

¢ is the fleld variable (or one of its components) and must not
be confused with the Schr®dinger wave function. In the electro-
magnetic case, for example, the field variable may be a 4-vector
(the electromagnetic 4-potential) or two 3-vectoTs (€ and ),
depending upon one's point of view. In the simplest case (the
first that one would try for a meson field) @ is simply a scalar
or a pseudo-scalar. A scalar does not change sign on inversion

. - scalar
of space; a pseudo-scalar does. When ¢ is a {pseudo—scalarj
then the non-homogeneous right-hand side of VII.2 is also a
{scalar }

pseudo-scalari.

The potential of VII.4 serves only as an example and could
not adequately explain nuclear forces, since it is not spin de-
pendent. Attempts have been made to employ more complicated
interactions and to introduce vector and tensor fields. The
various couplings all glve fields of the general fomrm

Footnote continued from p. 134: v
Now introduce a function g#(r,t) which hes here the significance of a poten-
tial and which we shall call the field variable

a* 1.1
V" - _‘. — — M C - o
We shall call ( c* oE™ W )¢
— ™M
;\%, = %= a’“’“i’t"“ ™

and then get VII.2, and if M = 0 we get VII.2', for r # 0.

Since the muclear velocity is low, themain features of the problem show
up in the time-independent equation

(v* -x*)g = - amrg §(z) VII.5
Lot ¢=1‘—f; uwn, for £ # O
(i’. - k")u e

+ KR
e

“w
= =~ = st
7] s com

The constant is easily shown to be g by integrating both sides of VII.5 over
a emall region including the origin, and then equating the results. In this
small region exp(kr) =1, so we have complete analogy with the electrostatic
case. We discard the positive exponential case to get a localized field.

**The analogy is between the meson field ¢, and the components of the electro-
magnetic 4-potential. The @op of VII.3' is only a factor in the 44h component
i of this 4-vector. Therefore there is a difference of a factor of i*
in the signs of the potential energies VII.4' and VII.4.

amy 3.86 x 107" (m/MWt) = 1.40 x 10-13 cm.
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with some directional terms.

Unfortunately it is impossible %o find a solution for
Schrddinger's equation when the potential diverges faster
than 1/r< at the origin. Where 1/rd terms appear, the field must
be arbitrarily cut off in a finite ¥Olume, but +this makes it
impossible to formulate the problem in a relativistically invari-
ant way.

Because of these difficulties there are as yet no self-con-
sistent results from meson theory.

In order to point out another important difficulty in meson
theory, we must now discuss, exceedingly briefly, the quantum-
mechanical formulation of the problem. As an eXample we shall
take one of the"reactions" postulated on pP. 134. We have illus-

P+ + p, _
E, N, = P AT (A——>c_)

E -
EA_ WieT, P, rN, 8 T+ P —> N, (c_ - 8)

trated in the sketch at left that the intermediate state (Cc) is
energetically impossible for nucleons at rest, since it "costs"
145 Mev to create a = In quantum mechanical perturbation theory,
however, states with energies above or below that of the system
are important as intermediate, or virtual, states. We shall make
extensive use of intermediate states (for example in Ch. VIII to
derive the Breit-Wigner formula). Since the mean life of the
intermediate state is short (¥ o {/saE by the uncertainty prin-
ciple) there is no violation of conservation of energy.

The transition probability and energy perturbation can be
calculated with the help of perturbation theory (ie,, there is no
better way known). Since the direct matrix element coupling the
initial and final states is assured to be zero, we use "Golden
Rule #1" for the second order transition:

H‘ =5 Hec Hen
88 T T Ep-Ec

Now we can point out the difficulty. It turns out that only
the first non-vanishing matrix element (in this example the se-
cond-order one) is finite, but that the higher order elements are
sumg that are not negligible- 1in fact they diverge. The diver-
gences in the correspvonding terms in the electromagnetic case can
be removed relativistically by the recent advances in quantum
mechanies, but the way out of the difficulty has not been found
in meson theory.

Even if the divergences of the individual higher-order tran-
sitions could be removed there is another difficulty. Pertur-
bation theory applied to the electromagnetic case gives an expan-
slon of successive orders of the interaction Hamiltonian in
powers of (e2/fc) = 1/137. This parameter is quite small, so
that there is hope that the whole series will oconverge. ut
meson perturbation theory is an expansion in powers of (g</Hc).
This cannot be made smaller than about 1/5 if the theory is to
give the right magnitude of nuclear forces. There is consider-
ably less hope that the entire series will converge, even if
the individual terms can be made finite. -
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Meson Tr=ory and Beta Decay. By writing in sequence the reac-

tions N — P + (Meson) ; (Meson) — e~ + mv [n=1,2,3 1]
or P -~ N + {Meson)*, etc.

Yukawa hoped to explain f-decay. Now that it is known that there
are two sorts of mesons {(maybe more), only one of which decays

into an tr
electron /“: et . 2>

it is difficult to reconcile g-decay with the known meson mean
lives in a quantitative way.

Summary A great deal of attentlion has been given to meson
theories, from which has come relatively little quanti-

tative results. Qualitatively, however the theory 1is valuable.
Thus physicists predicted the creation of mesons during high-
energy collisions before mesons had ever been observed. Meson

theory was of considerable weight in the decision to build the
large synchro-cyclotrons. Another example of the qualitative
application of meson theory is the discussion in Ch. I (p. 14)
where we obtain a numerically wrong but qualitatively useful
value for the magnetic moment of the deuteron by assuming thet
part of the time +

P > N+

N > P+ -
The formalism of meson theory may be greatly modified or
abandoned, but the fundamental ideas are likely to survive.
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CHAPTER VIII NUCLEAR REACTIONS

A. Notation
The nuclear reaction A + a—B + p + Q 1s symbolized by

A(a,p)B

Particles are symbolized by: o alpha, » proton, d deuteron, X
gamma ray, and f for flssion.

Q is (¥ for an "exothermic" reaction, (-) for "endothermic”.

The threshold is the minimum energy of the bombarding part-
icle in order for the reaction to occur., Threshold 1s measured
in the laboratory.system, and therefore 1s not necesgsarily equal
in magnitude to Q. If Q is vositive, the threshold is, in prin-
ciple, 0. If Q is negative, and if the pombarded particle A is
approximately at rest, then (see Ch. I, page 5)

hreshold vy = (= x Mass_of incident particle
Thresho eneray (-Q) Reduced mass 5f system

= (-Q) X Mg + My VIII.1

Mp

for the reaction symbolized above.

B. General Features of Cross-sections for Nuclear Reactions,

The following considerations apply to cross-sectlons for
nuclear reaétions in the absence of resonances. Resonance phen-
omena are discussed in section D.

Consider the transition A + a—B + b + Q, where the nuc-
leus "A" and the particle "a" become the nucleus "B" and particle
"v"  Both the initial and final states of the system conslst of
a palr of unbound particles; therefore the transitions is to one
of a continuous distribution of states. The initial state also
has a continmuous range of possible enersies, but the experiment
itself specifies a particular initial energy.

