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The nature of light: what is a photon?
Chandrasekhar Roychoudhuri and Rajarshi Roy

Guest Editors

This issue of OPN Trends was conceived to bring together different views regarding a question that was first posed in ancient
times but remains unanswered today. What, indeed, is “the nature of light”? Many of us still feel perplexed when asked by a
student to answer the seemingly simple question, “What is a photon?” © 2003 Optical Society of America

OCIS codes: 270.0270, 260.0260.

It is staggering to consider the degree to which civiliza-tion has evolved in the approximately 90 years since Niels
Bohr’s ad hoc quantization of atoms based on experimentally
measured line spectra The changes that have occurred, includ-
ing the growth of our knowledge of the micro and macro ma-
terial worlds and the emergence of new technologies, have
progressed far beyond the imagination of people living at
the turn of the 20th century. In the 21st century, the pace
of development will accelerate as a result of the rapid evo-
lution of photonics. Yet the underlying science of the field
is still Maxwell’s classical electromagnetism, not the field-
quantized photon. We can certainly expect new photon-led
breakthroughs in which the quantized nature of photons is in-
trinsically important, e.g., quantum encryption. The issue is
important both in the scientific and in the technology driven
socio-economic contexts.
Writing a semi-popular article on the nature of the pho-

ton is a difficult task. We are very thankful that a number
of renowned scientists have accepted the challenge and writ-
ten five superb articles for all of us to enjoy. Each article in
this issue of OPN Trends presents a somewhat different se-
lection of facts and illuminates historical events with inter-
esting comments. As for the photon itself, we find here a va-
riety of approaches that place it in different contexts. There
are descriptions of the photon based on experiments that have
used progressively refined probes to measure the interaction
of light with matter. We also find descriptions of theoretical
advances that have required an ever increasing understanding
of the role of light in the conceptual framework of the physi-
cal universe as we view it today.
We invite our readers to embark on an exciting adventure.

Before reading these articles, jot down what you think are the
most pertinent facts you have learned about photons. Then
read the articles in this issue in any order that appeals you.
How deeply you engage yourself in this task depends on you.
We ourselves are certain that we will revisit the articles and
read them again for many years. At any stage of your reading,
write down what you think of the photon as a result of what
you have read here and what you have learned from other
sources, for the photon is not an object that can be pinned
down like a material object, say, a beautiful butterfly in a col-
lection. The photon tells us, “I am who I am!” in no uncer-
tain terms and invites us to get better acquainted with it. The
chronicle will surely amuse and amaze you, for you will re-

Chandrasekhar Roychoudhuri, University of Connecticut, and
Rajarshi Roy, University of Maryland, College Park, are the guest

editors of this issue of OPN Trends.

alize that any description of the photon, at any time—even
when made by the most learned expert—is but a glimpse of
a reality that holds wonders beyond the grasp of any human.
At least, that is how it appears to some of us today.
Our special acknowledgment goes to Nippon Sheet Glass

Corp. for sponsoring this supplement to Optics & Photonics
News (OPN) and for agreeing to subsidize the cost of produc-
tion.
We dedicate this special issue to Professor Willis Lamb on

the occasion of his 90th birthday. The “Lamb shift” triggered
the development of the field of quantum electrodynamics and
Professor Lamb has wrestled with the photon longer and more
creatively than almost anyone alive today.
Chandrasekhar Roychoudhuri (chandra@phys.uconn.edu)

is with the Photonics Lab, Physics Department, Uni-
versity of Connecticut, Storrs, Conn. Rajarshi Roy
(rroy@glue.umd.edu) is with the Institute for Physical
Science and Technology, University of Maryland, College
Park, Md.
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Light reconsidered
Arthur Zajonc

Physics Department, Amherst College

I therefore take the liberty of proposing for this hypothetical new atom, which is not light but plays an essential
part in every process of radiation, the name photon.1 Gilbert N. Lewis, 1926

© 2003 Optical Society of America
OCIS codes: 270.0270.

Light is an obvious feature of everyday life, and yet light’s
true nature has eluded us for centuries. Near the end of

his life Albert Einstein wrote, “All the fifty years of con-
scious brooding have brought me no closer to the answer to
the question: What are light quanta? Of course today every
rascal thinks he knows the answer, but he is deluding him-
self.” We are today in the same state of “learned ignorance”
with respect to light as was Einstein.
In 1926 when the chemist Gilbert Lewis suggested the

name “photon,” the concept of the light quantum was already
a quarter of a century old. First introduced by Max Planck in
December of 1900 in order to explain the spectral distribu-
tion of blackbody radiation, the idea of concentrated atoms
of light was suggested by Einstein in his 1905 paper to ex-
plain the photoelectric effect. Four years later on September
21, 1909 at Salzburg, Einstein delivered a paper to the Divi-
sion of Physics of German Scientists and Physicians on the
same subject. Its title gives a good sense of its content: “On
the development of our views concerning the nature and con-
stitution of radiation.”2
Einstein reminded his audience how great had been their

collective confidence in the wave theory and the luminifer-
ous ether just a few years earlier. Now they were confronted
with extensive experimental evidence that suggested a partic-
ulate aspect to light and the rejection of the ether outright.
What had seemed so compelling was now to be cast aside for
a new if as yet unarticulated view of light. In his Salzburg lec-
ture he maintained “that a profound change in our views on
the nature and constitution of light is imperative,” and “that
the next stage in the development of theoretical physics will
bring us a theory of light that can be understood as a kind
of fusion of the wave and emission theories of light.” At that
time Einstein personally favored an atomistic view of light in
which electromagnetic fields of light were “associated with
singular points just like the occurrence of electrostatic fields
according to the electron theory.” Surrounding these electro-
magnetic points he imagined fields of force that superposed
to give the electromagnetic wave of Maxwell’s classical the-
ory. The conception of the photon held by many if not most
working physicists today is, I suspect, not too different from
that suggested by Einstein in 1909.
Others in the audience at Einstein’s talk had other views

of light. Among those who heard Einstein’s presentation was

Max Planck himself. In his recorded remarks following Ein-
stein’s lecture we see him resisting Einstein’s hypothesis of
atomistic light quanta propagating through space. If Einstein
were correct, Planck asked, how could one account for in-
terference when the length over which one detected interfer-
ence was many thousands of wavelengths? How could a quan-
tum of light interfere with itself over such great distances if
it were a point object? Instead of quantized electromagnetic
fields Planck maintained that “one should attempt to transfer
the whole problem of the quantum theory to the area of in-
teraction between matter and radiation energy.” That is, only
the exchange of energy between the atoms of the radiating
source and the classical electromagnetic field is quantized.
The exchange takes place in units of Planck’s constant times
the frequency, but the fields remain continuous and classical.
In essence, Planck was holding out for a semi-classical theory
in which only the atoms and their interactions were quantized
while the free fields remained classical. This view has had a
long and honorable history, extending all the way to the end
of the 20th century. Even today we often use a semi-classical
approach to handle many of the problems of quantum optics,
including Einstein’s photoelectric effect.3
The debate between Einstein and Planck as to the nature

of light was but a single incident in the four thousand year
inquiry concerning the nature of light.4 For the ancient Egyp-
tian light was the activity of their god Ra seeing. When Ra’s
eye (the Sun) was open, it was day. When it was closed, night
fell. The dominant view in ancient Greece focused likewise
on vision, but now the vision of human beings instead of the
gods. The Greeks and most of their successors maintained
that inside the eye a pure ocular fire radiated a luminous
stream out into the world. This was the most important factor
in sight. Only with the rise of Arab optics do we find strong
arguments advanced against the extromissive theory of light
expounded by the Greeks. For example around 1000 A.D. Ibn
al-Haytham (Alhazen in the West) used his invention of the
camera obscura to advocate for a view of light in which rays
streamed from luminous sources traveling in straight lines to
the screen or the eye.
By the time of the scientific revolution the debate as to

the physical nature of light had divided into the two familiar
camps of waves and particles. In broad strokes Galileo and
Newton maintained a corpuscular view of light, while Huy-
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The Nature of Light

gens, Young and Euler advocated a wave view. The evidence
supporting these views is well known.

The elusive single photon

One might imagine that with the more recent developments of
modern physics the debate would finally be settled and a clear
view of the nature of light attained. Quantum electrodynamics
(QED) is commonly treated as the most successful physical
theory ever invented, capable of predicting the effects of the
interaction between charged particles and electromagnetic ra-
diation with unprecedented precision. While this is certainly
true, what view of the photon does the theory advance? And
how far does it succeed in fusing wave and particle ideas? In
1927 Dirac, one of the inventors of QED, wrote confidently
of the new theory that, “There is thus a complete harmony
between the wave and quantum descriptions of the interac-
tion.”5 While in some sense quantum field theories do move
beyond wave particle duality, the nature of light and the pho-
ton remains elusive. In order to support this I would like to
focus on certain fundamental features of our understanding
of photons and the philosophical issues associated with quan-
tum field theory.6
In QED the photon is introduced as the unit of excitation

associated with a quantized mode of the radiation field. As
such it is associated with a plane wave of precise momen-
tum, energy and polarization. Because of Bohr’s principle of
complementarity we know that a state of definite momentum
and energy must be completely indefinite in space and time.
This points to the first difficulty in conceiving of the pho-
ton. If it is a particle, then in what sense does it have a loca-
tion? This problem is only deepened by the puzzling fact that,
unlike other observables in quantum theory, there is no Her-
metian operator that straightforwardly corresponds to posi-
tion for photons. Thus while we can formulate a well-defined
quantum-mechanical concept of position for electrons, pro-
tons and the like, we lack a parallel concept for the photon
and similar particles with integer spin. The simple concept of
spatio-temporal location must therefore be treated quite care-
fully for photons.
We are also accustomed to identifying an object by a

unique set of attributes. My height, weight, shoe size, etc.
uniquely identify me. Each of these has a well-defined value.
Their aggregate is a full description of me. By contrast the
single photon can, in some sense, take on multiple directions,
energies and polarizations. Single-photon spatial interference
and quantum beats require superpositions of these quantum
descriptors for single photons. Dirac’s refrain “photons inter-
fere with themselves” while not universally true is a reminder
of the importance of superposition. Thus the single photon
should not be thought of as like a simple plane wave having
a unique direction, frequency or polarization. Such states are
rare special cases. Rather the superposition state for single
photons is the common situation. Upon detection, of course,
light appears as if discrete and indivisible possessing well-
defined attributes. In transit things are quite otherwise.
Nor is the single photon state itself easy to produce. The

anti-correlation experiments of Grangier, Roger and Aspect

provide convincing evidence that with suitable care one can
prepare single-photon states of light.7 When sent to a beam
splitter such photon states display the type of statistical cor-
relations we would expect of particles. In particular the single
photons appear to go one way or the other. Yet such single-
photon states can interfere with themselves, even when run in
“delayed choice.”8

More than one photon

If we consider multiple photons the conceptual puzzles multi-
ply as well. As spin one particles, photons obey Bose-Einstein
statistics. The repercussions of this fact are very significant
both for our conception of the photon and for technology.
In fact Planck’s law for the distribution of blackbody radi-
ation makes use of Bose-Einstein statistics. Let us compare
the statistics suited to two conventional objects with that of
photons. Consider two marbles that are only distinguished
by their colors: red (R) and green (G). Classically, four dis-
tinct combinations exist: RR, GG, RG and GR. In writing this
we presume that although identical except for color, the mar-
bles are, in fact, distinct because they are located at different
places. At least since Aristotle we have held that two objects
cannot occupy exactly the same location at the same time and
therefore the two marbles, possessing distinct locations, are
two distinct objects.
Photons by contrast are defined by the three quantum num-

bers associated with momentum, energy and polarization; po-
sition and time do not enter into consideration. This means
that if two photons possess the same three values for these
quantum numbers they are indistinguishable from one an-
other. Location in space and in time is no longer a means
for theoretically distinguishing photons as elementary parti-
cles. In addition, as bosons, any number of photons can oc-
cupy the same state, which is unlike the situation for electrons
and other fermions. Photons do not obey the Pauli Exclusion
Principle. This fact is at the foundation of laser theory be-
cause laser operation requires many photons to occupy a sin-
gle mode of the radiation field.
To see how Bose-Einstein statistics differ from classical

statistics consider the following example. If instead of mar-
bles we imagine we have two photons in our possession
which are distinguished by one of their attributes, things are
quite different. For consistency with the previous example I
label the two values of the photon attribute R and G. As re-
quired by Bose-Einstein statistics, the states available to the
two photons are those that are symmetric states under ex-
change: RR, GG and 1/2(RG + GR). The states RG and GR
are non-symmetric, while the combination 1/2(RG – GR) is
anti-symmetric. These latter states are not suitable for pho-
tons. All things being equal we expect equal occupation for
the three symmetric states with 1/3 as the probability for find-
ing a pair of photons in each of the three states, instead of
1/4 for the case of two marbles. This shows that it makes no
sense to continue to think of photons as if they were “really”
in classical states like RG and GR.
Experimentally we can realize the above situation by send-

ing two photons onto a beam splitter. From a classical per-
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spective there are four possibilities. They are sketched out
in Fig. 1. We can label them RR for two right-going pho-
tons, UR for up and right, RU for right and up, and UU for
the two photons going up. The quantum amplitudes for the
UR and RU have opposite signs due to the reflections which
the photons undergo in Fig. 1c, which leads to destructive in-
terference between these two amplitudes. The signal for one
photon in each direction therefore vanishes. Surprisingly both
photons are always found together. Another way of thinking
about the experiment is in terms of the bosonic character of
photons. Instead of thinking of the photons as having individ-
ual identities we should really think of there being three ways
of pairing the two photons: two up (UU), two right (RR) and
the symmetric combination (1/2(UR + RU)). All things be-
ing equal, we would expect the experiment to show an even
distribution between the three options, 1/3 for each. But the
experiment does not show this; why not? The answer is found
in the opposite signs associated with UR and RU due to re-
flections. As a consequence the proper way to write the state
for combination of b and c is 1/2(UR – RU). But this is anti-
symmetric and therefore forbidden for photons which must
have a symmetric state.

Fig. 1. Copyright permission granted by Nature.9

From this example we can see how Bose statistics con-
founds our conception of the identity of individual photons
and rather treats them as aggregates with certain symmetry
properties. These features are reflected in the treatment of
photons in the formal mathematical language of Fock space.
In this representation we only specify how many quanta are
to be found in each mode. All indexing of individual particles
disappears.

Photons and relativity

In his provocatively titled paper “Particles do not Exist,” Paul
Davies advances several profound difficulties for any conven-
tional particle conception of the photon, or for that matter
for particles in general as they appear in relativistic quantum
field theory.10 One of our deepest tendencies is to reify the
features that appear in our theories. Relativity confounds this
habit of mind, and many of the apparent paradoxes of rela-
tivity arise because of our erroneous expectations due to this
attitude. Every undergraduate is confused when, having mas-
tered the electromagnetic theory of Maxwell he or she learns
about Einstein’s treatment of the electrodynamics of moving
bodies. The foundation of Einstein’s revolutionary 1905 pa-
per was his recognition that the values the electric and mag-
netic fields take on are always relative to the observer. That
is, two observers in relative motion to one another will record
on their measuring instruments different values of E and B for
the same event. They will, therefore, give different causal ac-
counts for the event. We habitually reify the electromagnetic
field so that particular values of E and B are imagined as truly
extant in space independent of any observer. In relativity we
learn that in order for the laws of electromagnetism to be true
in different inertial frames the values of the electric and mag-
netic fields (among other things) must change for different
inertial frames. Matters only become more subtle when we
move to accelerating frames.
Davies gives special attention to the problems that arise for

the photon and other quanta in relativistic quantum field the-
ory. For example, our concept of reality has, at its root, the no-
tion that either an object exists or it does not. If the very exis-
tence of a thing is ambiguous, in what sense is it real? Exactly
this is challenged by quantum field theory. In particular the
quantum vacuum is the state in which no photons are present
in any of the modes of the radiation field. However the vac-
uum only remains empty of particles for inertial observers. If
instead we posit an observer in a uniformly accelerated frame
of reference, then what was a vacuum state becomes a ther-
mal bath of photons for the accelerated observer. And what
is true for accelerated observers is similarly true for regions
of space-time curved by gravity. Davies uses these and other
problems to argue for a vigorous Copenhagen interpretation
of quantum mechanics that abandons the idea of a “particle as
a really existing thing skipping between measuring devices.”
To my mind, Einstein was right to caution us concerning

light. Our understanding of it has increased enormously in
the 100 years since Planck, but I suspect light will continue to
confound us, while simultaneously luring us to inquire cease-
lessly into its nature.
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What is a photon?
Rodney Loudon

University of Essex, Colchester, UK

The concept of the photon is introduced by discussion of the process of electromagnetic field quantization within a closed cavity
or in an open optical system. The nature of a single-photon state is clarified by consideration of its behaviour at an optical beam
splitter. The importance of linear superposition or entangled states in the distinctions between quantum-mechanical photon states
and classical excitations of the electromagnetic field is emphasized. These concepts and the ideas of wave–particle duality are
illustrated by discussions of the effects of single-photon inputs to Brown–Twiss and Mach–Zehnder interferometers. Both the
theoretical predictions and the confirming experimental observations are covered. The defining property of the single photon in
terms of its ability to trigger one, and only one, photodetection event is discussed. © 2003 Optical Society of America

OCIS codes: 270.0270.

The development of theories of the nature of light has a
long history, whose main events are well reviewed by

Lamb1. The history includes strands of argument in favor of
either a particle or a wave view of light. The realm of clas-
sical optics includes all of the phenomena that can be under-
stood and interpreted on the basis of classical wave and par-
ticle theories. The conflicting views of the particle or wave
essence of light were reconciled by the establishment of the
quantum theory, with its introduction of the idea that all exci-
tations simultaneously have both particle-like and wave-like
properties. The demonstration of this dual behavior in the
real world of experimental physics is, like so many basic
quantum-mechanical phenomena, most readily achieved in
optics. The fundamental properties of the photon, particularly
the discrimination of its particle-like and wave-like proper-
ties, are most clearly illustrated by observations based on the
use of beam splitters. The realm of quantum optics includes
all of the phenomena that are not embraced by classical op-
tics and require the quantum theory for their understanding
and interpretation. The aim of the present article is to try to
clarify the nature of the photon by considerations of electro-
magnetic fields in optical cavities or in propagation through
free space.

