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3. A LITTLE ABOUT GROUP THEORY

3.1 Preliminaries

It is an apparent fact that nature exhibits many symmetries, both exact and approx-
imate. A symmetry is an invariance property of a system under a set of transformations.
For example, our faces have approximate reflection symmetry, because we look approx-
imately the same in a photograph as in a mirror. As another example, a sphere has
rotational symmetry because it looks the same no matter how it is rotated.

Symmetry transformations of physical systems have properties analogous to those of
a mathematical group. These properties are: If we successively perform two symmetry
transformations we obtain a unique symmetry transformation; the transformations are
associative; and inverse and identity transformations exist.

We have already mentioned in chapter 1 a theorem, called Noether’s theorem, which
relates symmetry principles to conservation laws. Noether’s theorem says that if a physical
system can be described by a classical Lagrangian which is invariant under a continuous
group of transformations, then the system has a conserved current. If a classical field is
quantized, the resulting quantum field theory usually has the same symmetry. However,
the quantized theory may have an anomaly, which breaks the classical symmetry. We
briefly discuss anomalies in Section 4.8.

As two examples of symmetry, we note that the fundamental interactions of nature
are apparently invariant under the group of translations and the group of rotations in
three dimensions. Noether’s theorem relates symmetry under translations to the law of
conservation of momentum, and the symmetry under rotations to the law of conservation
of angular momentum. The translation and rotation groups are examples of Lie groups,
which we define in Section 3.3.

The Lagrangian of the standard model is invariant under the group of gauge trans-
formations SU(3) × SU(2) × U(1). (We define gauge transformations in chapter 4.) The
standard model is also invariant under the proper Poincaré group, which includes transla-
tions in space and time, rotations, and proper Lorentz transformations. (Improper Lorentz
transformations include space and time reflections.) The Poincaré group is a Lie group.
The groups SU(3), SU(2), and U(1) are special unitary groups, which are also Lie groups.
A unitary group is a group of unitary matrices, and a special unitary group is a group
of unitary matrices with determinants equal to unity. In order to understand the stan-
dard model, we have to have some familiarity with the Lie groups and their Lie algebras,
especially unitary groups. (We discuss unitary groups further in Section 3.5.)

In addition to the space–time symmetries of the proper Poincaré group, some theories
have additional symmetries under finite transformation groups. Of these, we single out
space reflection or parity P , time inversion T , and charge conjugation C. We do not give
much discussion of these groups, but they play an important role in the standard model.
As we have already mentioned, none of the groups P , C, and T is an exact symmetry of
the standard model, but the combined symmetry CPT , taken in any order, is exact.
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In this chapter we briefly discuss groups in general, then Lie groups and their algebras,
and the unitary groups and their algebras. We concentrate on group representations (which
we define in the Wection 3.2), especially irreducible unitary representations. We can
have unitary representations of many different groups, not only of unitary groups. The
treatment in this chapter may seem to be a little condensed for those who only know a
little about group theory. More details can be found in many places, for example, in a
book on unitary symmetry (Lichtenberg, 1978). We do not discuss the Poincaré group in
any detail.

A group G is a set of elements which satisfy four postulates:

1) A law of combination, often called a product, is defined so that if a and b belong to
G, the product ab is a unique element of G.

2) Multiplication is associative, i.e., a(bc) = (ab)c.

3) An identity e exists such that ea = ae = a.

4) An inverse a−1 exists to any element a such that a−1a = aa−1 = e.

The number of elements of a group may be finite, in which case the group is called a
finite group, or infinite. If all the elements of a group commute with one another, the group
is said to be abelian. Otherwise the group is nonabelian. A subgroup of a group is a subset
of elements which is itself a group under the same multiplication law. Every group has at
least two subgroups: itself and the group consisting only of the identity. These are called
improper subgroups; any others are called proper subgroups. A group H is homomorphic

to a group G if there is a mapping of the elements of G onto the elements of H. The
groups are isomorphic if the mapping is one-to-one.

An element a belonging to G is said to be conjugate to an element b in G if there
exists an element u in G such that a = ubu−1. Let H be a subgroup of G, and let h be
in H and g be in G. Form the product elements h′ = ghg−1 for all h. Then the h′ form
a group H ′ which is isomorphic to H. If, for all g in G, the elements of H and H ′ are
identical, then H is called an invariant or self-conjugate subgroup of G.

The group G is said to be the direct product of two groups H and H ′ if every h in H
commutes with every h′ in H ′ and if every g in G can be written uniquely as a product
of an element in H and an element in H ′. The direct product is written in the form
G = H ×H ′.

3.2 Group representations

A representation of a group is a homomorphism between the group and a group of
linear operators which operate on a vector space. We can think of the vectors in this space
as being the states (wave functions) of a quantum mechanical system. A finite-dimensional
matrix representation of a group is a homomorphism between the group and a group of
matrices. We often simply use the word “representation” to mean a matrix representation.
If a representation is isomorphic to the group, it is said to be faithful. We shall consider
only representations by square matrices. If G is a group with elements g, then we often
denote the corresponding element of the representation by D(g).

The matrices of a representation are a special case of linear operators which act on a
vector space. If the matrices are n-by-n, the vectors (wave functions) are column matrices
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with n entries, and their hermitian conjugates are row matrices. The vectors are members
of an n-dimensional vector space, and therefore the matrices are said to be n-dimensional.

A similarity transformation is a transformation by means of a matrix S which leaves
unaltered the algebra of the transformed system. A similarity transformation acts differ-
ently on a representation D and on a vector V , namely

D′ = SDS−1, V ′ = SV. (3.1)

If a representation can be brought into the following form by a similarity transformation:

D(g) =

(

D1(g) X(g)
0 D2(g)

)

(3.2)

for all g, then the representation is called reducible. If not, it is irreducible. If X(g) = 0,
the representation is fully reducible. We shall restrict our considerations to cases in which
reducible representations are fully reducible, and we shall omit the word “fully.” A theorem
(Schur’s lemma) states: A matrix which commutes with all matrices of an irreducible
representation is a multiple of the unit matrix.

We next discuss the importance of irreducible unitary representations of groups within
the Hamiltonian formalism, as using this formalism is somewhat easier than using the
Lagrangian formalism. Let us consider an n-dimensional irreducible unitary representation
of a groupG. The unitary matrices act on a set of n linearly-independent vectors, which can
be chosen to be orthonormal. The members of this orthonormal set (or basis) constitute
a multiplet.

Let a unitary representation of a symmetry group (that is, a group of transformations
which leaves the physical system invariant) be denoted by Ua, where a stands for all the
parameters which specify individual group elements. If we have any transition matrix
(φ, ψ), where φ and ψ are state vectors (or wave functions) describing physical states, then
the transformed states φ′ = Uaφ and ψ′ = Uaψ satisfy the condition

(φ′, ψ′) = (Uaφ, Uaψ) = (U−1
a Uaφ, ψ) = (φ, ψ). (3.3)

Thus, unitary transformations are important in quantum mechanics because they leave
transition matrixes invariant.

If the Hamiltonian H of a physical system is invariant under a symmetry group G,
then all members of a multiplet belonging to an irreducible unitary representation have
the same energy, as we now show. Now consider the eigenvalue equation

Hψn = Enψn. (3.4)

If we operate on this equation with Ua, we get

UaHψn = UaHU
−1
a Uaψn = EnUaψn. (3.5)

Now if H ′ and ψ′
n are defined as

H ′ = UaHU
−1
a , ψ′

n = Uaψn, (3.6)
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our equation becomes
H ′ψ′

n = Enψ
′
n. (3.7)

But because Ua is a symmetry group, by definition it leaves the Hamiltonian H invariant,
so that H ′ = H This implies that Ua commutes with the Hamiltonian:

HUa = UaH, or[H,Ua] = 0, (3.8)

where [H,Ua] = HUa − UaH is called the commutator of H and Ua. Then Eq. (3.7)
becomes simply

Hψ′
n = Enψ

′
n, (3.9)

so that the transformed wave functions ψ′
n are also eigenfunctions of the Hamiltonian with

the same energy eigenvalue. But the transformed wave functions are in general linear
combinations of all members of the original multiplet. Therefore, in order for Eq. (3.9) to
be true, all members of the multiplet must have the same energy eigenvalue. We mention
that if the representation is reducible, the new wave functions are not in general linear
combinations of all the wave functions belonging to the representation, so that all the
wave functions do not need to have the same energy.

It should be clear from the above arguments that if any operator A commutes with
the Ua, then all members of a multiplet have the same eigenvalue of the operator A.
Thus, for example, let us consider the rotation group R(3). Not only is the Hamiltonian
invariant under rotations, so that all members of a multiplet have the same energy, but
Ua also commutes with the operator J2, so that all members of a multiplet have the same
eigenvalue of J2, namely, J(J + 1).

3.3 Lie groups

We have noted that a group may have a finite or infinite number of elements. A
Lie group has a continuously infinite number of elements characterized by a finite number
of parameters which can vary continuously. Furthermore, if an element of a Lie group
is characterized by a set of r parameters collectively denoted by a (a = a1, a2...ar), and
another element is characterized by a set of parameters b, then the product element is
characterized by a set of parameters c which are analytic functions of a and b.

As an example of a Lie group, consider the rotations in two dimensions. These are
characterized by a parameter θ. The transformation is

x′1 = x1 cos θ − x2 sin θ,

x′2 = x1 sin θ + x2 cos θ. (3.10)

The transformation can be written in matrix form as

x′ = R(θ)x, (3.11)

where

x =

(

x1

x2

)

, R =

(

cos θ − sin θ
sin θ cos θ

)

. (3.12)
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The rotation matrix R(θ) is the group element characterized by the single parameter θ.
Rotations in two dimensions constitute an abelian group, but in more dimensions the
rotation group is nonabelian. Note that the groups R(n) are faithful representations of
themselves in n dimensions.

The group multiplication law for rotations in 2 dimensions can be stated as follows:
If

R(θ) = R(θ2)R(θ1), (3.13)

then
θ = θ2 + θ1. (3.14)

The rotation groups are compact. This means that the parameters vary over a finite,

closed region. For example, the parameter θ of the two-dimensional rotation group varies
over the interval 0 ≤ θ ≤ 2π.

On the other hand, the translation groups are not compact because the parameters
are unbounded. For example, a translation in 1 dimension,

x′ = x+ a,

is characterized by a parameter a which can vary from −∞ to ∞. Likewise, the group of
Lorentz transformations is not compact because the group is characterized by a parameter
v (the velocity) which varies in the interval 0 ≤ v < c, which is open at one end. Rotations
and Lorentz transformations are both subgroups of the Lorentz group.

The concepts of simple and semisimple Lie groups are important but somewhat com-
plicated. An oversimplified definition, which is adequate for our purposes, is that a Lie
group is simple if it is nonabelian and has no proper invariant Lie subgroups. It is semisim-

ple if it is nonabelian and has no abelian invariant Lie subgroups. Clearly, a simple group
is also semisimple. If a group is the direct product of two or more groups H, H ′,..., then
the subgroups H, H ′,... are invariant. The direct product of simple and/or semisimple Lie
groups is semisimple.

Recall that the local gauge group of the standard model is SU(3) × SU(2) × U(1).
This group is not semisimple because it has an abelian invariant subgroup U(1). However,
the group SU(3) × SU(2) is semisimple. The groups SU(3) and SU(2) are simple.

3.4 Lie algebras

Let us consider a Lie group of transformations. We obtain the Lie algebra of the
group by considering group elements which differ only infinitessimally from the identity.
From these elements we can construct operators called generators which allow us to obtain
a unitary representation of the group. More precisely, we obtain all the elements of the
group which can be generated by continuous transformations from the identity. There is
one generator for each parameter of the group. Methods for obtaining the generators of a
Lie group have been discussed in many places (see, e.g., Lichtenberg, 1978).

Let the generators of a Lie group be Xi, i = 1, 2...r, where the group is characterized
by r real parameters ai. If the generators are Hermitian, a unitary representation of an
arbitrary group element Ua is given by

Ua = e−i
∑

aiXi .
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It can be shown that the Xi form a Lie algebra, which means that they satisfy the algebraic
equations

[Xi, Xj] = i
r

∑

k=1

ckijXk. (3.15)

Here the commutator [A,B] = AB − BA and the ckij are constants called the structure

constants of the group. (Some people call other constants bkij = ickij , the group structure

constants.) There is no significance to the fact that we write ckij with both lower and
upper indices in Eq. (3.15). We do this because in the future we shall use the summation

convention of omitting the summation sign and summing over a repeated upper and lower
index (in any order). The structure constants of a Lie algebra can differ with different
choices of generators.

As we see from Eq. (3.15), a Lie algebra has the property that the commutator of
any two members of the algebra (generators of the Lie group) is a linear combination
of the members of the Lie algebra. We also see that the algebra is in general neither
commutative nor associative. A representation of a Lie algebra is a set of matrices which
obey the commutation relations of the algebra.

If a Lie group is abelian, all the commutators of its Lie algebra vanish, i.e. all its
structure constants are zero. The maximum number of commuting generators of a Lie
group is called the rank of the group. Since any generator commutes with itself, every Lie
group is at least rank one. The k commuting generators of a rank k Lie group can be
simultaneously diagonalized in a matrix representation.

If a Lie group of rank k is semisimple and compact, then one can construct from
the members of its Lie algebra k nonlinear invariant operators, called Casimir operators,
which commute with every member of the algebra.

As an example, let us consider the Lie algebra and Casimir operators of the familiar
rotation group in three dimensions R(3). This group is characterized by 3 parameters (for
example, the Euler angles). Therefore, it has three generators, which can be taken to be
the familiar angular momentum operators Jx, Jy , and Jz. They satisfy the Lie algebra

[Jx, Jy] = iJz, h̄ = 1, (3.16)

and cyclic permutations. This group is rank one because none of the Ji commutes with
any other. It is also semisimple (actually, simple), so that it has one Casimir operator J2

given by
J2 = J2

x + J2
y + J2

z . (3.17)

A representation of the Casimir operator in n dimensions commutes with all the mem-
bers of an irreducible representation in n dimensions. Therefore, by Schur’s lemma, a
representation of the Casimir operator is a multiple of the unit matrix.

It is convenient to denote the generators of R(3) by J1, J2, and J3, and write

[Ji, Jj] = iǫkijJk, i, j, k = 1, 2, 3, (3.18)

where ǫkij = ǫijk is completely antisymmetric in its indices and ǫ123 = 1. Then we see
that the structure constants of R(3) are given by ǫijk or iǫijk, depending on whether the
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structure constants are defined with or without the i. It is easy to show from the definition
of rotations that the number of parameters of R(n) is (n2 − n)/2.

3.5 Unitary groups and algebras

The unitary group in n dimensions U(n) is the group of n× n matrices Ua satisfying

U†
a = U−1

a , (3.19)

where a stands for the parameters of the group, the dagger denotes the Hermitian conjugate
matrix, and the superscript −1 denotes the inverse. By definition, for any matrix A, we
have (A†)ij = A∗

ji, with the asterisk denoting the complex conjugate.

A complex matrix in n dimensions is specified by 2n2 real numbers. If the matrix
is unitary, there are n2 relations among these numbers, so that U(n) is characterized
by n2 parameters. The group U(1) is one-dimensional and is characterized by only one
parameter. Each element of U(1) is a phase eiθ.

The special unitary groups SU(n) have matrices with determinants equal to unity.
This provides another relation so that SU(n) is characterized by n2 − 1 parameters. The
rank of SU(n) is n − 1. The SU(n) groups are semisimple and compact, so that SU(n)
has n− 1 Casimir operators.

Like R(3), SU(2) has 3 parameters and is of rank 1. In fact, the generators of SU(2)
satisfy the same Lie algebra as the generators of R(3). This implies that the two groups are
locally isomorphic (i.e., the mapping of a neighborhod of one onto a neighborhood of the
other is one-to-one) and globally homomorphic. In fact, the homomorphism is two-to-one
from SU(2) onto R(3).

The groups U(n) and SU(n) are matrix groups, and so are faithful representations
of themselves. In discussing representations of the unitary groups, we usually confine
ourselves to SU(n). The reason is that the algebra of U(n) is the same as the algebra of
SU(n)×U(1), and all the representations of U(1) are one dimensional. The group SU(n)
has n− 1 so-called fundamental representations. Of these, two are n-dimensional if n > 2.
There is only one fundamental (two-dimensional) representation if n = 2.

The group SU(n) also has a representation of n2 − 1 dimensions, the same num-
ber as the number of generators of the group. This representation is called the adjoint

representation.
We can construct n-dimensional representations of the algebra of SU(n). For n = 2,

we can chose these matrices to be the familiar Pauli spin matrices σ1, σ2, and σ3, given by

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (3.20)

The Pauli matrices satisfy the commutation relations

[σi, σj] = 2iǫkijσk. (3.21)

Note the factor 2 difference between the structure constants when expressed in terms of
the σ’s rather than in terms of the J ’s, given in Eq. (3.10). This follows because σi = 2Ji,
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and is an example of the fact that the structure constants depend on the representation of
the Lie algebra. Still another representation of the Lie algebra of SU(2) or R(3) is by the
two-dimensional matrices σ+, σ−, and σ3, where

σ+ =

(

0 1
0 0

)

, σ− =

(

0 0
1 0

)

. (3.22)

The matrix σ+ is called a raising operator and σ− is called a lowering operator because of
their action on the eigenvectors of the operator σ3 (see Section 3.6). The matrices σ+ and
σ− can be written in terms of σ1 and σ2 as follows:

σ+ = (σ1 + iσ2)/2; σ− = (σ1 − iσ2)/2.

The Casimir operator of SU(2) is the same as that of R(3). We can write the two-
dimensional Casimir operator in terms of the Pauli matrices:

J2 =
1

4
σ2,

where

σ2 =
3

∑

i=1

σ2
i = 2(σ+σ− + σ−σ+) + σ2

3 . (3.23)

We now turn to SU(3). The generalization of the Pauli matrices are the so-called
Gell-Mann matrices λi (i = 1, 2...8), which are given by

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1 0 0
0 −1 0
0 0 0



 ,

λ4 =





0 0 1
0 0 0
1 0 0



 , λ5 =





0 0 −i
0 0 0
i 0 0



 , (3.24)

λ6 =





0 0 0
0 0 1
0 1 0



 , λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 .

The λi satisfy the commutation relations

[λi, λj] = 2ifk
ijλk, (3.25)

with summation implied. The fijk are themselves often called the structure constants of
the group. They are given in Table 3.1.

There are two Casimir operators of SU(3), one quadratic and the other cubic in the
generators. We shall have occasion to use only the quadratic Casimir operator F 2, which
is given by

F 2 =
1

4
λ2 =

1

4

8
∑

i=1

λ2
i . (3.26)
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Table 3.1. Nonvanishing structure constants of SU(3). The fijk are antisymmetric under
permutation of any two indices.

ijk fijk ijk fijk

123 1 345 1/2
147 1/2 367 −1/2
156 −1/2 458

√
3/2

246 1/2 678
√

3/2
257 1/2

We now introduce a different representation for the generators, which is suitable to
generalization to any SU(n). We introduce the notation Ha, (a = 1, 2...n− 1) for the mu-
tually commuting generators (which can be simultaneously diagonalized) and the notation
Eab for the n2 −n nondiagonal generators. These are n×n matrices with matrix elements
given by

(Ha)jk = δjk[

a
∑

l=1

δjl − aδj,a+1], (3.27)

(Eab)jk = δajδbk, a 6= b, (3.28)

where δab are elements of the unit matrix. If a > b, Eab is a lowering operator; if a < b, it
is a raising operator. Also, Eab = E†

ba. In SU(2),

Ha = σ3, E12 = σ+, E21 = σ−. (3.29)

We see from Eqs. (3.27) and (3.28) that the SU(3) generators are

H1 =





1 0 0
0 −1 0
0 0 0



 , H2 =





1 0 0
0 1 0
0 0 −2



 , E12 =





0 1 0
0 0 0
0 0 0



 ,

E21 =





0 0 0
1 0 0
0 0 0



 , E13 =





0 0 1
0 0 0
0 0 0



 , E31 =





0 0 0
0 0 0
1 0 0



 , (3.30)

E23 =





0 0 0
0 0 1
0 0 0



 , E32 =





0 0 0
0 0 0
0 1 0



 .