There are similar situations in atomic physics. For example,
in emission of a photon by an excited atom, the transition is from
a single state to one of a continuum of states:
Conservation of energy selects the final state. —

Another atomic example is the non-radla- excited
tive or Auger transition. An excited atom may  dtem,no
have two possible modes of decay. In addition photon
to photon emission, the atom may decay by emis-
sion of an electron. Suppose, for example, the non-excited
excitation corresponds to one missing electron atom,dnda
in the K shell. The enercy made available photen
when an electron falls into this hole may be greater than the
ionization enersy, in which case an electron may be emitted from
the atom. Again the final system consists of two unbound particles
having a continuous range of possible energles.

Returning, to the nuclear reaction A + a—=B + b, we use
a general principle of quantum mechanlics to derive some essen-
tially statistical results on the variation of the cross-section.

From quantum mechanics, the probability per unit time of
14
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transition = number of transitions per unit time = w is given by
"Golden Rule No. 2": #

2dn )
W—_—_%]),(f ez VIII.2

where ¥ 1is the matrix element of the perturbation causing the
transition, and dn/dE = energy density of final states, counting
each degenerate state separately.

]2 may be the same for all energetically possible final
states; more often it depends on the state. (For 1nstance,;ﬂ12
may depend on the direction of emission.) Then /®|?2 in the form-
ula is a sultable average over the possible final states.#sk

dn/dE = o for a contimum of states. But in that case
'¥|—> 0, so that the expression |H|® dn/dE has the indeterminate

form O x co. This difficulty is removed by limiting space to a
box of volume JL . M| 1s then small but finite and dn/dE large
but finite. L drops out of the result. The number of final
states equals the number of states of the emitted particle. This
1s because a change in momentum of one particle compels a change
in momentum of the other, by conservation of linear and angular
momentum of the system.

It was shown in Chapter IV, p. 76 that the number of states
available to a free particle, "b", with momentum between p and

p + dp, confined to a box of volume Jf2, , 1is

2
dn = Mgi‘:%fb“& VIII.3

This must be multiplied by the multiplicity in the final statew®
caused by spln orientation, which is given by the factor (21b+1)x
(2Ig+1), where Iy, is the spin of the emitted particle and Ip the
spin of the nucleus. If b is a photon, (2Ip+1) i1s put equal to
two , ¥

dE = vy, dpp (true relativistically) VIII.4

where and vy, are the momentum and velocity in the center of
maggs frame of “reference of the final (B+b) state. Since "B" is
usually massive compared with "b", py and vy, can usually be meas-

ured in the laboratory frame. Combining thése two equations:

dn _ATRD (51 4)(2Tg4 VIII.5
de  Q@w® (21 v 2 7e)

From this and VIII.2 we get

e
No. transitions per unit time :#ﬁ_%;g—ﬂ’)"lz(nbﬂ)(z.[a* ‘) VIII.6
b

The following equation 1s essentially a definition of the cross-
section CSA—»B per A nucleus:

* Derived in Schiff, Quantum Mechanics, p. 193. ("dolden Rule No. 1"
1s on page 148 of this text).

#*#* This 1s discussed in greater detaill in section C, this chapter.
%*%% This point is dilscussed by Bethe and Placzek, Phys.Rev. 51

450, Appendix, p. 483. Multiplicity is caused by the two possible
independent polarizations.

3¢ See page 214 for more complete discussion.
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No. transitions/sec _ -
per A" nucleus/ = Ng X Vigipel to"a" X O:\—’PB VIIL.T
where A and B refer to the (A+a) and (B+b) states respectively,
and n, is the density of particles "a". Take n, to be 1/n, cm=3

{(one particle in the volume). Then

A 2
..-\E *Vornel.to'st X Care = W’F:"Q \Hl (ZIL'”)(ZIBH) VIII.8

Since nucleus™"is often massive compared to "a", Vugn,..q toman

is often nearly equal to v, in the center of mass frame. n
any case, these two veloci%y magnitudes are related by a cons-
tant factor. Writing UMgmygy to"a" = Va»

mHIZ@%(Hw)(ZIB*‘) VIII.O

1
Care™TH

*
In general, ¥ is unknown. It has the form /d’bg’”/ U%,,,i-,a/

where U is the interaction energy. If the wave functlons used to
compute ¥ are normalized in volume .[2, , fL disappears from the
expression ML¥} 1in VIII.9. This is seen as follows: Let ¥ have
the form, at large distances, N exp(ikz). Then [|y|?dr= N3iQ

Setting Nafk = 1, we get N = 1AL
If Yinitial and Ifinal now mean the un-normalized plane wave
functions, the matrix element factor in VIII.O becomes

*

VIII.1O
Sl H = fdt Lyfmal U\.{)smtal .
(This may be looked upon as taking (L= 1) Henceforth we use ¥

for L% . In order to show the meaning of this expression, we
write it as .

D#' = U X Yolume o{: nucleus X \er‘tm\ W{\m]‘ VIII.11

where lLHn.Li)ﬁn.l 18 a suitable average of the product of the wave func-

tlions over the volume of the nucleus. U, and hence the integrand,
1s zero outside the nucleus. U = average interactlion energy=s
depth of potential well. For our purposes here the important
feature of VIII.1l.is its dependence on the charge of the parti-
cipating particles. If "a", say, is posltively charged, its wave
function will be reduced in amplitude at the nucleus by the
barrier factor exp(-G,/2), where, by III.3, p. 58

Gq \lzma T wZ 9 e for high VIII.12
'E-= _4".; UQ—EO. d’L —”z'ﬁ?—‘ Yvarriers

U, denotes the charge of "a" times the Coulomb notential of "A".
Pﬁysically this factor represents Coulomb repulsion. The wave
function of an outgoing particle at the nucleus is also reduced
by such a barrier factor. The result for the squared matrix ele-
ment 1s:

For neutral particles: W (T X vol. of nucleus)2 VIII.13
For + charged particles: |MI*& (U X Vol .)ZX exp(-G,-Gy)



144 Nuclear Reactions Ch. VIII

(emission of nepgatively charged particles (electrons)is treated
in Ch. IV)

For endothermic reactions there is a threshold energy for the
bombarding particle. For exothermic reactions in which the energy
liberated 1s much larger than the energy of the bombarding particle,
there are two simplifications in equation VIII.9: 1) the barrier
factor exp(-Gy,) for the outgoing particle is almost constant be-
cause 1t is a function of energy of the emitted particle "b",
which is almost constant; 2) p. and vy, are almost constant and
therefore the statistical weight factor in VIII.O, pg/vavb, is
proportional to 1/vg,.

These results are now applied to specific cases to deduce the
general features of the O vs. energy and ¢ vs. veloclty curves.
1) ELASTIC (n,n) (both particles unchar§ed)

v, = Vy, therefore pﬁ/vavb = M o t) , a constant

At low energy \)“ is approxima%e%y constant, therefore

O =~ constant at low energy.