Single photons and beam splitters

A careful description of the nature of the photon begins with
the electromagnetic field inside a closed optical resonator, or
perfectly-reflecting cavity. This is the system usually assumed
in textbook derivations of Planck’s radiation law2. The field
excitations in the cavity are limited to an infinite discrete set
of spatial modes determined by the boundary conditions at
the cavity walls. The allowed standing-wave spatial varia-
tions of the electromagnetic field in the cavity are identical
in the classical and quantum theories. However, the time de-
pendence of each mode is governed by the equation of mo-
tion of a harmonic oscillator, whose solutions take different
forms in the classical and quantum theories. Unlike its clas-
sical counterpart, a quantum harmonic oscillator of angular
frequency ω can only be excited by energies that are inte-
ger multiples of h̄ω . The integer n thus denotes the number
of energy quanta excited in the oscillator. For application to

the electromagnetic field, a single spatial mode whose associ-
ated harmonic oscillator is in its nth excited state unambigu-
ously contains n photons, each of energy h̄ω . Each photon
has a spatial distribution within the cavity that is proportional
to the square modulus of the complex field amplitude of the
mode function. For the simple, if unrealistic, example of a
one-dimensional cavity bounded by perfectly reflecting mir-
rors, the spatial modes are standing waves and the photon may
be found at any position in the cavity except the nodes. The
single-mode photons are said to be delocalized.
These ideas can be extended to open optical systems, where

there is no identifiable cavity but where the experimental ap-
paratus has a finite extent determined by the sources, the
transverse cross sections of the light beams, and the detectors.
The discrete standing-wave modes of the closed cavity are re-
placed by discrete travelling-wave modes that propagate from
sources to detectors. The simplest system to consider is the
optical beam splitter, which indeed is the central component
in many of the experiments that study the quantum nature of
light. Fig. 1 shows a representation of a lossless beam splitter,
with two input arms denoted 1 and 2 and two output arms de-
noted 3 and 4. An experiment to distinguish the classical and
quantum natures of light consists of a source that emits light
in one of the input arms and which is directed by the beam
splitter to detectors in the two output arms. The relevant spa-
tial modes of the system in this example include a joint exci-
tation of the selected input arm and both output arms.
The operators âi in Fig. 1 are the photon destruction opera-

tors for the harmonic oscillators associated with the two input
(i = 1,2) and two output (i = 3,4) arms. These destruction
operators essentially represent the amplitudes of the quantum
electromagnetic fields in the four arms of the beam splitter,
analogous to the complex classical field amplitudes. The real
electric-field operators of the four arms are proportional to
the sum of âi exp(−iωt) and the Hermitean conjugate opera-
tors â†i exp(iωt). The proportionality factor includes Planck’s
constant h̄, the angular frequency ω , and the permittivity of
free space ε0, but its detailed form does not concern us here.
For the sake of brevity, we refer to âi as the field in arm i. The
operator â†i is the photon creation operator for arm i and it
has the effect of generating a single-photon state |1〉i in arm
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Fig. 1. Schematic representation of an optical beam splitter
showing the notation for the field operators in the two input
and two output arms. In practice the beam-splitter cube is of-
ten replaced by a partially reflecting plate at 45◦ or a pair of
optical fibers in contact along a fused section.

Fig. 2. Brown–Twiss interferometer using a single-photon in-
put obtained from cascade emission with an electronic gate.

Fig. 3. Normalized output correlation as a function of the av-
erage additional photon number 〈n〉, as measured in the ex-
periment represented in Fig. 2. (After ref. 9).

i, according to
â†i |0〉 = |1〉i . (1)

Here |0〉 is the vacuum state of the entire input–output system,
which is defined as the state with no photons excited in any
of the four arms.
The relations of the output to the input fields at a symmet-

ric beam splitter have forms equivalent to those of classical
theory,

â3 = Râ1+T â2 and â4 = T â1+Râ2, (2)

where R and T are the reflection and transmission coefficients
of the beam splitter. These coefficients are generally complex
numbers that describe the amplitudes and phases of the re-
flected and transmitted light relative to those of the incident
light. They are determined by the boundary conditions for the
electromagnetic fields at the partially transmitting and par-
tially reflecting interface within the beam splitter. The bound-
ary conditions are the same for classical fields and for the
quantum-mechanical field operators âi. It follows that the co-
efficients satisfy the standard relations3

|R|2+ |T |2 = 1 and RT ∗ +TR∗ = 0. (3)

It can be shown2 that these beam-splitter relations ensure
the conservation of optical energy from the input to the out-
put arms, in both the classical and quantum forms of beam-
splitter theory.
The essential property of the beam splitter is its ability to

convert an input photon state into a linear superposition of
output states. This is a basic quantum-mechanical manipula-
tion that is less easily achieved and studied in other physical
systems. Suppose that there is one photon in input arm 1 and
no photon in input arm 2. The beam splitter converts this joint
input state to the output state determined by the simple calcu-
lation

|1〉1 |0〉2 = â†1 |0〉 =
(
Râ†3+T â†4

)
|0〉

= T |1〉3 |0〉4+R |0〉3 |1〉4 , (4)

where |0〉 is again the vacuum state of the entire system. The
expression for â†1 in terms of output arm operators is obtained
from the Hermitean conjugates of the relations in eqn (2) with
the use of eqn (3). In words, the state on the right is a super-
position of the state with one photon in arm 3 and nothing in
arm 4, with probability amplitude T , and the state with one
photon in arm 4 and nothing in arm 3, with amplitude R. This
conversion of the input state to a linear superposition of the
two possible output states is the basic quantum-mechanical
process performed by the beam splitter. In terms of travelling-
wave modes, this example combines the input-arm excitation
on the left of eqn (4) with the output-arm excitation on the
right of eqn (4) to form a joint single-photon excitation of a
mode of the complete beam-splitter system.
Note that the relevant spatial mode of the beam splitter,

with light incident in arm 1 and outputs in arms 3 and 4, is
the same in the classical and quantum theories. What is quan-
tized in the latter theory is the energy content of the elec-
tromagnetic field in its distribution over the complete spatial
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extent of the mode. In the classical theory, an incident light
beam of intensity I1 excites the two outputs with intensities
|T |2 I1 and |R|2 I1, in contrast to the excitation of the quan-
tum state shown on the right of eqn (4) by a single incident
photon. A state of this form, with the property that each con-
tribution to the superposition is a product of states of different
subsystems (output arms), is said to be entangled. Entangled
states form the basis of many of the applications of quantum
technology in information transfer and processing4.

Brown-Twiss interferometer

The experiment described in essence by eqn (4) above is per-
formed in practice by the use of a kind of interferometer first
constructed by Brown and Twiss in the 1950s. They were not
able to use a single-photon input but their apparatus was es-
sentially that illustrated in Fig. 1 with light from amercury arc
incident in arm 1. Their interest was in measurements of the
angular diameters of stars by interference of the intensities
of starlight5 rather than the interference of field amplitudes
used in traditional classical interferometers. The techniques
they developed work well with the random multiphoton light
emitted by arcs or stars.
However, for the study of the quantum entanglement repre-

sented by the state on the right of eqn (4), it is first necessary
to obtain a single-photon input state, and herein lies the main
difficulty of the experiment. It is true, of course, that most
sources emit light in single-photon processes but the sources
generally contain large numbers of emitters whose emissions
occur at random times, such that the experimenter cannot re-
liably isolate a single photon. Even when an ordinary light
beam is heavily attenuated, statistical analysis shows that
single-photon effects cannot be detected by the apparatus in
Fig. 1. It is necessary to find a way of identifying the presence
of one and only one photon. The earliest reliable methods of
single-photon generation depended on optical processes that
generate photons in pairs. Thus, for example, the nonlinear
optical process of parametric down conversion6 replaces a
single incident photon by a pair of photons whose frequen-
cies sum to that of the incident photon to ensure energy con-
servation. Again, two-photon cascade emission is a process in
which an excited atom decays in two steps, first to an interme-
diate energy level and then to the ground state, emitting two
photons in succession with a delay determined by the life-
time of the intermediate state7. If one of the photons of the
pair produced by these processes is detected, it is known that
the other photon of the pair must be present more-or-less si-
multaneously. For a two-photon source sufficiently weak that
the time separation between one emitted pair and the next is
longer than the resolution time of the measurement, this sec-
ond photon can be used as the input to a single-photon ex-
periment. More versatile single-photon light sources are now
available8.
The arrangement of the key single-photon beam-splitter

experiment9 is represented in Fig. 2. Here, the two photons
came from cascade emission in an atomic Na light source S
and one of them activated photodetector D. This first detec-
tion opened an electronic gate that activated the recording of

the responses of two detectors in output arms 3 and 4 of the
Brown–Twiss beam splitter. The gate was closed again after
a period of time sufficient for the photodetection. The experi-
ment was repeated many times and the results were processed
to determine the average values of the mean photocounts 〈n3〉
and 〈n4〉 in the two arms and the average value 〈n3n4〉 of their
correlation product. It is convenient to work with the normal-
ized correlation 〈n3n4〉

/
〈n3〉〈n4〉, which is independent of the

detector efficiencies and beam splitter reflection and trans-
mission coefficients. In view of the physical significance of
the entangled state in (4), the single-photon input should lead
to a single photon either in arm 3 or arm 4 but never a photon
in both output arms. The correlation 〈n3n4〉 should therefore
ideally vanish.
However, in the real world of practical experiments, a

purely single-photon input is difficult to achieve. In addition
to the twin of the photon that opens the gate, n additional
‘rogue’ photons may enter the Brown–Twiss interferometer
during the period that the gate is open, as represented in Fig.
2. These rogue photons are emitted randomly by other atoms
in the cascade light source and their presence allows two or
more photons to pass through the beam splitter during the
detection period. Fig. 3 shows experimental results for the
normalized correlation, with its dependence on the average
number 〈n〉 of additional photons that enter the interferom-
eter for different gate periods. The continuous curve shows
the calculated value of the correlation in the presence of the
additional rogue photons. It is seen that both experiment and
theory agree on the tendency of the correlation to zero as 〈n〉
becomes very small, in confirmation of the quantum expecta-
tion of the particle-like property of the output photon exciting
only one of the output arms.

Fig. 4. Representation of a Mach–Zehnder interferometer
showing the notation for input and output field operators and
the internal path lengths.
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Fig. 5. Mach–Zehnder fringes formed from series of single-
photon measurements as a function of the path difference ex-
pressed in terms of the wavelength. The vertical axis shows
the number of photodetections in arm 4 for (a) 1 sec and (b)
15 sec integration times per point. The latter fringes have 98%
visibility. (After ref. 9).

Mach–Zehnder interferometer

The excitation of one photon in a single travelling-wave mode
is also frequently considered in the discussion of the quantum
theory of the traditional classical amplitude-interference ex-
periments, for example Young’s slits or the Michelson and
Mach–Zehnder interferometers. Each classical or quantum
spatial mode in these systems includes input light waves,
both paths through the interior of the interferometer, and out-
put waves appropriate to the geometry of the apparatus. A
one-photon excitation in such a mode again carries an en-
ergy quantum h̄ω distributed over the entire interferometer,
including both internal paths. Despite the absence of any lo-
calization of the photon, the theory provides expressions for
the distributions of light in the two output arms, equivalent to
a determination of the interference fringes.
The arrangement of a Mach–Zehnder interferometer with

a single-photon input is represented in Fig. 4. The two beam
splitters are assumed to be symmetric and identical, with the
properties given in eqn (3). The complete interferometer can
be regarded as a composite beam splitter, whose two output
fields are related to the two input fields by

â3 = RMZâ1+TMZâ2 and â4 = TMZâ1+R′MZâ2, (5)

similar to eqn (2) but with different reflection coefficients
in the two relations. Without going into the details of the

calculation2, we quote the quantum result for the average
number of photons in output arm 4 when the experiment is
repeated many times with the same internal path lengths z1
and z2,

〈n4〉 =
∣∣TMZ

∣∣2 =
∣∣∣RT

(
eiωz1/c+ eiωz2/c

)∣∣∣
2

= 4 |R|2 |T |2 cos2
[
ω (z1− z2)

/
2c

]
. (6)

The fringe pattern is contained in the trigonometric factor,
which has the same dependence on frequency and relative
path length as found in the classical theory. Fig. 5 shows the
fringe pattern measured with the same techniques as used for
the Brown–Twiss experiment of Figs. 2 and 3. The average
photon count 〈n4〉 in output arm 4 was determined9 by re-
peated measurements for each relative path length. The two
parts of Fig. 5 show the improvements in fringe definition
gained by a fifteenfold increase in the number of measure-
ments for each setting.
The existence of the fringes seems to confirm the wave-

like property of the photon and we need to consider how this
behavior is consistent with the particle-like properties that
show up in the Brown–Twiss interferometer. For the Mach–
Zehnder interferometer, each incident photon must propagate
through the apparatus in such a way that the probability of
its leaving the interferometer by arm 4 is proportional to the
calculated mean photon number in eqn (6). This is achieved
only if each photon excites both internal paths of the inter-
ferometer, so that the input state at the second beam splitter
is determined by the complete interferometer geometry. This
geometry is inherent in the entangled state in the output arms
of the first beam splitter from eqn (4), with the output labels
3 and 4 replaced by internal path labels, and in the propaga-
tion phase factors for the two internal paths shown in TMZ
in eqn (6). The photon in the Mach–Zehnder interferometer
should thus be viewed as a composite excitation of the appro-
priate input arm, internal paths and output arms, equivalent
to the spatial field distribution produced by illumination of
the input by a classical light beam. The interference fringes
are thus a property not so much of the photon itself as of the
spatial mode that it excites.
The internal state of the interferometer excited by a single

photon is the same as that investigated by the Brown–Twiss
experiment. There is, however, no way of performing both
kinds of interference experiment simultaneously. If a detector
is placed in one of the output arms of the first beam splitter
to detect photons in the corresponding internal path, then it is
not possible to avoid obscuring that path, with consequent de-
struction of the interference fringes. A succession of sugges-
tions for more and more ingenious experiments has failed to
provide any method for simultaneous fringe and path obser-
vations. A complete determination of the one leads to a total
loss of resolution of the other, while a partial determination
of the one leads to an accompanying partial loss of resolution
of the other10.
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Detection of photon pulses

The discussion so far is based on the idea of the photon as
an excitation of a single traveling-wave mode of the complete
optical system considered. Such an excitation is independent
of the time and it has a nonzero probability over the whole
system, apart from isolated interference nodes. This picture
of delocalized photons gives reasonably correct results for the
interference experiments treated but it does not provide an ac-
curate representation of the physical processes in real experi-
ments. The typical light source acts by spontaneous emission
and this is the case even for the two-photon emitters outlined
above. The timing of an emission is often determined by the
random statistics of the source but, once initiated, it occurs
over a limited time span ∆t and the light is localized in the
form of a pulse or wavepacket. The light never has a precisely
defined angular frequency and ω is distributed over a range
of values ∆ω determined by the nature of the emitter, for ex-
ample by the radiative lifetime for atoms or by the geometry
of the several beams involved in a nonlinear-optical process.
The minimum values of pulse duration and frequency spread
are related by Fourier transform theory such that their product
∆t∆ω must have a value at least of order unity.
The improved picture of the photon thus envisages the ex-

citation of a pulse that is somewhat localized in time and in-
volves several traveling-wave modes of the optical system.
These modes are exactly the same as the collection of those
used in single-mode theory and they are again the same as
the spatial modes of classical theory. Their frequency sepa-
ration is often small compared to the wavepacket frequency
spread ∆ω , and it is convenient to treat their frequency ω
as a continuous variable. The theories of optical interfer-
ence experiments based on these single-photon continuous-
mode wavepackets are more complicated than the single-
mode theories but they provide more realistic descriptions of
the measurements. For example, the frequency spread of the
wavepacket leads to a blurring of fringe patterns and its lim-
ited time span may lead to a lack of simultaneity in the arrival
of pulses by different paths, with a destruction of interference
effects that depend on their overlap.
The good news is that the single-mode interference effects

outlined above survive the change to a wavepacket descrip-
tion of the photon for optimal values of the pulse parameters.
The discussions of the physical significances of the Brown–
Twiss and Mach–Zehnder interference experiments in terms
of particle-like and wave-like properties thus remain valid.
However, some of the concepts of single-mode theory need
modification. Thus, the single-mode photon creation operator
â† is replaced by the photon wavepacket creation operator

â†i =
∫
dωξ (ω)â†(ω), (7)

where ξ (ω) is the spectral amplitude of the wavepacket and
â†(ω) is the continuous-mode creation operator. The inte-
gration over frequencies replaces the idea of a single energy
quantum h̄ω in a discrete mode by an average quantum h̄ω0,
whereω0 is an average frequency of the wavepacket spectrum
|ξ (ω)|2.

The main change in the description of experiments, how-
ever, lies in the theory of the optical detection process2. For
the detection of photons by a phototube, the theory must
allow for its switch-on time and its subsequent switch-off
time; the difference between the two times is the integration
time. The more accurate theory includes the need for the pulse
to arrive during an integration time in order for the photon to
be detected. More importantly, it shows that the single-photon
excitation created by the operator defined in eqn (7) can at
most trigger a single detection event. Such a detection only
occurs with certainty, even for a 100% efficient detector, in
conditions where the integration time covers essentially all of
the times for which the wavepacket has significant intensity
at the detector. Of course, this feature of the theory merely re-
produces some obvious properties of the passage of a photon
wavepacket from a source to a detector but it is nevertheless
gratifying to have a realistic representation of a practical ex-
periment. Real phototubes miss some fraction of the incident
wavepackets, but the effects of detector efficiencies of less
than 100% are readily included in the theory2.

So what is a photon?