It should be clear from the examples we have given for SU(2) and SU(3) that it is
straightforward to write down the matrix generators of any SU(n) in both the λi and (Ha,
Eab) representations (up to normalization constants).
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We can use the lowering operators Ea+1,a and their hermitian conjugates to obtain
the Clebsch-Gordan coefficients of any SU(n). We show in the next section how this is
done.

The trace of a matrix is the sum of its diagonal elements. The n2 − 1 generators of
SU(n) are traceless matrices in n dimensions. Any real n × n traceless matrix can be
written as a linear combination of them, and any real n × n matrix can be written as a
linear combination of them and the unit matrix in n dimensions.

3.6 Multiplets of unitary groups

The n-dimensional generators of SU(n) operate on n-dimensional column vectors.
Clearly, there are n linearly independent vectors, which we may denote by ua, (a = 1, 2...n).
A convenient representation for these vectors is that the j-th row of ua is equal to δaj . In
SU(2) the ua are

u1 =

(

1

0

)

, u2 =

(

0

1

)

. (3.31)

In SU(3) they are

u1 =





1
0
0



 , u2 =





0
1
0



 , u3 =





0
0
1



 . (3.32)

We can order the vectors from highest to lowest, such that ua is higher than ub if a < b. The
vectors ua of SU(n) are said to belong to the first fundamental representation. Altogether,
SU(n) has n − 1 inequivalent so-called fundamental representations, two of which have
n dimensions, except for SU(2), which has only one fundamental representation. All the
multiplets of SU(n) can be built up from the vectors of the first fundamental representation
using only the raising and lowering matrices of the n-dimensional representation of the
Lie algebra. Sometimes, however, it is convenient to use more than one fundamental
representation in building the multiplets.

The eigenvalues of the Ha operating on a state vector is called the weight m of the
vector. For example, in SU(3), we see from Eqs. (3.30) and (3.32) that (H1, H2)u2 =
(−1, 1)u2. therefore, the weight m of u2 is m = (m1, m2) = (−1, 1).

We see from the definitions of Eab and the ua, that

Eabuc = uaδbc. (3.33)

With our ordering of the vectors such that ua is higher than ub if a < b, we can see that the
operators Eab are indeed raising or lowering operators for a < b or a > b respectively. We
shall restrict ourselves to the the lowering operators Ea+1,a and their hermitian conjugates,
which are raising operators.

Let us use the ua in SU(2) and SU(3) to build up some other multiplets of these
groups. We start with SU(2), which is a case which should be familiar. To make things
more concrete, u1 and u2 can be the spin-up and spin-down wave functions (state vectors)
of a particle of spin 1/2. As another possibility, they can be the isospin wave functions of
a u and d quark respectively. If we wish to consider N -particle wave functions, we start
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with the wave function u1(1)u1(2)...u1(N), where the numbers in parentheses stand for
particle 1, particle 2, etc. A simpler notation is to omit the numbers in parentheses, and
by convention write the wave function of particle 1 first, etc. We shall adopt this simpler
notation in the following. We also introduce the notation that the lowering operator Eab

operating on an N -particle state is given by

Eab =

N
∑

i=1

Eab(i). (3.34)

It is best to begin with only two particles. Let χ1 = u1u1 and operate on χ1 with the
lowering operator

E21 = E21(1) + E21(2) = σ−(1) + σ−(2). (3.35)

We get

E21χ1 = u1u2 + u2u1 =
√

2χ2, (3.36)

where we have defined χ2 to be a normalized state. Repeating the operation, we get

E21χ2 =
√

2u2u2 =
√

2χ3. (3.37)

If we operate on χ3 we get 0. Thus, starting from two doublets of SU(2), we have obtained a
triplet state χi, corresponding to spin or isospin 1. We next construct a state φ1 orthogonal
to χ2. We see that φ1 must be given by

φ1 = (u1u2 − u2u1)/
√

2. (3.38)

If we operate on φ1 we get 0, as we expect, so that this state is a singlet, corresponding to
spin or isospin 0. We can obtain the eigenvalues of the diagonal operators J3 and J2 by
directly operating on the χi and φ1.

The coefficients multiplying the product wave functions uiuj in the expressions for χi

and φi are known as Clebsch-Gordan coefficients. In the case we have considered, these
Clebsch-Gordan coefficients are unique, but in the case of the product of three or more wave
functions, the Clebsch-Gordan coefficients can depend on somewhat arbitrary definitions
of wave functions. We can see this as follows: If we start with the product u1u1u1, we
can use the lowering operator E21 to construct all the symmetric wave functions belonging
to the same multiplet as u1u1u1. The problem arises when we want to construct other
multiplets. For example, consider the (unnormalized) wave function ξ given by

ξ = u1u1u2 + u1u2u1 + u2u1u1. (3.39)

There are two independent wave functions orthogonal to ξ, and the Clebsch-Gordan coef-
ficients depend on what linear combination of these wave functions we choose. The choice
in some instances is given by convention, but real questions of physics can influence what
choice is convenient.
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Let us now generalize to SU(3). The χi and φ1 from SU(2) are also wave functions
of SU(3), but they are not complete multiplets. We can operate on χ2 with E32 to get

χ4 = (u1u3 + u3u1)/
√

2. (3.40)

Operating on χ4 with E21, we get

χ5 = (u2u3 + u3u2)/
√

2, (3.41)

and operating on χ5 with E32, we get after normalizing

χ6 = u3u3. (3.42)

Thus, the χi are a sextet of SU(3). Likewise, from φ1, we can obtain

φ2 = u1u3 − u3u1, φ3 = u2u3 − u3u2, (3.43)

so that the φi are a triplet of SU(3).
We now define a new triplet of vectors ūa given by

ū1 = φ3, ū2 = −φ2, ū3 = φ1. (3.44)

By explicit construction we find
Eabūc = −ūbδac. (3.45)

This differs from the action of Eab on uc. The ūa are the vectors belonging to the second
fundamental representation of SU(3).

3.7 Young tableaux

A Young tableau or Young diagram describes the symmetry of a collection of an integer
ν identical particles, each of which can be in one of several available states. We shall confine
our considerations to the description of Young diagrams in the case that the symmetry
group is U(n) or SU(n) and the particles belong to the first fundamental representation
of the group. Then the number of possible states of a particle is also n. An example is a
collection of five electrons, each of which can be in one of two spin states (spin up or spin
down). In this case ν = 5, n = 2.

A Young tableau is a collection of boxes, one for each particle, arranged in rows and
columns to represent the symmetry of the state: symmetric in rows, antisymmetric in
columns. A proper tableau is one in which each row is no longer than the one above it and
each column is no longer than the one to the left of it. When we refer to a Young tableau,
we shall mean a proper tableau unless otherwise specified. An example of a proper tableau
is the following:

(3.46)
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We begin by using Young tableaux in connection with SU(2). We denote the basis
vectors of the fundamental doublet of SU(2) by u1 and u2. These vectors may, for example,
denote the two states of a particle with spin 1/2. Another notation for these one-particle
states is by means of a Young tableau with a single box. We make the identification

u1 = 1 , u2 = 2 (3.47)

The single box without a number stands for both members of the doublet. The same
considerations hold for U(2).

Now suppose we have a two-particle state. If it is a symmetric ψs, we denote it by a
row, and if is an antisymmetric state ψa, by a column:

ψs = , ψa = (3.48)

These tableaux represent multiplets which are different than the two-dimensional funda-
mental multiplet. Consider first the symmetric state. If both particles are in the state u1

or both are in the state u2, the corresponding tableaux are

1 1 , 2 2 .

There is one symmetric state with one particle having the state vector u1 and the other
having the vector u2, namely (u1u2 + u2u1)/

√
2. (We adopt the convention of writing the

state vector of the first particle at the left, the vector of the second particle next, etc. This
convention saves us the trouble of writing [u1(1)u2(2) + u2(1)u1(2)]/

√
2.) This symmetric

state is represented by the tableau
1 2 .

The arrangement
2 1

is obviously the same as the previous arrangement, and must not be counted. It is called
a nonstandard arrangement. Thus, the symmetric state is a triplet. There is only one
antisymmetric two-particle state (u1u2 − u2u1)/

√
2, corresponding to the arrangement

1
2

.

The other arrangement
2
1

is nonstandard and must not be counted.
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The above considerations for U(2) or SU(2) can be generalized to any U(n) or SU(n)
and lead us to the following definition:

A standard arrangement of a tableau of U(n) or SU(n) is a proper tableau containing
a postive integer i in each box (1 ≤ i ≤ n) such that the integers increase in going from
top to bottom in a column and do not decrease in going left to right in a row. Hereafter,
unless we explicitly state otherwise, an arrangement will mean a standard arrangement.

An important theorem which we do not prove is that the number N of standard
arrangements of a Young tableau with positive integers no greater than n is equal to the
dimension of an irreducible representation of U(n) or SU(n).

We see that a Young tableau for U(n) or SU(n) consists of ν boxes in no more
than n rows. The tableaux are limited to n rows because one cannot antisymmetrize a
configuration of more than n particles when each particle has only n available states.

As an example, consider a collection of five electrons, each of which can be in one of
two spin states (spin “up” u1 or spin “down” u2). In this case ν = 5, n = 2, and the
symmetry group of the spins is SU(2). If we include the lepton number in our description
(an additive quantum number), then the symmetry group is U(2) or SU(2)×U(1). (We do
not distinguish between these last two groups, as we use only the Lie algebra, which is the
same for both.) The dimensionality is the same whether the lepton number is included in
the description. Electrons must obey Fermi statistics, that is, their state vectors must be
antisymmetric under the interchange of all the coordinates of any two electrons. However,
the symmetry under the interchange of only the spins is given by any standard Young
tableau.

Consider a three-electron state belonging to the Young tableau

This state has the same multiplicity as the one-electron state belonging to the tableau

but the lepton number is 3 in the first case and 1 in the second. If we are interested only
in the SU(2) of the spins and not in the lepton number, the two diagrams are equivalent
in that they correspond to the same quantum numbers.

To avoid the complication of the quantum number associated with the U(1) subgroup
of U(n), we often restrict ourselves to SU(n). Then all columns with n boxes may be
removed from a given tableau, as there is only one way to antisymmetrize a state of n
particles, each of which has n degrees of freedom. The number of states Nn is equal to the
result obtained by counting the number of ways one can put positive integers ≤ n in the
remaining boxes, consistent with the rules that numbers must not decrease going from left
to right in any row and must increase going from top to bottom in any column.

We see that in the case of SU(n), a tableau with ν boxes can also denote states of
the corresponding symmetry containing a different number of particles. We can therefore
divorce the concept of the symmetry of a state corresponding to a Young tableau from the
concept of particles belonging to the first fundamental representation.
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A tableau with no more than n − 1 rows can be specified by a set of n − 1 integers
pi, which is the number of boxes in row i minus the number of boxes in row i + 1. The
multiplicity Nn of any diagram is a function of the pi. It is a complicated combinatorial
problem to find the number of standard arrangements of a tableau with a given p. The
formula for Nn(p1, p2...pn−1) = Nn(p) is known for any n but we write it down just for
n = 2 and n = 3. For SU(2) we have

N2(p) = p+ 1. (3.49)

The number of states of a given angular momentum j is 2j + 1. Then, using Eq. (3.40),
we can make the identification

p = 2j. (3.50)

For SU(3) the formula is

N3(p) = (p1 + 1)(p2 + 1)(p1 + p2 + 2)/2. (3.51)

These formulas give the number of states in a multiplet belonging to an irreducible repre-
sentation of the group with the symmetry specified by the Young tableau p.

We see that for SU(2) the number N2 can be any positive integer. However, for
SU(n) with n > 2, the numbers Nn include only a proper subset of the positive integers.
For example, in SU(3), the numbers N3 have the values 1, 3, 6, 8, 10, 15, etc, as deter-
mined either by counting the standard arrangements of Young tableaux or from Eq. (3.51),
substituting non-negative integers for p1 and p2.

All the formulas Nn(p) are symmetric under the interchange

pi ↔ pn−i,

that is,

Nn(p1, p2...pn−1) = Nn(pn−1...p1). (3.52)

Two Young tableaux which transform into each other under this transformation are called
conjugate tableaux, and the irreducible representations which act on them are called con-

jugate representations. The first fundamental representation of SU(3) is characterized by
(p1, p2) = (1, 0); the second fundamental representation is the conjugate representation,
and is characterized by (p1, p2) = (0, 1). However, it is common to characterize these (and
other representations) by a single number which gives their multiplicity: in the case of
the first and second representations, we use 3 and 3̄ respectively. Conjugate representa-
tions have the same dimensionality, but conjugate tableaux do not necessarily have the
same number of boxes. If a tableau is unchanged under the transformation of interchang-
ing pi and pn−i, it is self-conjugate, and likewise for the corresponding representation.
Since all representations of SU(2) consist of a single row, all representations of SU(2) are
self-conjugate.

We now show how to build all irreducible representations of SU(n) starting from the
first fundamental one. First we note that a product of two or more representations is in
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general reducible. We can see this by considering the basis vectors on which they act. It
is simplest to begin with SU(2). The product states are written using Young tableaux as

×

These stand for the four product states

u1u1, u1u2, u2u1, u2u2.

But we know that to obtain the basis vectors of irreducible representations we must take
the linear combinations which correspond to the symmetric and antisymmetric Young
tableaux. This result is true in any SU(n). We write

× = + (3.53)

In SU(2), the multiplicities are

SU(2) : 2 × 2 = 3 + 1. (3.54)

In SU(3), we have
SU(3) : 3 × 3 = 6 + 3̄, (3.55)

and in any SU(n) we have

SU(n) : n× n = n(n+ 1)/2 + n(n− 1)/2. (3.56)

In the above examples we have found the irreducible representations contained in
the product of two irreducible representations. This decomposition is called the Clebsch–

Gordan series. If the decomposition contains no representation more than once, the prod-
uct is called simply reducible. If n > 2, the decomposition of n × n̄ is different from the
decomposition of n× n. We have

SU(n) : n× n̄ = (n2 − 1) + 1, (3.57)

which is different from the decomposition given in Eq. (3.57). In particular, in SU(3) we
have

3 × 3̄ = 8 + 1. (3.58)

We now tell how to find the Clebsch–Gordan series for the product of any two repre-
sentations of SU(n). We do not give the proof, as it is quite complicated (even the recipe
is complicated).

Recipe. We draw the Young tableaux of the two representations, marking each box of
the second with the number of the row to which it belongs. We then attach the boxes of
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the second tableau in all possible ways to the first tableau, subject to the following rules
for the combined tableaux:
1) Each tableau should be proper.
2) No tableau should have a column with more than n boxes, and we can remove all

columns with n boxes.
3) The numbers must not decrease from left to right in a row.
4) The numbers must increase from top to bottom in a column.
5) We can make a path by moving along each row from the right, starting at the top.

At each point of the path, the number of boxes encountered with the number i must
be less or equal to the number of boxes with i− 1.
As an example, if we follow the rules, we find the irreducible representations contained

in 8 × 8 of SU(3) to be
8 × 8 = 27 + 10 + 1̄0 + 8 + 8 + 1. (3.59)

We see that the Clebsch–Gordan series contains two equivalent representations, namely,
the two 8’s. This means that the product of 8 × 8 is not simply reducible.

The product of any two representations of SU(2) is simply reducible, but this result
does not hold for any n > 2. Even for SU(2), the product of three representations is not
necessarily simply reducible. For example, in SU(2), we have

2 × 2 × 2 = 4 + 2 + 2. (3.60)

If two or more equivalent representations appear in the reduction of a product, the
use of group theory alone is not sufficient to enable us to label the states. We must know
something of the physics of the problem in order to obtain the most useful labeling. The
Clebsch–Gordan coefficients are also not determined uniquely without additional input.

For example, the reduction given in Eq. (3.60) can come about from obtaining the
irreducible multiplets from three electron spins. One of the two doublets arises by combin-
ing the spins of the first two electrons to give a triplet and then combining the third spin
to give a doublet. The other doublet arises from combining the first two spins to form a
singlet and then combining the third spin to give a doublet. Group theory says nothing
about how the first two spins in fact combine, as that depends on the forces involved. As
another example, in SU(3) we have

3 × 3 × 3 = 10 + 8 + 8 + 1. (3.61)

The way the two 8’s are chosen in either the decomposition (3.59) or (3.61) depends on
the physics.