& ELASTIC (n,n)

¥ few ev.

Ve

2) EXOTHERMIC, low energy UNCHARGED bombarding particle, as in
(n,a), (n,p), (YM-XS: (n,f). Q 1is usvally ~ Mev. vhile neut-
ron energy is ~ e.v., therefore vy =~z constant. Therefore
P/ VoV A 1/vy. Wiz exp(—Gh—Gb?. exp(-Gy,) is =~ constant,
since it depends on the almost constant enersy of the out-
roing particle, or, in the case of an uncharged "b", is 1

exactly. Also ex»(-G,) = 1. Therefore
O~ 1/v, (the."1/v" law)
o N EXOTHERMIC
vy (m,a), (mY) etc

3) INELASTIC (n,n') Vn
The nucleus 1s left in an excited state. The process is endo-
thermic and -Q 1s the excitation energy of the nucleus. For
incident neutron energiles slightly above the threshold, V. es
constant, since the fractional change in incident enercy is
small. Put v,1 chanzes relatively greatly in this regilon:

Vnr2 o« excess of energy above the threshold. Therefore

2 p 1 .
Pn' /vnvn' o Vyr' oC Qenerby excess., Therefore near the
threshold @ o¢ \energy excess.

o INELASTIC (nn) O | ENDOTHERMIC
(h’ d)) (h’b)
/Thveshoié — T\w:s‘\nold N
ENERGY ENERGY

4) ENDOTHERMIC, CHARGED OUTGOING particle, as in (n,a), (n,p).
Exactly as in case 3), except that the factor exp(—Gb5

overates and 1is dominant'Cfocqéﬁérgy excoss X exp(—Gb)
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5) EXOTHERMIC, CHARGED INCOMING varticle, as in (p,n), (a,n),
(a,9), (p, T ). For incident energies << Q, the factor
pbz/vavb<13 1/v,. The barrier factor exp(-G,) operates on

the incoming particle.
EXOTHERMIC

O oL 1/v, exp(-Gy) G, e m, (1Y)
¥

@)

e

In all of the above, no account has been taken of resonance
phenomena.,

C. Inverse Processes
Consider the transition A + a —» B + b, where "A" and "B"
are muclet and "a" and "b" are, in general, lighter particles.
From equation VIII.9 the cross- section for this transition is
(neglecting spins): 2
. K

|
Ghvs =770 MR 7

VIII.9'

The inverse reaction is B+ b—> A + a. Its cross sectlon 1s

2
W 2 A VIII.O"

z
LIL>*‘ 18 the same in both cases, because the operator of the
perturbation is Hermitian, 1.e., U%*H%dr‘:lfw*%y,dtl
A B8

therefore, 2
gﬁﬁ = \pbz (neglecting spin)  VIII.14
O/B"?A )po.

The same result may be looked at from a different aspect.
Suppose we have a box filled with arblitrary numbers of particles
WATT fgM  MB" "p", The transitions A + a == B + b occur.
Statistical mechanics asserts thaet at equilibrium all posslble
states of the system consistent with the specification of the
energy of the system are occupied with equal probability. If a
state consisting of a pair of particles A + a 1s called an M"A"
state, and similarly for "B" state, then the occupled states in .
the energy range AE may be divided into the two types, A and B.
Since all states in AE are equally probably occupled, thls div-
ision is such that

No. occunied A states _ No. possible A states in A E 5

No. occupled B states ~— ©No. possible B states in AE
The number of possible A states = maximum number of (A + a) pairs

2
times the number of states Iin A E for one pair = Wf_lr_%_‘@iAE
@m*ﬁ Uy
where 7? = maximum number of (A + a) pairs formable with the
particular numbers of particles put into the box initially. Sim-
2
A-’T(JP;,;.(L

1larly, the number of possible B states = 727§;XS§EE—ASE

where 7? is the same. Therefore
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2
No. of occupied A states _ Pa Vb VIII.16
No. of occupied B states R:U@

Now at equilibrium the number of transitions A-—+B equals the
number of transitions in reverse, per unit time.

No. transitions A-—+~B/sec = (No. A states occupled)Ciye

No. transitions B—»A/sec = (No. B states occupied)Cg,m Vb
VIII.17

Combining VIII.16 with VIII.1l7,

Spanly B W VIII.14'
G}—>Bl& 111M;

as before.

If the particles have spins, the density of states is in-
creased. If the spins are Iy, Ia’ Igs Iy, the density of A
states 1s increased by the factor (21A+1)(2Ia+1)’ and similarly

for B states. Then the rate of transition A—=B is proportional
to

(21,+1) (2I,+1)p,2 0, g
and B—A to o
(21B+l)(2Ib+l)pb Og—ra

therefore

@I 2L+ ) Gy s = (21s+ )21+ ) o2 O sa

Note that in this formula, O is an average over the various kinds
{spin orientations) of A states, and a sum of partial O 's for
various possible final states., *¥

VIII.18

* This may be elucidated by writing G,_,gmore explicitly; Divide
0" into contributions o(s) due to various relative orientations

of I, and I,. The number of states represented by each relative
orlentation 1s 28+1, where S = resultant angular momentum of part-
icles "A" and "a". In this discussion, orbital angular momentum

18 neglected. It is included in a discussion in the appendix of
Bethe and Placzek's paper, Phys.Rev. 51 450. The total number of
A states is (2;A+l)(2la+15. The total cross section for transition

v |
to any B state is 0;—»8 —WE(ZSH) o(s)

which 1s an average over spin states. (s takes on 2I5+1 values
if Ia‘< IA; (ZIA+15 if IA<:Ia.) Now ¢T(s) , the partial cross

sectlon for various initial values of S, may be written as a2 sum
of contributions to various possible final spin states, 1.e.,

66)=§£.G(S& s where 1 denotes a particular final spin

A
state of the B + b system. ©O8); contains in addition to the dens-
1ty of states in enersy, the squared matrix element for the parti-
cular transition represented by ot); . For transitions not con-
gerving total vector ancular momentum, &) = 0. For example,
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Problem: Deslegn an experiment to detect the 1Inverse reactlon
to Be9 + Hl——-—- Li6 + Hell'.

(Design of the alpha particle source will depend on the thresh-
0ld erergy for the inverse reaction. From Allison, Skaggs and
Smith, Phys.Rev. 57 550, or from Hornyak and Lauritsen, Rev.
Mod.Phys. 20, 202, we find that Q for the forward reaction is
2.115 Mev. 1In the reverse reaction, in order to get 2.115 Mev
into the center of mass coordinate system we must give the alpha
an energy of about 3.5 Mev, and this is the threshold for the
inverse reaction (See section A). Design of the Lib target and
of the detector, and determining the requlred alpha beam strength
require knowing the cross section. This is got by detall balan-
cing arguments from OégUMQEL , taking into account a spin fac-

tor of 8/3. This cross section is found in Livingston and Bethe,
€, Rev.Mod.Phys. 9 245, p., 310, or in the or%ginal source, Allen,
Phys.Rev. 51 182 719375, and 18 5 x 10729 cm® at 0.1 Mev. The
cross section for the inverse reaction increases rapldly as the
volume of phase space available to the proton 1s increased,
therefore it 1s advantageous to use alpha energies an Mev or
more above the threshold of 3.5 Mev. Higher enerpgy protons also
penetrate the Coulomb barrier readily, and are easler to detect.
A gualitative curve of cross-section for the forward reaction

as a functlon of energy is given in Hornyak and Lauritsen, Rev.
Mod .Phys. 20 191, p. 20I.