The question posed by this special issue has a variety of an-
swers, which hopefully converge to a coherent picture of this
somewhat elusive object. The present article presents a se-
ries of three physical systems in which the spatial distribu-
tion of the photon excitation progresses from a single discrete
standing-wave mode in a closed cavity to a single discrete
traveling-wave mode of an open optical system to a travel-
ing pulse or wavepacket. The first two excitations are spread
over the complete optical system but the wavepacket is local-
ized in time and contains a range of frequencies. All of these
spatial distributions of the excitation are the same in the clas-
sical and quantum theories. What distinguishes the quantum
theory from the classical is the limitation of the energy con-
tent of the discrete-mode systems to integer multiples of the
h̄ω quantum. The physically more realistic wavepacket ex-
citation also carries a basic energy quantum h̄ω0, but ω0 is
now an average of the frequencies contained in its spectrum.
The single-photon wavepacket has the distinguishing feature
of causing at most a single photodetection and then only when
the detector is in the right place at the right time.
It cannot be emphasized too strongly that the spatial modes

of the optical system, classical and quantum, include the com-
binations of all routes through the apparatus that are excited
by the light sources. In the wavepacket picture, a single pho-
ton excites this complete spatial distribution, however com-
plicated, and what is measured by a detector is determined
both by its position within the complete system and by the
time dependence of the excitation. The examples outlined
here show how particle-like and wave-like aspects of the pho-
ton may appear in suitable experiments, without any conflict
between the two.
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Modern developments in the physicist’s concept of nature have expanded our understanding of light and the photon in ever
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From the point of view of experience, “What is a photon?”
is not the best first question. We never experience a pho-

ton as it “is.” For example, we never see a photon in the sense
that we see an apple, by scattering diffuse light off it and
forming an image of it on our retina. What we experience is
what photons do. A better first question is “What do photons
do?” After we answer this we can define what photons are, if
we still wish to, by what they do.
Under low resolution the transport of energy, momentum

and angular momentum by electromagnetic radiation often
passes for continuous but under sufficient resolution it breaks
down into discrete jumps, quanta. Radiation is not the only
way that the electromagnetic field exerts forces; there are
also Coulomb forces, say, but only the radiation is quantized.
Even our eyes, when adapted sufficiently to the dark, see any
sufficiently dim light as a succession of scintillations. What
photons do is couple electric charges and electric or mag-
netic multipoles by discrete irreducible processes of photon
emission and absorption connected by continuous processes
of propagation. All electromagnetic radiation resolves into a
flock of flying photons, each carrying its own energy, momen-
tum and angular momentum.
Francis Bacon and Isaac Newton were already certain that

light was granular in the 17th century but hardly anyone an-
ticipated the radical conceptual expansions in the physics of
light that happened in the 20th century. Now a simple extrap-
olation tells us to expect more such expansions.
These expansions have one basic thing in common: Each

revealed that the resultant of a sequence of certain processes
depends unexpectedly on their order. Processes are said to
commute when their resultant does not depend on their order,
so what astounded us each time was a non-commutativity.
Each such discovery was made without connection to the oth-
ers, and the phenomenon of non-commutativity was called
several things, like non-integrability, inexactness, anholon-
omy, curvature, or paradox (of two twins, or two slits). These
aliases must not disguise this underlying commonality. More-
over the prior commutative theories are unstable relative to
their non-commutative successors in the sense that an arbi-
trarily small change in the commutative commutation rela-
tions can change the theory drastically,9 but not in the non-
commutative relations.
Each of these surprising non-commutativities is propor-

tional to its own small new fundamental constant. The ex-

pansion constants and non-commutativities most relevant to
the photon so far have been k (Boltzmann’s constant, for the
kinetic theory of heat) c (light speed, for special relativity),
G (gravitational constant, for general relativity), h (Planck’s
constant, for quantum theory), e (the electron charge, for the
gauge theory of electromagnetism), g (the strong coupling
constant) and W (the mass of the W particle, for the elec-
troweak unification). These constants are like flags. If we find
a c in an equation, for instance, we know we are in the land
of special relativity. The historic non-commutativities intro-
duced by these expansions so far include those of reversible
thermodynamic processes (for k), boosts (changes in the ve-
locity of the observer, for c), filtration or selection processes
(for h), and space-time displacements (of different kinds of
test-particles for G, e, and g).
Each expansion has its inverse process, a contraction that

reduces the fundamental constant to 0, recovering an older,
less accurate theory in which the processes commute.6 Con-
traction is a well-defined mathematical process. Expansion
is the historical creative process, not a mathematically well-
posed problem. When these constants are taken to 0, the the-
ories “contract” to their more familiar forms; but in truth the
constants are not 0, and the expanded theory is more basic
than the familiar one, and is a better starting point for further
exploration.
Einstein was the magus of these expansions, instrumental

in raising the flags of k, c, G and h. No one comes close to
his record. In particular he brought the photon back from the
grave to which Robert Young’s diffraction studies had con-
signed it, though he never accommodated to the h expansion.
Each expansion establishes a reciprocity between mutually

coupled concepts that was lacking before it, such as that be-
tween space and time in special relativity. Each thereby de-
throned a false absolute, an unmoved mover, what Frances
Bacon called an “idol,” usually an “idol of the theater.” Each
made physics more relativistic, more processual, less me-
chanical.
There is a deeper commonality to these expansions. Like

earthquakes and landslides, they stabilize the region where
they occur, specifically against small changes in the expan-
sion constant itself.
Each expansion also furthered the unity of physics in the

sense that it replaced a complicated kind of symmetry (or
group) by a simple one.
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Shifting our conceptual basis from the familiar idol-ridden
theory to the strange expanded theory has generally led to
new and deeper understanding. The Standard Model, in par-
ticular, gives the best account of the photon we have today,
combining expansions of quantum theory, special relativity,
and gauge theory, and it shows signs of impending expan-
sions as drastic as those of the past. Here we describe the
photon as we know it today and speculate about the photon of
tomorrow.

1.
ccc

The expansion constant c of special relativity, the
speed of light, also measures how far the photon flouts Eu-
clid’s geometry and Galileo’s relativity. In the theory of
space-time that immediately preceded the c expansion, asso-
ciated with the relativity theory of Galileo, reality is a collec-
tion of objects or fields distributed over space at each time,
with the curious codicil that different observers in uniform
relative motion agree about simultaneity — having the same
time coordinate — but not about colocality — having the
same space coordinates. One could imagine history as a one-
dimensional stack of three-dimensional slices. If V is a boost
vector, giving the velocity of one observer O′ relative to an-
other O, then in Galileo relativity: x′ = x−Vt but t ′ = t. The
transformation x′ = x−Vt couples time into space but the
transformation t ′ = t does not couple space into time. O and
O′ slice history the same way but stack the slices differently.
Special relativity boosts couple time into space and space

back into time, restoring reciprocity between space and time.
The very constancy of c implies this reciprocity. Relatively
moving observers may move different amounts during the
flight of a photon and so may disagree on the distance ∆x
covered by a photon, by an amount depending on ∆t. In order
to agree on the speed c= ∆x/∆t, they must therefore disagree
on the duration ∆t as well, and by the same factor. They slice
history differently.
We could overlook this fundamental reciprocity for so

many millennia because the amount by which space couples
into time has a coefficient 1/c2 that is small on the human
scale of the second, meter, and kilogram. When c → ∞ we
recover the old relativity of Galileo.
The c non-commutativity is that between two boosts B,B′

in different directions. In Galileo relativity BB′ = B′B; one
simply adds the velocity vectors v and v′ of B and B′ to com-
pute the resultant boost velocity v+v′ = v′ +v of BB′ or B′B.
In special relativity BB′ and B′B differ by a rotation in the
plane of the two boosts, called Thomas precession, again with
a coefficient 1/c2.
The reciprocity between time and space led to a parallel

one between energy and momentum, and to the identification
of mass and energy. The photon has both. The energy and
momentum of a particle are related to the rest-mass m0 in
special relativity by E2−c2p2 = (m0c2)2 . The parameter m0
is 0 for the photon, for which E = cp. When we say that the
photon “has mass 0,” we speak elliptically. We mean that it
has rest-mass 0. Its mass is actually E/c2.

Some say that a photon is a bundle of energy. This state-
ment is not meaningful enough to be wrong. In physics, en-
ergy is one property of a system among many others. Photons
have energy as they have spin and momentum and cannot be
energy any more than they can be spin or momentum. In the
late 1800’s some thinkers declared that all matter is made of
one philosophical stuff that they identified with energy, with-
out much empirical basis. The theory is dead but its words
linger on.
When we speak of a reactor converting mass into energy,

we again speak elliptically and archaically. Strictly speaking,
we can no more heat our house by converting mass into en-
ergy than by converting Centigrade into Fahrenheit. Since the
c expansion, mass is energy. They are the same conserved
stuff, mass-energy, in different units. Neither ox-carts nor nu-
clear reactors convert mass into energy. Both convert rest
mass-energy into kinetic mass-energy.

2.
GGG

In special relativity the light rays through the origin
of space-time form a three-dimensional cone in four dimen-
sions, called the light cone, whose equation is c2t2−x2−y2−
z2 = 0. Space-time is supposed to be filled with such light
cones, one at every point, all parallel, telling light where it
can go. This is a reciprocity failure of special relativity: Light
cones influence light, light does not influence light cones. The
light-cone field is an idol of special relativity.
In this case general relativity repaired reciprocity. An ac-

celeration a of an observer is equivalent to a gravitational
field g= −a in its local effects. Even in the presence of grav-
itation, special relativity still describes correctly the infinites-
imal neighborhood of each space-time point. Since an accel-
eration clearly distorts the field of light cones, and gravity is
locally equivalent to acceleration, Einstein identified gravity
with such a distortion. In his G expansion, which is general
relativity, the light-cone field is as much a dynamical vari-
able as the electromagnetic field, and the two fields influence
each other reciprocally, to an extent proportional to Newton’s
gravitational constant G.
The light-cone directions dx at one point x can be defined

by the vanishing of the norm dτ2 = ∑µν gµν(x)dxµdxν = 0;
since Einstein, one leaves such summation signs implicit.
General relativity represents gravity in each frame by the co-
efficient matrix g.., which now varies with the space-time
point. To have the light cones uniquely determine the matrix
g, one may posit detg= 1. The light cones guide photons and
planets, which react back on the light cones through their en-
ergy and momentum. Newton’s theory of gravity survives as
the linear term in a series expansion of Einstein’s theory of
gravity in powers of G under certain physical restrictions.
The startling non-commutativity introduced by the G ex-

pansion is space-time curvature. If T,T ′ are infinitesimal
translations along two orthogonal coordinate axes then in
special relativity TT ′ = T ′T and in a gravitational field
TT ′ (= T ′T . The differences TT ′ − T ′T define curvature.
The Einstein gravitational equations describe how the flux
of momentum-energy — with coefficient G— curves space-
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time. When G→ 0 we recover the flat space-time of special
relativity.
Photons are the main probes in two of the three classic tests

of general relativity, which provided an example of a success-
ful gauge theory that ultimately inspired the gauge revolution
of the Standard Model. The next expansion that went into the
Standard Model is the h expansion.

3.
h̄

Before quantum mechanics, the theory of a physical
system split neatly into two phases. Kinematics tells about all
the complete descriptions of the system or of reality, called
states. Dynamics tells about how states change in dynamical
processes. Operationally speaking, kinematics concerns fil-
tration processes, which select systems of one kind, and dy-
namics concerns propagation processes, which change sys-
tems of one kind into another. Filtration processes represent
predicates about the system. Such “acts of election” seem em-
pirically to commute, Boole noted in 1847, as he was laying
the foundations of his laws of thought.4 But dynamical pro-
cesses represent actions on the system and need not commute.
In h-land, quantum theory, filtrations no longer commute.

This is what we mean operationally when we say that obser-
vation changes the system observed.
Such non-commuting filtrations were first used practically

by Norse navigators who located the cloud-hidden sun by
sighting clouds through beam-splitting crystals of Iceland
spar. This phenomenon, like oil-slick colors and partial spec-
ular reflection, was not easy for Newton’s granular theory of
light. Newton speculated that some kind of invisible trans-
verse guide wave accompanied light corpuscles and con-
trolled these phenomena, but he still argued for his particle
theory of light, declaring that light did not “bend into the
shadow,” or diffract, as waves would. Then Thomas Young
exhibited light diffraction in 1804, and buried the particle the-
ory of light.
Nevertheless Étienne-Louis Malus still applied Newton’s

photon theory to polarization studies in 1805. Malus was truer
than Newton to Newton’s own experimental philosophy and
anticipated modern quantum practice. He did not speculate
about invisible guide waves but concerned himself with ex-
perimental predictions, specifically the transition probabil-
ity P — the probability that a photon passing the first filter
will pass the second. For linear polarizers with polarizing
axes along the unit vectors a and b normal to the light ray,
P= |a ·b|2, the Malus law. Malus may have deduced his law
as much from plausible principles of symmetry and conser-
vation as from experiment.
Write f ′ < f to mean that all f ′ photons pass f but not

conversely, a relation schematized in Figure 1.
A filtration process f is called sharp (homogeneous, pure)

if it has no proper refinement f ′ < f .
In mechanics one assumed implicitly that if 1 and 2 are

two sharp filtration processes, then the transition probabil-
ity for a particle from 1 to pass 2 is either 0 (when 1 and
2 filter for different kinds of particle) or 1 (when they filter
for the same kind); briefly put, that all sharp filtrations are

f ′!"
#$

%&
'(

f

Fig. 1. If no such f ′ exists, f is sharp.

non-dispersive. (Von Neumann 1934 spoke of pure ensem-
bles rather than sharp filtrations; the upshot is the same.) The
successive performance of filtration operations, represented
by P2P1, to be read from right to left, is a kind of AND combi-
nation of predicates and their projectors, though the resultant
of two filtrations may not be a filtration.
The Malus law, applied to two sharp filtrations in succes-

sion implies that even sharp filtrations are dispersive, and
that photon filtrations do not commute, confirming Boole’s
uncanny premonition. Since we do not directly perceive po-
larization, we need three polarizing filters to verify that two
do not commute. Let the polarization directions of P1 and P2
be obliquely oriented, neither parallel nor orthogonal. Com-
pare experiments P1P2P1 and P1P1P2 = P1P2. Empirically, and
in accord with the Malus law, all photons from P1P2 pass
through P1 but not all from P2P1 pass through P1. Therefore
empirically P1P2P1 (= P1P1P2, and so P2P1 (= P1P2.
This non-commutativity revises the logic that we use for

photons.
If we generalize a and b to vectors of many components,

representing general ideal filtration processes, Malus’ Law
becomes the fundamental Born statistical principle of quan-
tum physics today. The guide wave concept of Newton has
evolved into the much less object-like wave-function con-
cept of quantum theory. The traditional boundary between
commutative kinematical processes of information and non-
commutative dynamical processes of transformation has bro-
ken down.
One reasons today about photons, and quantum systems in

general, with a special quantum logic and quantum probabil-
ity theory. One represents quantum filtrations and many other
processes by matrices, and expresses quantum logic with ma-
trix addition and multiplication; hence the old name “matrix
mechanics.”’
We can represent any photon source by a standard perfectly

white source ◦ followed by suitable processes, and any pho-
ton counter by a standard perfect counter • preceded by suit-
able processes. This puts experiments into a convenient stan-
dard form

•← Pn ← . . . ← P1 ←◦ (1)

of a succession of physical processes between a source and a
target.
Quantum theory represents all these intermediate processes

by square matrices, related to experiment by the generalized
Malus-Born law: For unit incident flux from ◦, the counting
rate P at • for this experiment is determined by the matrix
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product
T = Tn . . .T1 (2)

and its Hermitian conjugate T ∗ (the complex-conjugate trans-
pose of T ) as the trace

P=
TrT ∗T
Tr1

. (3)

This is the unconditioned probability for transmission. A pho-
ton that stops in the first filter contributes 0 to the count at the
counter but 1 to the count at the source. The vectors a and b
of the Malus law are column vectors on which these quantum
matrices act.
The physical properties of the quantum process determine

the algebraic properties of its quantum matrix. For example a
filtration operation P for photon polarizations becomes a 2×2
projection matrix or projector, one obeying P2 = P= P†.
Heisenberg introduced quantum non-commutativity

through the (non-) commutation relation

xp− px= ih̄, (4)

for the observables of momentum p and position x, not for
filtrations. (h̄ ≡ h/2π is a standard abbreviation.) But all ob-
servables are linear combinations of projectors, even in clas-
sical thought, and all projectors are functions of observables,
polynomials in the finite-dimensional cases. So Heisenberg’s
non-commutativity of observables is equivalent to the non-
commutativity of filtration processes, and so leads to a quan-
tum logic.
The negation of the predicate P is 1−P for quantum logic

as for Boole logic. Quantum logic reduces to the Boole logic
for diagonal filtration matrices, with elements 0 or 1. Then
Boole rules. The classical logic also works well for quantum
experiments with many degrees of freedom. Two directions
chosen at random in a space of huge dimensionality are al-
most certainly almost orthogonal, and then Boole’s laws al-
most apply. Only in low-dimensional playgrounds like pho-
ton polarization do we easily experience quantum logic.
Quantum theory represents the passage of time in an

isolated system by a unitary matrix U = U−1† obeying
Heisenberg’s Equation, the first-order differential equation
ih̄dU/dt = HU . It does not give a complete description of
what evolves, but only describes the process. H is called the
Hamiltonian operator and historically was at first constructed
from the Hamiltonian of a classical theory. U appears as a
block in (1) and a factor in (2) for every time-lapse t between
operations.
U(t) transforms any vectorψ(0) to a vectorψ(t) that obeys

the Schrödinger Equation ih̄ dψ/dt = Hψ during the trans-
formation U . A quantum vector ψ is not a dynamical vari-
able or a complete description of the system but represents
an irreversible operation of filtration, and so the Schrödinger
Equation does not describe the change of a dynamical vari-
able. The Heisenberg Equation does that. The Schrödinger
Equation describes a coordinate-transformation that solves
the Heisenberg Equation. The pre-quantum correspondent of

the Heisenberg Equation is the Hamiltonian equation of mo-
tion, giving the rate of change of all observables. In the cor-
respondence between quantum and pre-quantum concepts as
h̄→ 0, the Heisenberg Equation is the quantum equation of
motion. The pre-quantum correspondent of the Schrödinger
Equation is the Hamilton-Jacobi Equation, which is an equa-
tion for a coordinate transformation that solves the equation
of motion, and is not the equation of motion.
As has widely been noted, starting with the treatises of Von