3.8 Evaluating quadratic Casimir operators

The group SU(n) has n − 1 Casimir operators, one of which is quadratic in the
generators. The quadratic Casimir of SU(n) may be evaluated by making use of the
raising and lowering operators. For SU(2) this operator is J2 and is given by

J2 =
1

4
(2σ+σ− + 2σ−σ+ + σ2

z). (3.62)
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We take advantage of the fact that J2 is an invariant operator to operate on the par-
ticular state for which σ+ vanishes. We eliminate the term σ+σ− by making use of the
commutation relation

[σ+, σ−] = σz. (3.63)

This enables us to write J2 (when operating on our particular state) only in terms of the
diagonal operator σz. Since σz is an additive quantum number, it is straightforward to
evaluate J2 for any representation. Details are given in books on quantum mechanics. The
answer is J2 = j(j + 1), or, since p = 2j,

J2 =
1

2
p(

1

2
p+ 1). (3.64)

The same method works for any SU(n) except that the algebra is more complicated. In
particular, for SU(3) we get

F 2 = p1 + p2 +
1

3
(p2

1 + p2
2 + p1p2). (3.65).
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�� SOME BASIC IDEAS

In this chapter we introduce brie�y and with minimal explanation a large
number of our present ideas about elementary particle physics� Put simply� we
describe the subject� not necessarily the way it is� but the way we now think it is�
In later chapters we expand upon and clarify the more complicated of the ideas
we outline here�

��� What is an elementary particle�

Our understanding of bulk matter is that it is composed of microscopic entities
called molecules� However� we know that molecules are not elementary particles�
but are composed of atoms� The atoms in turn are not elementary� but are made
of atomic nuclei and electrons� The nuclei are made of nucleons �protons and
neutrons�� and the nucleons are made of quarks� Perhaps the quarks and electrons
are elementary� and perhaps not�

There are three properties that we associate with an elementary particle�
First� the particle should not be a composite of other particles� Second� the particle
should not have a detectable size� Third� there should be no way to distinguish
between two examples of an elementary particle� i�e� they should be identical or
indistinguishable in their properties� such as charge or mass� �The orientation of
the spin may vary� but not the magnitude of the spin��

One can see from the way these criteria are stated that as more experimental
evidence is accumulated� a particle may lose its status of being elementary� There
are also times when a theorist might like to treat a body as if it were elementary� for
example� as a point mass� when it clearly is not an elementary particle� We know
from observation that the earth is a composite object� made up of many simpler
things� But if we are considering the motion of the earth in the gravitational �eld
of the sun� then it is a good �rst approximation to treat the earth as an elementary
particle� although obviously it is not� To a much better approximation� if we want
to calculate the motion of stars moving in a galaxy� we can treat the stars as
pointlike elementary particles� Of course� if we are interested in understanding
the light coming from the stars� we must treat them as composite� Likewise� if
we are interested in the motion of the tides on earth� we must regard the earth as
composite�

In looking at many aspects of the kinetic theory of gases� we may consider
molecules to be elementary� However� the failure of real gases at high density to
obey the ideal gas equation is most easily explained if molecules have sizes greater
than zero� A particle with a size greater than zero is a natural candidate for a
composite object� although a greater�than�zero size does not in itself prove that a
particle is composite�
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On the scale of atomic physics� to a good approximation the nucleus may be
treated as a point� However� in the most accurate calculations of atomic properties�
the fact that the nucleus has a size greater than zero must be taken into account�
At the present time� we have good evidence that nuclei are composite particles
made primarily of protons and neutrons�

High�energy electron�proton elastic scattering experiments show that protons
and neutrons in turn are not pointlike� Now we believe that nucleons are com�
posite and are made primarily of quarks� At our present level of knowledge� we
treat quarks as elementary particles� However� we do not know whether future
developments� either in theory or experiment� will make it useful to regard quarks
as composite particles�

According to our present understanding� a necessary� but not su	cient� con�
dition for a particle to be elementary is that two of the same kind must be truly
indistinguishable� This means we believe that no experiment can be designed
which can �nd an intrinsic property of one which is di
erent from that same prop�
erty in the other� With su	ciently precise experiments� two dust particles� say� can
be distinguished� so dust particles can�t really be elementary particles� However�
to the best of our knowledge� in no experiment can two electrons be distinguished�
so the electron is a candidate for an elementary particle� In fact� at the present
time� physicists believe that the electron is elementary� On the other hand� just
as with two electrons� we cannot distinguish between two hydrogen atoms� but we
now know that a hydrogen atom is a composite particle� made of a proton �itself
a composite particle� and an electron�

To sum up� we depend on both theory and experiment to help us decide
whether a particle should be regarded as elementary or composite� It may be
convenient to treat even a composite particle as elementary in some contexts�
The classi�cation of a particle as elementary is always provisional� If a particle
has a size which is measured to be greater than zero� we may suspect that the
particle is composite� However� in the absence of a successful theory which gives
the composite structure of a particle in terms of simpler entities� we may usefully
continue to treat the particle as elementary�

��� Interactions

Since the time of Isaac Newton� the acceleration of particles has been ascribed
to forces acting upon them� We can generalize the notion of a force to an interac�

tion� which can create and annihilate particles and cause them to decay into other
particles� as well as causing them to accelerate�

According to our present ideas� to every kind of elementary particle that
exists in nature� there is also an antiparticle� We do not know for sure whether in
our universe there exist equal numbers of particles and antiparticles� or whether
there is an excess of particles� Because particles and antiparticles can annihilate�
there will exist very few antiparticles in a region with an excess of particles� We
have no evidence that any region in the visible universe is made up primarily of
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antiparticles� and so most physicists assume provisionally that the universe now
contains an overwhelming excess of particles� Whether that state of a
airs also
existed in the early universe is by no means clear�

On a phenomenological level� we have �rm evidence for the existence of four
di
erent interactions� known as electromagnetic� gravitational� weak� and strong�
In the �th century� after Maxwell�s theory of electromagnetism� physicists knew
of only two forces� the gravitational and the electromagnetic� The weak and the
strong interactions were just discovered during the ��th century� We should not
necessarily think that we live at a priviledged time in which it is given to us to
know of all of nature�s forces� there may exist other interactions of which we are
still unaware� On the other hand� it is now known that the weak and electromag�
netic interactions� although phenomenologically quite di
erent from each other�
are actually related� It is an attractive idea that all interactions are di
erent man�
ifestations of one fundamental interaction� and there have been many attempts�
so far without marked success� to unify the known interactions�

The gravitational interaction has the property that the strength of the force
between two particles is proportional to the product of their energies� At ener�
gies presently accessible in the laboratory� the gravitational interactions between
elementary particles are very small compared to the strength of their other inter�
actions� and so can usually be safely neglected� For this reason� we emphasize the
remaining three interactions� strong� electromagnetic� and weak� all of which play
important roles in the behavior of elementary particles�

Each of the interactions is characterized by its strength and range� The elec�
tromagnetic and gravitational interactions are long range� while the strong and
the weak interactions are short range� Of the four interactions at laboratory en�
ergies� the strong interaction has the greatest strength� the electromagnetic and
weak interactions have comparable strengths� and the gravitational interaction is
by far the weakest� Phenomenologically� the weak interaction appears to be much
weaker than the electromagnetic owing to the short range of the former and the
long range of the latter�

According to our present ideas� the interactions between particles �matter�
are carried by �elds� The strength of an interaction is measured by the magnitude
of the coupling of matter to the �eld that transmits the interaction� The e
ective
coupling strengths of the strong� electromagnetic� and weak interactions are not
constants even though they are often called coupling constants� but depend on
the distance between the particles� If an interaction between particles falls o

approximately exponentially with distance� it is said to be short range� and its
range is the characteristic distance appearing in the exponent� If an interaction
falls o
 approximately as the inverse of the distance� it is called a long�range
interaction�

The ideas of strength and range which we have given here are considerably
oversimpli�ed� as they do not take into account the notion of forces so strong that
they con�ne certain particles into the interior of others� We discuss these concepts
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more fully in later chapters�

��� Symmetry and conservation laws

The universe gives the impression of unceasing change� some of the changes
are apparently haphazard� like certain �uctuations in the weather� while others are
regular� like the rotation of the earth� However� it is remarkable that� amid all the
change in nature� we are able to identify certain properties which remain constant
as time goes on�the conservation laws� Among these laws are the conservation
of energy� momentum� and angular momentum� Others are the conservation of
certain charges� the most familiar of which is electric charge� These conservation
laws are� as far as we know� exact� while others� like the conservation of parity�
are only approximate�

Another remarkable fact is the symmetry of the interactions of nature under
certain transformations� By the symmetry of a physical system under a transfor�
mation we mean that the system is invariant under the transformation� Examples
of symmetries which� as far as we know� are exact when gravity can be neglected�
are invariances under translation� rotation� and time translation� Other symme�
tries� like space re�ection and time reversal� are only approximate in nature�

The transformations carried out on a physical system have the following prop�
erties�

��� A given transformation �such as a rotation� followed by another transforma�
tion� is a unique transformation�

��� If we make three transformations� we get the same result whether we combine
the �rst two and follow it with the third or do the �rst one and follow it by
the combination of the second and third� �This is an associative property��

��� We can leave the system untransformed� �This is an identity transformation��
��� After making a transformation� we can transform back again to the original

state� �This is an inverse transformation��

These properties of transformations are just the properties of a mathematical
group� and so the study of group theory can help us shed light on the properties of
physical systems which are invariant under certain groups of transformations� A
discrete symmetry� like re�ection� corresponds to a �nite group� while a continuous
symmetry� like a rotation through any angle� corresponds to a continuous group�
We discuss group theory in more detail in Chapter ��

There is a close connection between symmetries and conservation laws� ex�
pressed by a beautiful theorem due to Emmy Noether� Noether�s theorem says
that if the Lagrangian of a classical system is invariant under a continuous group
of transformations� then the system has a conserved quantity �sometimes called a
�current���

Some classical theories have been generalized to quantum mechanics and
quantum �eld theory� Then under normal circumstances� if the classical form
of the theory has a symmetry and a corresponding conservation law� so does the
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quantum mechanical generalization� However� this is not always true� and in
those cases in which it is false� the quantum version of the theory is said to have
an anomaly�

If a symmetry and its conservation law are only approximate� we say the
symmetry is broken� We mention three ways in which a symmetry may be broken�

��� The symmetry is broken by an anomaly�

��� The Lagrangian of the system contains a large term� which respects the sym�
metry� and a small term� which does not�

��� Although the Lagrangian of a system respects the symmetry� the lowest�
energy state does not� In this case� the symmetry is said to be �hidden�
or �spontaneously broken��

In the theory of elementary particles� all three kinds of symmetry breaking
occur� Chapter ��

��� The standard model of elementary particles

We treat particle physics within the framework of the so�called standard model

of elementary particles� In other areas of knowledge� there are other standard mod�
els� like the standard solar model and the standard big�bang model� In this book�
by �the standard model� we mean the standard model of elementary particles�
The mathematical tools necessary �but� unfortunately� not su	cient� for a deep
understanding of the standard model are quantum �eld theory and group theory�
In this section� we brie�y discuss quantum �eld theory and some of the invariance
groups of the standard model� In later chapters we amplify this discussion and
also de�ne and treat the standard model in considerable detail�

The standard model is a relativistic quantum �eld theory which describes the
strong� electromagnetic� and weak interactions of elementary particles� It is a
realistic �eld theory� by which we mean that it is described by a Lagrangian which
exists in four space�time dimensions� satis�es the postulates of special relativity� is
local and causal� and has a lowest�energy state� called the ground state or vacuum�
By a local theory� we mean one in which the quanta of the theory are pointlike
particles which interact at a point in space�time� Particles separated from one
another interact via the �eld whose quanta carry the force in such a way as to
satisfy causality� namely� no signal can propagate faster than the speed of light�

The Lagrangian of the standard model� like that of any realistic �eld the�
ory� is invariant under certain continuous groups of transformations� translations�
rotations� time translations� and proper Lorentz transformations� These trans�
formations taken together constitute the proper Poincar�e group� A realistic �eld
theory allows for the creation and annihilation of particles and antiparticles� in
agreement with our observation that such processes occur�

The standard model is invariant under several groups of transformations in
addition to the transformations of the Poincar�e group� Among these transforma�
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tion groups are certain groups of local gauge transformations� A theory which is
invariant under a group of local gauge transformations is called a gauge theory�

We now brie�y describe what a gauge theory is� The Lagrangian describing
a �eld theory is a function of �elds which are de�ned at each space�time point
�see Chapter ��� Each �eld has a phase� which may be di
erent at each point�
The Lagrangian of a gauge theory has two kinds of �elds� matter �elds and gauge
�elds� The phases of the matter �elds can be varied locally� that is� by an amount
which is di
erent at each point in space�time� In a gauge theory this variation
does not change the Lagrangian because the gauge �elds can be transformed in a
way to cancel any new terms arising from the transformation of the matter �elds�
A combined transformation of the matter �elds and the gauge �elds which di
ers
from point to point is called a local gauge transformation�

We shall see in Chapter � that local gauge invariance is a very powerful
principle which leads to the speci�cation of the form of the interactions of the
theory�

In order to describe the gauge group of the standard model� we need �rst
to de�ne unitary and special unitary groups� A unitary matrix in n dimensions
is an n � n matrix having the property that its inverse is equal to its Hermitian
conjugate� A special unitary matrix is one with determinant unity� It can be
proved that the unitary matrices in a given number of dimensions form a group�
and likewise so do the special unitary matrices� The unitary group U�n� is the
group of unitary matrices in n dimensions� and the special unitary group SU�n�
is the group of unitary matrices with determinant unity� We shall describe these
groups in more detail in Chapter ��

The gauge group of the standard model is the product �see Chapter �� of three
groups of unitary matrices� namely� SU����SU����U���� The gauge group SU���
is the symmetry group of the strong interactions� described by a theory called
quantum chromodynamics �QCD�� while the group SU��� � U��� is the group of
the partially uni�ed electromagnetic and weak� or electroweak� interactions� The
electromagnetic part of the electroweak interaction is quantum electrodynamics

�QED�� which at the present time is our most successful quantum �eld theory�
Agreement between the predictions of QED and experimental measurements are
sometimes better than � part in a billion�

According to the standard model� the electromagnetic and weak interactions
are related because the groups SU��� and U��� are mixed by mechanism known
as spontaneous symmetry breaking� which we shall describe in Chapter �� The
combined electroweak �eld theory is due to Sheldon Glashow� Steve Weinberg�
Abdus Salam� and others� The theory of the strong interactions� QCD� is the
work of many physicists� including Y� Nambu� Murray Gell�Mann� H� Fritzsch� H�
Leutwyler� Weinberg� David Politzer� David Gross� and Frank Wilczek�

In addition to having continuous symmetries� the standard model has a dis�
crete symmetry known as CPT � In order to de�ne CPT symmetry� we �rst de�ne
the operations of charge conjugation C� parity P � and time reversal T � Charge
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conjugation replaces the charges carried by a particle by those of the antiparti�
cle� In addition� C replaces certain internal additive quantum numbers by their
negatives �see Section ���� Parity P � or space re�ection� replaces the spatial co�
ordinates of the �elds by their negatives� Finally� T replaces the time coordinate
of the �eld by its negative� The Lagrangian of the standard model is not invariant
under the separate operations C� P � and T � but it is invariant under the combined
operations of all three� taken in any order� This combined invariance is known as
CPT symmetry�

There is a theorem� known as the CPT theorem� that the Lagrangian of any
local �eld theory which is invariant under proper Poincar�e transformations and
has a vacuum state is also invariant under CPT � So far� we have not observed any
violation of CPT invariance in nature� If we do in the future� the most probable
explanation would be that nature is not described by a local �eld theory�

A realistic �eld theory has as a consequence a connection between spin and
statistics� called the spin�statistics theorem� So far� all particles observed in na�
ture are either bosons �which satisfy Bose�Einstein statistics� or fermions �which
satisfy Fermi�Dirac statistics�� Hypothetical particles obeying more complicated
statistics have been discussed in the literature� but� so far� there is no evidence for
their existence� The kind of statistics obeyed by a collection of identical particles
is a consequence of the symmetry of its wave function� The wave function of a
collection of identical bosons is symmetric under the intechange of all the coordi�
nates of any two of them� In contrast� the wave function of a collection of identical
fermions is antisymmetric under the interchange of all the coordinates of any two�
As a consequence� identical fermions obey the Pauli exclusion principle�

The spin�statistics theorem says that if particles are restricted to be either
bosons or fermions� then particles of integral spin are bosons and particles of half�
integral spin are fermions� This theorem is also in accord wilth observation�

At the present time� nobody knows how to solve a realistic quantum �eld
theory exactly� Nevertheless� we are able to solve such a theory approximately in
a perturbation expansion in powers of the interaction strength �or coupling con�
stant�� It turns out that in�nite terms arise in the expansion of many �eld theories�
but it is possible to circumvent this problem by a process known as renormaliza�

tion� The renormalization procedure involves the introduction of a number of
parameters whose values must be determined by a comparison of the theory with
experiment� One then obtains a unique �nite answer for each observable quantity
which is calculated� For realistic �eld theories� renormalization is always possible
with the introduction of a �nite number of parameters� and such theories are said
to be renormalizable�

The perturbation expansion of a �eld theory can be schematically pictured by
means of Feynman diagarams or graphs� A Feynman graph is a picture in space�
time describing the interactions of particles� In order to be able to draw a graph
in a plane� one shows only one of the three spatial dimensions� A graph contains
lines �which describe the motion �or propagation� of free particles and vertices
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which describe interactions at points in space�time� We shall describe Feynman
graphs in more detail in Chapter ��

Although the standard model has much predictive power� many physicists
regard it as an approximation to a more fundamental theory which is yet to be
discovered� One reason for this belief is the fact that the standard model requires
at least �� parameters for its speci�cation� Another reason is that the model is
not as beautiful as we like a fundamental theory to be�

��� Elementary particles of the standard model

The principal elementary particles of the standard model are quarks and lep�

tons� which are fermions of spin �

�
� and gauge bosons� of spin �� Also� a Higgs

boson� of spin �� exists in the model� The quarks and leptons are quanta of so�
called spinor �spin ���� �elds� the gauge bosons are quanta of vector �spin �� gauge
�elds� and Higgs bosons are quanta of a scalar �spin �� �eld� The Higgs boson and
one of the quarks �the top quark� have not yet been observed�

Although quarks� leptons� gauge bosons� and the Higgs particle are the ele�
mentary particles of the standard model� they may be composite in another theory�
Furthermore� in the future they may be discovered to have complicated structure�
So far� however� all experiments to measure the size of the elementary particles
of the standard model have just obtained upper limits� The upper limits derived
from experiment are somewhat model dependent� but for the quarks and leptons
are in the region ����� to ����� cm�

In the standard model� the two kinds of elementary spin� �
�
fermions� leptons

and quarks� are supposed to be point�like� These elementary fermions carry one or
more kinds of charge� which are measures of the strength of the interaction of the
fermions with the gauge �elds� These charges are not only the ordinary electric
charge� but also the weak and strong charge� the last being called color� The
spin�� bosons of the standard model� which are the quanta of the gauge �elds� are
the photon �� which interacts with electrically charged particles� the weak bosons
W�� W�� and Z�� which interact with particles which carry weak charge� and
eight colored gluons Gi� which interact with particles which carry strong charge�
or color� Just as a particle without electric charge is said to be electrically neutral�
a particle without strong charge is said to be color�neutral �or colorless��

A major distinction between the leptons and quarks is that the quarks carry
color� whereas the leptons do not� This is a way of saying that quarks� but not
leptons� have strong interactions� All quarks and all leptons carry weak charge�
and all quarks and half the leptons carry electric charge�

Usually� it is stated that there are two kinds of electric charge� positive and
negative� but we prefer to take the point of view that there is only one kind of
electric charge� plus its anticharge� which is opposite in sign to the charge� This
point of view is more easily generalized to other kinds of charges� like strong
and weak charges� which occur in more than one variety� Unfortunately� the
generalization from electric charge to the charge in more complicated theories is
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not completely trivial� There are at least three ways various authors use the word
charge and sometimes one has to be careful about the usage� Once we get to the
discussions of group theory and gauge theory any confusion should be alleviated�
Often� charge is used to refer to the coupling constant of the theory� In that case�
there is one for each component of the gauge theory� SU��� � SU��� � U��� has
three separate components and there are three coupling constants� one for the
strong group SU��� and two for the electroweak theory SU���� U����

A second way of looking at a charge is as the integral of a current a la Emmy
Nother� In this case� there is one charge for each parameter that describes the
gauge group� The color group SU��� is an � parameter group� so there are eight
kinds of charges� The weak isospin group SU��� is a three parameter group�
and the weak hypercharge U��� has one more charge� These four charges are
the sources for the W�� W�� Z and photon� In the literature� you are likely
to see references to a charged current and a neutral current� which have di
erent
strengths because of spontaneous symmetry breaking� The terms �charged� and
�neutral� here refer to the electric charge carried by the weak currents� There
are actually two charged currents of charge �� which couple to the W� and W��
The neutral current couples to the Z�� The fourth current is also neutral is the
familiar electromagnetic current to which the photon couples�

Returning to SU���� we �nd the third way in which the word charge is used�
The quarks are fundamental objects that are part of the source for the color �elds�
�The gluons themselves are also sources of the color �elds�� The quarks have a
label that can take three values� So� we often say that the quarks have three kinds
of strong charge or color� These colors are conventionally called �red�� �green��
and �blue�� although sometimes other colors are chosen� There are also three
anticolors� Particles carrying color come in color multiplets� with a multiplicity
greater than unity� whereas color�neutral particles come in color singlets� This is a
somewhat di
erent usage of the word charge� and perhaps we should just say that
there are three color states� not three color charges� but this usage is common in
the literature and I hope you will not �nd yourself confused�

We next consider what charges are carried by the gauge bosons� The photon is
not only electrically neutral� but also does not carry either weak or strong charge�
The eight gluons are electrically neutral and do not carry weak charge� but they
do carry color and therefore interact strongly with one another� as well as with
quarks� The weak bosons W� and W� carry electric charge and so interact with
photons� but the Z� is electrically neutral� None of the weak bosons has color�
but all three carry weak charge� We amplify this in Chapter ��

Not only do the quarks and leptons carry charges� but they also have another
property� called �avor� which distinguishes them� At the present time� there is
good experimental evidence for six lepton �avors and �ve quark �avors� There is
indirect evidence for a sixth quark �avor�

The evidence for a sixth quark �avor is theoretical� coming from the stan�
dard model� which requires the sixth quark to exist� Within the standard model�





certain calculations agree rather well with experiment if a sixth quark exists� but
disagree with experiment in the absence of a sixth quark� In fact� experimental
measurements of certain quantities have led to theoretical estimates� based on the
standard model� of the mass of the sixth quark� Other calculations are insensitive
to whether a sixth quark exists�

The quarks have been given whimsical names� up �u�� down �d�� strange
�s�� charmed �c�� bottom or beauty �b�� and top or truth �t�� The three charged
leptons are the electron �e�� the muon ���� and the taon �� �� Each has a neutral
companion called a neutrino ���� Their names are the electron neutrino ��e�� the
muon neutrino ����� and the tauon neutrino ��� ��

In principle� each �avor of quark and lepton can have a di
erent mass� How�
ever� in the simplest version of the standard model� the three neutral leptons� the
neutrinos �e� ��� and �� � all have zero mass� Nevertheless� there is no particular
reason within the standard model for the neutrinos to have zero mass� Therefore�
if it should turn out that any of the neutrinos has mass greater than zero� as some
preliminary evidence indicates� the model can easily be modi�ed to accomodate
such a mass� In fact� the mass of each fermion is simply a free parameter in the
standard model� The fact that the model has so many free parameters is an ad�
vantage in terms of �exibility but a disadvantage in terms of beauty and predictive
power�

��� Families

According to the standardmodel� the fermions come in families or generations�
each family containing two �avors of quarks and two �avors of leptons� Thus� the
standard model requires that the number of quark �avors be even and equal to
the number of lepton �avors� Ordinary matter is composed only of particles of the
�rst family�

The standard model� by itself� says nothing about how many families should
exist� However� present experimental evidence and the standard model together
imply that there exist at least three families of quarks and leptons� If a fourth
family should be discovered� then existing experiments and the standard model
together require that the neutrino belonging to the new family have a large mass�
as discussed in Chapter �� But in the present version of the standard model� all
neutrinos have zero mass� Thus� the existence of a fourth family would necessi�
tate at least some modi�cation of the standard model� The elementary fermions
belonging to the three known families are shown in Table ����

In Table ��� we have omitted color� Because each quark can be red� green� or
blue� each family actually contains six quarks and two leptons� Each of the charged
fermions has an antiparticle with the opposite charge� According to the standard
model� the antiparticles of the neutrinos are also di
erent from the particles�

��	 Hadrons
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Table ��� Elementary fermions belonging to the three known families�

First family Second family Third family

�e �e�neutrino� �� ���neutrino� �� �� �neutrino�
e �electron� � �muon� � �tau lepton�
u �up quark c �charmed quark� t �top quark�

d �down quark� s �strange quark� b �bottom quark�

In addition to the elementary particles of the standard model� there exist
many chargeless �electrically neutral� and colorless �color�neutral� bound states�
We mention� for example� the helium atom� the uranium nucleus� and the water
molecule� Of particular importance in elementary particle physics are the hadrons�
which are colorless bound states of quarks� antiquarks and gluons� Some are
electrically charged and others are electrically neutral�

A baryon is a bound state of three so�called valence quarks� plus a sea of quark�
antiquark pairs and gluons� and a meson is a bound state of a valence quark and
an antiquark� plus particles of the sea� The valence particles are those which give a
hadron its quantum numbers� while the sum of the sea particles have the quantum
numbers of the vacuum�

The hadrons are treated as part of elementary particle physics not only for
historical reasons �they were formerly thought to be elementary�� but for the fun�
damental reason that� because we have not observed free quarks and gluons� all
our information about those elementary particles comes from the study of hadrons�

But why have we not observed free quarks and gluons� or� for that matter�
any colored bound states of quarks and gluons� No one knows for sure� but it is
conjectured that QCD requires that colored particles cannot exist as free particles�
but must be con�ned to the interior of hadrons� So far� no one has been able to
prove that QCD requires the con�nement of color� and this is one of the most
important unsolved problems of the theory� The di	culty of proving con�nement
from QCD probably stems from the fact that perturbation theory is inadequate
for this purpose� but we must remember the alternative possibility that QCD
does not con�ne color� The conjecture that QCD con�nes color is bolstered by
nonperturbative calculations done in an approximation in which the continuum
�eld theory is replaced by space�time points on a lattice� Lattice calculations
indicate that QCD is con�ning�

In the simplest approximation� an ordinary meson is composed just of a quark�
antiquark pair �or� as we sometimes loosely say� of two quarks�� and an ordinary
baryon is composed of three quarks� These valence quarks of hadrons determine
their �avor quantum numbers� In a better approximation� hadrons also contain
particles of the sea� The quark�antiquark pairs of the sea carry no manifest �avor�
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but might carry hidden �avor�

In ordinary hadrons� the wave function must contain amplitudes for con�gu�
rations which are more complicated than we have just described� For example� the
wave function of an ordinary baryon has a large amplitude for a term containing
just three valence quarks plus the sea� but it has a smaller amplitude for a term
containing four valence quarks� a valence antiquark� plus the sea� a still smaller
amplitude for a term with �ve valence quarks� two valence antiquarks� plus the sea�
etc� In addition� there are terms containing one or more valence gluons plus other
particles� For many purposes� all these complicated terms in the wave function
can be neglected in ordinary hadrons� In a still more drastic approximation� even
the particles of the sea are neglected�

If the wave function of a hadron does not contain the �rst term in the ex�
pansion discussed above �three valence quarks or a valence quark�antiquark pair��
the hadron is said to be exotic� Thus� the leading term in an exotic baryon may
contain either four valence quarks and a valence antiquark �plus the sea� or three
valence quarks and a valence gluon �plus the sea�� Similarly� the leading term in
an exotic meson may contain two valence quarks and two valence antiquarks �plus
the sea�� a valence quark�antiquark pair and a valence gluon �plus the sea�� or
even no valence quark�antiquark pairs but just two or more valence gluons �plus
the sea�� The concept of a valence gluon is a fuzzy one� Perhaps it is better to
think of such a gluon as having additional energy and perhaps additional angular
momentum compared to a gluon of the sea�

If a hadron has quantum numbers which forbid it to be made strictly of three
quarks or a quark�antiquark pair� then it is said to bemanifestly exotic� Otherwise�
its exotic nature is hidden and is di	cult to determine from experiment� There is
only weak evidence for the existence of exotic hadrons�

If a meson contains only valence gluons and no valence quark�antiquark pairs�
it is called a glueball� The simplest glueballs are composites of two valence glu�
ons� but this is an approximation� as glueballs also contain a sea of gluons and
quark�antiquark pairs� Because gluons do not carry �avor quantum numbers� glue�
balls must be �avorless� whereas some� but not all� mesons� have manifest �avor
quantum numbers� Other exotic hadrons� which contain both valence quarks �and
or antiquarks� and valence gluons� are called hybrids� In nature� pure ordinary
mesons� pure glueballs� and pure hyrbids almost surely do not exist� but� depend�
ing on quantum numbers� are mixed with each other and with ordinary and other
exotic mesons� For example� a meson with only hidden �avor� such as the �� can
mix with a predominantly glueball state� For this reason� it is di	cult to identify
hadrons which are predominantly glueballs�

Many of the properties of hadrons �as well as leptons and gauge bosons� are
given in the Review of Particle Properties of the Particle Data Group� Tradi�
tionally� that review appears in even�numbered years� Also� an updated pocket
condensation of the review� called the Particle Properties Data Booklet� appears
every two years� It is available from the Particle Data Group� Lawrence Berkeley
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Lab� Berkeley� CA ����� USA� and from CERN Science Information Service� CH�
���� Geneva ��� Switzerland� The Data Booklet is a valuable handy reference�
The latest review as of the time of writing is by Hikasa et al� �����

��
 Quark and lepton masses

The mass of a free charged lepton traveling at high speed can be obtained
by measuring its momentum p and energy E� and determining its mass from the
equation m� � E� � p�� By a �free� particle� we mean a particle which is not
bound to any other particle� According to this de�nition� an electron in a hydrogen
atom is not free� but an ionized electron is free� We determine the momentum of
a charged particle by measuring its curvature in a homogeneous magnetic �eld of
known strength� We determine the energy of a charged particle by by measuring
the ionization it produces when traveling in a material medium� The mass of a
neutrino is measured indirectly by measuring the energies and momenta of charged
particles participating in an interaction which produces the neutrino and then
applying energy and momentum conservation laws� Attempted measurements of
the masses of the neutrinos by this method have so far yielded only upper limits�
However� there may be a far more sensitive way to measure neutrino masses� or at
least neutrino mass di
erences� If di
erent kinds of neutrinos can convert to one
another� in a process called �neutrino oscillations�� then a measurement of such
oscillations gives information about neutrino mass di
erences�

Because free quarks have not been observed� their masses have not been mea�
sured in the usual way� In the absence of direct measurements of the energy
and momentum of free quarks� the quark masses can be inferred only indirectly
from measurements of properties of hadrons� In this situation� di
erent kinds of
measurements of hadrons yield di
erent results for the masses of bound quarks�
The problem is that considerable interpretation is necessary to extract a value of
the quark mass from a measured hadron property� The very meaning of mass is
somewhat ambiguous for a particle that can exist only in a bound state�

Two di
erent masses are usually associated with a quark of a given �avor� a
�current� mass and a �constituent� mass� The current mass is the smaller of the
two� and is usually associated with processes involving large momentum transfers�
The constituent mass is usually more convenient for dealing with static properties
of hadrons� But the quark mass is a function of the momentum transfer at which
the mass is measured� albeit indirectly� and some measurments yield quark masses
which are intermediate between the current and constituent masses�

A constituent quark has a higher mass than a current quark because it includes
some of the mass associated with the sea� If a quark is struck gently by a probe
�a process with low momentum transfer�� then� as the quark moves it drags along
particles of the sea� thereby gaining additional inertia� On the other hand� if a
quark is struck violently by a probe �a process with high momentum transfer��
the particles of the sea cannot follow the struck quark�s motion� and so the quark
appears less massive� The di
erence in mass between a constituent and current
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quark is of order ��� MeV�c�

In elementary particle physics� particle masses are often given in energy units
divided by c�� where c is the speed of light� This is because� according to Einstein�s
famous equation� the rest energy E� of a particle is related to its mass m by
E� � mc�� The unit of energy is commonly taken to be the eV �electron volt�� the
energy acquired by an electron when accelerated through a potential di
erence of
one volt� Also used are meV ����� eV�� keV ���� eV�� MeV ���� eV�� GeV ����

eV�� and TeV ����� ev��
In Table ��� are given the lepton masses and the approximate values of the

current and constituent quark masses in MeV�c�� The constituent mass of a quark
of a given �avor is approximately half the mass of a meson containing that �avor�
�In applying this rule� we exclude the pion� which is an anomalously light meson��
Often� the u� d� and s quarks are called light quarks� while the c� b� and t are
called heavy quarks�

Table ��� Lepton and quark masses in MeV�c�� The d�u mass di
erence is about
� MeV�c� for both current and constituent quark masses� The lepton masses are
taken from the tables of the Particle Data Group �Hikasa et al�� ���� The quark
masses are rough estimates based on the work of Prof� Lichtenberg except for the
mass of the t quark� which is a lower limit based on an experimental search by the
DO collaboration �D� Zieminska� private communication��

Fermion Mass Current mass Constituent mass

e �������� ����������
� ����������� ��������
� ������� ���
�e � ��� ����

�� � ����
�� � ��
u � � � ���
d �  � ���
s � ��� � ���
c � ���� � ����
b � ���� � ����
t 	 ���
 ���� 	 ���
 ����

�A theoretical estimate of the mass of the t quark is ���
 ������
 ��� MeV�c��

From here on� we usually let �h � c � � ��h is Planck�s constant divided by ��
and c is the speed of light�� and write particle masses in energy units�
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��� Quantum numbers

In the interactions of the elementary fermions� several number conservation

laws are observed to hold� at least to a good approximation� We can assign a lepton
number to all leptons �� for a lepton and �� for an antilepton� and a lepton family
number to each of the three lepton families� To a good approximation� at least� the
lepton number and the three lepton family numbers are conserved quantities� The
three lepton family number conservation laws are examples of additive number
conservation laws� For example� if the electron family conservation law holds�
then the number of electrons plus electron neutrinos �minus their antiparticles� is
a constant�

So far� we have not observed any violation of lepton number conservation�
However� the question of whether we have observed lepton family number violation
is at present uncertain� The uncertainty comes from the so�called solar neutrino
puzzle� Apparently� fewer electron neutrinos from the sun are detected on the
earth than the number calculated within the framework of the standard solar
model� If the experiments are correct� as seems very likely� then there is something
wrong with the theory� At present� we do not know whether the standard solar
model is wrong or whether some electron neutrinos are converted to other kinds of
neutrinos either in the sun or between the sun and the earth �neutrino oscillations��
If neutrinos from one family can indeed convert to those of another family� this
means that not only is lepton family number violated but also that at least one
neutrino has mass di
erent from zero� Fortunately� with only minor modi�cations�
the standard model of elementary particles can accomodate both neutrino masses
and neutrino oscillations�

Because quark number �the number of quarks minus the number of anti�
quarks� is observed to be conserved� we assign a quark number � to every quark
and a number �� to every antiquark� In the strong and electromagnetic interac�
tions� quark �avor numbers are observed to be conserved� Therefore� we can assign
a quark �avor number to each quark� However� in weak interactions� not only are
these �avor number laws violated� but quark family numbers are also violated�
However� so far we have not observed any violation of quark number� for example�
we have not seen any process in which a quark has turned into a lepton� Such
transitions are possible in some theories� including some so�called grand uni�ed

theories� which are di
erent from the standard model� Even the standard model
allows violation of quark and lepton �avor numbers because of an anomaly in the
theory� However� the level of violation is predicted to be negligible in experiments
that have been done so far�

All quarks have baryon number A � ���� �Baryon number is often given the
symbol B� but we use B both for �bottomness� �de�ned in later in this section�
and for B mesons �a B meson contains a b quark�� The value A � ��� is chosen for
quarks so that a baryon has A � �� Baryon number conservation is a consequence
of the conservation of quark number� If baryon number is exactly conserved� then
the lightest baryon �the proton� must be absolutely stable�
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We call charge number Q the value of the electric charge in units of the proton
charge e� �The charge on the electron is �e�� The u� c� and t quarks have charge
number Q � ���� and the d� s� and b quarks have Q � ����� Charge number
is exactly conserved in the standard model� Charge number is conserved as a
consequence of charge conservation� which follows from gauge invariance of QED�
We would be astonished to �nd a violation� Not only does gauge invariance require
that charge number be conserved� but also the magnitude of the charge� If charge
number is exactly conserved� the lightest charged particle �the electron� must be
absolutely stable�

On the other hand� we have no gauge principle which requires the conservation
of baryon number� Although the Lagrangian of the standard model has a form
which apparently conserves quark number�and therefore baryon number�the
presence of an anomaly in the theory means that baryon number� like lepton
number� holds only approximately� However� the quantum number A�L �baryon
number minus lepton number� is exactly conserved in the standard model�

The amount of violation of baryon number and lepton number can be esti�
mated in the standard model� and turns out to be negligible and outside the range
of experimental observation �except at extremely high temperatures�� Therefore�
if the standard model is correct� experiments at normal temperature will be un�
able to detect any proton decay� However� a number of models which go beyond
the standard model predict that the amount of baryon number violation is large
enough to be observable� Thus far� no experiment has detected any violation of A
or L� in accordance with the standard model�

We have already noted that quark �avors do not change in strong or elec�
tromagnetic interactions� but may change in weak interactions� Because quark
�avor is approximately conserved� it is useful to introduce �avor quantum num�
bers U �upness�� D �downness�� S �strangeness�� C �charm�� B �bottomness�� and
T �topness�� These quantum numbers are de�ned so that a quark of charge ���
has appropriate �avor quantum number �U� C� or T� equal to �� and a quark of
charge ���� has �avor quantum number �D� S� or B� ��� An antiquark has op�
posite values of all these quantum numbers� Then the �electric� charge number of
any quark is given by

Q �
�

�
�A  U  D  S  C  B  T �� �����

In turn� if more quark �avors are discovered which �t into the pattern of the
standard model� the generalization of Eq� ����� will be obvious� The quantum
numbers in Eq� ����� of an antiquark are opposite in sign to those of a quark�

The charge Q and the �avor quantum numbers are examples of internal quan�
tum numbers� i�e�� quantum numbers of a particle having nothing to do �as far
as we know� with ordinary space or time� They are additive quantum numbers�
which means that one can obtain the values of these quantum numbers for a col�
lection of particles by adding algebraically the values for the individiual particles�
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Therefore� Eq� ����� holds� not only for quarks and antiquarks� but for any hadron
which is a bound state of quarks and�or antiquarks and�or gluons� Gluons have
the value zero for all the quantum numbers entering Eq� ������

The charge conjugation operator C replaces all the charges by anticharges and
all the internal additive quantum numbers by their negatives� This means that
the state obtained by operating with C on a particle state yields a state with the
charges and additive quantum numbers of the antiparticle� However� because C is
not in general an exact symmetry of �eld theory and is not an exact symmetry of
the standard model� we do not use C to de�ne an antiparticle state�

Because the d quark is only about � MeV heavier than the u quark� a value
which is much smaller than the constituent masses of these quarks� an approximate
symmetry� called �strong� isospin symmetry� holds for the interactions of the u and
d� Then another quantum number� the isospin I� can be de�ned for these quarks�
and also a z component Iz� Conventionally� the quantum numbers I and Iz are
used to describe the u and d quarks instead of the �avor quantum numbers U and
D�

In terms of Iz� Eq� ����� is

Q � Iz  
�

�
�A  S  C  B  T �� �����

This equation is a generalization of the Gell�Mann�Nishijima relation for u� d� and
s quarks� Equation ����� is much more commonly seen than Eq� ������ We exhibit
Eq� ����� to point out that all the quarks can be treated on the same footing� It
is because the mass di
erence between the u and d quark is small that it is more
convenient to drop the quantum numbers U and D and instead use the quantum
numbers I and Iz� Isospin symmetry is an approximate SU��� �avor symmetry of
the strong interactions� The z direction in isospin space is related to the charge�
as can be seen from Eq� ������ However� the rules for addition of isospin are the
same as the rules for addition of ordinary angular momentum�

As far as we know from experiment� in Eqs� ����� and ������ the conservation
laws corresponding to the quantum numbers Q and A of Eqs� ����� and ����� are
exact and the others are approximate� However� we have a gauge principle which
says that Q is exact� whereas in the standard model A is violated by an anomaly�
The extent of the violation is negligible at present�day temperatures� but might
have been important in the early hot universe shortly after the time of the big
bang�

Still another quantum number� �strong� hypercharge Y is sometimes given�
This is not an independent quantum number� We de�ne it only for the light u� d�
and s quarks� in which cases it is given by

Y � A  S �����

so that for these quarks
Q � Iz  Y��� �����
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Hypercharge is used for the u� d� and s quarks because Iz and Y are quantum
numbers associated with an approximate SU��� �avor symmetry of these quarks�
There seems little reason to introduce hypercharge for the heavy quarks� although
some people have done so� �Later� we introduce weak hypercharge and weak
isospin for all fermions�� All the quantum numbers of Eqs� ����������� are internal
additive quantum numbers�

In addition to the additive quantum numbers� we commonly use two other
kinds� vector andmultiplicative� Examples of vector quantum numbers are angular
momentum J and isospin I� Each of these quantum numbers is associated with
invariance under rotations in a three�dimensional space R���� or� essentially equiv�
alently� rotations in a complex two�dimensional unitary space SU���� We shall see
in a later chapter on group theory in what sense these two groups are equivalent�
For the groups R��� and SU���� the resultant J of two angular momenta J� and
J� has the possible values

J � J�  J� J�  J� � �
 ��� jJ� � J�j�

The same law of �addition� �actually� of combination� holds for isospin because
the underlying group is the same� However� we shall learn in the chapter on group
theory that di
erent laws of combination hold for vector quantum numbers of
other symmetry groups like SU����

Examples of multiplicative conservation laws are parity P �associated with
invariance under space re�ection� and charge conjugation C �associated with re�
placing the charges of a particle by their anticharges and replacing internal additive
quantum numbers by their negatives�� As we have said� these are only approximate
conservation laws of the standard model� Time reversal T is also an approximate
symmetry of the standard model� but� because of the nature of the operator T �
particles do not have a corresponding quantum number�

A de�nite parity can be associated with the relative orbital angular momen�
tum L of two particles� This parity is given by P � ����L� Most particles can also
be assigned intrinsic parities� If a particle can be produced in a parity�conserving
reaction in which no other particle is created or destroyed� than the intrinsic par�
ity of the particle can be measured� An example is the �� meson� which can be
produced in the reaction

p  p� p p ���

The �� intrinisic parity has been measured to be negative� On the other hand� a
charged particle cannot be produced without the creation or destruction of another
charged particle� Therefore� the parity of a charged particle can be measured only
relative to the parity of some other particle� For example� the �� meson can be
produced in the reaction

p p� p n ���

From this reaction� we can measure that the product of the intrinsic parities of
the p� n and �� is negative� It is customary to de�ne the intrinsic parity of the p
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and n both to be positive� With this convention� the parity of the �� is negative�
In the same convention� the parity of the �� is negative�

The product of the intrinsic parities of a boson and its antiparticle is positive
�from measurement and from �eld theory�� Therefore� we conventionally de�ne
the intrinisic parity of an antiparticle of integral spin to be the same as the intrinsic
parity of the particle� The parity of a boson�antiboson pair in a state of orbital
angular momentum L is given by P � ����L� On the other hand� the product
of the intrinsic parities of a fermion� antifermion pair is negative �again� both
from measurement and �eld theory�� As a consequence� we often de�ne the parity
of a fermion to be positive and its antifermion to be negative� The parity of a
fermion�antifermion pair with orbital angular momentum L is P � �����L�

If a particle is indistinguishable from its antiparticle� it is an eigenstate of the
charge conjugation operator C� A photon has negative C parity� A �� can decay
electromagnetically into two photons� which shows it has positive C parity� A
particle�antiparticle pair �either boson or fermion� in a state with orbital angular
momentumL and total spin S is in an eigenstate of C with the value C � ����L�S �

Some of the quantum numbers of the quarks are given in Table ���� Except
for the quantum number I� all the quantum numbers in Table ��� are additive� In
addition� all quarks have spin ��� and baryon number A � ���� and all can be
de�ned to have positive parity� None is an eigenstate of C�

Table ��� Quantum numbers of the quarks� All quarks have baryon number A �
���� The quantum numbers U and D are rarely used�

Flavor Q I Iz U D S C B T Y

u ��� ��� ��� � � � � � � ���
d ���� ��� ���� � �� � � � � ���
s ���� � � � � �� � � � ����
c ��� � � � � � � � � �
b ���� � � � � � � �� � �
t ��� � � � � � � � � �

The leptons also have �avor quantum numbers� However� it is more useful to
discuss the three lepton family quantum numbers� We call them electron family
number Le� muon family number L�� and tau family number L� � Both e and
�e have Le � �� both � and �� have L� � �� and both � and �� have L� � ��
The antiparticles have opposite values of these quantum numbers� According to
the standard model with zero neutrino masses� the lepton family numbers are
conserved� except for the negligible violation arising from the anomaly� but in
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some other models observable violations can occur� As we have said earlier� if the
neutrinos turn out to have masses greater than zero� the standard model can be
revised to accomodate the nonconservation of lepton family numbers� It would
require a more profound change in the standard model to violate the conservation
of lepton number� Such a modi�cation would be necessary if� for example� a
reaction were observed in which a quark turned into a lepton� except possibly at
extremely high energy�

The leptons and quarks have weak isospin i and weak hypercharge y� which�
in analogy to Eq� ������ are related to electric charge number by

Q � iz  y��� �����

Because the weak interactions do not conserve parity� fermions with negative he�
licity �left�handed fermions� do not interact in the same way as fermions with
positive helicity �right�handed fermions�� Note� the helicity of a particle is the
component of its spin in the direction of its motion�

According to the standard model� fermions interact weakly as left�handed
doublets and right�handed singlets� This has as a consequence that left�handed
fermions have weak isospin i � ���� while right�handed fermions have i � ��
with corresponding di
erences in hypercharge because of Eq� ������ Weak isospin
and hypercharge cannot be conserved for fermions with masses greater than zero
because the helicity of such particles can be changed by Lorentz transformations�

We see this as follows� Consider a massive particle with positive helicity
traveling in some direction� Transform to a di
erent Lorentz frame in which the
particle is traveling in the opposite direction� This transformation does not change
the direction of spin of the particle� and therefore reverses its helicity� In order to
reverse the direction of the particle in the new Lorentz frame� the transformation
must involve a speed greater than the speed of the particle in the original Lorentz
frame� This is always possible for a particle with mass� but is impossible for a
massless particle� which travels with the speed of light in any Lorentz frame�

In the present version of the standard model� the neutrinos are supposed to be
massless� Therefore� helicity is a good quantum number for them� Furthermore�
right�handed neutrinos and left�handed antineutrions do not exist in the model�

���� Boson masses

According to the standard model� after the spontaneous breaking of SU����
U��� symmetry �discussed later� there remain the manifestly unbroken symme�
tries SU��� of QCD and U��� of QED� Now the gauge bosons associated with a
manifestly gauge�invariant theory must be massless� Therefore� the gluons and the
photon have zero mass� The weak bosons� on the other hand� are associated with
a spontaneously broken gauge symmetry� and do acquire masses in the theory�
Because gluons� like quarks� are con�ned to the interior of hadrons� gluon masses
cannot be directly measured� It is sometimes useful to de�ne a constituent mass
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for gluons which is di
erent from zero� The constituent gluon can be considered to
be a valence gluon plus a sea of gluons and quark�antiquark pairs� There is some
indirect evidence that the gluon constituent mass is about ��� MeV� In Table ���
we give the masses and electric charges of the gauge bosons�

Table ��� Masses and charges of the gauge bosons� The masses of the W and Z
are from the Particle Properites Data Booklet �June� ���� All these bosons have
spin � and baryon and lepton number zero�

Name mass �GeV� charge

� �photon� � �
W� �charged weak bosons� ���������� ��
Z� �neutral weak boson� ������ ����� �
Gi �i � �
 ����� gluons� �� �

�Theoretical value� The gluon constituent mass may be approximately ���
GeV�

The Higgs scalar boson is also an elementary particle of the standard model�
but it has not been observed� It is the particle that spontaneously breaks the
SU��� � U��� symmetry of the model by the Higgs mechanism� which we discuss
in a later chaper� As we shall see later� according to the model the Higgs boson
is electrically neutral and has a mass greater than zero� Unfortunately� the model
does not predict what the mass of the Higgs should be or even relate the mass to
experiments which can be done at low energy� Therefore� experimental physicists
do not know where to hunt for the Higgs� Experiments apparently rule out a
Higgs with mass less than about �� GeV� Calculations within the framework of
the standard model do not seem self consistent if the Higgs boson has a mass
much greater than about ��� GeV� Aside from the fact that the Higgs boson has
not been observed� some theoretical physicists believe that an elementary Higgs
particle is the weakest link of the standard model� and that there might be another
mechanism to break the symmetry spontaneously�
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�� THE DISCOVERY OF ELEMENTARY PARTICLES AND HADRONS

In this chapter we discuss some of the major discoveries in the development
of the subject of elementary particle physics� We do this� not only to give a
perspective on a subject which is basically a twentieth century area of study�
but also to discuss some relevant experimental methods and apparatus as well as
theoretical advances� We shall see that the discovery of an elementary particle
requires not only a good experiment but a theoretical interpretation of the results�

��� The electron

The �rst of what we now call elementary particles to be discovered� and the
only one recognized before the twentieth century� is the electron� This particle
was �rst observed by Sir Joseph J� Thomson in ����� and he received the Nobel
prize for the discovery� 	Note
 in this chapter we discuss a number of Nobel prize
winners� nearly all in physics� Usually� we do not distinguish between those who
were sole winners and those who shared the prize��

Prior to Thomson�s work� it was known that socalled cathode rays are emitted
by a hot negativelycharged �lament and attracted to a positivelycharged elec
trode in a glass tube� called a cathode ray tube� 	A typical tube might be � cm
in diameter and �� cm long�� The cathode rays are not observed directly� Rather�
they excite the atoms of gas along their path in the tube� and we see the light
emitted by the atoms when they spontaneously return to their ground state�

At the time Thomson did his experiment� it was known that cathode rays
could be de�ected by a magnetic �eld in such a direction that they must have
negative charge� Thomson suggested that the rays were in fact a beam of charged
particles� later called electrons�

But it was not enough simply to conjecture that the cathode rays were par
ticles� Thomson went further and found the chargetomass ratio of the electrons�
His procedure was to measure the radius of curvature of the electron beam in a
magnetic �eld of known strength� and then to apply an electric �eld of su�cient
strength to restore the beam to its unde�ected path� Using the known laws of
classical electromagnetism� it was then a simple exercise for him to compute the
chargetomass ratio of the particles in the beam�

Note that Thomson did not see electrons directly� but only light from atoms
along their paths� It turns out that essentially all the observations of elemen
tary particles 	and of many composite particles� such as hadrons� are indirect� so
that a discovery of an elementary particle not only requires observation of certain
phenomena but also a proper interpretation of the observations�

Thomson and others made crude measurments of the electric charge of the
electron� observing how charged water droplets moved in an electric and gravita
tional �eld� Later� in ����� Robert Milikan measured the charge of the electron
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in an oil drop experiment� Milikan discovered that tiny oil droplets can be made
to pick up electrical charges� By measuring the constant rate of fall of drops in
air� Milikan was able to estimate their masses using Stokes�s law for the speed of
fall of a small sphere in a viscous medium� If an electric �eld is applied� there is
a di�erent rate of fall� which depends on the electric charge carried by the drop�
Milikan made measurements of the charges of many oil drops and found that they
were all integral multiples of a constant charge� the charge on the electron �e�
Milikan received the Nobel prize for this and other work�

Taken together with Thomson�s measurement of the chargetomass ratio of
the electron� the electron�s mass could also be determined� The present values of
the charge �e and mass m of the electron are

�e � ������� ����� C� m � ����� MeV � ������ ����� kg� 	����

These numbers are known to considerably more precision than given here� For
more precise values of these and other fundamental constants given in this chapter�
see the latest issue of the Particle Properties Data Booklet 	June� ������ At the
present time� we have no generally accepted theory which predicts either the charge
or the mass of the electron� It is unfortunate that the same symbol e is used for
the electron and for the magnitude of its charge� Sometimes e� is used as a symbol
for the electron�

The electron is the least massive charged particle known� Also� as far as is
known� the electron is absolutely stable against decay� If indeed there exists no
charged particle lighter than the electron� then the law of charge conservation�
which as far as is known� is exact� forbids the electron to decay�

The year ���� was a watershed year for physics� with the invention of quantum
mechanics by Erwin Schr�odinger and Werner Heisenberg� 	Both are Nobel prize
winners�� In the same year� G� E� Uhlenbeck and Sam Goudsmit interpreted a
number of puzzling experiments involving electrons bound in atoms� For example�
a beam of silver atoms was found to be split into two by a suitable inhomogenious
magnetic �eld� Uhlenbeck and Goudsmit�s idea was that an electron has a spin S�
whose z component can take on only two possible values� Sz � ���� 	times �h��
and a magnetic moment �e given by

�e � �e�	�m� 	����

	times �h�c�� The unit e�	�m� is called a Bohr magneton�
Hereafter� we say for simplicity that the spin of a particle is the integer or

half integer S which gives its maximum component along an arbitrary z axis in
units with �h � �� The actual magnitude of S in these units is

p
S	S � ��� We

use the same simple notation for orbital angular momentum L 	which is always
an integer� and for total angular momentum J 	which may be either an integer or
half integer��

There is a magnetic moment �L associated with the orbital angular momen
tum L of an electron� given by �L � �eL�	�m�� However� the magnetic moment
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of the electron associated with its spin is �e � �eS�	�m�� twice as large as was
expected� Note that the energy E�� associated with the magnetic moment � of a
particle in a magnetic �eld B is given by E� � �� � B� 	The same symbol � is
used for the muon� to be discussed in Section �����

In ����� not very long after the discovery of the magnetic moment of the
electron�s magnetic moment� Paul A� M� Dirac invented a relativistic wave equation
to describe the electron� The Dirac equation accounted for the spin and magnetic
moment of the electron in a natural way� Dirac received the Nobel prize for his
achievement�

Later measurements of the magnetic moment of the electron showed a small
	about ����� deviation from the Dirac value� and this socalled �anamolous� mo
ment has been accounted for by the theory of quantum electrodynamics� invented
in the �����s independently by Richard Feynman� Julian Schwinger� and Shinichiro
Tominaga� These physicists shared the Nobel prize for their work�

The theory of quantum electrodynamics 	QED�� now incorporated into the
standard model� is our best theory of particle interactions� Agreement between the
theory of quantum electrodynamics and experiment is very impressive� In some
instances� very precise experiments have agreed with theory to better than one
part in a billion 	�����

��� The photon

Quantum theory began in the last year of the nineteenth century� when� in
����� Max Planck used a quantum hypothesis to explain blackbody radiation�
Planck�s break with classical theory came from his postulate that the energy of
oscillators in matter is quantized in unit multiples of a fundamental constant h�
known as Planck�s constant� Planck received the Nobel prize for his work�

Plank�s constant divided by �� has the value

�h � ������ ����� J s � ������ ����� MeV s� 	����

Combining this value with the speed of light

c � ������ ��� m�s� 	����

we obtain
�hc � ������ MeV fm� 	����

where � fm � ����� m� Equations 	�����	���� are useful in converting numbers
representing physical quantities to conventional units from units in which �h � c �
�� Note that from Eq� 	����� we obtain � MeV� ������ ����� J�

Even after Planck�s work� physicists still believed that light behaves as a wave�
owing to Young�s di�raction and interference experiments in the ��th century�
However� in ����� Albert Einstein postulated that light of frequency � is quantized
into particles� later called photons� each having energy E � h�� Einstein proposed
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this idea in order to explain the photoelectric e�ect� The photoelectric e�ect can
be demonstrated as a tabletop experiment� If light of su�ciently high frequency
� is incident on a metal� the metal can emit electrons with a maximum kinetic
energy T given by Einstein�s equation

T � h� � �� 	����

where � is a constant characteristic of the particular metal�

Light near the blue end of the spectrum has su�cient frequency to knock
electrons out of many metals� while red light� no matter how intense the beam�
does not� Einstein proposed Eq� 	���� and interpreted it to mean that a photon�
a particle of light� can knock an electron out of a metal provided the energy of
the photon is greater than then energy � with which the electron is bound in the
metal� Subsequent experiments with many metals veri�ed the correctness of Eq�
	����� Einstein received the Nobel prize� not for his work in special or general
relativity� but principally for his law of the photoelectric e�ect�

Nobody understood the signi�cance of photoelectric experiments until Ein
stein proposed his law� Afterwards� some physicists� although willing to accept
the law� remained unconvinced of the particle interpretation� Then in ���� Arthur
Compton scattered a beam of monochromatic light by electrons and found that
the scattered light beam had lower frequency than the incident beam� Compton
showed that the frequency of the scattered light depends on the angle of scattering
in such a way that the energy loss of a photon when scattered by an electron is
equal to the recoil energy gained by the electron� Compton�s experiments and
interpretation �nally convinced most physicists that light has particle as well as
wave properties� Compton received the Nobel prize for his work�

Our present picture of the photon is that it is a quantum of the electromag
netic �eld� As such� it is the carrier of the force between charged particles� as
described by the theory of QED� Quantum electrodynamics� like other �realistic�
�eld theories� cannot be solved exactly� but must be solved in a perturbation expan
sion� As we have said� QED was invented independently by Tomonaga� Schwinger�
and Feynman� Today� most physicists use the Feynman formulation for calcula
tional purposes� In the Feynman approach� the terms in the perturbation theory
expansion are pictorialized by Feynman diagrams or Feynman graphs�

The mass of the photon is zero within experimental error� According to our
present ideas� if the photon had a mass� the force between two charged particles
would not go inversely as the square of the distance between them� The theory of
special relativity is built on the principle that the speed of light is a constant in
all inertial frames� and that only massless particles can travel at that speed� Also�
the principle of gauge invariance� which we discuss in a later chapter� forbids the
photon to have a mass�

��� The atomic nucleus and the proton
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Radioactivity was �rst observed in ���� by Henri Becquerel on �lm acci
dentally exposed to uranium in a desk drawer� When Becquerel developed the
�lm� he observed the tracks of particles emitted by radioactive urananium atoms�
Becquerel shared the Nobel prize with Pierre and Marie Curie� the latter two re
ceiving it for their work with radioactive atoms� 	Incidentally� Marie Curie also
received the Nobel prize in chemistry for the discovery and isolation of radioactive
materials� including radium��

Experiments revealed that radioactive atoms may emit 	 rays 	now known
to be �He nuclei�� 
 rays 	now known to be electrons�� and � rays 	now known to
be photons�� In fact� this radiation is emitted by atomic nuclei� but the existence
of nuclei was not known when Becquerel made his discovery� The energy of an
emitted particle depends on the emitting nucleus and on the nature of the process�
and may be as much as a few MeV� about a million times as energetic as the energy
of a photon of visible light�

In ����� H� Geiger and E� Marsden� two assistants in Ernest Rutherford�s
laboratory� measured the scattering by a gold foil of 	 particles emitted by a
radioactive source� The detector was a tube with a high voltage across it� A
charged particle entering the tube causes ionization of some of the atoms of gas in
the tube� and the high voltage accelerates the free electrons and ions� which in turn
cause further ionization� The result is a discharge of electricity� which is recorded
as a �count�� Geiger and Marsden found that sometimes the 	 particles were
scattered through very large angles� a fact which could not be explained by the
then existing �plumpudding� model of the atom in which electrons 	the plums�
were thought to be embedded in a positivelycharged medium 	the pudding��

Rutherford interpreted the experiments in ���� with a model in which an atom
consists of a tiny positivelycharged nucleus at the center� which carries nearly all
the mass of the atom� plus electrons going around the nucleus in orbits� much like
planets go around the sun 	except for a vast di�erence in scale�� Rutherford was
able to show that Coulomb scattering from the nucleus can give rise to the observed
largeangle scattering of the 	 particles� 	Coulomb scattering is the scattering by
a ��r Coulomb potential�� Strangely� Rutherford received the Nobel prize� not in
physics� but in chemistry for work with radioactive substances�

Rutherford was lucky� He calculated the scattering using classical 	non quan
tum� physics� For some potentials he would have gotten the wrong answer 	that
is� an answer in disagreement with experiment�� but a Coulomb potential has
the special property that the scattering cross section is the same when calculated
classically and quantum mechanically� and� furthermore� is in agreement with ex
periment� Although it is now known that nuclei are not point particles� the ex
periments of Geiger and Marsden were not su�ciently sensitive to give a measure
of the nuclear size�

Some physicists of the time did not at �rst believe in Rutherford�s model
of the atom because� classically� such a model is unstable� The argument is as
follows
 Electrons in orbits around a nucleus undergo acceleration� But acceler
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ating charged particles emit electromagnetic radiation� losing energy� Therefore�
electrons orbiting a nucleus should lose energy and spiral into nucleus�

Then in ���� Bohr solved the problem by simply postulating that electrons
move around the nucleus in certain stationary orbits without emitting radiation�
According to Bohr�s model� electrons emit radiation as photons only when making
a transition from one stationary orbit with a higher energy to another stationary
orbit with a lower energy� According to the model� an electron in the lowest
energy stationary orbit is stable� The model was taken seriously� because� with it�
Bohr was able to predict the wavelengths of the observed spectral lines emitted
by hydrogen atoms� The relation between wavelength �� frequency �� and photon
energy E is � � c�� � hc�E� where we have included h and c explicitly� Bohr
received the Nobel prize for his work�

After Rutherford�s explanation of the scattering of 	 particles by gold� Geiger
and Marsden performed further experiments� scattering 	 particles by a wide
variety of elements� Because the scattering cross section is proportional to the
nuclear charge� Geiger and Marsden deduced that the number of �elementary�
positivelycharged particles in a nucleus is approximately equal to half the atomic
weight 	in atomic units�� The �elementary� charged nuclear particles are now
known as protons�

The lightest atomic nucleus is the nucleus of ordinary 	light� hydrogen� con
sisting of a single proton� We shall not discuss the experiments that established
many of the properties of the proton� Within experimental error� the charge of
the proton is equal in magnitude 	although opposite in sign� to the charge of the
electron� Hereafter� we shall assume that the proton charge is e� but we should
not forget that this is an experimental question� The spin of the proton is ����

The mass and magnetic moment of the proton have been measured very pre
cisely� The proton mass M is

M � ����� MeV � ������ ����� kg� 	����

The �rst measurement of the proton�s magnetic moment showed that the proton
is not a Dirac particle� The magnetic moment of the proton �p is

�p � ����� e�	�M�� 	����

The anomalous magnetic moment of the proton has the value ����� e�	�M� and
is larger than its Dirac moment e�	�M�� The unit e�	�M� is called a nuclear

magneton� The large value of the proton�s anomalous magnetic moment is a clue
that the proton is not an elementary particle�

As far as is known� the proton is the lightest baryon and is stable against decay�
This stablity led to the law of conservation of baryon number� We do not know
of any principle� such as the principle of gauge invariance� which is responsible
for conservation of baryon number� As we have already remarked� an anomaly
in the standard model violates conservation of baryon number� but the predicted
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proton lifetime is far too long to be observable� 	Physicists� using the standard
model� have estimated that in the early universe� when the temperature was very
high� baryonnumber nonconservation was appreciable�� Some other theories do
predict observable proton decay in the present universe� and at least one such
theory has been ruled out by the existing experimental lower limit on the lifetime
of the proton�

��� The neutrino

We have already mentioned that radioactive nuclei commonly emit 	� 
� or �
rays� now known to be �

�He nuclei� electrons� and energetic photons respectively�
The 	 and � particles were observed to be monoenergetic� but the 
 particles were
observed to be emitted with a broad spectrum of kinetic energies� ranging from as
close to zero as could be detected up to a wellde�ned maximum for a given decay
process�

Until ����� it was not understood why in 
 decay electrons emerge from a
nucleus with a spectrum of energies� Beta decay experiments show that the total
energy of the daughter nucleus plus emitted electron is less than the rest energy
of the parent nucleus� except when the electron was emitted with its maximum
energy� Furthermore� the sum of the momenta of the the electron and daughter
nucleus is measured to be di�erent from zero� whereas the parent nucleus is at
rest� Also� the total angular momentum of the electron and daughter nucleus is
di�erent from the angular momentum of the parent nucleus�

In ���� Wolfgang Pauli suggested that an undetected particle is emitted in

 decay� carrying o� energy� momentum� and angular momentum� In order to
account for the observed characteristics of 
 decay� the new particle must be elec
trically neutral� have little or no mass� and have halfintegral spin� Furthermore�
its interactions with matter must be so weak as to enable it to have escaped de
tection in the early experiments� Fermi named the particle the �neutrino�� which
means �little neutral one�� It is denoted by the symbol �� Now we know that the
particle participating in 
 decay is actually an antiparticle� the electron antineu
trino ��e� 	Antiparticles are discussed in more detail in Section ����� A general 

decay process is

A
ZX�

A
Z	� Y� e� ��e� 	����

where X is the parent nucleus and Y is the daughter� The superscript A denotes
the baryon number� in this case the number of protons plus neutrons in the nucleus�
and the subscript Z denotes the charge number� in this case the number of protons
in the nucleus� 	See Section ��� for further discussion of the neutron��

Pauli received the Nobel prize� not for postulating the existence of the neu
trino� but for proposing the Pauli exclusion principle� 	The generalization of this
principle is the statment that the wave function of a collection of identical fermions
must be antisymmetric under the interchange of the coordinates of any two of
them��
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In ���� Fermi invented a theory of beta decay� in which four fermions� two
charged and two neutral� interact at a point� Fermi�s theory describes 
 decay of
the neutron 	see Section ��� for more about the neutron�


n� p� e� ��e� 	�����

where the symbols n and p stand for neutron and proton respectively� Note that
when a neutron decays� an antineutrino� not a neutrino� is emitted� Fermi received
the Nobel prize� not for his theory of beta decay� but for experiments bombarding
nuclei with neutrons�

Fermi knew that his theory could not be correct at high energy� and so was
probably a lowenergy approximation to a better theory� Fermi�s theory provides
a good description of many properties of 
 decay� but had to be modi�ed to take
into account subsequent experiments which showed that parity is not conserved in
weak interactions� Also� the pointlike nature of the Fermi interaction is inadequate
at high energy� The standard model includes a generalization of Fermi�s theory
to take into account these e�ects plus the existence of more than one family of
fermions�

In the early �����s� Fred Reines and C� Cowen carried out an experiment in
which antineutrinos emitted from a nucelar reactor were detected by an inverse 

process

��e � p� n� e	� 	�����

where e	 is an antielectron� or positron 	see Section �����
In the late �����s� Madame Wu and her coworkers discovered in a 
 decay

experiment that parity is not conserved� Following a suggestion be T� D� Lee
and C� N� Yang� Wu and collaborators measured the angular distribution of 

rays from a polarized radioactive source 	
�Co�� and found a decay asymmetry
that established that parity is not conserved� Soon afterward� several physicists
showed that Fermi�s theory could be altered to include parity violation�

Subsequent developments included the discovery of a second neutrion �� and
then a third �� � Then� in the late �����s Fermi�s theory was superseded by the
electroweak theory of Sheldon Glashow� Steven Weinberg� and Abdus Salam� now
a part of the standard model�

��� The positron

In ����� quantum mechanics was invented independently in two equivalent
forms
 the matrix mechanics of Heisenberg and the wave mechanics of Schr�odinger�
Schr�odinger not only was the �rst to write down the nonrelativistic wave equation
that bears his name but also was the �rst to write a relativistic wave equation to
describe a particle� Schr�odinger�s relativistic equation is now usually called the
Klein�Gordon equation�

It was soon discovered that if one tries to interpret the Klein�Gordon equation
as the equation for a single particle� one runs into di�culties� An important
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example is that one cannot de�ne a probability function which is positive under all
circumstances� The di�culties led physicists to give the Klein�Gordon equation a
di�erent interpretation� namely� that the equation describes a �eld� with an in�nite
number of degrees of freedom� We shall introduce �eld theory in a later chapter�

Three years after Schr�odinger invented the Klein�Gordon equation� Dirac
wrote down a di�erent relativistic wave equation� which provides an excellent
description of the electron� The Dirac equation also runs into di�culties if it is
interpreted as the equation of a single particle� A major problem arises because the
Dirac equation has solutions with negative energy� There is no obvious mechanism
to prevent an electron at rest from making a transition to a state with negative
energy� radiating energy in the process� Thus� the electron apparently does not
have a ground state� In order to forbid the unwanted transitions� Dirac postulated
that all the negative energy levels are �lled with a �sea� of electrons� The Pauli
principle� which forbids more than one electron to be in the same quantum state�
then prevents electrons from making transitions to the negativeenergy states� In
Dirac�s picture� the vacuum or ground state of the system consists of a �lled in�nite
sea of negative energy electrons�

Suppose an an electron from the negativeenergy sea gets a positive energy by
absorbing an energetic photon� Dirac interpreted the resulting �hole� in the sea
as a particle with positive charge and positive energy� Dirac at �rst hoped that
such a particle could be interpreted as a proton� but it was soon realized that the
hole must have the same mass as the electron� Thus� the Dirac equation predicts
that� a positively charged particle like the electron should exist� This particle is
the antiparticle of the electron�

Today we believe that every particle has an antiparticle� The antiparticle
is distinguished from the particle by having opposite additive quantum numbers�
If the particle and antiparticle have no distinguishing quantum numbers� they
are identical� All antiparticles of known fermions are distinguishable from their
particles� However� some bosons� including the photon� are the same as their
antiparticles�

In ����� just a few years after Dirac�s work� Carl� D� Anderson discovered the
positron� a particle with the same mass as the electron and with opposite charge�
Anderson used as a detector a cloud chamber� which is a chamber containing a
supersaturated gas� When a charged particle traverses the chamber� it ionizes
atoms along its path� The ions serve as nuclei for the condensation of liquid
drops� which form along the path taken by the charged particle� These drops are
observed 	usually on �lm�� After a photograph is taken� the cloud chamber is
expanded� and the drops evaporate� Then the chamber is compressed again� and
is ready to detect the next charged particle passing through it� The cloud chamber
was invented by Charles Wilson� for which he received the Nobel prize�

Anderson exposed his cloud chamber to socalled cosmic radiation� which we
now brie�y describe� Cosmic rays are particles which impinge on the earth�s at
mosphere from outer space� They were discovered in the period ��������� by
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Victor Hess and W� Kohl�orster in balloon observations at high altitude� Addi
tional particles are created by the collision of cosmic rays with atoms in the upper
atmosphere� The cosmic rays vary in energy from moderate to very high� The en
ergy spectrum shows that the �ux of incident particles falls steeply with increasing
energy� This feature has as a consequence that very high energy collisions of cos
mic rays are rare� In fact� one of the principal reasons for building accelerators is
to obtain beams of particles much more intense than the natural beams of cosmic
rays� Another reason is that in an accelerator the type of particles in the beam�
their intensity� and their energy are all controlled� Hess and Anderson shared the
Nobel prize� Hess for cosmic rays� and Anderson for the positron�

Anderson�s cloud chamber contained a magnetic �eld and a lead plate� Among
the particles Anderson saw in the chamber 	actually� he saw only their tracks�
were particles of approximately the mass of the electron but positively charged�
Anderson determined the sign of the charge by the direction of motion of the
particle and its direction of curvature in the magnetic �eld� He estimated the
magnitude of the charge by the energy loss in the lead plate and estimated the
mass by the the amount of ionization and curvature in the chamber�

It is clear from the above description that� in order to discover the positron�
Anderson had to go far beyond the mere observation of curved tracks in a cloud
chamber� He also had to make detailed measurements of curvature� ionization�
etc� and successfully interpret his measurements so as to obtain the charge and
mass of the particles making the tracks�

A positron is the antiparticle of an electron� A photon can turn into positron
electron pair 	near another particle� which can take up momentum and so satisfy
the conservation of momentum�� Dirac�s interpretation of pair creation is that an
electron from the negativeenergy sea can make a transition to a state of posi
tive energy by absorbing a photon of su�cient energy� leaving a hole 	a positron�
behind� Conversely� a positron and an electron can annihilate� converting into
a photon 	again near another particle to take up momentum�� In Dirac�s inter
pretation� electronpositron annihilation corresponds to a positiveenergy electron
radiating a photon and dropping into a hole in the negative energy sea�

With the invention of �eld theory 	also pioneered by Dirac�� we have a di�erent
interpretation of electrons and positrons� The Dirac equation is interpreted as the
equation of a �eld� whose quanta are electrons and positrons� In this manybody
interpretation of the Dirac equation 	which will be discussed later�� we do not need
the concept of an in�nite negativeenergy sea�

Within experimental error� the positron is observed to have the same mass
as the electron and a charge and magnetic moment which are equal in magni
tude opposite in sign to those of the electron� These observations agree with the
predictions of the CPT theorem� which follows from quantum �eld theory�

��� The neutron

In ���� Rutherford was able to produce protons from nuclei bombarded by 	
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particles� demonstrating the transmutation of one element into another� About a
year later� Rutherford proposed the existence of a neutral subnuclear particle� the
neutron� having about the same mass as that of the proton�

About a dozen years later� in ����� Irene Curie and F� Joliot bombarded a
beryllium target with 	 particles� They observed charged particles emerging from
the target and estimated their energy� They concluded from energy conservation
that electrically neutral particles must also come from the target� These particles
were in fact neutrons� but� unfortunately� Curie and Joliot did not realize that
they had evidence for this particle�

Later in ���� John Chadwick improved the experiments of Curie and Joliot
and correctly made the deduction that the neutral particles were neutrons� emitted
in the reaction

�
�He �

�
� Be�

��

 C� n� 	�����

The neutron n is sometimes given the symbol ��n� so as to bring out that it has
baryon number A � � and charge Z � �� From the energy of the observed recoil
carbon nucleus� Chadwick was able to calculate the mass of the neutron to about
���� accuracy� �nding it to be very nearly equal to the mass of the proton� The
mass Mn of the neutron is

Mn � ������ MeV� 	�����

which is ���� MeV more than the mass of the proton� Chadwick received the Nobel
prize for his discovery of the neutron�

The discovery of the neutron led to a picture of atomic nuclei made of protons
and neutrons� or nucleons� The atomic mass number A of a nucleus is the number
of nucleons it contains� while its atomic number Z is the number of protons it
contains�

Later experiments showed that the neutron has spin ���� the same as the
proton� However� the magnetic moment �n was observed to be di�erent from zero
and equal to

�n � ������ e�	�M�� 	�����

This is entirely an anomalous magnetic moment� because the Dirac magnetic mo
ment of a particle is proportional to its charge and so is zero for the neutron� As
we shall explain in a later chapter� the quark model gives us a good qualitative
understanding of the magnetic moment of the neutron�

The neutron is unstable� decaying exponentially in time with a mean life n
given by

n � ���� � s� 	�����

Its principal decay mode is given by Eq� 	������
The mean life 	or lifetime�  of an unstable particle appears in the exponent

of the formula

f � e�t�� � 	�����

��



where f is the fraction of the initially produced particles remaining after a time t�
We do not use the �half life�� which is the time required for half the particles to
decay�

In the �����s electron scattering experiments showed that the neutron has a
size similar to that of the proton and a charge distribution di�erent from zero�
Although the neutron is electrically neutral� it is positively charged at the center
and negatively charged at its edges�

In the early �����s the nature of the nuclear force was not understood� except
that it was measured to have a short range 	about ��� fm�� There followed a
program in which physicists tried to deduce the properties of the force between two
nucleons by an array of protonproton and neutronproton scattering experiments�
Physicists succeeded in learning some of the properties of the force� especially that
it is complicated�

One simple feature of the nuclear force is that it is approximately the same
between two protons as between two neutrons� or between a proton and a neutron�
Heisenberg introduced the notion of isospin to describe the proton and neutron in
terms of a single particle� the nucleon� In this formalism� the nucleon has isospin
���� just as the electron has spin ���� and the proton and neutron correspond
to the two orientations of the nucleon in an abstract isospin space� analogous to
the two possible orientations of the electron spin in ordinary space� Subsequently�
Wigner elaborated on the formalism of isospin� assuming it is conserved in strong
interactions� In the formalism� the number of charge states NI available to a
particle is related to its isospin I by the equation

NI � �I � �� 	�����

The fact that the neutron and proton have slightly di�erent masses implies that
isospin is only approximately conserved�

In ����� after the discovery of the neutron� the list of elementary particles
was very short� but seemed su�cient to account for the structure of atoms and
atomic nuclei� including radioactivity� Only �ve known particles were thought to
be elementary
 the proton p� the neutron n� the electron e� the photon �� and the
neutrino ��

The antiparticles of the �ve particles were also believed to exist� but the
only distinct antiparticle observed at the time was the positron� 	The photon
is the same as its antiparticle�� The �p and �n were not yet discovered� and only
indirect evidence for both the � and the �� existed� A particle is distinguished from
its antiparticle by its additive quantum numbers� charge� and magnetic moment�
all of which are opposite in sign for the antiparticle� Because the neutron has a
magnetic moment which is di�erent from zero� the �nmust have a magnetic moment
of opposite sign� Also� the n has baryon number A � �� but the �n has A � ���
Thus� the �n is distinguishable from the n� The neutrino is distinguished from its
antiparticle by lepton number�
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It was more than a quarter century later that the antiproton and antineutron
were discovered at the Bevatron� a synchrotron at Berkeley built to provide beams
of protons with enough energy to create a nucleonantinucleon pair in a collision�
At the time these antinucleons were discovered� many additional particles had
been discovered� and the view of the world as containing only �ve particles had
been abandoned�

��� The pion and muon

The simple picture of a universe made of only �ve elementary particles lasted
just a few years� The �rst attack on the picture was a theoretical one� In ���� H�
Yukawa proposed the existence of a meson 	this is the modern name� to carry the
nuclear force� just as a photon was believed to be the carrier of the electromagnetic
force� The photon is a massless particle and leads to a Coulomb force of in�nite
range� 	We shall discuss in a later chapter how this arises in QED�� Yukawa
reasoned by analogy that a nuclear force of �nite range should arise from a carrier
with a mass greater than zero� Yukawa received the Nobel prize for his proposal�

The potential V between two charged particles� each of charge e� arising from
the exchange of a massless photon� is

V � e��r� 	����

In analogy� Yukawa proposed that the strong potential between two nucleons aris
ing from the exchange of a meson of mass m is