D. The Compound Nucleus 2
In the diagrams of section B it was assumed thel}%‘ wasg
approximately constant, except for the Coulomb barrier factor.
Often, perhaps in most cases, the matrix element has irregular
variations.,, This phenomenon is called resonance. For example,
in the (n, ¥ ) process in indium, there is an extremely pronounced
peak in ¢ at a neutron energy of 1.44 Vep reaches 27,000
barns at this energy. (one barn is 10-2%4 cm®) The half-width of
this resonance peak 1is 0,042 e.v. = (A Near the resonance, the
curve of ¢ vs. energy has the form 1/(E—ER)2. Another example
1s the resonance at EgR = 5.2 e.v. g
for the (n,¥ ) reaction in silver. Trdiom
In this case G reaches 24,000
barns, and the peak has a half- \\\\)
width \".,‘2 = 0.063 e.v.

1 i 1

o b g 2 3 ev

Energy

conslder the reaction n + A—a + B. The spins are, for n, 1/2;
for @, O; assume for A, 1l; and for B, 3/2. The total number of
initial spin states = (2(1)+1)(2(1/2)+1) = 6. The number of ini-
tlal spin states for total angular momentum S = 3/2 is (2(3/2)+1)
= 43 for S = 1/2, (2(1/2)+1) = 2,

Camm=08 = % xO(s=3%) + g x Cs =)
Now the first term represents transitions to any of the final spin
states having S = 3/2. For a given initial orientation, there is
only one. Simlilarly, the second term represents transitions to
any final state having total angular momentum 1/2., DBut, since the
spin of the @ = O, there are none, so OUg) = 0. When orbital ang=-
ular momentum is involved, there may be more than one way in which
the given 1nitial state can form a final state, so that C(), for
example, is a sum over the various possibilities. See Bethe and
Placzek, Phys. Rev. 51 450, appendix.
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The explanation of this phenomenon i1s based on the assump-
tion that the transition A + a—B + b occurs through an inter-
medlate state C:

A+a-~—»C —» B+D

State C 18 the "Compound nucleus". The idea of the compound nuc-
leus 1s due to Bohr.¥*

The 1dea of how resonances in cross sectlon result from this
assumption can be obtained from the quantum mechantics of second
order transitions. The probabllity of transition, per unit time,
is given by "Golden Rule No., 1":##

2 [ energy
trans. prob./sec = 2T ):‘_fi_):‘ii x(densﬂg)' d) VIII.19
Ea-Ec states

provided there are no direct transitions from A to B. The cross
section is, from VIII.O,

|
Cive = 77 | {11
which becomes, analogously,

_ | )*cA)%BC
8T Rt Ea-E,

Near Ej = Eq, (resonance), ¥ is large. This formula gives infin-

ite 0 at the resonance energy, but the formula doed not take into
account the short lifetime of the compound state. A correct
formula 1is derived in section F.

The life-time of the compound state 1s long enough for the
nucleus C to "forget" how it wes formed,*¥*#and this results in a
basic simplification in the interpretation.

From the Helsenberg relation AtAE Z ¥, the lifetime of the
compound mucleus and the uncertainty [ 1n its energy are related
by

2
2
/’ab_ VIII.9'
W, Uy,

2 J%f

%Y

VIII.20

%

> K
V2 et VIII.21

The reasons why the compound nucleus has a lifetime greater
than zero are the followlng:

1) For charged particle decay, the bharrier factor (VIII.12)
reduces the rate of decay.

2) Decay by ¥ radiation is very slow compared to the times
in which the nucleus changes 1ts organization: the lifetime
against ¥ emission is ~ 10713 - 10”14 mec. The characteristic
time of the nucleus, 1.e., the time for a nucleon to cross the
nucleus, is ~{size)/(velocity) =~ 10-13/109, or about 10-22 sec.

3) A particularly lmportant reason is the tendency toward
equipartition of energy in the nucleus. The excess energy due to
the absorption of the bombarding particle is distributed among
all the nucleong. It is rare that there is a fluctuation in
which a large fraction of the excess energy is on one nucleon.

4) Selection rules forbid some modes of decay.

# Bohr, Nature 137 344 (1936)

##* Schiff, p. 196, eq. (29.20)

#%# Discussed in Pelerl's review article ln Reports on the Propress
in Physics VIII (1940), Phys. Soc. of London, 1941.
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E. Example of an Unstable Nucleus

An example of a nucleus which plays the role of an intermed-
iate-state §ompound—nucleus for several well known nuclear reac-
tions 1is Be®, 8

The ground state Be  decays as follows:
Be8 —+ 2 Ho™ + 110 Kev.#*

The reaction is barely exothermic. The Gemow exponent for
decay into a's is low due to low nuclear charge,

see equatlon VIII.gY, p. 63, The theoretical estimate of the
lifetime is 10" 10gec.##, corresponding to a width of between

1 and 100 e.v. This time is long compared with the nuclear
characteristic time of 10~22 gec.! hence the width of the level
is small.

Information on the excited levels of Be8 can be obtalned
from study of these nuclear reactions for which BeB is the inter-
mediate compound nucleus state, such as L17(p,2’)Be —_— 20,
L17(p,n)Be7. These reactions are discussed here. The energy
levels are plotted in FIG. VIII.l.

1) a-a scattering. For two Coulomb centers, the total scat-
tering cross section 1s oo. We may study the scattering at some
ancle not near O (90° in center of mass system is best). We
expect peaks in the value of & when the incident relatlive energy
equals the enerpgy of excitation of an excited state. For a's
scattered on a's, the first such resonance should come at 0,110
Mev (in ecenter of mass system), corresponding to the Be® ground
state. This resonance 1s presumably very sharp, a few e.v. wide,
as mentioned above., It has never been observed experimentally.

Problem. Discuss the possibllity of experimentally observing

the resonance expected én alpha-hellum scattering at an energy
corresponding to the Be® ground state, l.e., 0,110 Mev in the

center of mass frame.

(The Coulomb barrier keeps alphas of thls energy at least 5 x

10712 cn apart classically, so the effect of nuclear forces is
probably undetectable. Also the experiment is difflcult because
the range of 200 Kev alphas 1s so short that it is hard to shoot
them through an appreciable number of scattering centers and
detect them. Any attempt to detect a resonance might be sulded
by the experimental procedure of Devons (Proc.Roy.Soc. A 172

127 and 559 (1939)), who investirated alpha-helium scattering
at higher energies. The theory of a-a scattering and its rela-
tion to the Be® nucleus is glven in VWheeler, Phys.Rev. 59 16
and 27, (1941).)