Neumann and Dirac on the fundamental principles of quan-
tum theory, the input wave-function for a transition describes
a sharp input filtration process, not a system variable. Com-
mon usage nevertheless calls the input wave-function of an
experiment the “state of the photon.”
There are indeed systems whose states are observable

wave-functions. They are called waves. But a quantum wave-
function is not the state of some wave. Calling it the “quantum
state” is a relic of early failed attempts at a wave theory of the
atom. The “state-vector” is not the kind of thing that can be
a system observable in quantum theory. Each observable is a
fixed operator or matrix.
The state terminology, misleading as it is, may be too

widespread and deep-rooted to up-date. After all, we still
speak of “sunrise” five centuries after Copernicus. One must
read creatively and let context determine the meaning of the
word “state.” In spectroscopy it usually refers to a sharp input
or output operation.
It is problematical to attribute absolute values even to true

observables in quantum theory. Consider a photon in the mid-
dle of an experiment that begins with a process of linear polar-
ization along the x axis and ends with a right-handed circular
polarization around the z axis, given that the photon passes
both polarizers. Is it polarized along the x axis or y axis? If
we reason naively forwards from the first filter, the polar-
ization between the two filters is certainly along the x axis,
since the photon passed the first filter. If we reason naively
backwards from the last filter, the intermediate photon polar-
ization must be circular and right-handed, since it is going
to pass the last filter; it has probabiltiy 1/2 of being along
the x axis. If we peek — measure the photon polarization in
the middle of the experiment — we only answer a different
question, concerning an experiment that ends with our new
measurement. Measurements on a photon irreducibly and un-
predictably change the photon, to an extent measured by h,
so the question of the value between measurements has no
immediate experimental meaning.
Common usage conventionally assign the input properties

to the photon. Assigning the output properties would work
as well. Either choice breaks the time symmetry of quantum
theory unnecessarily. The most operational procedure is to as-
sign a property to the photon not absolutely but only relative
to an experimenter who ascertains the property, specifying
in particular whether the experimenter is at the input or out-
put end of the optical bench. Quantum logic thus requires us
to put some of our pre-quantum convictions about reality on
holiday, but they can all come back to work when h can be
neglected.
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The photon concept emerges from the combination of the
Maxwell equations with the Heisenberg non-commutativity
(4). Pre-quantum physicists recognized that by a Fourier anal-
ysis into waves ∼ eik·x one can present the free electromag-
netic field in a box as a collection of infinitely many linear
harmonic oscillators, each with its own canonical coordinate
q, canonical momentum p, and Hamiltonian

H =
1
2
(p2+ω2q2). (5)

When the coefficient of p is scaled to unity in this way, the
coefficient of q2 is the square of the natural frequency ω of
the oscillator. The Fourier analysis associates a definite wave-
vector k with each oscillator. The energy spectrum of each
oscillator is the set of roots E of the equation HX = EX with
arbitrary non-zero “eigenoperator” X .
The energy spectrum is most elegantly found by the lad-

der method. One seeks a linear combination a of q and p
that obeys Ha= a(H−E1). This means that a lowers E (and
therefore H) by steps of E1 in the sense that if HX = EX then
H(aX) = (E −E1)(aX), unless aX = 0. Such an a, if it ex-
ists, is called a ladder operator, therefore. It is easy to see that
a ladder operator exists for the harmonic oscillator, namely
a= 2−1/2(p− iq), with energy step E1 = h̄ω . One scales a so
that H takes the form

H = h̄ω(n+
1
2
), (6)

n = a†a, and a lowers n by steps of 1: na = a(n− 1). Then
n counts “excitation quanta” of the harmonic oscillator, each
contributing an energy E1 = h̄ω to the total energy, and a mo-
mentum h̄k to the total momentum. The excitation quanta of
the electromagnetic field oscillators are photons. The opera-
tor a is called an annihilation operator or annihilator for the
photon because it lowers the photon count by 1. By the same
token its adjoint is a photon creator.
The term 1/2 in H contributes a zero-point energy that is

usually arbitrarily discarded, primarily because any non-zero
vacuum energy would violate Lorentz invariance and so dis-
agree somewhat with experiment. One cannot deduce that the
vacuum energy is zero from the present dynamical theory, and
astrophysicists are now fairly sure that it is not zero.
A similar process leads to the excitation quanta of the field

oscillators of other fields. Today one accounts for all allegedly
fundamental quanta as excitation quanta of suitably designed
field oscillators.
Now we can say what a photon is. Consider first what an

apple is. When I move it from one side of the table to the
other, or turn it over, it is still the same apple. So the apple is
not its state, not what we know about the apple. Statistical
mathematicians formulate the concept of a constant object
with varying properties by identifying the object — some-
times called a random variable — not with one state but with
the space of all its possible states. This works just as well
for quantum objects as for random objects, once we replace
states by more appropriate actions on the quantum object.
The object is defined, for example, by the processes it can

undergo. For example, the sharp filtration processes for one
photon, relative to a given observer, form a collection with
one structural element, the transition probability between two
such processes. For many purposes we can identify a photon
with this collection of processes.
The filtration processes mentioned are usually represented

by lines through the origin in a Hilbert space. If we are willing
to start from a Hilbert space, we can define a photon by its
Hilbert space; not by one wave-function, which just says one
way to produce a photon, but the collection of them all. This
gives preference to input over output and spoils symmetry
a bit. One restores time symmetry by using the algebra of
operators rather than the Hilbert space to define the photon.
In words, the photon is the creature on which those operations
can act.
From the current viewpoint the concept of photon is not

as fundamental as that of electromagnetic field. Not all elec-
tromagnetic interactions are photon-mediated. There are also
static forces, like the Coulomb force. Different observers may
split electromagnetic interactions into radiation and static
forces differently. Gauge theory leads us to quantum fields,
and photons arise as quantum excitations of one of these
fields.
Quantum theory has a non-Boolean logic in much the sense

that general relativity has a non-Euclidean geometry: it re-
nounces an ancient commutativity. A Boolean logic has non-
dispersive predicates called states, common to all observers;
a quantum logic does not. Attempting to fit the quantum non-
commutativity of predicates into a classical picture of an ob-
ject with absolute states is like attempting to fit special relativ-
ity into a space-time with absolute time. Possibly we can do
it but probably we shouldn’t. If we accept that the expanded
logic contracts to the familiar one when h̄to0, we can go on
to the next expansion.

4.
h̄′h̄′′

In this section I describe a possible future expan-
sion suggested by Segal9 that might give a simpler and more
finite structure to the photon and other quanta. There are clear
indications, both experimental and structural, that quantum
theory is still too commutative. Experiment indicates limits
to the applicability of the concept of time both in the very
small and the very large, ignored by present quantum theory.
The theoretical assumption that all feasible operations com-
mute with the imaginary i makes i a prototypical idol. The
canonical commutation relations are unstable.
To unseat this idol and stabilize this instability, one first

rewrites the defining relations for a photon oscillator in terms
of antisymmetric operators q̂ := iq, p̂= −ip:

q̂ p̂− p̂q̂ = h̄i,
iq̂− q̂i = 0,
ip̂− p̂i = 0. (7)

One stabilizing variation, for example, is

q̂p̂− p̂q̂ = h̄i,
iq̂− q̂i = h̄′ p̂,
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ip̂− p̂i = −h̄′′q̂ (8)

with Segal constants h̄′, h̄′′ > 0 supplementing the Planck
quantum constant h̄.9 No matter how small the Segal con-
stants are, if they have the given sign the expanded oscillator
commutation relations can be rescaled to angular momentum
relations2

L̂xL̂y− L̂yL̂x = L̂z,
L̂yL̂z− L̂zL̂y = L̂x,
L̂zL̂x− L̂xL̂z = L̂y. (9)

by a scaling

q̆ = QL̂1,
p̆ = PL̂2,
ı̆ = JL̂3, (10)

with

J =
√
h̄′h̄′′ =

1
l
,

Q =
√
h̄h̄′,

P =
√
h̄h̄′′. (11)

As customary we have designated the maximum eigenvalue
of |L̂z| by l. This theory is now stabilized by its curvature
against further small changes in h̄, h̄′, h̄′′; just as a small
change in curvature turns any straight line into a circle but
leaves almost all circles circular; and just as quantum theory
is stable against small changes in h̄.
To be sure, when h̄′, h̄′′ → 0 we recover the quantum the-

ory. As in all such expansions of physical theory, the quantum
theory with c-number i is a case of probability zero in an en-
semble of more likely expanded theories with operator i’s.
The canonical commutation relations might be right, but that
would be a miracle of probability 0. Data always have some
error bars, so an exactly zero commutator is never based en-
tirely on experiment and usually incorporates faith in some
prior absolute: here i. Renouncing that absolute makes room
for a more stable kind of theory, based more firmly on exper-
iment and at least as consistent with the existing data. Which
one of these possibilities is in better agreement with experi-
ment than the canonical theory can only be learned from ex-
periment.
The most economical way to stabilize the Heisenberg re-

lations is to close them on themselves as we have done here.
A more general stabilization might also couple each oscilla-
tor to others. In the past the stabilizations that worked have
usually been economical but not always.
These transquantum relations describe a rotator, not an os-

cillator. What we have thought were harmonic oscillators are
more likely to be quantum rotators. It has been recognized for
some time that oscillators can be approximated by rotators
and conversely.1,2, 7 In particular, photons too are infinitely
more likely to be quanta of a kind of rotation than of oscilla-
tion. If so, they can still have exact ladder operators, but their
ladders now have a top as well as a bottom, with 2l+1 rungs
for rotational transquantum number l.

In the most intense lasers, there can be as many as 1013
photons in one mode at one time.8 Then 2l ≥ 1013 and h′h′′ ≤
10−26 in order of magnitude.
When we expand the commutation relations for time and

energy in this way, the two new transquantum constants that
appear indeed limit the applicability of these concepts both in
the small and the large. They make the photon advance step
by quantum step. We will probably never be able to visualize
a photon but we might soon be able to choreograph one; to
describe the process rather than the object.
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The photon concept is one of the most debated issues in the history of physical science. Some thirty years ago, we published an
article in Physics Today entitled “The Concept of the Photon,”1 in which we described the “photon” as a classical electromagnetic
field plus the fluctuations associated with the vacuum. However, subsequent developments required us to envision the photon as
an intrinsically quantum mechanical entity, whose basic physics is much deeper than can be explained by the simple ‘classical
wave plus vacuum fluctuations’ picture. These ideas and the extensions of our conceptual understanding are discussed in detail
in our recent quantum optics book.2 In this article we revisit the photon concept based on examples from these sources and more.
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OCIS codes: 270.0270, 260.0260.

The “photon” is a quintessentially twentieth-century con-
cept, intimately tied to the birth of quantum mechanics

and quantum electrodynamics. However, the root of the idea
may be said to be much older, as old as the historical debate
on the nature of light itself – whether it is a wave or a particle
– one that has witnessed a seesaw of ideology from antiquity
to present. The transition from classical to quantum descrip-
tions of light presents yet another dichotomy, one where the
necessity of quantizing the electromagnetic field (over and
above a quantization of matter) has been challenged. The
resolution lies in uncovering key behavior of quantum light
fields that are beyond the domain of the classical, such as
vacuum fluctuations and quantum entanglement, which ne-
cessitate a quantum theory of radiation.2−5 Nevertheless, a
precise grasp of the “photon” concept is not an easy task, to
quote Albert Einstein:

“These days, every Tom, Dick and Harry thinks he
knows what a photon is, but he is wrong.”

We ought to proceed with diligence and caution. In the words
of Willis Lamb:6

“What do we do next? We can, and should, use the
Quantum Theory of Radiation. Fermi showed how
to do this for the case of Lippmann fringes. The
idea is simple, but the details are somewhat messy.
A good notation and lots of practice makes it easier.
Begin by deciding how much of the universe needs
to be brought into the discussion. Decide what nor-
mal modes are needed for an adequate treatment.
Decide how to model the light sources and work
out how they drive the system.”

We proceed to elucidate the photon concept by specific ex-
periments (real and gedanken) which demonstrate the need
for and shed light on the meaning of the “photon.” Specif-
ically, we will start by briefly reviewing the history of the
wave-particle debate and then giving seven of our favorite
examples, each clarifying some key aspect of the quantum
nature of light. The two facets of the photon that we focus

on are vacuum fluctuations (as in our earlier article1), and as-
pects of many-particle correlations (as in our recent book2).
Examples of the first are spontaneous emission, Lamb shift,
and the scattering of atoms off the vacuum field at the en-
trance to a micromaser. Examples of the second facet include
quantum beats, quantum eraser, and photon correlation mi-
croscopy. Finally, in the example of two-site downconversion
interferometry, the essence of both facets is combined and
elucidated.
In the final portions of the article, we return to the basic

questions concerning the nature of light in the context of the
wave-particle debate: What is a photon and where is it? To
the first question, we answer in the words of Roy Glauber:

“A photon is what a photodetector detects.”

To the second question (on the locality of the photon), the an-
swer becomes: “A photon is where the photodetector detects
it.” In principle, the detector could be a microscopic object
such as an atom. Guided by this point of view, we address
the much debated issue of the existence of a photon wave
function ψ(r, t).2,7,8 Arguments to the contrary notwithstand-
ing, we show that the concept of the photon wave function
arises naturally from the quantum theory of photodetection
(see Ref. [2], ch. 1). A wealth of insight is gained about the
interference and entanglement properties of light by studying
such one-photon, and related two-photon, ‘wave functions’.2

Light – wave or particle?

The nature of light is a very old issue in the history of sci-
ence. For the ancient Greeks and Arabs, the debate centered
on the connection between light and vision. The tactile theory,
which held that our vision was initiated by our eyes reach-
ing out to “touch” or feel something at a distance, gradually
lost ground to the emission theory, which postulated that vi-
sion resulted from illuminated objects emitting energy that
was sensed by our eyes. This paradigm shift is mainly due
to the eleventh-century Arab scientist Abu Ali Hasan Ibn Al-
Haitham (or ‘Alhazen’) who laid the groundwork for classical
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optics through investigations into the refraction and disper-
sion properties of light. Later Renaissance thinkers in Europe
envisioned light as a stream of particles, perhaps supported
by the ether, an invisible medium thought to permeate empty
space and all transparent materials.
In the seventeenth century, Pierre de Fermat introduced the

principle of least time to account for the phenomenon of re-
fraction. Equivalently, his principle states that a ray of light
takes the path that minimizes the optical path length between
two points in space:

δ
∫ r

r0
n ds= 0, (1)

where n = c/v is the (spatially varying) refractive index that
determines the velocity of the light particle, and δ denotes a
variation over all paths connecting r0 and r. Fermat’s princi-
ple is the foundation for geometrical optics, a theory based on
the view that light is a particle that travels along well-defined
geometrical rays. The idea of light as particle (or ‘corpuscle’)
was of course adopted by Isaac Newton, who bequeathed the
weight of his scientific legacy, including the bearing of his
laws of mechanics, on the nature of light.
Christian Huygens on the other hand, a contemporary of

Newton, was a strong advocate of the wave theory of light.
He formulated a principle (that now bears his name) which
describes wave propagation as the interference of secondary
wavelets arising from point sources on the existing wave-
front. It took the mathematical genius of Augustin Fresnel,
150 years later, to realize the consequences of this discov-
ery, including a rigorous development of the theory of wave
diffraction. Light does not form sharp, geometrical shadows
that are characteristic of a particle, but bends around obstacles
and apertures.
The revival of the wave theory in the early nineteenth cen-

tury was initiated by Thomas Young. In 1800, appearing be-
fore the Royal Society of London, Young spoke for an anal-
ogy between light and sound, and declared later that a two-slit
interference experiment would conclusively demonstrate the
wave nature of light (see Figure 1). It is hard for the mod-
ern reader to visualize how counter-intuitive this suggestion
was at the time. The idea that a screen uniformly illuminated
by a single aperture could develop dark fringes with the in-
troduction of a second aperture – that the addition of more
light could result in less illumination – was hard for Young’s
audience to digest.
Likewise, Fresnel’s diffraction theory was received with

skepticism by the judges on the 1819 prize committee in
Paris. In particular, the esteemed Pierre Simon de Laplace
was very skeptical of the wave theory. His protégé, Siméon-
Denis Poisson, highlighted the seemingly absurd fact that the
theory implied a bright spot at the center of the shadow of
an illuminated opaque disc, now known as Poisson’s spot.
The resistance to switch from a particle description to a wave
description for light by these pre-eminent scientists of the
early nineteenth century gives an indication of the great dis-
parity between these two conceptions. It was a precursor of
the struggle to come a hundred years later with the advent of

quantum mechanics.

screenlight propagates

Fig. 1. Young’s two-slit experiment – Light incident on two
slits in a box propagates along two pathways to a given point
on the screen, displaying constructive and destructive inter-
ference. When a single photon is incident on the slits, it is
detected with highest probability at the interference peaks,
but never at the interference nodes.

a

b

Fig. 2. Spontaneous emission – Two-level atom, with upper-
level linewidth Γ spontaneously emits a photon. Fluctuations
in the vacuum field cause the electron in the excited state to
decay to the ground state in a characteristic time Γ−1.

The wave theory really came into its own in the late nine-
teenth century in the work of James Clerk Maxwell. His four
equations, known to all students of undergraduate physics,
is the first self-contained theory of radiation. Receiving ex-
perimental confirmation by Heinrich Hertz, the Maxwell the-
ory unified the disparate phenomena of electricity and mag-
netism, and gave physical meaning to the transverse polar-
izations of light waves. The far-reaching success of the the-
ory explains the hubris of late nineteenth century physicists,
many of whom believed that there were really only two
“clouds” on the horizon of physics at the dawn of the twenti-
eth century. Interestingly enough, both of these involved light.
The first cloud, namely the null result of the Michelson-

Morley experiment, led to special relativity, which is the
epitome of classical mechanics, and the logical capstone of
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classical physics. The second cloud, the Rayleigh-Jeans ul-
traviolet (UV) catastrophe and the nature of blackbody ra-
diation, led to the advent of quantum mechanics, which of
course was a radical change in physical thought. While both
of these problems involved the radiation field, neither (ini-
tially) involved the concept of a photon. That is, neither Al-
bert Einstein and Hendrik Lorentz in the first instance, nor
Max Planck in the second, called upon the particulate nature
of light for the explanation of the observed phenomena. Rel-
ativity is strictly classical, and Planck quantized the energies
of the oscillators in the walls of his cavity, not the field.9
The revival of the particle theory of light, and the begin-

ning of the modern concept of the photon, was due to Ein-
stein. In his 1905 paper on the photoelectric effect,10 the
emission of electrons from a metallic surface irradiated by
UV rays, Einstein postulated that light comes in discrete bun-
dles, or quanta of energy, borrowing Planck’s five-year old
hypothesis: E = h̄ν , where ν is the circular frequency and
h̄ is Planck’s constant divided by 2π . This re-introduced the
particulate nature of light into physical discourse, not as lo-
calization in space in the manner of Newton’s corpuscles, but
as discreteness in energy. But irony upon irony, it is a histori-
cal curiosity that Einstein got the idea for the photon from the
physics of the photoelectric effect. In fact, it can be shown
that the essence of the photoelectric effect does not require
the quantization of the radiation field,11 a misconception per-
petuated by the mills of textbooks, to wit, the following quote
from a mid-century text:12

“Einstein’s photoelectric equation played an enor-
mous part in the development of the modern quan-
tum theory. But in spite of its generality and of the
many successful applications that have been made
of it in physical theories, the equation:

h̄ν = E+Φ (2)

is, as we shall see presently, based on a concept
of radiation – the concept of ‘light quanta’ – com-
pletely at variance with the most fundamental con-
cepts of the classical electromagnetic theory of ra-
diation.”

We will revisit the photoelectric effect in the next section and
place it properly in the context of radiation theory.
Both the Planck hypothesis and the Einstein interpreta-

tion follow from considerations of how energy is exchanged
between radiation and matter. Instead of an electromagnetic
wave continuously driving the amplitude of a classical oscil-
lator, we have the discrete picture of light of the right fre-
quency absorbed or emitted by a quantum oscillator, such as
an atom in the walls of the cavity, or on a metallic surface.
This seemingly intimate connection between energy quanti-
zation and the interaction of radiation with matter motivated
the original coining of the word “photon” by Gilbert Lewis in
1926:13

“It would seem inappropriate to speak of one of
these hypothetical entities as a particle of light, a

corpuscle of light, a light quantum, or light quant, if
we are to assume that it spends only a minute frac-
tion of its existence as a carrier of radiant energy,
while the rest of the time it remains as an impor-
tant structural element within the atom... I therefore
take the liberty of proposing for this hypothetical
new atom, which is not light but plays an essential
part in every process of radiation, the name pho-
ton.”

Energy quantization is the essence of the old quantum theory
of the atom proposed by Niels Bohr. The electron is said to
occupy discrete orbitals with energies Ei and Ej, with transi-
tions between them caused by a photon of the right frequency:
ν = (Ei−Ej)/h̄. An ingenious interpretation of this quantiza-
tion in terms of matter waves was given by Louis de Broglie,
who argued by analogy with standing waves in a cavity, that
the wavelength of the electron in each Bohr orbital is quan-
tized – an integer number of wavelengths would have to fit
in a circular orbit of the right radius. This paved the way
for Erwin Schrödinger to introduce his famous wave equa-
tion for matter waves, the basis for (non-relativistic) quantum
mechanics of material systems.
Quantum mechanics provides us with a new perspective

on the wave-particle debate, vis á vis Young’s two-slit experi-
ment (Figure 1). In the paradigm of quantum interference, we
add the probability amplitudes associated with different path-
ways through an interferometer. Light (or matter) is neither
wave nor particle, but an intermediate entity that obeys the su-
perposition principle. When a single photon goes through the
slits, it registers as a point-like event on the screen (measured,
say, by a CCD array). An accumulation of such events over
repeated trials builds up a probabilistic fringe pattern that is
characteristic of classical wave interference. However, if we
arrange to acquire information about which slit the photon
went through, the interference nulls disappear. Thus, from the
standpoint of complementarity, both wave and particle per-
spectives have equal validity. We will return to this issue later
in the article.

The semiclassical view

The interaction of radiation and matter is key to understand-
ing the nature of light and the concept of a photon. In the
semiclassical view, light is treated classically and only mat-
ter is quantized. In other words, both are treated on an equal
footing: a wave theory of light (the Maxwell equations) is
combined self-consistently with a wave theory of matter (the
Schrödinger equation). This yields a remarkably accurate de-
scription of a large class of phenomena, including the photo-
electric effect, stimulated emission and absorption, saturation
effects and nonlinear spectroscopy, pulse propagation phe-
nomena, “photon” echoes, etc. Many properties of laser light,
such as frequency selectivity, phase coherence, and direction-
ality, can be explained within this framework.14
The workhorse of semiclassical theory is the two-level

atom, specifically the problem of its interaction with a sinu-
soidal light wave.15 In reality, real atoms have lots of levels,
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but the two-level approximation amounts to isolating a partic-
ular transition that is nearly resonant with the field frequency
ν . That is, the energy separation of the levels is assumed to
be Ea−Eb = h̄ω ≈ h̄ν . Such a comparison of the atomic en-
ergy difference with the field frequency is in the spirit of the
Bohr model, but note that this already implies a discreteness
in light energy, ∆E = h̄ν . That a semiclassical analysis is able
to bring out this discreteness – in the form of resonance – is
a qualitative dividend of this approach.
Schrödinger’s equation describes the dynamics of the

atom, but how about the dynamics of the radiation field?
In the semiclassical approach, one assumes that the atomic
electron cloud ψ∗ψ , which is polarized by the incident field,
acts like an oscillating charge density, producing an ensemble
dipole moment that re-radiates a classical Maxwell field. The
effects of radiation reaction, i.e., the back action of the emit-
ted field on the atom, are taken into account by requiring the
coupled Maxwell-Schrödinger equations to be self-consistent
with respect to the total field. That is, the field that the atoms
see should be consistent with the field radiated. In this way,
semiclassical theory becomes a self-contained description of
the dynamics of a quantum mechanical atom interacting with
a classical field. As we have noted above, its successes far
outweigh our expectations.
Let us apply the semiclassical analysis to the photoelectric

effect, which provided the original impetus for the quanti-
zation of light. There are three observed features of this ef-
fect that need accounting. First, when light shines on a photo-
emissive surface, electrons are ejected with a kinetic energy
E equal to h̄ times the frequency ν of the incident light less
some work function Φ, as in Eq. (2). Second, it is observed
that the rate of electron ejection is proportional to the square
of the incident electric field E0. Third, and more subtle, there
is not necessarily a time delay between the instant the field
is turned on, and the time when the photoelectron is ejected,
contrary to classical expectations.
All three observations can be nominally accounted for by

applying the semiclassical theory to lowest order in perturba-
tion of the atom-field interaction V (t) = −eE0r.11 This fur-
nishes a Fermi Golden Rule for the probability of transition
of the electron from the ground state g of the atom to the kth
excited state in the continuum:

Pk =
[
2π(e|rkg|E0/2h̄)2 t

]
δ [ν− (Ek−Eg)/h̄], (3)

where erkg is the dipole matrix element between the initial
and final states. The δ -function (which has units of time)
arises from considering the frequency response of the surface,
and assuming that t is at least as long as several optical cycles:
νt 0 1. Now, writing energy Ek−Eg as E +Φ, we see that
the δ -function immediately implies Eq. (2). The second fact
is also clearly contained in Eq. (3) since Pk is proportional to
E20 . The third fact of photoelectric detection, the finite time
delay, is explained in the sense that Pk is linearly proportional
to t, and there is a finite probability of the atom being excited
even at infinitesimally small times.
Thus, the experimental aspects of the photoelectric effect

are completely understandable from a semiclassical point of

view. Where we depart from a classical intuition for light is a
subtle issue connected with the third fact, namely that there is
negligible time delay between the incidence of light and the
photoelectron emission. While this is understandable from an
atomic point of view – the electron has finite probability of
being excited even at very short times – the argument breaks
down when we consider the implications for the field. That
is, if we persist in thinking about the field classically, energy
is not conserved. Over a time interval t, a classical field E0
brings in a flux of energy ε0E20At to bear on the atom, where
A is the atomic cross-section. For short enough times t, this
energy is negligible compared to h̄ν , the energy that the elec-
tron supposedly absorbs (instantaneously) when it becomes
excited. We just do not have the authority, within the Maxwell
formalism, to affect a similar quantum jump for the field en-
ergy.
For this and other reasons (see next section), it behooves us

to supplement the epistemology of the Maxwell theory with
a quantized view of the electromagnetic field that fully ac-
counts for the probabilistic nature of light and its inherent
fluctuations. This is exactly what Paul Dirac did in the year
1927, when the photon concept was, for the first time, placed
on a logical foundation, and the quantum theory of radiation
was born.16 This was followed in the 1940s by the remark-
ably successful theory of quantum electrodynamics (QED) –
the quantum theory of interaction of light and matter – that
achieved unparalleled numerical accuracy in predicting ex-
perimental observations. Nevertheless, a short twenty years
later, we would come back full circle in the saga of semiclas-
sical theory, with Ed Jaynes questioning the need for a quan-
tum theory of radiation at the 1966 conference on Coherence
and Quantum Optics at Rochester, New York.
“Physics goes forward on the shoulders of doubters, not be-

lievers, and I doubt that QED is necessary,” declared Jaynes.
In his view, semiclassical theory – or ‘neoclassical’ theory,
with the addition of a radiation reaction field acting back on
the atom – was sufficient to explain the Lamb shift, thought
by most to be the best vindication yet of Dirac’s field quan-
tization and QED theory (see below). Another conference
attendee, Peter Franken, challenged Jaynes to a bet. One of
us (MOS) present at the conference recalls Franken’s words:
“You are a reasonably rich man. So am I, and I say put your
money where your face is!” He wagered $100 over whether
the Lamb shift could or could not be calculated without QED.
Jaynes took the bet that he could, and Willis Lamb agreed to
be the judge.
In the 1960s and 70s, Jaynes and his collaborators reported

partial success in predicting the Lamb shift using neoclassi-
cal theory.17 They were able to make a qualitative connec-
tion between the shift and the physics of radiation reaction –
in the absence of field quantization or vacuum fluctuations –
but failed to produce an accurate numerical prediction which
could be checked against experiment. For this reason, at the
1978 conference in Rochester, Lamb decided to yield the
bet to Franken. An account of the arguments for and against
this decision was summarized by Jaynes in his paper at the
conference.18 In the end, QED had survived the challenge
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of semiclassical theory, and vacuum fluctuations were indeed
“very real things” to be reckoned with.

Seven examples

Our first three examples below illustrate the reality of vac-
uum fluctuations in the electromagnetic field as manifested
in the physics of the atom. The “photon” acquires a stochas-
tic meaning in this context. One speaks of a classical elec-
tromagnetic field with fluctuations due to the vacuum. To be
sure, one cannot “see” these fluctuations with a photodetec-
tor, but they make their presence felt, for example, in the way
the atomic electrons are “jiggled” by these random vacuum
forces.

1. Spontaneous emission

In the phenomenon of spontaneous emission,19 an atom in
the excited state decays to the ground state and spontaneously
emits a photon (see Figure 2). This “spontaneous” emission is
in a sense stimulated emission, where the stimulating field is
a vacuum fluctuation. If an atom is placed in the excited state
and the field is classical, the atom will never develop a dipole
moment and will never radiate. In this sense, semiclassical
theory does not account for spontaneous emission. However,
when vacuum fluctuations are included, we can think concep-
tually of the atom as being stimulated to emit radiation by the
fluctuating field, and the back action of the emitted light will
drive the atom further to the ground state, yielding decay of
the excited state. It is in this way that we understand sponta-
neous emission as being due to vacuum fluctuations.

2. Lamb shift

Perhaps the greatest triumph of field quantization is the ex-
planation of the Lamb shift20 between, for example, the 2s1/2
and 2p1/2 levels in a hydrogenic atom. Relativistic quantum
mechanics predicts that these levels should be degenerate, in
contradiction to the experimentally observed frequency split-
ting of about 1 GHz. We can understand the shift intuitively21
by picturing the electron forced to fluctuate about its first-
quantized position in the atom due to random kicks from the
surrounding, fluctuating vacuum field (see Figure 3). Its aver-
age displacement 〈∆r〉 is zero, but the squared displacement
〈∆r〉2 is slightly nonzero, with the result that the electron
“senses” a slightly different Coulomb pull from the positively
charged nucleus than it normally would. The effect is more
prominent nearer the nucleus where the Coulomb potential
falls off more steeply, thus the s orbital is affected more than
the p orbital. This is manifested as the Lamb shift between
the levels.

3. Micromaser – scattering off the vacuum

A micromaser consists of a single atom interacting with a
single-mode quantized field in a high-Q cavity.22 An interest-
ing new perspective on vacuum fluctuations is given by the
recent example of an excited atom scattering off an effective
potential barrier created by a vacuum field in the cavity (see

Figure 4).23 When the atomic center-of-mass motion is quan-
tized, and the atoms are travelling slow enough (their kinetic
energy is smaller than the atom-field interaction energy), it is
shown that they can undergo reflection from the cavity, even
when it is initially empty, i.e. there are no photons. The reflec-
tion of the atom takes place due to the discontinuous change
in the strength of the coupling with vacuum fluctuations at the
input to the cavity. This kind of reflection off an edge discon-
tinuity is common in wave mechanics. What is interesting in
this instance is that the reflection is due to an abrupt change
in coupling with the vacuum between the inside and the out-
side of the cavity. It is then fair to view this physics as another
manifestation of the effect of vacuum fluctuations, this time
affecting the center-of-mass dynamics of the atom.

2s

2p

Fig. 3. Lamb shift – Schematic illustration of the Lamb shift
of the hydrogenic 2s1/2 state relative to the 2p1/2 state. Intu-
itive understanding of the shift as due to random jostling of
the electron in the 2s orbital by zero-point fluctuations in the
vacuum field.

Excited
  atom

Cavity
with no
photons

Fig. 4. Scattering off the vacuum – An excited atom approach-
ing an empty cavity can be reflected for slow enough veloci-
ties. The vacuum cavity field serves as an effective potential
barrier for the center-of-mass wave function of the atom.

Our next three examples involve the concept of multi-
particle entanglement, which is a distinguishing feature of the
quantized electromagnetic field. Historically, inter-particle
correlations have played a key role in fundamental tests of
quantum mechanics, such as the EPR paradox, Bell inequal-
ities and quantum eraser. These examples illustrate the real-
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Fig. 5. Quantum beats – a) When a single atom decays from
either of two upper levels to a common lower level, the two
transition frequencies produce a beat note ωα −ωβ in the
emitted photon. b) No beats are present when the lower levels
are distinct, since the final state of the atom provides distin-
guishing information on the decay route taken by the photon.

ity of quantum correlations in multi-photon physics. In re-
cent years, entangled photons have been key to applications
in quantum information and computing, giving rise to new
technologies such as photon correlation microscopy (see be-
low).

4. Quantum beats

In general, beats arise whenever two or more frequencies of
a wave are simultaneously present. When an atom in the ex-
cited state undergoes decay along two transition pathways,
the light produced in the process is expected to register a beat
note at the difference frequency, ωα −ωβ , in addition to the
individual transition frequencies ωα and ωβ . However, when
a single atom decays, beats are present only when the two fi-
nal states of the atom are identical (see Figure 5). When the
final states are distinct, quantum theory predicts an absence of
beats.24 This is so because the two decay channels end in dif-
ferent atomic states [|b〉 or |c〉 in Figure 5(b)]. We now have
which-path information since we need only consult the atom
to see which photon (α or β ) was emitted – i.e. the entangle-
ment between the atom and the quantized field destroys the
interference. Classical electrodynamics, vis á vis semiclassi-
cal theory, cannot explain the “missing” beats.

5. Quantum eraser and complementarity

In the quantum eraser,25 the which-path information about the
interfering particle is erased by manipulating the second, en-
tangled particle. Complementarity is enforced not by the un-
certainty principle (through a measurement process), but by
a quantum correlation between particles.26 This notion can
be realized in the context of two-photon interferometry.27−29
Consider the setup shown in Figure 6, where one of two atoms
i= 1,2 emits two photons φi and γi. Interference is observed
in φ only when the spatial origin of γ cannot be discerned,
i.e., when detector D1 or D2 clicks. Erasure occurs when the
γ photon is reflected (rather than transmitted) at beamsplitter

BS1 or BS2, which in the experiment occurs after the φ pho-
ton has been detected. Thus, quantum entanglement between
the photons enables a realization of ‘delayed choice’,30 which
cannot be simulated by classical optics.

6. Photon correlation microscopy

Novel interference phenomena arise from second-order cor-
relations of entangled photons, such as arise from the sponta-
neous cascade decay of a three-level atom (where the emitted
photons are correlated in frequency and time of emission).2
When two such atoms are spatially separated and one of them
undergoes decay, a two-photon correlation measurement en-
ables high-resolution spectralmicroscopy on the atomic level
structure.31 It can be shown that the resolution of the up-
per two levels a and b in each atom is limited only by the
linewidth Γa, and not by Γa and Γb together (as is usually
the case). This phenomenon relies on the path and frequency
entanglement between the two photons arising from spatially
separated cascade sources.
A further consequence of the two-atom geometry is the en-

hancement in spatial resolution that occurs because the pho-
tons are entangled in path – that is, the photon pair arises from
one atom or the other, and their joint paths interfere. Coin-
cident detection of the two photons (each of wavelength λ )
shows a fringe resolution that is enhanced by a factor of two
as compared to the classical Rayleigh limit, λ/2. This enables
applications in high-resolution lithography.32,33 The fringe
doubling is due to the fact that the two photons propagate
along the same path, and their sum frequency, 2ω , character-
izes their joint detection probability. Path entanglement can-
not be simulated by (co-propagating) classical light pulses.