A second resonance, thils one exverimentzally observed, 1is
at ~3 Mev. The barrier factor is lower at 3 Mev, hence the
state has shorter lifetime and greater width. The half-width
is estimated to be 0.8 Mev.

Further resonances in a-a scattering are so broad as to be
scarcely recognizable as resonances. All the resonances men-
tioned so far correspond to states of even parity. This is be-
cause a's obey Bose-Einstein statistics and hove symmetric wave

* Hemmendinger; quoted in Seabors and Perlman table of isotones,
Rev. Mod., Phys. 20 585.
®%  Wheeler, Phys.Rev. 59 27.
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functions.* The incident a's will have angular momentum 0,2,4,..
with respect to a target o particle. Therefore states of Be®
detectable by a secattering in helium are even states.

Not all states of BeB are even. 04d states of Be8 cannot
decay directly into two a's or into the even Be8 states mentioned
above., Emission of electromagnetic radiation must occur first,

odd - even n -
because an even state cannot change to an J53 state by "mech

anical", i.e., non-radiative, interactions. Change of narity
occurs in emission of photons.

2) Li7(§u X)Be8. There i1s a prominent and narrow resonance
at a proton energy of 440 Kev. This indicates that the 1life-
time of the excited Be is long and thus that it is an odd
state. It decays through the relatévely slow process of ¥
emission to the much lower even Be“ states. The energy of a

117 and a proton separated and at rest is 17.2 Mev higher than
that of the ground state of BeB. The ¥ 's given off in decay
from the excited Be8 state produced in the Li7(p,x ) reaction
have energies of 17.5 Mev and =~ 14.5 Mev, indicating ¥ decay

to the two even states mentloned in the varagraph on a-a scatter-
ing.
That the excited Be8 statie vproduced in Li7(p, X) is odd
accords with the followlng considerations. The most probable
case is for the pombarding proton to be in a high S state, which
18 even. The Li!l is odd, a8 1ls suggested by the arguments in the
following paragraph. Then Li7(oddy + proton (S state) is an odd

Be8 state.

The picture of a nucleus as built up of "shells" of protons
and neutrons, somewhat like atomic electron shells, suggests that

117 in the ground state 1s odd.

Suppose the average potential for the nucleons 1s a square
well, The single narticle approximate quantum mechanical solut-
lon to the problem leads to orbits which may be designated: 1s,
1p, 14, etc. The 1s orbit accomodates 2 neutrons (spins opposed)
and two protons (spins opposed); 1lp accomodates 6 neutrons and 6

protons, etc. 17  would have the confisuration:

protons: 1s° 1pl
neutrons: 1s° 1p2

or a total confipuration: (1s21p;1s21p2), which has Zli/=3,and is
nence an odd state. This model of the nucleus is discussed in

# For two identical particles, parity of the state and symmetry
of the wave functions are simply related: If the wave function
!(gggggist chanee sign when space 1s inverted by the operation
- _ gt odd changes
:—: X,y+-y,z+-2, then the ¥ has(even If Yo s not change
w%en the two particles are interchansed in position, then ¥ is
i (antisvmmetrical.
symmetrical
Operation of inversion of space: Y(;l,zg)"*'i Y(-El,'IQ)
Operation of particle interchange :¥(rj,rs)—> % ¥(rp,rm)
But for identical particles, r; = -ro, r, = -ry, so that
¥(-ry,-r,) = ¥(ro,r;), and inversion is equivalent to particle
interchange.

parity.



Ch. VIl Be8 Compound Nucleus

E3é7+WL YT | iy
inelat 1103
[avss_me7| it f—
- 17.21
Li+%
>l >
< B
I
L
) )

Fi6, Yam. |

151
Hp =) ) (am)
e o N & -] 222
__3>§_k’;\°_l) NP, ~A4.0
2)(P¥) - T A4

3‘+49 17.21

Curves glve cross
section for the vartic-
ular reaction.

Numbers 1), ete.refer
to subsections of
section E.

(Baped on "Energy Levels
of Light Nuclei" by
Hornyak and Lauritsen
Rev.Mod .Phys. 20, 1915

Oof enerdy

Bea (Enerqy n N\eV-)



152 Be® Compound Nucleus Ch. VIII

greater detall in section K.

3) L7 (p,p" )17 . This 1s similar to 2) exceot that &
proton is $mitted having less energy than the incident »roton,
leaving Lif in an excited state. The_resonance in ¢ 1is observed
at a proton energy of ~1.05 Mev. L17*<iecays by emittinc a
of about 0.45 Mev. The 0.45 Mev splittinc between thls excited
state and the ground state L1’ may_be due to enercy difference
between DP1/2 and p3/2 states of Li7, on the nuclear shell model:

17.67 / &3 M:* <L171-broton of energy~ | Mev.
17.21 Aoy ¥ Combpound Nucleus d
Li7+ ) of enevgy < 1 Mev @nuag?gegbgmm stote
1’ + p1 MeV)—*BeSLLi77:- pl—>117 + ¥ + p

4) %i7(p,a)HeA. Since two a's are in an even state, and
since Li!’ 1s odd, the incident proton must be in an odd state,
probably a p state with respect to the Li7 nucleus. No reson-
ances are observed. None is to be expected, since all even

resonances are extremelv bhroad. Note that all the observed
resonances-—are odd7levels.
5) Li'(p,n)Be'. A resonance is obserged at a proton energy
e

of ~ 2.22 Mev, corresponding to an odd B state 19,15 Mev above
the ground state.

6) L16(d,a)He4 No resonances. Evidently Li6 + H® form an
even,state, and quickly decay to two a's.

Problem: Desipgn an experiment to observe the famous 440 Kev
resonance in the reaction 147 + p —= Be *__,7(+ Be8 —2q
(Tnils experiment has been performed by Walker and McDaniel,
using a gomme ray spectromster which measures the enersy of
palrs produced by the gamma ray (Phys.Rev. 74 315) and by
Delsasso, Fowler and Lauritsen (Phys.Rev. 51 (1937)) using

a cloud chember to detect the gammas by means of electrons pro-
duced in the chamber by palr production and Compton collisions.
Recent electrostatic accelerators have been equipped with
electrostatic velocity selectors which provide an energy spread
in the proton beam of less than 300 e.v. at 1 Mev. In order to
take advantage of this nmarrow energy range, very thin targets
must be used. These problems are discussed in "Gamma-Radiation
from Excited States of Light Nuclei™ by Fowler, Lauritsen and
Lauritsen, Rev.Mod.Phys. 20 236 (1948¥).

F. Quantitative Development of Resonance Theory; Brelt-Wicner
Formula. :
In this discussion we use as an example the (n,¥ ) reaction,
l.e., radiative capture of neutrons, which is an important recc-
tion.

As in the preceding sections, the enercy levels of the ini-
tial and final states form a continuous distribution. The expar-
ment picks out the particular initial state.