7. Two-site downconversion interferometry

In what follows, we consider a two-particle interferometry
experiment that allows us to elucidate both facets of the pho-
ton considered above – vacuum fluctuations and quantum
entanglement. The thought experiment we have in mind is
based on an actual one that was carried out using paramet-
ric downconversion.34 Consider the setup shown in Figure 7,
where two atoms i= 1,2 are fixed in position and one of them
emits two photons, labeled φi and γi, giving rise to a two-
photon state that is a superposition of emissions from each
atom:

|Ψ〉 =
1√
2

(|φ1〉|γ1〉+ |φ2〉|γ2〉) . (4)

This is an entangled state in the sense that an emission of φi
is always accompanied by an emission of γi, for i = 1 or 2.
Let us suppose that we are interested in interference of the
φ photon only, as measured by varying the path lengths of
φ1 and φ2 to detector Dφ . The γ photon serves as a marker
that potentially records which atom emitted the φ photon. It
is found that by inserting (or removing) a beamstop in the
path of γ1, the interference fringes can be made to vanish (or
re-appear) at Dφ , even when Dγ is not actually observed.
It is interesting to explain this phenomenon using stochas-

tic electrodynamics35 (as was done with the Lamb shift). Let
us replace the two photons φ and γ with classical light fields
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Eφi (r, t) and Eγi (r, t), generated respectively by dipole tran-
sitions a-b and b-c in each atom i. If the atoms are initially
in a superposition of states a and c, then zero-point fluctua-
tions in the field mode γ will introduce population into level
b (from a), with a random phase ϕγ ,i. The first-order inter-
ference in the field mode φ will now depend on an ensemble
average over the vacuum-induced two-atom phase difference:
〈Eφ1 E

φ
2 〉 ∝ 〈exp[−i(ϕγ ,1−ϕγ ,2)]〉. This quantity goes to zero

if the two phases are statistically independent, which is the
case when the beamstop is in place between the two atoms.
Thus, we have here a connection between vacuum fluctua-
tion physics (which is responsible for spontaneous emission
of photons), and two-particle correlation physics (which is the
key to quantum erasure).

The quantum field theory view

A quantum theory of radiation2−5 is indispensable to un-
derstanding the novel properties of light mentioned above.
Central to the theory is the idea of field quantization, which
develops the formal analogy with the quantum mechanics
of the harmonic oscillator. The position q and momentum
p of an oscillating particle satisfy the commutation relation
[q̂, p̂ ] = q̂ p̂− p̂ q̂= ih̄. In the case of the radiation field, q and
p represent the electric (E) and magnetic (B) fields of the light
in a given wave-vector and polarization mode k. Thus, the
quantum electromagnetic field consists of an infinite product
of such generalized harmonic oscillators, one for each mode
of the field. A Heisenberg-type uncertainty relation applies to
these quantized Maxwell fields:

∆E∆B≥ h̄/2× constant. (5)

Such field fluctuations are an intrinsic feature of the quan-
tized theory. The uncertainty relation can also be formulated
in terms of the in-phase (Ep) and in-quadrature (Eq) compo-
nents of the electric field, where E(t) = Ep cosνt+Eq sinνt.
To introduce the notion of a photon, it is convenient to re-

cast the above quantization of the field in terms of a Fourier
decomposition, or in terms of the normal modes of a field in
a cavity. These correspond to the positive frequency (going
like e−iνt) and negative frequency (going like eiνt) parts of
the electric field respectively (summed over all modes k):

E(r, t) = E+(r, t)+E−(r, t)
= ∑

k
[αkEk(r)exp(−iνkt)

+α∗
k E ∗

k (r)exp(iνkt)]. (6)

Here αk is the amplitude of oscillation, and Ek(r) is a mode
function like exp(ik ·r) for travelling waves in free space and
sin(k ·r) for standing waves in a box. We consider the oscilla-
tor amplitudes αk and α∗

k , corresponding to harmonic motion,
to be quantized by replacing αk → âk and α∗

k → â†k . By anal-
ogy to the quantum mechanics of the harmonic oscillator, the
application of â produces a field state with one less quantum
of energy, and the application of â† produces a field state with

one more quantum of energy. This naturally leads to discrete
energies for the radiation field in each mode: nk = 0,1,2, etc.
Both wave and particle perspectives are present in the

quantum view – the former in the picture of a stochastic elec-
tromagnetic field, and the latter in the language of particle
creation and annihilation. Combining these points of view,
one can think of the “photon” as a discrete excitation of a
set of modes {k} of the electromagnetic field in some cavity,
where the mode operators satisfy the boson commutation re-
lation: [âk, â†k ] = 1. Questions such as how to define the cavity,
and what normal modes to use, cannot be answered once and
for all, but depend on the particular physical setup in the lab-
oratory (see quote by Willis Lamb at the beginning). Guided
by this operational philosophy, we revisit the wave-particle
debate on the nature of light in the guise of the following
questions.

γ1 φ1 D0

D2

D1

D3

D4

BS1

BS2

φ2
γ2

BS3

Fig. 6. Quantum eraser – One of two atoms (solid circles)
emits two photons φi and γi. Interference is observed in φ by
scanning detector D0. Beamsplitters BS1-BS3 direct γ to four
detectors. A click in detectors D3 or D4 provides which-path
information on γ , preventing interference in φ . A click in de-
tectors D1 or D2 erases which-path information and restores
interference in φ . Figure adapted from Ref. [29].

What is a photon, and where is it?

In other words, in what manner (and to what extent) can we
regard the photon as a true ‘particle’ that is localized in space?
When first introduced, the photon was conceived of as a par-
ticulate carrier of discrete light energy, E = h̄ν , a concep-
tion guided by considerations of the interaction between radi-
ation and matter. From semiclassical arguments, we saw how
this discreteness was related to finite energy spacings in the
atom. Here, we pursue this line of reasoning further to inquire
whether a fully quantized theory of matter-radiation interac-
tion can lend a characteristic of spatial discreteness to the
photon when it interacts with a finite-sized atom. This line of
thinking derives from the quantum theory of photodetection36
(which, incidentally, also relies on the photoelectric effect).
Closely related to the issue of photon localization is the

(much debated) question of the existence of a photon wave
function ψ(r, t),2,7,8 analogous to that of an electron or neu-
trino (cf. Figure 8). The connection is that if such a wave
function exists, then we can interpret |ψ|2dV as the probabil-
ity of finding the photon in an infinitesimal volume element
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r2

γ1

γ2

φ2

φ1 Dφ

Dγ

B

Fig. 7. Two-site downconversion interferometry – Two atoms
are located at r1 and r2, one of which emits two photons,
labeled φi and γi. DetectorsDφ andDγ measure the respective
photons. Inserting the beamstop B in the path of γ1 allows us
to infer (potentially, by checking Dγ ) which atom emitted the
φ photon. This potential which-path information is sufficient
to prevent the interference of φ1 and φ2 possibilities at Dφ .
Setup models the experiment of Ref. [34].

dV in space, and pursue the localization of the entire photon
to an arbitrarily small volume constrained only by the uncer-
tainty principle. Moreover, a ‘first-quantized theory’ of the
electromagnetic field would be interesting from the point of
view of discussing various quantum effects that result from
wave interference and entanglement. It would also allow us to
treat the mechanics of the photon on par with that of massive
particles, such as electrons and atoms, and enable a unified
treatment of matter-radiation interaction that supersedes the
semiclassical theory in rigor, but still avoids the language of
field quantization.
Concerning the issue of ‘where’ the photon is, one is re-

minded of an often asked question in introductory quantum
mechanics: “How can a single particle go through both slits
in a Young-type experiment?”
Richard Feynman answers this by saying “nobody knows,

and its best if you try not to think about it.” This is good ad-
vice if you have a picture of a single photon as a particle.
On the other hand if you think of the photon as nothing more
nor less than a single quantum excitation of the appropriate
normal mode, then things are not so mysterious, and in some
sense intuitively obvious.
What we have in mind (referring to Figure 1) is to consider

a large box having simple normal modes and to put two holes
in the box associated with the Young slits. If light is incident
on the slits, we will have on the far wall of the box an inter-
ference pattern characteristic of classical wave interference,
which we can describe as a superposition of normal modes.
Now we quantize these normal modes and find that a pho-
todetector on the far wall will indeed respond to the single
quantum excitation of a set of normal modes which are lo-
calized at the peaks of the interference pattern, and will not
respond when placed at the nodes. In this sense, the issue is

a non sequitur. The photon is common to the box and has no
independent identity in going through one hole or the other.
But to continue this discussion, let us ask what it is that

the photodetector responds to. As we will clarify below, this
is essentially what has come to be called the photon wave
function.2 Historical arguments have tended to disfavor the
existence of such a quantity. For example, in his book on
quantum mechanics,37 Hendrik Kramers asks whether “it is
possible to consider the Maxwell equations to be a kind of
Schrödinger equation for light particles.” His bias against this
view is based on the disparity in mathematical form of the two
types of equations (specifically, the number of time deriva-
tives in each). The former admits real solutions (sinνt and
cosνt) for the electric and magnetic waves, while the lat-
ter is restricted to complex wave functions (eiνt or e−iνt , but
not both). Another argument is mentioned by David Bohm in
his quantum theory book,38 where he argues that there is no
quantity for light equivalent to the electron probability den-
sity P(x) = |ψ(x)|2:

There is, strictly speaking, no function that repre-
sents the probability of finding a light quantum at a
given point. If we choose a region large compared
with a wavelength, we obtain approximately

P(x) ∼=
E 2(x)+H 2(x)
8πhν(x)

,

but if this region is defined too well, ν(x) has no
meaning.

Bohm goes on to argue that the continuity equation, which
relates the probability density and current density of an elec-
tron, cannot be written for light. That is, a precise statement
of the conservation of probability cannot be made for the pho-
ton. In what follows, we will see that we can partially over-
come the objections raised by Kramers and Bohm.
Let us develop the analogy with the electron a bit further.

Recall that the wave function of an electron in the coordi-
nate representation is given by ψ(r, t) = 〈r|ψ〉, where |r〉 is
the position state corresponding to the exact localization of
the electron at the point r in space. Now the question is, can
we write something like this for the photon? The answer is,
strictly speaking, “no,” because there is no |r〉 state for the
photon, or more accurately, there is no particle creation oper-
ator that creates a photon at an exact point in space. Loosely
speaking, even if there were, 〈r′|r〉 (= δ (r− r′) on the scale
of a photon wavelength. Nevertheless, we can still define the
detection of a photon to a precision limited only by the size
of the atom (or detector) absorbing it, which can in princi-
ple be much smaller than the wavelength. This gives precise,
operational meaning to the notion of “localizing” a photon in
space.
If we detect the photon by an absorption process, then the

interaction coupling the field and the detector is described by
the annihilation operator Ê+(r, t), defined in Eq. (6). Accord-
ing to Fermi’s Golden Rule, the matrix element of this opera-
tor between the initial and final states of the field determines
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Fig. 8. Comparison of physical theories of a photon and a neutrino. Eikonal physics describes both in particle terms, showing
the parallel between Fermat’s principle in optics and Hamilton’s principle in classical mechanics (L is the Lagrangian). The
Maxwell equations can be formulated in terms of photon wave functions, in the same form that the Dirac equations describe
the relativistic wave mechanics of the neutrino. Here, ΨΨΨ is a six-vector representing the wave functions associated with the
electric and magnetic fields, p = (h̄/i)∇ as usual, and s = (sx,sy,sz) are a set of 3×3 matrices that take the place of the Pauli
matrices σx,σy and σz. See Ref [2] for details. Finally, quantum field theory gives a unified description of both the photon and
the neutrino in terms of quantized field operators.

the transition probability. If there is only one photon initially
in the state |ψ〉, then the relevant final state is the vacuum
state |0〉. The probability density of detecting this photon at
position r and time t is thus proportional to2

G(1)
ψ = |〈0|Ê+(r, t)|ψ〉|2 = κ |ψE (r, t)|2. (7)

Here, κ is a dimensional constant such that |ψE |2 has units of
inverse volume. The quantity ψE (r, t) may thus be regarded
as a kind of ‘electric-field wave function’ for the photon, with
{〈0|Ê+(r, t)}† = Ê−(r, t)|0〉 playing the role of the position
state |r〉. That is, by summing over infinitely many wave vec-
tors in Eq. (6), and appealing to Fourier’s theorem, Ê−(r, t)
can be interpreted as an operator that creates the photon at the
position r out of the vacuum. Of course, we have to be careful
not to take this interpretation too precisely.
It is interesting to calculate ψE (r, t) for the photon sponta-

neously emitted by an atom when it decays. Consider a two-
level atom located at r0, initially excited in level a and decay-
ing at a rate Γ to level b, as shown in Figure 2. The emitted
field state |ψ〉 is a superposition of one-photon states |1k〉,
summed over all modes k, written as

|ψ〉 =∑
k

gab,k e−ik·r0
(νk−ω)+ iΓ/2

|1k〉, (8)

where ω is the atomic frequency, and gab,k is a coupling con-
stant that depends on the dipole moment between levels a
and b. The spectrum of the emitted field is approximately
Lorentzian, which corresponds in the time domain to an ex-
ponential decay of the excited atom. Calculating ψE (r, t) for
this state, we obtain

ψE (r, t) = K
sinη
r

θ(t− r/c) exp[−i(ω+ iΓ/2)(t− r/c)],
(9)

where K is a normalization constant, r = |r− r0| is the ra-
dial distance from the atom, and η is the azimuthal angle
with respect to the atomic dipole moment. The step function
θ(t− r/c) is an indication that nothing will be detected until
the light from the atom reaches the detector, travelling at the
speed c. Once the detector starts seeing the pulse, the proba-
bility of detection |ψE |2 decays exponentially in time at the
rate Γ. The spatial profile of the pulse mimics the radiation
pattern of a classical dipole.
To what extent can we interpret Eq. (9) as a kind of wave

function for the emitted photon? It certainly has close paral-
lels with the Maxwell theory, since it agrees with what we
would write down for the electric field in the far zone of a
damped, radiating dipole. We can go even further, and in-
troduce vector wave functions ΨΨΨE and ΨΨΨH corresponding
to the electric and magnetic field vectors E and H respec-
tively, and show that these satisfy the Maxwell equations (see
Figure 8). This formalism provides the so-called “missing
link” between classical Maxwell electrodynamics and quan-
tum field theory.7 But we have to be careful in how far we
carry the analogy with mechanics. For example, there is no
real position operator r̂ for the photon in the wave-mechanical
limit, as there is for a first-quantized electron. Nevertheless,
the wave function ψE (r, t) does overcome the main objection
of Kramers (since it is complex) and partially overcomes that
of Bohm (photodetection events are indeed localized to dis-
tances smaller than a wavelength).
The real payoff of introducing a photon wave function

comes when we generalize this quantity to two or more pho-
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tons. A ‘two-photon wave function’ ΨE (r1, t1;r2, t2) may
be introduced along similar lines as above, and used to
treat problems in second-order interferometry (see Ref [2],
chap. 21). Entanglement between the two photons results in
an inseparability of the wave function: ΨE (r1, t1;r2, t2) (=
φE (r1, t1)γE (r2, t2), as in the example of the two-photon state
in Eq. (4). The novel interference effects associated with such
states may be explained in terms of this formalism.
Thus, the photon wave function concept is useful in com-

paring the interference of classical and quantum light, and
allows us to home in on the key distinction between the
two paradigms. In particular, through association with pho-
todetection amplitudes, multi-photon wave functions incor-
porate the phenomenology of quantum-correlated measure-
ment, which is key to explaining the physics of entangled
light.

Conclusion

What is a photon? In this article, we have strived to address
this concept in unambiguous terms, while remaining true to
its wonderfully multi-faceted nature. The story of our quest to
understand the character of light is a long one indeed, and par-
allels much of the progress of physical theory. Dual concep-
tions of light, as wave and particle, have co-existed since an-
tiquity. Quantum mechanics officially sanctions this duality,
and puts both concepts on an equal footing (to wit, the quan-
tum eraser). The quantum theory of light introduces vacuum
fluctuations into the radiation field, and endows field states
with quantum, many-particle correlations. Each of these de-
velopments provides us with fresh insight on the photon ques-
tion, and allows us to hone our perspective on the wave-
particle debate.
The particulate nature of the photon is evident in its ten-

dency to be absorbed and emitted by matter in discrete units,
leading to quantization of light energy. In the spatial domain,
the localization of photons by a photodetector makes it possi-
ble to define a ‘wave function’ for the photon, which affords
a ‘first-quantized’ view of the electromagnetic field by anal-
ogy to the quantum mechanics of material particles. Quantum
interference and entanglement are exemplified by one-photon
and two-photon wave functions, which facilitate comparisons
to (and clarify departures from) classical wave optics. More-
over, this interpretive formalism provides a bridge between
the two ancient, antithetical conceptions of light – its locality
as a particle, and its functionality as a wave.

References

[1] M. O. Scully and M. Sargent III, Physics Today 25, No. 3, March
1972.
[2] M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge
Univ. Press, 1997, chs. 1 and 21.
[3] E. R. Pike and S. Sarkar, Quantum Theory of Radiation, Cam-
bridge Univ. Press, 1995.
[4] R. Loudon, The Quantum Theory of Light, 2nd ed., Oxford Univ.
Press, 1983.
[5] W. Schleich, Quantum Optics in Phase Space, Wiley-VCH,
2001.

[6] W. E. Lamb, Jr., Appl. Phys. B66, 77 (1995).
[7] I. Bialynicki-Birula, Acta Phys. Polonica A, 86, 97 (1994).
[8] J. E. Sipe, Phys. Rev. A 52, 1875 (1995).
[9] M. Planck, Ann. d. Physik 4, 553, 564 (1901).
[10] A. Einstein, Ann. d. Physik 17, 132 (1905).
[11] W. E. Lamb, Jr. and M. O. Scully in Polarization, matter and
radiation (Jubilee volume in honor of Alfred Kastler), Presses Univ.
de France, Paris, 1969.
[12] F. K. Richtmyer, E. H. Kennard and T. Lauritsen, Introduction
to Modern Physics, 5th ed., McGraw Hill, New York (1955), p. 94.
[13] G. N. Lewis, Nature 118, 874 (1926).
[14] M. Sargent III, M. O. Scully andW. E. Lamb, Jr., Laser Physics,
Addison-Wesley, Reading, MA, 1974.
[15] I. I. Rabi, Phys. Rev. 51, 652 (1937); F. Bloch, Phys. Rev. 70,
460 (1946). See also L. Allen and J. H. Eberly, Optical Resonance
and Two-Level Atoms, Wiley, New York, 1975.
[16] P. A. M. Dirac, Proc. Roy. Soc. London A, 114, 243 (1927).
[17] M. D. Crisp and E. T. Jaynes, Phys. Rev. 179, 1253 (1969); C.
R. Stroud, Jr. and E. T. Jaynes, Phys. Rev. A 1, 106 (1970).
[18] E. T. Jaynes in Coherence and Quantum Optics IV, ed. L. Man-
del and E. Wolf, Plenum Press, New York, 1978, p. 495.
[19] V. Weisskopf and E. P. Wigner, Z. Physik 63, 54 (1930).
[20]W. E. Lamb, Jr. and R. C. Retherford, Phys. Rev. 72, 241 (1947).
[21] T. A. Welton, Phys. Rev. 74, 1157 (1948).
[22] D. Meschede, H. Walther, and G. Müller, Phys. Rev. Lett. 54,
551 (1985).
[23] M. O. Scully, G. M. Meyer and H. Walther, Phys. Rev. Lett. 76,
4144 (1996).
[24] W. W. Chow, M. O. Scully and J. O. Stoner, Jr., Phys. Rev. A
11, 1380 (1975); R. M. Herman, H. Grotch, R. Kornblith and J. H.
Eberly, ibid. p. 1389.
[25] M. O. Scully and K. Drühl, Phys. Rev. A 25, 2208 (1982).
[26] M. O. Scully, B.-G. Englert and H. Walther, Nature 351, 111
(1991).
[27] P. G. Kwiat, A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 45,
7729 (1992).
[28] T. J. Herzog, P. G. Kwiat, H. Weinfurter and A. Zeilinger, Phys.
Rev. Lett. 75, 3034 (1995).
[29] Y.-H. Kim, R. Yu, S. P. Kulik, Y. Shih and M. O. Scully, Phys.
Rev. Lett. 84, 1 (2000).
[30] J. A. Wheeler in Quantum Theory and Measurement, ed. J.
A. Wheeler and W. H. Zurek, Princeton Univ. Press, Princeton, NJ,
1983.
[31] U. W. Rathe andM. O. Scully, Lett. Math. Phys. 34, 297 (1995).
[32] M. D’ Angelo, M. V. Chekhova and Y. Shih, Phys. Rev. Lett.
87, 013602 (2001).
[33] A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P.
Williams and J. P. Dowling, Phys. Rev. Lett. 85, 2733 (2000).
[34] X. Y. Zou, L. J. Wang and L. Mandel, Phys. Rev. Lett. 67, 318
(1991).
[35] M. O. Scully and U. W. Rathe, Opt. Commun. 110, 373 (1994).
[36] R. J. Glauber, Phys. Rev. 130, 2529 (1963)
[37] H. A. Kramers, Quantum Mechanics, North-Holland, Amster-
dam, 1958.
[38] D. Bohm, Quantum Theory, Constable, London, 1954, p. 98.

October 2003 ! OPN Trends S-27



A photon viewed from Wigner phase space
Holger Mack and Wolfgang P. Schleich

Abteilung für Quantenphysik at the Universität Ulm, Germany
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We present a brief history of the photon and summarize the canonical procedure to quantize the radiation field. Our answer to
the question “what is a photon?” springs from the Wigner representation of quantum mechanics as applied to a single photon
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1. Introduction
For centuries light in its various manifestations has been a pace
maker for physics. We are reminded of the wave-particle controversy
of classical light between Thomas Young and Isaac Newton. We also
recall the decisive role of the null aether experiment of Albert A.
Michelson in the birth of special relativity. Many more examples
could be listed. However, three phenomena that opened the quantum
era stand out most clearly. (i) Black-body radiation paved the way
for quantum mechanics. (ii) The level shift in the fine structure of
hydrogen, that is the Lamb shift marks the beginning of quantum
electrodynamics, and (iii) the almost thirty years lasting debate1 be-
tween Albert Einstein and Niels Bohr on the double-slit experiment
could open the path way to quantum information processing in our
still young millenium.
The photon as a continuous source of inspiration and its illusive-

ness has repeatedly been emphasized2 by John A. Wheeler: Catchy
phrases such as “the photon — a smoky dragon”, “no elementary
quantum phenomenon is a phenomenon until it is a recorded phe-
nomenon”, and “it from bit” were coined by him to express in
a vivid way the seemingly acausal behavior of the photon in the
delayed-choice experiment, the special role of the observer in quan-
tum mechanics, and the concept of a participatory universe due to
the measurement process, respectively.
The opposite view, one free from any mystery has been strongly

advocated3 by Willis E. Lamb. According to him the word “photon”
should be striken from the dictionary since there is no need for it.
The correct approach is: First define modes and then quantize them
according to a harmonic oscillator. In the early days of the laser the-
ory, that is the early sixties, Lamb handed out licences to physicists
for the word “photon”. Only those who were lucky enough to obtain
such a license were allowed to use the word “photon”. These days
are long gone by. Today nobody applies for licenses anymore. We
have again freedom of speech and photons appear everywhere even
when there is no need for them. Often photons are used in a sloppy
way like some people use phrases such as “You know what I mean”
in conversations when even they themselves do not know what they
mean. In these cases photons serve as a Charly Brown security blan-
ket.
Such a sloppy approach is not conducive to unravelling the deeper

secrets of the photon that are still waiting to be discovered. We,
therefore, welcome this opportunity to readdress the old question
“what is a photon?” and argue in favor of the canonical approach
to field quantization. At the same time we try to communicate the
many fascinating facets of the photon. Needless to say, we do not
claim to have understood all sides of the photon. Our position is

probably best described by Roy J. Glauber’s joke: “I don’t know
anything about photons, but I know one when I see one”. This quote
is a paraphrase of the well-known attempt of the American Supreme
Court Justice Potter Stewart to define obscenity in the 1964 trial Ja-
cobellis versus Ohio by stating “I know it when I see it”. Glauber’s
application to our dilemma with the photon serves as the motto of
our paper. It is worth mentioning that Glauber after his lecture at the
Les Houches summer school4 1963 was one of the very few people
ever given a license for the photon and he had not even applied for
one.
Our paper is organized as follows. A brief historical summary

of the quantum theory of radiation emphasizes the crucial roles of
Max Born, Pascual Jordan and Werner Heisenberg in introducing
the quantum mechanics of the field.5, 6 This introductory section
also alludes to the problem of a hermitian phase operator7 that orig-
inated from Fritz London8 and was ignored by Paul Adrian Mau-
rice Dirac’s seminal paper9 on the quantum theory of the emission
and absorption of radiation. We then outline the formalism10 of the
quantization of the field in a version well-suited for the description
of recent experiments11,12 in cavity quantum electrodynamics. In
this approach we expand the electromagnetic field into a complete
set of mode functions. They are determined by the boundary con-
ditions of the resonator containing the radiation. In this language a
“photon” is the first excitation of a single mode. The Wigner phase
space distribution13,14 allows us to visualize the quantum state of a
system. We present the Wigner functions for a gallery of quantum
states, including a single photon number state. Several proposals to
measure the Wigner function have been made.15 Recently experi-
ments11,12, 16 have created and measured the phase space function
of a single photon. We conclude by summarizing an approach pi-
oneered by J. A. Wheeler in the context of geometrodynamics.17
This formalism gives the probability amplitude for a given electric or
magnetic field configuration in the vacuum state and does not make
use of the notion of mode function. A brief summary and outlook
alludes to the question of a wave function of a photon,18 addressed
in more detail in the article by A. Muthukrishnan et al. in this issue.

2. History of Field Quantization
It was a desperate situation that Max Planck was facing at the turn
of the 19th century. How to explain the energy distribution of black-
body radiation measured in the experiments at the Physikalisch-
Technische Reichsanstalt by Heinrich Rubens and coworkers with
such an unprecedented accuracy? How to bridge the gap between the
Rayleigh-Jeans law describing the data correctly for small frequen-
cies and Wien’s law valid in the large frequency domain? Planck’s

S-28 OPN Trends ! October 2003



The Nature of Light

revolutionary step is well-known: The oscillators situated in the
walls of the black-body resonator can only emit or absorb energy
in discrete portions. The smallest energy unit of the oscillator with
frequency Ω is h̄Ω, where in today’s notation h̄ is Planck’s constant.
It is interesting to note that Planck had initially called this new con-
stant Boltzmann’s constant — not to be confused with Boltzmann’s
constant kB of thermodynamics.
Planck’s discovery marks the beginning of quantum mechanics in

its early version of Atommechanik à la Bohr-Sommerfeld and the
matured wave or matrix mechanics of Erwin Schrödinger and W.
Heisenberg. It also constitutes the beginning of the quantum theory
of radiation. Although Planck got his pioneering result by quantiz-
ing the mechanical oscillators of the wall it was soon realized that it
is the light field whose energy appears in discrete portions. This dis-
creteness suggested the notion of a particle which Einstein in 1905
called “light quantum”. The concept of a particle was also supported
by his insight that this light quantum enjoys a momentum h̄k where
k = 2π/λ is the wave number of the light of wave length λ . The
name “photon” for the light quantum originated much later. It was
the chemist3 Gilbert N. Lewis at Stanford University who in 1926
coined the word “photon” when he suggested a model of chemical
bonding. His model did not catch on, however the photon survived
him. For more historical and philosophical details we refer to Ref. 3
and the paper by A. Zajonc in this issue.
The rigorous quantum theory of radiation starts in 1925 with

the immediate reaction of Born and Jordan5 on Heisenberg’s deep
insight19 into the inner workings of the atom obtained during a
lonely night on the island of Helgoland. Indeed, it is in this paper
that Born and Jordan show that the non-commuting objects pro-
posed by Heisenberg are matrices. This article5 also contains the
so-called Heisenberg equations of motion. Moreover, it applies for
the first time matrix mechanics to electrodynamics. Born and Jordan
recall that the electromagnetic field in a resonator is a collection of
uncoupled harmonic oscillators and interprete the electromagnetic
field as an operator, that is as a matrix. Each harmonic oscillator
is then quantized according to matrix mechanics and the commuta-
tion relation [q̂, p̂] = ih̄ between position and momentum operators
q̂ and p̂, respectively. This work is pushed even further in the fa-
mous Drei-Männer-Arbeit6 where also Heisenberg joined Born and
Jordan. This paper elucidates many consequences of the quantum
theory of radiation from the matrix mechanics point of view. In par-
ticular, it calculates from first principles the energy fluctuations of
the black-body radiation. From today’s demand for rapid publica-
tion in the eprint age, it is quite remarkable to recall the submis-
sion and publication dates of these three pioneering papers: July 26,
1925, September 27, 1925, November 16, 1925. All three papers
were published in 1925.
A new chapter in the book of the quantized electromagnetic field

was opened in 1927 when Dirac9 considered the interaction of a
quantized electromagnetic field with an atomwhich is also described
by quantum theory. In this way he derived the Einstein A- and B-
coefficients of spontaneous and induced emission. His paper defines
the beginning of quantum electrodynamics leading eventually to the
modern gauge theories.
Dirac’s paper is also remarkable from a different point of view.

He does not quantize the field in terms of non-commuting posi-
tion and momentum operators but by decomposing the annihilation
and creation operators â and â† into action n̂ and angle φ̂ opera-
tors with [n̂, φ̂ ] = ih̄. However, such a decomposition is not well-
defined, since n̂ and φ̂ cannot be conjugate variables. Indeed, they
have different type of spectra: The spectrum of n̂ is discrete whereas
the phase in continuous. The problems arising in the translation of

classical action-angle variables which are at the heart of the Bohr-
Sommerfeld Atommechanik to action-angle operators had already
been pointed out by Fritz London8 in 1926. He showed that there
does not exist a hermitian phase operator φ̂ . Since then this problem
of finding the quantum mechanical analogue of the classical phase
has resurfaced repeatedly whenever there was a substantial improve-
ment in the technical tools of preparing quantum states of the radia-
tion field. These periods are characterized by the development of the
maser and laser, the generation of squeezed states, and the amazing
one-atom maser. In particular, the generation of squeezed light in
the mid-eighties has motivated Stephen Barnett and David Pegg7 to
propose a hermitian phase operator in a truncated Hilbert space.
Enrico Fermi independently developed his own approach10 to-

wards the quantum theory of radiation. In Ref. 10 Fermi applies the
quantum theory of radiation to many physical situations. For exam-
ple, he treats Lippmann fringes and shows that the radiation emitted
by one atom and absorbed by another travels with the speed of light.
Notwithstanding Fermi’s analysis this problem was discussed later
in many papers and it was shown that Fermi’s model predicts instan-
taneous propagation.

3. Mode Functions
After this historical introduction we briefly summarize in the next
two sections the essential ingredients of Fermi’s approach towards
quantizing the electromagnetic field. Here we concentrate on a do-
main of space that is free of charges and currents.
In the Coulomb gauge with !∇ ·!A = 0 we find from Maxwell’s

equations the wave equation
(
1
c2
∂ 2

∂ t2
−∆

)
!A(t,!r) = 0 (1)

for the vector potential !A = !A(t,!r) where ∆ denotes the three-
dimensional Laplace operator.
We shall expand !A into a complete set of mode functions !u!k,σ =

!u!k,σ (!r) defined by the Helmholtz equation
(
∆+!k2

)
!u!k,σ (!r) = 0 (2)

and the boundary conditions set by the shape of the resonator.
For the example of a resonator shaped like a shoe box the mode

functions are products of sine and cosine functions. In order to match
the boundary conditions of vanishing transverse electric field on the
metallic walls the components of the wave vector!k have to be inte-
ger multiples of π/L j where Lj denotes the length of the j-th side
of the resonator. The vector character of the mode function !u!k,σ is
determined by the Coulomb gauge condition which for a rectangu-
lar resonator takes the form!k ·!u!k,σ (!r) = 0. Hence, the direction of!u
has to be orthogonal to the wave vector!k. The Coulomb gauge trans-
lates into a transverse vector potential which is the reason why this
gauge is sometimes referred to as “transverse gauge”. Since in gen-
eral there are two perpendicular directions there are two polarization
degrees indicated by the index σ .
At this point it is worthwhile emphasizing that the discreteness

of the wave vector is unrelated to quantum mechanics. It is solely
determined by the boundary conditions imposed on the Helmholtz
equation. Indeed, the variable!r indicating the position in space is a
classical quantity and not a quantum mechanical operator.
For more sophisticated shapes of resonators the mode functions

become more complicated. Nevertheless, their basic properties ex-
plained above for the elementary example of a box-shaped resonator
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still hold true. In particular, the mode functions !u"(!r) are complete
and enjoy the orthonormality relation

1√
V"V"′

∫
d3r!u∗" (!r) ·!u"′(!r) = δ","′ (3)

where V" denotes the effective volume of the "-th mode. In order to
simplify the notation we have combined the three components of the
wave vector!k and the polarization index σ to one index ".
Due to the completeness of the eigenfunctions we can expand the

vector potential
!A(t,!r) ≡∑

"

A" q"(t)!u"(!r) (4)

whereA" is a constant that we shall choose later in order to simplify
the calculations. The time dependent amplitude q" of the "-th mode
follows from the differential equation

q̈"(t)+Ω2"q"(t) = 0 (5)

of a harmonic oscillator of frequency Ω" ≡ c|!k"|. Here a dot denotes
differentiation with respect to time. This equation emerges when we
substitute the expansion, Eq. (4), into the wave equation, Eq. (1),
and make use of the Helmholtz equation, Eq. (2).
The notion of the field amplitudes in the modes as harmonic os-

cillators stands out most clearly when we calculate the energy

H ≡
∫
d3r

(
1
2
ε0!E2+

1
2µ0

!B2
)

(6)

of the electromagnetic field in the resonator. Indeed, when we use
the relations

!E = −∂
!A
∂ t = −∑

"

A" q̇"!u(!r) (7)

and
!B= !∇×!A=∑

"

A" q"∇×!u(!r) (8)

connecting in Coulomb gauge the electric and magnetic fields !E and
!B with the vector potential !A we find after a few lines of calcula-
tions14

H =∑
"

H" =∑
"

1
2
q̇2" +

1
2
Ω2"q

2
" . (9)

Here we have used the orthonormality relation, Eq. (3), and have
chosen the prefactor A" ≡ (ε0V")−1/2 in the expansion Eq. (4).