The resonance phenomenon that we wish to describe is very
energy-sensitive. We shall attribute it to the existence of a
compound nucleus state C, connecting with the initial and final

states by matrix elements'}@cand.)$b¢ » where the notation is
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CHAPTER VIII

APPROXIMATION METHODS FOR TIME-DEPENDENT
PROBLEMS

It is generally impossible to obtain exact solutions of the Schrodinger
equation when the Hamiltonian depends on the time. The three approxi-
mation methods that we consider in this chapter all start from the
assumption that there is a time-independent Hamiltonian that approxi-
mates the actual Hamiltonian in some sense, for which the Schrodinger
equation can be solved. The time-dependent part of the actual Hamil-
tonian may be small compared to the stationary part, in which case a
perturbation method can be used. Or there may be time-dependent
parameters in the actual Hamiltonian that change very slowly (adiabatic
approximation) or very rapidly (sudden approxzimation) in comparison
with the periods of the approximate stationary solutions.

29. TIME-DEPENDENT PERTURBATION THEORY

The perturbation theory of a system for which the Hamiltonian
depends on the time?! is sometimes called the method of variation of con-
stants. It starts from the assumption of Sec. 25 that

H=H,+H, Hy, = Eu, (29.1)

where the unperturbed Hamiltonian H, can be solved for its normalized
eigenfunctions u, and its energy eigenvalues E,, and the perturbation H’
is small. Since H’ now depends on the time, stationary solutions of the
actual Schrodinger equation do not exist, and we must work with the
time-dependent equation

LA _
ih s = Hy (29.2)

Expansion in Unperturbed Eigenfunctions. Our procedure is to
1Eaqt

express ¥ as an expansion in the eigenfunctions u,e * of the unperturbed

time-dependent wave equation, where the expansion coeflicients evi-

dently depend on the time.
1Bt

¢ = Sa.ume * (29.3)

1P, A. M. Diraec, Proc. Roy. Soc., A112, 661 (1926); A114, 243 (1927).
195
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S denotes a summation over the discrete set together with an integration
over the continuous set of eigenfunctions. Substitution of (29.3) into
(29.2) gives

1Ent 1Eat 1Ext

Sihdue * + Sa,.E’nune_T = Sa.(Ho + H)ue *

where the dot denotes differentiation with respect to the time.
We replace Hou. by E,u. on the right side, multiply through on the
left by s, and integrate over all space, making use of the orthonormality

of the v’s
1Ext 1Ent

ihdre * = Sane / G H il

The integral on the right is the matrix element Hj, of the perturbation.
We define the Bohr (angular) frequency

and obtain
dr = (th)'SH,,aqeiet (29.5)

The group of Egs. (29.5) for all #’s is exactly equivalent to the Schro-
dinger equation (29.2); the amplitude a. of a particular unperturbed
eigenfunction u, in the expansion of ¥ has replaced the amplitude ¢ at a
particular point in space. Because of the choice of the representation,
which is determined by the eigenfunctions of the unperturbed Hamilton-
ian, Hy does not appear explicitly in (29.5).

The perturbation approximation consists in replacing H' by AH’ in
(29.1) and (29.5), and expressing the a’s as power series in \:

an = a® + Ao + NaP + - - - (29.6)

As in Sec. 25, we assume that these series are analytic for A between 0
and 1. We can therefore substitute (29.6) into (29.5), equate coefficients
of equal powers of A, and set A = 1 in the final results. The substitution
yields the set of equations

@ =0; g = (WTSHaPeet, 5=0,1,2, ... (207)

These can in principle be integrated successively to obtain approximate
solutions to any desired order in the perturbation.

First-order Perturbation. The first of Egs. (29.7) shows that the
zero-order coefficients a{® are constant in time. Their values are the
initial conditions of the problem, which specify the state of the system
before the perturbation is applied. We assume throughout this section
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that all except one of the a¥ are zero, so that the system is in a definite
unperturbed energy state when the perturbation is applied.! The results
that we shall obtain can easily be generalized to situations in which more
than one of the zero-order coefficients is different from zero.

We thus put a® = s or 6(k — m), according as the state m is one
of a discrete or a continuous set. Integration of the first-order equation
gives

aP(t) = (k)1 /_t _ Hp, (et dt! (29.8)

where the constant of integration is taken to be zero in order that a{®
be zero at ¢t = — « (before the perturbation is applied). If H' is of
finite duration, the amplitude of a state u; (k # m) after the perturbation
has disappeared is proportional to the time Fourier component of the
matrix element of the perturbation between this state and the initial state,
that corresponds to the angular frequency wi» given in (29.4). This
result is analogous to that obtained for the scattered amplitude in the
Born approximation [see the discussion of Eq. (26.18)].

Equation (29.8) takes a particularly simple form if the perturbation
H'’ is independent of the time except for being turned on at one time and
off at a later time. We call these two times 0 and ¢, respectively, and
obtain for the first-order amplitudes at the time ¢ (these are also the
amplitudes at any subsequent time)

’ .
Tom eglwkmt — 1

af’(t) = — 5 (29.9)

Wim
Thus the probability of finding the system in the state k at ¢ is

4|H} )% $in? $opmt
1) 2 — km 2Wkm!
la (1) Tl

The factor sin? wimt/w},, is plotted in Fig. 27 as a function of wim.

Physical Interpretation. The height of the main peak in Fig. 27
increases in proportion to ¢2, while its breadth decreases inversely as ¢, so
that the area under the curve is proportional to £ Thus if there is a
group of states & that have energies nearly equal to that of the initial
state m, and for which H{, is roughly independent of k, the probability of
finding the system in one or another of these states is proportional to ¢
This is the physically interesting situation, since what we wish to calculate
eventually is a transition probability per unit time w, and this implies that

1 This need not conflict with the uncertainty relation (3.3), since the infinite lapse

of time prior to the application of the perturbation makes it possible to determine the
original energy of the system with arbitrarily great preecision.
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the probability that a transition has taken place when the perturbation
has been on for a time ¢ is proportional to £.1

It follows that a definite value of w exists only when the final state
is one of a continuous or nearly continuous set of states. The spread in
energy of the final states to which transitions occur, shown in Fig. 27

SI?F pmt
2
“hem
_b6r 4T Zr 0 2r 4r ér
t z t t t z
“kem

Fre. 27. The ordinate is proportional to the first-order perturbation probability of finding
a system in a state that has an energy different from that of the initial state by fiwsn; the
scales for ordinate and abscissa depend on the duration ¢ of the perturbation in the manner
indicated.