4. Field Operators
According to Eq. (9) the electromagnetic field is a collection of har-
monic oscillators with conjugate variables q" and p" ≡ q̇". The nat-
ural method to quantize the field is therefore to replace the variables
q" and p" by operators q̂" and p̂" satisfying the canonical commution
relations [q̂", p̂"′ ] = ih̄δ","′ . In this way we arrive at the operator

!̂E(t,!r) = −∑
"

A" p̂"(t)!u"(!r) (10)

of the electric field and

!̂B(t,!r) =∑
"

A" q̂"(t)!∇×!u"(!r) (11)

of the magnetic field.
From the expressions Eqs. (10) and (11) we recognize that !̂E and

!̂B must be conjugate variables since !̂B only contains generalized
position operators q̂" whereas !̂E only involves generalized momen-
tum operators p̂". Therefore, it is not surprising that in general it is

not possible to measure the electric and magnetic field simultane-
ously with arbitrary accuracy. The limits put on the accuracy of field
measurements has been the subject of two famous papers by N. Bohr
and Leon Rosenfeld.1
We conclude by casting the quantum analogue

Ĥ ≡∑
"

1
2
p̂2" +

1
2
Ω2" q̂

2
" (12)

of the Hamiltonian Eq. (9) into a slightly different form. For this
purpose it is useful to introduce the annihilation and creation oper-
ators â" ≡ [Ω"/(2h̄)]1/2(q̂" + ip̂"/Ω") and â†" ≡ [Ω"/(2h̄)]1/2(q̂" −
ip̂"/Ω"), respectively. The commutation relation [â", â†"′ ] = δ","′ fol-
lows from the one of q̂" and p̂"′ . The Hamiltonian of the electromag-
netic field then takes the form

Ĥ =∑
"

Ĥ" =∑
"

h̄Ω"

(
n̂" +

1
2

)
(13)

where n̂" ≡ â†" â" denotes the number operator.
The contribution 1/2 arises from the commutation relations and

results in the familiar zero point energy. Since every mode con-
tributes the energy h̄Ω"/2 and there are infinitely many modes we
arrive at an infinite zero point energy of the electromagnetic field. In
general we drop this contribution since a constant shift in the energy,
that is, in the Hamiltonian, does not influence the dynamics, even if
it is infinite. Under certain circumstances this contribution becomes
finite and gives rise to a physical effect. For example, we find an at-
tractive force20 between two neutral conducting metal surfaces. This
Casimir force has also been observed experimentally.14

5. Quantum States
Operators are only one side of the coin of quantum mechanics. The
other one is the description of the quantum system, that is, the elec-
tromagnetic field, by a quantum state. In general this state |Ψ〉 is a
multimode state, that is, it involves a quantum state |ψ"〉 for each
mode ". In the most elementary situation the states of the individual
modes are independent from each other and the state of the electro-
magnetic field is a product state

|Ψ〉 ≡∏
"

|ψ"〉 = . . . |ψ−1〉⊗ |ψ0〉⊗ |ψ1〉 . . . . (14)

However, the most interesting states are the ones where two or more
modes are correlated with each other. Schrödinger in his famous pa-
per1 “On the current situation of quantum mechanics” triggered
by the Einstein-Podolsky-Rosen paper1 asking the question “Can
quantum-mechanical description of physical reality be considered
complete?” coined the phrase “entangled states”. In order to de-
scribe entangled states it is useful to first introduce the most ele-
mentary quantum states, namely photon number states |n"〉.
The states |n"〉 are eigenstates of the operator n̂", that is

n̂"|n"〉 = n"|n"〉 (15)

with integer eigenvalues. Since the states |n"〉 are eigenstates of the
Hamiltonian Ĥ" of the "-th mode the energy of the field in the state
|n"〉 is then (neglecting the zero-point energy) n"h̄Ω", that is n" times
the fundamental unit h̄Ω". This feature has led to the notion that n"
quanta of energy h̄Ω" are in this mode. But we emphasize that this
energy is distributed over the whole resonator. It cannot be local-
ized at a specific position !r. Indeed, recall that we have found the
Hamiltonian, Eq. (9), by integrating the energy density, Eq. (6), over
the whole resonator. Due to the discreteness in the excitation of the
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mode in portions of units h̄Ω" the expression “photon” for this exci-
tation is appropriate.
We are now in the position to discuss the notion of an entangled

state. The state |ψ〉 of a given mode is in general a superposition of
photon number states, that is

|ψ〉 ≡∑
n
ψn|n〉. (16)

We emphasize that here the subscript n is not a mode index but
counts the quanta in a single mode.
Two states |ψ〉 and |ψ̃〉 that are independent of each other are then

described by a direct product, that is

|Ψ〉 = |ψ〉⊗ |ψ̃〉 =∑
m,n
ψmψ̃n|m〉|n〉. (17)

In case the two states are entangled we find

|Ψ〉 ≡∑
m,n
Ψm,n|m〉|n〉. (18)

where the expansion coefficientsΨm,n do not factorize into a product
of two contributions solely related to the two individual modes.
Entangled states are the essential ingredients of the newly emerg-

ing and rapidly moving field of quantum information processing.21
They can be created by non-linear optical processes such as para-
metric down-conversion as discussed in the next section or by beam
splitters as outlined in detail by R. Loudon and A. Zajonc in their
articles in the present issue.

6. Wigner Functions of Photons
In the following two sections we focus on states of a single mode of
the radiation field and for the sake of simplicity suppress the mode
index. We introduce the Wigner phase space distribution and discuss
experiments measuring the Wigner function of a single photon.
A photon denoted by the quantum state |1〉 is an excitation of a

mode of the electromagnetic field. But how to gain deeper insight
into this state?
Here, the Wigner function offers itself as a useful tool to visual-

ize the rather abstract object of a quantum state. It was intoduced in
1932 by Eugene Paul Wigner in a paper13 concerned with the cor-
rections of quantum mechanics to classical statistical mechanics. It
is remarkable that in a footnote Wigner shares the fame as the orig-
inal proposer of this phase space distribution function. He states:
“This expression was found by L. Szilard and the present author
some years ago for another purpose”.
However, no such paper by Leo Szilard and Wigner exists. Later

in life Wigner explained that he had only added this footnote in or-
der to assist Szilard in his search for a research position.22 It is as-
tonishing that Heisenberg23 and Dirac,24 who later was to become
Wigner’s brother in law, had already earlier introduced this phase
space function. In particular, Dirac had also studied many of its
properties and amazingly enough Wigner seemed to be unaware of
Dirac’s work.
We now turn to the definition of the Wigner phase space distribu-

tion. For this purpose it is useful to recall that the eigenstates |E〉
of the single-mode electric field operator !̂E = −A0 p̂!u(!r) are pro-
portional to the eigenstates |p〉 of the momentum operator p̂. Like-
wise, the eigenstates |B〉 of the single mode magnetic field operator
!̂B= A0q̂∇×!u(!r) are proportional to the eigenstates |q〉 of the posi-
tion operator q̂.

Fig. 1. Gallery of Wigner functions of a single mode of the
radiation field. The Wigner function of the vacuum (top) is
always positive whereas the ones corresponding to a single
photon (center) or six photons (bottom) contain significant
domains where the phase space distribution assumes negative
values. The circle visible in the quadrant of the foreground in-
dicates where the phase space trajectory corresponding to the
energy h̄Ω(n+1/2) runs. The scales on the axes are identical
in all three cases.

The Wigner functionW =W (q, p) of a state |ψ〉 with wave func-
tion ψ(q) ≡ 〈q|ψ〉 is defined by

W (q, p) ≡ 1
2π h̄

∞∫

−∞

dξe−ipξ/h̄ψ∗
(
q− ξ

2

)
ψ

(
q+

ξ
2

)
(19)

where q and p are conjugate variables. For a massive particle they
correspond to position and momentum whereas in the case of the
electromagnetic field they represent the amplitude of the magnetic
and electric field, respectively.
Hence, the problem of finding the Wigner function of a given

wave function amounts to evaluating the integral Eq. (19). For the
example of a photon number state |n〉 of a mode with frequency Ω
the wave function ϕn(q;Ω) ≡ 〈q|n〉 reads14

ϕn(q;Ω) ≡ Nn(Ω)Hn

(√
Ω
h̄
q

)
exp

(
−1
2
Ω
h̄
q2

)
(20)

where Nn(Ω) ≡ (Ω/(π h̄))1/4 (2nn!)−1/2 and Hn denotes the n-th
Hermite polynomial.
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When we substitute this expression into the definition, Eq. (19),
of the Wigner function and perform the integration we arrive at14

Wn(q, p) =
(−1)n

π h̄ Ln [2η(q, p)]exp [−η(q, p)] (21)

where η(q, p) ≡ (p2 +Ω2q2)/(h̄Ω) is the scaled phase space tra-
jectory of a classical harmonic oscillator and Ln denotes the n-th
Laguerre polynomial.
The two phase space variables q and p enter the Wigner func-

tion in a symmetric way. Moreover, the Wigner function is constant
along the classical phase space trajectories, that is along circles. Its
behavior along the radial direction is determined by the Laguerre
polynomial. In order to study these features in more detail we now
analyze and display in Fig. 1 the Wigner functions of the ground
state, a one-photon and a six-photon state.
We start our discussion with the Wigner function of the ground

state, that is n= 0 where according to Eq. (20) the wave function

ϕ0(q;Ω) = N0(Ω) exp
(
−1
2
Ω
h̄
q2

)
(22)

is a Gaussian. The corresponding Wigner function

W0(q, p) =
1
π h̄ exp

[
− 1
h̄Ω

(
Ω2q2+ p2

)]
, (23)

is then a Gaussian in the generalized position and momentum vari-
ables, that is in the electric and magnetic field amplitudes. Thus, the
Wigner function of the ground state, that is a mode with no excita-
tion, that is no photons, is everywhere positive.
We now turn to the Wigner function of a single photon, that is of

the first excited state |1〉. Since the first Laguerre polynomial reads
L1 = 1− x the Wigner function, Eq. (21), takes the form

W1(q, p) =
(−1)
π h̄ (1−2η)e−η . (24)

Hence, at the origin of phase space the Wigner function assumes
the negative value W1(0,0) = (−1)/(π h̄). Figure 1 shows that the
Wigner function is not only negative at the origin, but also in a
substantial part of its neighborhood. It is the existence of negative
parts that rules out a probability interpretation of the Wigner func-
tion. Nevertheless it can be used to develop a formalism of quantum
mechanics in phase space,14 that is equivalent to the one in Hilbert
space.
The negative parts of the Wigner function are a consequence of

the wave nature of quantum mechanics. This feature stands out most
clearly when we consider the Wigner function of a photon number
state with many photons in it. In Fig. 1 we show the Wigner function
corresponding to the state |6〉. We recognize circular wave troughs
that alternate with circular wave crests. The Wigner function repeat-
edly assumes negative values and contains n= 6 nodes. The last pos-
itive crest is located in the neighborhood of the classical phase space
trajectory corresponding to the quantized energy E = h̄Ω(n+ 1

2 ) of
this state. Hence, this positive-valued ring represents the classical
part of the state |n〉. The fringes caught inside reflect the quantum
nature of the state. In order to gain deeper insight into this sepa-
ration of wave and particle nature, we recall that a photon number
state is an energy eigenstate of a harmonic oscillator. In the limit of
large n, that is many quanta of excitation, this state is the superpo-
sition of a right- and a left-going wave. Since the Wigner function,
Eq. (19), is bilinear in the wave function the interference between
these two waves manifests itself in the structures circumnavigated
by the classical crest.

Fig. 2. Quantum state tomography of a single photon. Gener-
ation of entangled photons and triggered homodyne detection
(top) leads to the reconstruction of the Wigner function (bot-
tom). A laser L creates through a non-linear interaction in a
crystal C a pair of photons in two modes. The photon in the
upper mode triggers a detector D and the photon in the lower
mode gets mixed on a beam splitter BS with a portion of the
original laser field which serves as a local oscillator. The dif-
ference in the two mixed photo-currents (homodyne detector)
is correlated with the detection of the photon in the upper
mode. The current distributions for various phases of the laser
field together with a mathematical algorithm — the Radon
transform — yield the Wigner function of a single photon.
After Lvovsky et al., Phys. Rev. Lett. 87, 050402 (2001)

7. Measured Wigner Functions
Wigner functions of a single photon have recently been observed ex-
perimentally. Space does not allow us to present these experiments
in every detail, nor can we provide a complete theoretical descrip-
tion. Here we only try to give the flavor of these experiments and
refer to the literature11,12 for more details.
There are essentially two types of experiments. The first approach

shown in Fig. 2 uses the method of quantum state tomography to re-
construct the Wigner function, whereas the second technique sum-
marized in Fig. 3 obtains the Wigner function from the output of a
Ramsey set-up.
In the tomography approach the quantized light field to be investi-

gated is mixed on a beam splitter with a classical field of rather well-
defined phase. The currents emerging from two photodetectors are
subtracted. In contrast to many other experiments which only mea-
sure the average of the current for the reconstruction of the Wigner
function we need the full statistics of the current fluctuations, that is
the probability distribution of the current. These measurements are
repeated for many different phases of the classical field. A mathe-
matical algorithm, the so-called Radon transform,14 enables us to
obtain from this set of data the Wigner function of the underlying
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Fig. 3. Ramsey interferometry (top) to reconstruct the Wigner
functions (bottom) of the vacuum (bottom upper) and a sin-
gle photon (bottom lower) in an ideal cavity. An atomic beam
of atoms emerging from an oven O and prepared in B in a
Rydberg state probes the field in a cavity C. For this purpose
two classical light fields F first prepare and then probe two
internal levels of the atom: The first field prepares a dipole
whereas the second field reads out the change of the dipole
due to the interaction with the cavity field. A detector D mea-
sures the populations in the two levels as a function of the
phase difference between the two classical fields. These Ram-
sey fringes are recorded for various displacements of a classi-
cal field S injected into the cavity. The contrast of the fringes
for a given displacement α determines the Wigner function
at the phase space point α . After P. Bertet et al., Phys. Rev.
Lett. 89, 200402 (2002)

state. Figure 2 shows the so-reconstructed Wigner function11 of a
single photon state created by a parametric process in a crystal. We
recognize the negative parts around the origin.
The second experiment12 is from the realm of cavity QED. Here

an atom probes the quantum state of the field inside a resonator. This
field has been prepared earlier by one or more atoms. In this method
of state reconstruction the information about the state is stored in the
internal states of the atom. In order to be sensitive to interference in
the field the atoms enter and are probed in a coherent superposition
of their internal states. For the sake of simplicity we have assumed
here only two internal states. A detector at the exit of the device mea-
sures the populations in the two states as a function of the amplitude
of a classical field injected into the resonator. The contrast of the
interference structures determines the value of the Wigner function.
In Fig. 3 we show the radial cut of the so-obtained Wigner func-

tion of the vacuum and a single photon. Whereas the vacuum enjoys
a Gaussian Wigner function, Eq. (23), that is positive everywhere
the one corresponding to a single photon, Eq. (24), displays clearly
substantial negative parts around the origin.

8. Wave Functional of Vacuum
Find the mode functions appropriate for the problem at hand and
quantize every mode oscillator according to the canonical prescrip-
tion — that is the one-sentence summary of the quantum theory of
radiation. The excitations of these modes are the photons. The situ-
ation when all mode oscillators are in their ground states defines the
vacuum of the electromagnetic field.
This approach relies heavily on the concept of a mode function.

We now briefly review a treatment17 that does not involve mode
functions but refers to the complete electromagnetic field given by
all modes. This formulation provides us with a probability ampli-
tude Ψ=Ψ[!B(!r)] for a given magnetic field configuration !B= !B(!r)
being in the ground state.
In order to motivate this expression we first consider a single

mode of frequency Ω" characterized by the mode index ". We as-
sume that the field in this mode is in the ground state. Accord-
ing to Eq. (22) the corresponding probability amplitude ψ"(q") ≡
ϕ0(q";Ω") to find the value q" determining the magnetic field via
Eq. (8) is then the Gaussian distribution

ψ"(q") = N" exp
(
−1
2
Ω"

h̄
q2"

)
(25)

whereN" ≡ N0(Ω") denotes the normalization constant.
The probability amplitudeΨ for the vacuum of the complete elec-

tromagnetic field, that is all modes in the ground state, with the
scaled magnetic field q−1 in the mode −1, and the field q0 in the
mode 0, the amplitude q1 in mode 1 and . . . is the product

Ψ= . . .ψ−1(q−1) ·ψ0(q0) ·ψ1(q1) . . . =∏
"

ψ"(q") (26)

of the ground state wave functions ψ" of these modes. This prod-
uct in wave function space is an example for a multimode state |Ψ〉
expressed in Eq. (14) in terms of state vectors.
When we recall the Gaussian wave function, Eq. (25) and make

use of the property eA · eB = eA+B of the exponential function we
arrive at

Ψ= N exp

(
− 1
2h̄∑"

Ω"q2"

)
. (27)

Here, we have introduced the normalization constant N ≡∏
"

N".
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In the derivation of the Hamiltonian Eq. (9) we have used the
relation

1
µ0

∫
d3r!B2(!r) =∑

"

Ω2"q
2
" . (28)

The integral of the square of the magnetic field translates into a sum
of the squares of the mode amplitudes. Hence, we should be able to
express the sum in the ground state wave function Ψ, Eq. (27), in
terms of a bilinear product of magnetic fields. However, in contrast
to Eq. (28) Ψ involves Ω" only in a linear way. Hence, the connec-
tion between the sum in Eq. (27) and the magnetic field must be
more complicated. Indeed, Wheeler showed17 that such a connec-
tion exists which finally yields

Ψ[!B(!r)] = N exp

[
− 1
16π3h̄c

∫
d3r1

∫
d3r2

!B(!r1) ·!B(!r2)
|!r1−!r2|2

]
. (29)

The quantityΨ is the ground state functional. It is not an ordinary
function but a functional since it depends not on a point but a whole
function !B = !B(!r). Indeed, it is the probability amplitude to find
the magnetic field distribution !B= !B(!r) in the vacuum state. In this
approach no explicit mentioning of a mode function is made.

9. Conclusions
The photon has come a long way. From Planck’s minimal portion
of energy triggering the quantum revolution at the end of the 19th
century, via the quantum of excitation of the electromagnetic field
dominating the physics of the 20th century, to entangled photons as
resources of quantum cryptography and teleportation. In this version
photons will surely be central to the quantum technology of the 21st
century. At last we have achieved a complete understanding of the
photon, we might think.
But is our situation not reminiscent of 1874 when the professor

of physics Phillip von Jolly at the University of Munich tried to dis-
courage the young Planck from studying theoretical physics with
the words: “Theoretical physics is an alright field . . . but I doubt that
you can achieve anything fundamentally new in it” (german origi-
nal: “Theoretische Physik, das ist ja ein ganz schönes Fach . . . aber
grundsätzlich Neues werden sie darin kaum mehr leisten können”).
In hindsight we know how wrong Prof. von Jolly was in his judge-
ment.
Today there exist many hints that the photon might again be ready

for suprises. For example, we do not have a generally accepted wave
function of the photon. Many candidates18 offer themselves: Should
we use the classical Maxwell field, the energy density, or the Glauber
coherence functions.4 The pros and cons of the various approaches
have been nicely argued in the paper by A. Muthukrishnan et al. in
this volume. But could it be that there is no such wave function at
all? Would this exception not point into a new direction?
Closely related to the problem of the proper photon wave func-

tion is the question of the position operator of a photon.25 Might
there be a completely new aspect of the photon lurking behind these
questions?
D. Finkelstein’s article in this volume is even arguing that there is

still too much commutativity in quantum mechanics — restricting it
further might lead to an even richer land of quantum phenomena.
Make no mistake, we have learned a lot since Einstein’s famous

admission about his lack of deeper insight into the photon. Neverthe-
less, we have only started to scratch the surface. Many more exciting
discoveries can be expected to appear in the next hundred years of a
photon’s life.
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