(Ex = En + hwrn), is connected with the uncertainty relation (3.3) for
energy and time in the following way. We can regard the perturbation
H' as a device that measures the energy of the system (which is not
necessarily its initial energy since the system is disturbed) by transferring
it to one of the states k. The time available for the measurement is ¢,
so that the uncertainty in energy predicted by (3.3) is of order %/t, in
agreement with the breadth of the main peak in Fig. 27. It is interesting

* We assume that the total transition probability to all states % is small enough in
comparison with unity so that the initial state m is not significantly depleted. This is
equivalent to the original assumption that the perturbation is small, which means
that for times ¢ of physical interest, there is little change in the initial state. There
can still be an effect of observable magnitude if a large number of independent systems
receive identical treatment.
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to note that conservation of energy, suitably modified by the uncertainty
principle, is an automatic consequence of the calculation and does not
have to be inserted as a separate assumption.

Transition Probability. In order to obtain an explicit expression
for w, it is convenient to assume that the system is contained in a large
cubical box of dimensions L that has periodic boundary conditions at its
walls (Sec. 10). Then the eigenfunctions u, form a discrete set and can
be normalized to unity in the volume 3. We now consider a particular
group of final states & that have nearly the same energy as the initial
state m and for which the matrix element Hj, of the perturbation is a
slowly varying function of k. We define a density of final states p(k)
such that p(k)dE) is the number of such states in the energy range dE;,
and assume that p(k) is also a slowly varying function of k.

The transition probability per unit time to one or another of this group
of states can then be written

- oY P OF = o [lapkaeiE @0

when the box L is large enough so that the summation over & can be
replaced by the integration over E. Since H}, and p(k) are slowly vary-
ing and most of the contribution to the integral comes from a narrow
range of energy about E;, = E,, they can be taken outside of the integral,
and (29.10) can be rewritten as

1t‘”H enl” / sin’ gomt ;- (29.11)

wkm

where the index k now refers to a typical one of the group of states having
about the energy E,,. Theintegralin (29.11)is / 27 2sin? xdx = i,
so that we finally obtain

w = 2T (k) [ H 2 (20.12)

which is independent of ¢, as expected.

There may be several different groups of final states &, all of which
have about the energy E, but for which the perturbation matrix ele-
ments H,, and the densities of states p(k), while nearly constant within a
group, differ from one group to another. Then (29.12) gives the transi-
tions per unit time to a particular group; similar expressions of the same
form give the rates of transition to other groups.

Scattering Cross Section. As a first application of Eq. (29.12), we
calculate w when the initial and final states are free-particle momentum
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eigenfunctions (plane waves) and the perturbation is a potential energy
V(r). The result can be interpreted in terms of an elastic scattering cross
section, and then agrees with the Born approximation result (Sec. 26), as
expected. We take for the initial and final states

um(r) = L% exp tko - 1, up(r) = L-texpik-r

where ko and k are the initial and final propagation vectors, respectively.
Thus the perturbation matrix element is

tm = L3 exp (—ik - 1)V (r) exp (iko - r)dr
= L=3[V(r) exp (K -1)dr (29.13)
where K = ko — k.

The density of final states can be found from the permitted values of k
in a box: k, = 2mrn,/L, ete., where the n’s are positive or negative integers
or zero. Thus there are (L/2r)3dk dk,dk, states in the range dk.dk,dk, of
propagation vector. Now there are many different final states k with the
same energy, corresponding to different directions of k with a given
magnitude. The matrix element (29.13) usually depends on the direction
of k, so that we have to consider only a small range of directions at a time.
We therefore ask for the rate of transition into an infinitesimal element of
solid angle sin 8d6d¢ about some direction that is specified by the polar
angles 8,¢. Then p(k)dE} is equal to the number of states in the range
dri, given by the above solid angle element and the magnitude element dk
that corresponds to the energy element dE;.

3
o(k)dE, = (%_) k2dk sin 6d6d¢
Since Ey = h2k2/2u, dE/dk = h%k/u, and we obtain for p(k)
o(k) = 3h2 k sin 0d6d¢ (29.14)

The value of w obtained in this way is the number of particles scat-
tered into the element of solid angle per unit time when there is one
incident particle in the volume L3 This is an incident flux of »/L3
particles per unit area and time, where » = fik/u is the speed of the inci-
dent or scattered particle (since energy is conserved). Since the dif-
ferential scattering cross section is defined as the scattering per unit
incident flux, we have that

yL

o(8,¢) sin 6dode = 5w

(29.15)
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Substitution of (29.12), (29.13), and (29.14) into (29.15) gives

0,0 = (32)

This agrees with the Born approximation result (26.18) and (26.19),
and has the same range of validity.

Harmonic Perturbation. Another situation for which Eq. (29.8)
assumes a simple form occurs when the perturbation depends harmoni-
cally on the time, except for being turned on at zero time and off at time .
If we put H},(t") = H}S, sin ot/ the first-order amplitudes at time ¢ are

2

[ V(r) exp (iK - r)dr (29.16)

Wkm 1 @ Wkm — @

af’(t) = — 55 (29.17)

H;co I:ei(wkm'l-w)t -1 ptlwrm—w)t 1:|

The probability of finding the system in the state k is appreciable only
when the denominator of one or the other of the two terms in (29.17) is
practically zero. Thus there is no interference between the two terms,
and the perturbation can produce transitions for which wim = F if the
corresponding matrix element does not vanish. The energy-conserva-
tion condition E; = E,, obtained earlier is now replaced by the condition

E. =~ E, + o (29.18)

Equation (29.18) suggests that the first-order effect of a perturbation
that varies harmonically in the time with angular frequency w is to trans-
fer to or receive from the system on which it acts an amount of energy
ho. This concept will be used for a qualitative treatment of radiation
processes in Chap. X.

Second-order Perturbation. The series of equations (29.7) can read-
ily be solved to second order for a perturbation that is constant in time.
We take the equation with s = 1, and substitute from (29.9) on the right
side.

7
a‘sc2) —_ h_2 S H}z:f{,.m (6“‘”""t — e“'”‘"‘)
Integration of this equation subject to the initial condition af’(0) = 0
gives for the second-order amplitudes at time ¢

a(t) = kS [e““'”' —1_ o= 1] (29.19)

Wim Win

Equation (29.19) indicates that transitions for which the probability
increases linearly with the time can occur either for wim = 0 or win =2 0.
While the first type of transition conserves energy between the initial
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state m and the final state k, the second need not. It is not difficult to
see that the second bracket term arises from the 1 in the numerator of
(29.9), which in turn comes from the initial condition at zero time. This
initial condition means that the perturbation is turned on suddenly; thus
the mathematical formulation suggests that the second-order transitions
that do not conserve energy are caused by the sudden turning on of the
perturbation. This is in agreement with Eqs. (29.8) and (29.17), which
show that a perturbation that has nonzero frequency Fourier components
can give up energy to or absorb energy from the system that it perturbs.
In the case we are now considering, these Fourier components are not
marked enough to produce in first order a transition probability that is
proportional to the time, but they do in second order.

In most practical problems, the sudden turning on of the perturbation
is introduced as a mathematical artifice that simplifies the calculation.
Actually, in such cases, the perturbation either is always present, or is
turned on very slowly, and we are concerned with transitions that con-
serve energy between initial and final states. Problems that can be
treated by the sudden approximation (see end of Sec. 31) are an excep-
tion; there energy need not be conserved. Throughout this section and
the next, we assume that only transitions that conserve the energy actu-
ally oceur (wim =2 0).

Suppose now that the perturbation produces no transitions in first
order; this means that there are no states n that conserve energy (wn» = 0)
for which the matrix element H’,, # 0. Since win =2 0, this means also
that H’, = 0 whenever wi, =~ 0. In this case, the second term in the
bracket of (29.19) is never appreciable. The calculation of w is carried
through as before, except that a@® replaces a’; thus (29.12) can be used
if the matrix element Hy}, is replaced by the second-order matrix element

;an:nn
S Jo— (29.20)

Effect of First-order Transitions. In the event that transitions can
occur in first order, but they are not to the state in which we are inter-
ested, we can proceed as follows. It is still true that the second term in
the bracket of (29.19) is negligible for states n that have energies appreci-
ably different from E; (or E,.), since then w, is large. However, there
may now be states n for which E,, E,., and E; are all close together and
neither H}, nor H',, is zero. The second bracket term cannot be ignored,
for without it the summation or integration over n would have a singu-
larity when w,, is zero. It is not difficult to see that for any value of
wem (zero or otherwise), the entire bracket is proportional to w,.. (which
is equal t0 wim — win) When w., is small; this cancels out the wus
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in the denominator, and makes the summand or integrand finite
where wum = 0.1

We now show how an explicit evaluation of (29.19) is obtained in this
case if S can be represented by an integral over E, or wan. We divide the
integral into parts according as |w.»| is large or is not large in comparison
with 1/¢. In the first region, the second bracket term in (29.19) can
be neglected, since |wia| = |wim — wam| 15 also large in comparison with
1/t (wim =2 0 means that wi.t is not large in comparison with unity).
We thus obtain for this part of the integral

gt — 1 [ HyHi,
o / o p(n)hdwnm (29.21)

Here p(n)dE, is the number of states of the particular group n under
consideration in the energy range dE.; the prime on the integral implies
that the region —¢/t £ wam = ¢/t is excluded from the integration, where
¢ is a constant number that is large in comparison with unity. If there
are two or more distinct groups of states n for which the matrix elements
or densities of states differ, a further summation over these different
groups must eventually be carried out.

In the second region, where |w..| < ¢/, we assume that ¢ is large
enough so that H;, H.,.0(n) can be regarded as a constant, taken outside
of the integral, and evaluated at w.., = 0. We must now use both terms
in the bracket of (29.19) in order that the integrand be finite. This part
of the integral is then

(29.22)

Wnm

et — 1 @m0t — 17 dewmm
Wkm Wim — Wnm

t
BH ()]0 - f [

The integral that appears in (29.22) can be evaluated by considering the
contour in the complex w.. plane shown in Fig. 28 which contains no
poles of the integrand. Thus the integral over the closed contour is
zero, and the integral in (29.22) is equal to the integral around the semi-
circle of radius ¢/t taken in the counterclockwise direction. The magni-
tude of wan is great enough over this semicircle so that the contribution

t This result follows quite generally from the structure of the whole perturbation
calculation, since there is no way in which a singularity can appear. Thus if the
perturbation is turned on slowly rather than suddenly, so that the energy-conservation
difficulties mentioned above do not occur, the second bracket term of (29.19) has a
more complicated form but still cancels out the singularity at wnm = 0. This can be
verified by direct calculation.
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of the second term in the integrand can be neglected in comparison with
the first. The integral in (29.22) is then easily evaluated and becomes
L€t — 1

" (29.23)

For large ¢, the prime on the integral in (29.21) is equivalent to taking

its principal value.! Thus if we substitute (29.23) into (29.22) and add
the result to (29.21), we obtain an expression like (29.21) except that the
primed integral is replaced by the principal value of the integral plus
7 times the residue of the integrand at the pole w., = 0. This is equiva-
lent to evaluating the integral along a contour in the complex wn. plane

+|Imaginary

axis Dyym Plarie .8
z_Real

o oxis

o

F1a. 28. Contour for the evaluation of the integral in Eq. (29.22).

that passes along the real axis from — wto « except for passing beneath
the origin. We thus obtain finally

eomt — 1 [ Hj H,
(2) — kntfnm
a® () o /C B p(n)dE, (29.24)

where the contour C is over the real axis of E, except for passing under
the pole of the integrand at E, = E,. Equation (29.24) is to be used in
place of (29.19) whenever § can be represented by [p(n)dE,. Compari-
son of Egs. (29.24) and (29.9) shows that we can use the expression (29.12)
for w if we replace the matrix element Hj, by the integral in (29.24),
which we sometimes call the second-order matrix element. An example
of this is given in the next section.

Intermediate States. We see that the time-dependent perturbation
theory gives a result in first order if there is a nonvanishing matrix

LE. T. Whittaker and G. N. Watson, ““A Course of Modern Analysis,” 4th ed.,
pp. 75, 117 (Cambridge, London, 1935).
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element of H’ that connects the initial state m and the final state k.
If H;,, = 0, but there are one or more states » for which neither f;,,, nor
H,, is zero, the transition occurs in second order.

It is then convenient to think of one of the states n as an infermediate
state: the perturbation transfers the system from m to k in two steps,
through a state n. Energy need not be conserved for an intermediate
state, since it has only a transient existence and according to the uncer-
tainty relation (3.3) it is impossible to determine the energy of such a
short-lived state with any precision. If some of the intermediate states
do conserve energy, the summation (29.20) over these states must be
interpreted in accordance with the integral in (29.24).

In some cases, a perturbation can produce a particular transition only
through two or more different intermediate states; this corresponds to a
third or higher order of the perturbation calculation. If the perturba-
tion is small, it usually happens that the result of a calculation to the
lowest order in which the transition oceurs gives a useful result, while
higher order calculations do not improve on this and may even be quite
misleading.

30. INELASTIC COLLISIONS

The expression for the scattering cross section given in the preceding
section is easily generalized to a description of inelastic collisions, in which
internal as well as kinetic energy can be transferred between the colliding
systems. In this section we apply the result to two problems that are
typical of first-order and of second-order processes.! The latter calcula-
tion is of unusual theoretical interest, for it shows explicitly how a particle
that is described entirely in terms of a plane wave (momentum eigen-
function) can produce a sharp track in a Wilson cloud chamber.

Expression for the Cross Section. The expression (29.12) for the
rate of transition w is applicable to inelastic collisions if the matrix ele-
ment is defined accordingly. We consider here the collision of a fast
electron with a hydrogen atom in its ground state, and wish to calculate
the cross section for scattering of the electron through a definite angle
accompanied by excitation of the hydrogen atom to a definite state. We
leave out of consideration the possibility that the incident electron
changes places with the atomic electron; such exchange collisions will be
taken up in Chap. IX.

1 The examples considered in this section can also be treated by an extension of
the Born approximation; such an extension to first-order rearrangement collisions is
given in Sec. 34. For the treatment of second-order processes, it is more convenient
to work with the method of variation of constants.