V � �g�e�mr�r� 	�����

where g is the stronginteraction coupling strength� analogous to the charge e� The
range R of this interaction is ��m� or� in more conventional units� R � �h�	mc��
Using a range of ��� fm for the nuclear force� we obtain a meson mass m � ���
MeV� Yukawa proposed that the meson have spin zero� in order for the potential
be attractive� 	A particle of spin one leads to a repulsive potential between like
charges�� Also� to explain the similarity of the nuclear force between two protons�
two neutrons� and a proton and neutron� three such mesons should exist� with
charges e� �� and �e� In obtaining a meson mass of ��� MeV� we use Eq� 	����
as follows
 since R � �h�	mc�� we have Rmc� � �hc � ����� MeV fm� Then since
R � ��� fm� we get mc� � ��������� � ��� MeV�

The next important development came in ����� when Anderson and S� H�
Neddemyer discovered the muon � in cosmic radiation� This particle� which has
mass ����� MeV� was �rst thought to be the meson predicted by Yukawa� But the
interactions of muons in matter were observed to be far too weak to explain the
strong nuclear force� The muon was called a �� meson� in the early years after
its discovery� but� in our present terminology� muon is a lepton� not a meson�

The muon was observed in two charge states� with charges e and �e 	within
experimental error�� both of which have the same mass 	again within experimental
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error�� We now regard the �� as the particle and the �	 as the antiparticle� The
muon� like the electron� has spin ���� and a magnetic moment consisting of a Dirac
part and a small anomalous part which can be calculated in the theory of QED�
In its electromagnetic interactions� the muon behaves like a heavy electron�

However� the � is unstable� decaying with a mean life

� � ������ ��
�
 s� 	�����

A direct measurement of the lifetime of muons at rest was not made until the
early �����s� On the average� highenergy muons travel much further through the
atmosphere before decaying than one would expect from a simple nonrelativistic
calculation using their mean lifetime� In fact� experiments show that the mean
life of highenergy muons is lengthened in accordance with time dilation of special
relativity�

When a muon decays� an electron is emitted� The observation of a spectrum of
energies of emitted electrons shows that at least two neutral particles are emitted
in the decays of muons� It was later established that the principal decay mode of
the muon 	almost ���� of the time� is

�� � e� � ��e � ��� 	�����

The muon neutrino �� is distinguishable from �e� This fact was determined in
a measurement about �� years later by a team of physicists led by Jack Steinberger�
Leon Lederman� and Mel Schwartz� who shared the Nobel prize for their work�
The team let a beam of highenergy muon neutrinos collide with matter and found
that the neutrino interactions caused muons but not electrons� to be created� This
is in contrast with high energy electron neutrinos� which interact with matter to
produce electrons but not muons�

After the muon was shown not to be Yukawa�s meson� nobody understood
what its place was in nature�s scheme� The physicist Isidor Rabi asked� �Who
ordered that�� Now we know that the muon was the �rst particle to be discovered
belonging to the second family of quarks and leptons� If Rabi could ask his question
today� it might be� �Who ordered the second and third families� and are there any
more��

Because the muon does not interact strongly with nuclei� Robert Marshak
suggested in ���� that the muon was not Yukawa�s meson� and that if Yukawa�s
theory was correct� a di�erent meson remained to be discovered� Actually� un
known to Marsahk a new meson� called the � meson� or pion� was discovered by
Cecil F� Powell and his collaborators about a month earlier in a photographic plate
exposed to cosmic rays� A special kind of emulsion containing a large percentage
of silver compounds is used to detect the tracks of charged particles� The particles
ionize the material along their path� and when the emulsion is developed� particle
tracks clearly stand out� Powell received the Nobel prize for his work�
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In the early experiments� only positively and negatively charged pions were
observed� 	Later� neutral pions were seen�� The masses of the �	 and �� are the
same within experimental errror� The charged pion mass is

m� � ������ MeV� 	�����

Charged pions were observed to decay with a lifetime pi given by

� � 	������ ������� ���� s� 	�����

The principal decay modes are

�	 � �	 � ��� �� � �� � ���� 	�����

It was known quite early that the decay was into two particles because the muon
is emitted with a unique energy in the c�m� frame of the pion�

A proton accelerator at the University of California� Berkeley� produced a
beam of su�cient energy 	��� MeV� so that when atomic nuclei were struck by
the beam� pions were produced� At �rst� only charged pions were seen� but in
���� neutral pions were observed as well�

The Berkeley accelerator was a cyclotron� a device to accelerate charged par
ticles� The cyclotron was invented in ���� by Ernest O� Lawrence and M� S�
Livingston� Lawrence received the Nobel prize for this invention� A cyclotron is a
circular accelerator in which charged particles move� guided by a �xed magnetic
�eld� At each revolution� the particles are accelerated by a highfrequency voltage�
Because the magnetic �eld does not change with time� as the particles gain energy�
they move in orbits of larger radii� and so spiral outward until their most energetic
orbit is reached�

The mass of the neutral pion is

m�� � ������ MeV� 	�����

This mass is similar to that of the charge pion and close to the mass originally
predicted by Yukawa� Furthermore� pions were observed to interact strongly with
nucleons� an observation which is consistent with the idea that the pion is Yukawa�s
meson� Because the pion exists in three charge states� it has isospin I � �� in
accordance with Eq� 	������ Not only do the �	 and �� belong to the same isospin
triplet� but they are antiparticles of each other� The �� is its own antiparticle�

The lifetime of the neutral pion is

�� � 	��� � ����� ����� s� 	�����

The error is rather large because the lifetime is so short� The principal decay mode
is

�� � ��� 	�����
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The �� is observed only indirectly by observation of the two photons into which
it decays� The photons are observed by letting them convert 	in matter� into
electronpositron pairs�

��	 Strange particles

In the same year that Powell discovered the pion� G� D� Rochester and C�
C� Butler observed socalled �strange� particles resulting from the collisions of
cosmic rays with matter� Strange particles are hadrons which carry a quantum
number called strangeness S� After the invention of the quark model� strange
particles were understood to contain one or more strange quarks� The strange
quark belongs to the second family of elementary particles in the standard model�

Originally� strange particles were thought to be peculiar because they were ob
served to be produced strongly by cosmic rays� but to decay only weakly� Abraham
Pais proposed a mechanism of �associated production� of strange particles as a
reason for this behavior� Associated production means that a single strange parti
cle cannot be produced in a strong interaction� but that two strange particles must
be produced at the same time� Then in ���� Murray GellMann and independently
Nakano and Nishijima proposed the existence of a strangeness quantum number
which is conserved in strong and electromagnetic� but not weak� interactions� 	Ac
tually� Nakano and Nishijima proposed a di�erent� but equally useful� quantum
number known as hypercharge�� If two strange particles are produced in one in
teraction� one having S � � and the second having S � ��� then strangeness can
be conserved� and the interaction can proceed strongly� However� when a strange
particle decays into ordinary particles� strangeness is violated� and the decay must
be weak�

One of the earliest associated production reactions seen is

�� � p�  � �K�� 	�����

where  � is a socalled hyperon 	a baryon carrying strangeness� and has the quark
content uds� while the K� is called a neutral kaon 	or neutral K meson� and has
the quark content �sd� We recall from Chapter � that the s quark has S � �� and
the �s quark has S � �� It follows that the  � has S � �� and the K� has S � ��

The mass and lifetime of the  � are

M� � ������ MeV� � � ����� ��
��� s� 	�����

Its principal decay mode is
 � � N � �� 	�����

where N stands for a nucleon 	p or n�� The branching fractions are
 ���� into
p � �� and ���� into n � ��� The  � has iospin I � �� which means it comes in
only one charge state 	in this case� the charge is zero�� Because of this fact� we
often omit the superscript � on the symbol�
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On the other hand� the K like the N � has isospin I � ���� which means it
comes in two charge states� We have already introduced the K�! the other is the
K	�

Other hyperons were later observed� including an isospin triplet 	I � �� "	�
"�� and "�� with S � ��! an isospin doublet 	I � ���� #� and #�� with S � ��!
and an isospin singlet 	I � �� $�� with S � ��� The quark content of these
particles is

" 
 "	 � uus� "� � uds� "� � dds� 	�����

# 
 #� � ssu� #� � ssd� 	�����

$ 
 $� � sss� 	�����

Still other strange particles are known� but we defer discussion of them to later
chapters�

The K meson� like the nucleon N � has isospin I � ���� which means it comes
in two charge states� We have already introduced the K�! the other is the K	�
The K mesons are fascinating to study� Because the K� meson has S � �� it is
distinct from its antiparticle� the �K�� which has S � ��� Therefore� unlike the
pions� which belong to an isospin triplet 	�	� ��� ���� the kaons belong to two
isospin doublets 	K	� K�� and 	K�� �K���

Theoretical and experimental study of the K� �K� system has proved very
fruitful� GellMann and Abraham Pais pointed out that the K� and �K� should
be able to convert into one another because strangeness is not conserved in weak
interactions� The K� and �K� 	the eigenstates of strangeness which are created in
strong interactions�� are not eigenstates of the full Lagrangian� As a result� the K�

and �K� do not have de�nite masses and lifetimes� but are linear combinations of
two other states� called KS and KL� each of which has a de�nite mass and lifetime�
An initially produced K� 	or �K�� will after a time which is long compared to the
KS lifetime of ��� � ����� s� convert to a KL� because the KS amplitude in the
wave function will have died away� The lifetime of the KL is about � � ���� s�
about ��� times as long as the lifetime of the KS � It was further observed by
James Cronin� Val Fitch� and their colleagues that CP 	the product of charge
conjugation and parity� was not conserved in the decay of the KL 	called K� at
the time��

��
 Hadron resonances

In the mid �����s� experiments performed at an accelerator called the Cos
motron at Brookhaven National Laboratory revealed the presence of a pionnucle
on resonance� First� the proton beam at the accelerator is allowed to strike a
nuclear target� producing secondary beams of positive and negative pions� 	Neu
tral pions have too short a lifetime to form a useful secondary beam�� The charged
pions� in turn� are made to scatter from a hydrogen target� The total cross section
as a function of energy has a large peak� whose maximum is at a pion lab energy of
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approximately ��� MeV� This energy corresponds to a total energy of the system
	including rest energy� of around ���� MeV� The resonance shows up in both �	p
and ��p scattering�

There followed considerable controversy about how to interpret this resonance�
On the one hand� the resonance can be considered a composite state composed
of two elementary particles
 the pion and the nucleon� On the other hand� the
resonance can be considered as another hadron� no more and no less elementary
than the pion and nucleon� Today� we regard the pionnucleon resonance as a
hadron 	a baryon�� It has the name %� or� more descriptively� %	������ The %
comes in four charge states� and so has isospin I � ����

Unlike the proton� which is apparently stable� and the neutron and charged
pions� which decay weakly� the % decays strongly with a width & � ��� MeV� 	The
width means the full width at half maximum�� The width and lifetime are related
by & � �� � If we use Eq� 	����� we �nd the width of the % corresponds to a mean
life of about  � ���� ����� s� A lifetime this short cannot be measured directly
because the particle decays too quickly after being produced to travel a measurable
distance� Therefore� the lifetime must be calculated from the measured width�

The % was only the �rst of many other baryon and meson resonances discov
ered in scattering experiments� We do not have the time to discuss the individual
particles here� However� it is interesting to point out that many of the particles
discovered in the �����s and �����s were observed in bubble chambers exposed to
highenergy beams from accelerators�

The bubble chamber was invented by Donald Glaser� for which he received the
Nobel prize� It is a device containing a superheated liquid� The liquid must contain
very few impurities� or otherwise bubbles will form spontaneously in it� When a
charged particle passes through the liquid� it ionizes atoms of the liquid along
its path� and bubbles form along the track� These bubbles can be photographed�
showing the path of the particle� after a photograph is taken� the chamber is
compressed to remove the bubbles� and then is expanded again so as to be ready
for the next charged particles�

After the invention of the bubble chamber� cloud chambers were only rarely
used� A bubble chamber has several advantages over a cloud chamber� First� a
liquid is denser than a gas� and so there are more interactions in a bubble chamber
than in a cloud chamber of the same size� Second� a bubble chamber can made
from various liquids� If the chamber is �lled with liquid hydrogen� when a beam
particle undergoes a collision in the chamber� the target nucleus must be a proton�
This fact makes for a straighforward analysis�

Many of the hadrons observed in bubble chambers were �rst seen in a large
chamber containing liquid hydrogen� Luis Alvarez was the leader of the team of
physicists making the discoveries� and he received the Nobel prize for this work�

At the present time� bubble chambers have been largely superseded by elab
orate detectors containing wire spark chambers� Cerenkov counters� and other
detecting elements� These complex detectors are necessary to process a large
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number of interactions at high energy� Pavel Cerenkov received the Nobel prize
for the discovery of the e�ect that bares his name� and Charpak for his invention
of the spark chamber� The Cerenkov e�ect is the emission of light by charged
particles in a medium traveling faster than the speed of light in the medium� A
wire spark chamber is a fast counter which contains many elements and so allows
one to obtain the path of a charged particle through space� Unfortunately� the
modern detectors are too complicated for us to discuss in detail here�

The ���� edition of the Particle Properties Data Booklet lists more than
��� mesons and more than ��� baryons� although not all are well established
experimentally� There are far too many hadrons for us to be comfortable with the
notion that they are all elementary particles� An early idea proposed by Geo�rey
Chew is that the hadrons are all composites of one another� We do not discuss this
idea because it has been superseded by the proposal that hadrons are composites
of quarks�

���� Quarks

For about �� years� the proton was believed to be an elementary particle�
Then� around ���� Robert Hofstadter and collaborators at Stanford and R� Wilson
and collaborators at Cornell carried out highenergy 	over ���� MeV� electron
scattering experiments by protons� These experiments showed that protons have
a size greater than zero� and can be considered as opening up the possibility that
protons are not elementary particles� Hofstadter received the Nobel prize for his
work�

In the Stanford experiments� a linear accelerator was used to accelerate the
electrons� while at Cornell� a circular synchrotron was used� In a linear accelerator�
a highfrequency electromagnetic wave is timed so that as a bunch of electrons pass
through an evacuated cavity� the electrons experience an electric �eld always in the
same direction� In a synchrotron� a suitably chosen magnetic �eld causes a bunch
of electrons to travel in an approximately circular path in an evacuated tube� Each
time around the circle� the electrons are accelerated by a highfrequency electric
�eld whose frequency is a multiple of the orbital frequency of the electrons� As the
electrons gain energy� the magnetic �eld is made to increase to keep the electrons
moving in the same orbit� as otherwise the electrons would spiral outward to larger
orbits�

We digress here to say that the term �high energy� has meaning only in
context� At the time the ���� electron scattering experiments were carried out� the
beam energy was considered to be high� because it was much higher than the energy
of a few MeV available in particles from radioactive decay� However� the electron
beam energy of about � GeV was considerably lower than the beam energies of up
to �� GeV in today�s electron accelerators and up to ���� GeV in today�s proton
accelerators� All the highenergy proton accelerators are synchrotrons�

The reason we need higher and higher energies to probe particle structure at
smaller and smaller distances stems from basic quantum mechanics� All particles
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have wavelike properties� The wavelength � of a particle traveling with momentum
of magnitude p is given by

� � h�p� 	�����

But quantum mechanics says that we cannot resolve phenomena at smaller dis
tances than the wavelength of the beam we use to observe the phenomena� We see
from Eq� 	����� that to obtain small wavelength� we need high momentum� which
in turn means high energy� At very high energy� the mass of a particle is negligible
compared to its momentum� and then� in units with c � �� the momentum and
energy of the particle are equal�

Another important reason to carry out particle collisions at high energy is to
be able to create new particles� A certain portion E of the kinetic energy of the
incident particle is �available� to be converted into the rest energy 	or mass� m of
a created particle in accordance with the Einstein equation

E �mc�� 	�����

	In our units� this equation is simply E � m�� The higher the available energy�
the larger the mass of the particle that can be created� With every increase in
accelerator energy� we have the potential for discovering new particles that we
have previously been unable to produce�

The energy available to create particles is the energy in the c�m� 	centerof
mass� or� more precisely� centerofmomentum� frame of the system� The highest
energy accelerators are socalled colliders� in which two beams are accelerated in
opposite directions and made to intersect� In a collider in which the particles in
each beam have the same energy� the lab system is the same as the c�m� system�
The available energy in a collision is twice the energy of one of the particles� On the
other hand� if a highenergy beam is incident on a stationary target� the available
energy goes as the square root of the energy of the incident particle� Some colliders
have beams of unequal energies� and then relativistic kinematics may be used to
�nd the energy available to create particles�

Experiments done early in the century needed only modest energy to explore
atomic distance scales 	����� m or ��� fm�� and could be carried out on a table top
by a single physicist� 	We can use Eq� 	���� to obtain the energy needed to explore
a given distance�� Presentday experiments on the other hand� explore distances
smaller than ����� m 	���� fm�� and are performed by teams of hundereds of
physicists at accelerators which are several km in size and which cost hundreds
of millions of dollars� At these large accelerators� particles of masses up to about
�� GeV have been created� An accelerator now under construction� the socalled
Superconducting Super Collider 	SSC�� has an estimated cost of about �� billion
	����� dollars� If it is completed on schedule� it will begin operating early in the
��st century�

We return to the Stanford and Cornell experiments� In each case� the beam
energy was a little over � GeV� an energy su�ciently high to show that the proton
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has a size greater than zero and that both its charge and magnetic moment are
distributed over a region with a rootmeansquare radius of about ��� fm� De
spite uneasiness among some physicists at having an �elementary� particle with
extended structure� the proton was still regarded as elementary by most workers
in the area�

Then in ���� GellMann and George Zweig independently invented the quark
model� Acoording to their original picture� there are three kinds of quarks� now
called �up�� �down�� and strange� out of which hadrons are made� with a baryon
composed of three quarks and a meson of a quark and antiquark� GellMann
received the Nobel prize for his contributions to elementary particle theory�

Even after the invention of the quark model� many physicists did not believe
in the reality of quarks and still regarded the proton as elementary� Even Gell
Mann on occasion discussed the possibility that quarks are mathematical objects
with no physical reality� Among the physicists who took the quark model seriously
from the beginning were Giacomo Morpurgo and Richard Dalitz�

In the �����s� deep�inelastic electron scattering experiments on protons were
carried out by teams of physicists headed by Friedman� Kendall� and Taylor� who
shared the Nobel prize for their work� Deepinelastic scattering is scattering in
which the beam particle loses a considerable fraction of its energy in the scattering
process� the lost energy going into excitation of the target� A considerable number
of the electrons were observed to be scattered at large angles� a result which could
be interpreted as electron scattering from pointlike constituents of the proton'
the quarks� The reasoning behind the interpretation was similar to that used by
Rutherford in deducing the existence of the atomic nucleus a half century earlier�

Elastic scattering experiments are insu�cient to give evidence of the existence
of quarks inside a proton� The reason is that� unlike an atom� which has a massive
nucleus at its center� a proton contains three quarks of approximately the same
mass� which are moving rapidly with respect to the c�m� of the system� Therefore�
in elastic electronproton scattering� only the average charge distribution of the
proton can be measured� On the other hand� deepinelastic scattering occurs when
the electron has a close collision with one of the charged pointlike constituents of
the proton� and scatters from it� The recoil of the constituent particle causes the
proton to become �excited� and to emit hadrons such as pions The excitation
energy comes at the expense of the energy of the scattered electron�

The deepinelastic scattering experiments suggested to many physicists that
the proton is indeed composite� However� it was not until about ���� that nearly
all physicists were convinced that the proton is made of quarks�

The quark composition of the proton accounts for many of its properties�
including size� mass� spin� and anomalous magnetic moment� We shall discuss
in later chapters how these properties are obtained within the framework of the
quark model�

There were only three kinds 	�avors� of quarks in the original quark model�
because no more were needed to form the hadrons known at that time� Not very
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long afterward� however� an additional �avor 	charm� was proposed� and a little
later two more �avors 	bottom and top� were proposed� Some years later� hadrons
containing charmed and bottom quarks were experimentally observed 	see Sections
���� and ������

After the quark model was proposed� a paradox arose� In the model� the pro
ton is made of two u quarks and one d quark� Furthermore� Quarks have spin ���
in order to account for the fact that baryons have halfintegral spin� But parti
cles with halfintegral spin are fermions� i�e�� their wave function is antisymmetric
under the interchange of the coordinates of any identical pair� Thus� the wave
function of the two u quarks in a proton ought to be antisymmetric under their
interchange� But a good body of experimental evidence 	from measurements of
the proton form factor and magnetic moment� indicates that the space and spin
wave functions of the u quarks are in fact symmetric�

The resolution of this paradox came with the assigning of a new degree of
freedom to the quarks� color� which can take on three values 	say� red� green� and
blue�� The color wave function of of the quarks in a proton 	or in any baryon
made of three quarks� is taken to be antisymmetric under the interchange of any
two� Then� if any two quarks have identical �avors� the remaining part of the wave
function must be symmetric to make the total wave function antisymmetric�

���� Charmed particles

In ����� shortly after GellMann and Zweig proposed that hadrons are made
of three kinds of quarks 	u� d� s�� a number of physicists suggested that a fourth
kind of quark� now called a charmeq quark c� should also exist� The reasoning
was not much more profound than the following
 four leptons were known to exist
	electron� muon� and two neutrinos�� so why not also four quarks� This principle
is called �quarklepton symmetry��

A few years later� in ����� Glashow� Illiopolis� and Maiani gave what is per
haps a more compelling reason why the c quark should exist� Their argument is a
technical one� based on the fact that certain kinds of weak interactions were not
observed experimentally� The unobserved interactions are allowed in a theory with
three quarks� but forbidden in a theory with four quarks! therefore� according to
the argument� there must exist a fourth quark� Furthermore� it was discovered
soon thereafter that the electroweak theory has a serious �aw 	a gauge anomaly�
unless each family of fermions containing two �avors of leptons also contains two
�avors of quarks� This result gave a �rm theoretical foundation to the idea of
quarklepton symmetry proposed some years earlier� Thus� in the early �����s� a
number of physicists expected a fourth quark to be observed in the near future�

It was in ���� that two teams of experimental physicists� one working on the
east coast and the other on the west� discovered evidence for a charmed quark�
The �rst team� led by Samuel Ting� performed an experiment at the Alternat
ing Gradiant Synchrotron 	AGS�� a �� GeV accelerator at Brookhaven National
Laboratory on Long Island� The physicists observed �	�� pairs emerging from
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the nuclear target being bombarded by protons from the accelerator� A plot of
the number of muon pairs produced as a function of the invariant mass of the
pair yielded a clear peak at ����� GeV� The invariant mass is de�ned as the total
energy of the pair in its own c�m� system� 	Recall that energy and mass have the
same units when c � ��� The peak was interpreted as the result of the production
of a new meson� which Ting called the J � of mass ����� GeV� which then decayed
into two muons� This state is now known to be composed of a c�c� and so has
hidden charm�

The second team was led by Burt Richter at the Stanford Linear Accelera
tor Center 	SLAC�� The twomilelong linear accelerator at SLAC can accelerate
both electrons and positrons� which are then introduced into an electronpositron
circular collider� The group observed muon pairs produced at the collider as a
function of the total energy 	sum of the of the electron and positron energies��
They found that at an energy of ����� GeV� there was a peak of muon pairs pro
duced as a result of annihilation of the e	e� pairs� This team also interpreted
their data as the result of the formation of a new heavy meson� which they called
the �� followed by its decay into a muon pair� Both the eastcoast and westcoast
teams announced their results at the same time� but the eastcoast time actually
observed the meson several months earlier� The story is that word of the discovery
informally reached the westcoast team� which then knew where to look� In any
case� Ting and Richter shared the Nobel prize for the discovery� Unfortunately�
the meson now has the complicated symbol J���

The J�� has a mass and width given by

m � �� ������ ��� MeV� & � ��� � keV� 	�����

Its spin J � parity P � and charge conjugation parity C are given by JPC � ����
Because of its large mass� the J�� has many decay modes into lighter particles�
None of these modes is dominant� About ��� of its decays are into hadrons� about
�� into e	e� pairs� and about �� into �	�� pairs 	the mode of decay which led
to its discovery�� It is interesting that the strong and electromagnetic decays of
the J�� compete with each other� Evidentally� the strong decays are inhibited�
We shall discuss a reason for this inhibition in a later chapter�

Soon after the discovery of the J��� excited states with similar properties were
observed at SLAC� Also observed was a state with somewhat lower energy� the so
called �c� The spectrum of these higherenergy mesons was qualitatively the same
as one would expect from calculating the energy levels of a heavy quarkantiquark
pair in a potential�

The discovery of the J�� and its excited states convinced many physicists not
only that quarks exist but that a new charmed quark had been discovered�

But the J�� and its excited states are each composed of a c�c pair� and conse
quently contain only hidden charm 	the net charm quantum number is zero�� But
it was not long afterward that mesons containing manifest charm were discovered
at Stanford� The �rst charmed mesons to be seen were the D	 and D�� with
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quark content c �d and c�u respectively� Also observed was the charmedstrange me
son D	

s � with quark content c�s� The antiparticles of these mesons were also seen�
The masses of these mesons are

mD� � ����� � MeV� mD� � ����� � MeV� 	�����

mDs
� ����� � MeV� 	�����

Each of these mesons decays only weakly� Their lifetimes are

D� � 	����� ����� ����� s� D� � 	���� ����� ����� s� 	�����

Ds
� 	����� ����� ����� s� 	�����

Later� excited states were observed with the same quark content as the D and Ds�
Charmed baryons have also been discovered� the �rst being the  c� which has

isospin � and is composed of udc� The notation for a charmed baryon is to use
the symbol for the corresponding strange baryon� except for a subscript c� The
isospin � strange baryon is the  � composed of uds! hence the name  c for the
baryon in which the strange quark has been replaced by a charmed quark� The
 c was observed in both proton synchrotrons and electron colliders� It�s mass and
lifetime are

m�c
� ������� ��� MeV� �c

� 	���� ����� ����� s� 	�����

���� Leptons

Soon after charmed particles were discovered at SLAC� Martin Perl� one of
the members of the experimental team� found some peculiarities in the data� He
observed decays of a particle with mass similar to that of the D meson� but which
seemed to have di�erent decay modes� Further study revealed that Perl�s particle
was not a meson� but a third charged lepton� the  � with mass and lifetime given
by

m� � ����� � MeV� � � 	����� ������ ��
��� s� 	�����

	Sorry that the symbol  is used both for the lepton and for mean life��
The  can decay either into a � or an electron and two neutrinos� These decay

modes are
� � �� � �� � ���� � � e� � �� � ��e� 	�����

Each of these decays occurs about ��� of the time� Thus far� �� neutrinos have
not been produced copiously enough in the laboratory to enable physicists to verify
that a beam of them colliding with matter will create  leptons but not muons or
electrons� However� there is indirect evidence that the �� is distinct from both �e
and nu�� The best evidence comes from the decay of the weak boson Z�� which
we discuss in Section �����
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Because of its large mass� the  can decay into hadrons as well as into other
leptons� In fact� hadrons are created in  decays more than ��� of the time� In
every  decay� whether or not hadrons are among the decay products� we expect
a �� to be created� A relatively simple hadronic decay mode of the  is

� � �� � �� � 	�����

and this decay occurs about ��� of the time� There are many other known decay
modes� and these are given in the Particle Properties Data Booklet�

With the observation of the  lepton and the indirect evidence for the existence
of a distinct �� � we have a evidence for third family of leptons� Are their any more
families� If there are� we have no hint of their existence� Furthermore� if any
more lepton families exist and have interaction strengths similar to those of the
observed leptons� the additional neutrinos must be heavy or evidence of their
existence would have been seen in Z� decays 	Section ������

���� Bottom particles

Once a third family of leptons was discovered� some physicists expected that it
would just be a matter of time before a third family of quarks was also observed�
In fact� a third quark family had been predicted in ���� 	before the discovery
of charm or the  lepton� by M� Kobayashi and T� Maskawa� These physicists
considered the problem of how to account for the fact that CP is not a strictly
conserved quantity� They pointed out that� with only four quark �avors� there is
no way to break CP symmetry within the standard model� but with six �avors�
the standard model can be made to include CP violation�

A few years later� in ����� in an experiment at the Fermilab synchrotron� a
team of physicists led by Lederman discovered a particle which they called the (�
The group detected �	�� pairs emerging from a platinum target that had been
bombarded with ��� GeV protons� The physicists observed a peak at ���� GeV in
the invariant mass of �	�� pairs� in much the same way as Ting�s group found a
lowerenergy peak� the J��� three years earlier� The muon pairs were interpreted
as coming from rapid decays of the new particle�

The ( has properties which make it a natural candidate for a meson composed
of �bb� Its mass and width are

m � �� ������ ��� MeV� & � ��� � keV� 	�����

The ( has only hidden bottomness� because the total bottom quantum number is
zero�

The same team observed at least one� and possibly two� excited states of
the (� Later� in electronpositron colliders at Cornell� Stanford� and Hamburg�
additional excited states were seen� Some of these excited states have su�cient
energy to decay into states with manifest bottomness� In particular� the (	��� ����
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	the number in parentheses is the mass in MeV� sometimes decays into a B �B pair�
where the B is a meson containing a light u or d quark and a �b quark 	B	 and B�

respectively�� The masses of these mesons are

mB� � ����� � MeV� mB� � ����� � MeV� 	�����

The Bs meson� consisting of s�b� has also been observed� but its mass is not yet
well known�

���� Gluons

Quantum chromodynamics 	QCD� is a theory of quarks and gluons and their
interactions� Presumably� gluons are con�ned to the interior of hadrons� and so
will never be directly observed� Furthermore� unlike quarks� gluons do not have
�avor quantum numbers� and so we cannot obtain evidence for their existence
from the �avor quantum numbers of hadrons� However� the success of physicists
in using QCD to make predictions which agree with experiment provides indirect
evidence for the existence of gluons�

Some of the evidence for gluons comes from electronpositron annihilation� If
e	 and e� annihilate into a quarkantiquark pair� the quark and antiquark go o�
in opposite directions� They cannot get very far without converting into hadrons
because of the strong attractive color force acting between them� However� what
we see in the lab are two �jets� of hadrons going o� in opposite directions� Each jet
is a fairlywell columnated spray of hadrons peaked in the direction of the original
quark or antiquark which gave rise to it� The observed angular distributions and
cross sections for these jets are similar to those calculated in QCD for the quark
antiquark pair�

Just as an accelerating charged particle radiates photons� accelerating colored
quarks radiate gluons� In the pair creation of a quark and antiquark� sometimes�
one of the produced particles will radiate an energetic gluon� This gluon� because
it is colored� cannot escape� but converts into another jet of hadrons� A socalled
�gluon jet� has somewhat di�erent properties from a quark jet� Typically� the
emitted hadrons are not so well columnated in a gluon jet� The observed frequency
of emission and angular distribution of gluon jets agree with QCD calculations�
Thus� physicists are con�dent that they have indirectly observed gluons�

���� Weak bosons

A number of the main ingredients of the electroweak sector of the standard
model were already in place in the late �����s� although there have been numerous
improvements since then� In particular� in the late �����s one could calculate the
masses of the weakW and Z bosons in terms of properties of the weak interactions
measured at low energy�

It was not until ���� that the W and Z were actually observed at a high
energy protonantiproton collider at CERN� Carlo Rubbia� the leader of the team
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that discovered these particles� and Simon van der Meer� a physicist who achieved
high luminosity in the colliding beams� shared the Nobel prize for this achievement�

The W and Z were observed to have masses approximately equal to those
predicted by the theory� The present best values of these masses are


MW � ����� ��� GeV� MZ � ������ ���� GeV� 	�����

while their widths are

&W � ���� ��� GeV� &Z � ����� ���� GeV� 	�����

Although the Z was discovered at a protonantiproton collider� many of its
properties were obtained by measurements at the CERN electronpositron collider
called LEP� The decay of the Z into a neutrinoantineutrino pair can be calculated
in the standard model� The width of the Z depends on how many standard species
of neutrino exist in nature� The observed width agrees with the calculation if there
are three di�erent kinds of neutrinos� Thus� although the standard model does not
tell us how many families there are� the measured width of the Z tells us that there
are three� Of course� the experiment does not rule out the existence of a fourth
family with a neutrino so heavy that the Z could not decay into it� Likewise�
the measurement does not rule out the existence of neutrinos with nonstandard
interactions�
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�� A LITTLE ABOUT GROUP THEORY

��� Preliminaries

It is an apparent fact that nature exhibits many symmetries� both exact
and approximate� A symmetry is an invariance property of a system under
a set of transformations� For example� our faces have approximate re�ection
symmetry� because we look approximately the same in a photograph as in
a mirror� As another example� a sphere has rotational symmetry because it
looks the same no matter how it is rotated�

Symmetry transformations of physical systems have properties analo�
gous to those of a mathematical group� These properties are� If we succes�
sively perform two symmetry transformations we obtain a unique symmetry
transformation� the transformations are associative� and inverse and identity
transformations exist�

We have already mentioned in chapter � a theorem� called Noether�s

theorem� which relates symmetry principles to conservation laws� Noether	s
theorem says that if a physical system can be described by a classical La�
grangian which is invariant under a continuous group of transformations�
then the system has a conserved current� If a classical 
eld is quantized� the
resulting quantum 
eld theory usually has the same symmetry� However� the
quantized theory may have an anomaly� which breaks the classical symmetry�
We brie�y discuss anomalies in Section ����

As two examples of symmetry� we note that the fundamental interac�
tions of nature are apparently invariant under the group of translations and
the group of rotations in three dimensions� Noether	s theorem relates sym�
metry under translations to the law of conservation of momentum� and the
symmetry under rotations to the law of conservation of angular momentum�
The translation and rotation groups are examples of Lie groups� which we
de
ne in Section ����

The Lagrangian of the standard model is invariant under the group of
gauge transformations SU���SU���U��� We de
ne gauge transforma�
tions in chapter ��� The standard model is also invariant under the proper
Poincar�e group� which includes translations in space and time� rotations� and
proper Lorentz transformations� Improper Lorentz transformations include
space and time re�ections�� The Poincar�e group is a Lie group� The groups
SU��� SU��� and U�� are special unitary groups� which are also Lie groups�
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A unitary group is a group of unitary matrices� and a special unitary group
is a group of unitary matrices with determinants equal to unity� In order
to understand the standard model� we have to have some familiarity with
the Lie groups and their Lie algebras� especially unitary groups� We discuss
unitary groups further in Section �����

In addition to the space�time symmetries of the proper Poincar�e group�
some theories have additional symmetries under 
nite transformation groups�
Of these� we single out space re�ection or parity P � time inversion T � and
charge conjugation C� We do not give much discussion of these groups� but
they play an important role in the standard model� As we have already
mentioned� none of the groups P � C� and T is an exact symmetry of the
standard model� but the combined symmetry CPT � taken in any order� is
exact�

In this chapter we brie�y discuss groups in general� then Lie groups and
their algebras� and the unitary groups and their algebras� We concentrate
on group representations which we de
ne in the Wection ����� especially
irreducible unitary representations� We can have unitary representations of
many di�erent groups� not only of unitary groups� The treatment in this
chapter may seem to be a little condensed for those who only know a little
about group theory� More details can be found in many places� for example�
in a book on unitary symmetry Lichtenberg� ������ We do not discuss the
Poincar�e group in any detail�

A group G is a set of elements which satisfy four postulates�

�� A law of combination� often called a product� is de
ned so that if a and
b belong to G� the product ab is a unique element of G�

�� Multiplication is associative� i�e�� abc� � ab�c�

�� An identity e exists such that ea � ae � a�

�� An inverse a�� exists to any element a such that a��a � aa�� � e�

The number of elements of a group may be 
nite� in which case the
group is called a 
nite group� or in
nite� If all the elements of a group
commute with one another� the group is said to be abelian� Otherwise the
group is nonabelian� A subgroup of a group is a subset of elements which is
itself a group under the same multiplication law� Every group has at least
two subgroups� itself and the group consisting only of the identity� These
are called improper subgroups� any others are called proper subgroups� A
group H is homomorphic to a group G if there is a mapping of the elements
of G onto the elements of H� The groups are isomorphic if the mapping is
one�to�one�

An element a belonging to G is said to be conjugate to an element b
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in G if there exists an element u in G such that a � ubu��� Let H be a
subgroup of G� and let h be in H and g be in G� Form the product elements
h� � ghg�� for all h� Then the h� form a group H � which is isomorphic to
H� If� for all g in G� the elements of H and H � are identical� then H is called
an invariant or self�conjugate subgroup of G�

The group G is said to be the direct product of two groups H and H �

if every h in H commutes with every h� in H � and if every g in G can be
written uniquely as a product of an element in H and an element in H �� The
direct product is written in the form G � H �H ��

��� Group representations

A representation of a group is a homomorphism between the group and
a group of linear operators which operate on a vector space� We can think of
the vectors in this space as being the states wave functions� of a quantum
mechanical system� A 
nite�dimensional matrix representation of a group
is a homomorphism between the group and a group of matrices� We often
simply use the word �representation� to mean a matrix representation� If
a representation is isomorphic to the group� it is said to be faithful� We
shall consider only representations by square matrices� If G is a group with
elements g� then we often denote the corresponding element of the represen�
tation by Dg��

The matrices of a representation are a special case of linear operators
which act on a vector space� If the matrices are n�by�n� the vectors wave
functions� are column matrices with n entries� and their hermitian conjugates
are row matrices� The vectors are members of an n�dimensional vector space�
and therefore the matrices are said to be n�dimensional�

A similarity transformation is a transformation by means of a matrix S
which leaves unaltered the algebra of the transformed system� A similarity
transformation acts di�erently on a representation D and on a vector V �
namely

D� � SDS��� V � � SV� ����

If a representation can be brought into the following form by a similarity
transformation�

Dg� �

�
D�g� Xg�
� D�g�

�
����

for all g� then the representation is called reducible� If not� it is irreducible�
If Xg� � �� the representation is fully reducible� We shall restrict our
considerations to cases in which reducible representations are fully reducible�
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and we shall omit the word �fully�� A theorem Schur	s lemma� states� A
matrix which commutes with all matrices of an irreducible representation is
a multiple of the unit matrix�

We next discuss the importance of irreducible unitary representations of
groups within the Hamiltonian formalism� as using this formalism is some�
what easier than using the Lagrangian formalism� Let us consider an n�
dimensional irreducible unitary representation of a group G� The unitary
matrices act on a set of n linearly�independent vectors� which can be chosen
to be orthonormal� The members of this orthonormal set or basis� constitute
a multiplet�

Let a unitary representation of a symmetry group that is� a group of
transformations which leaves the physical system invariant� be denoted by
Ua� where a stands for all the parameters which specify individual group
elements� If we have any transition matrix ����� where � and � are state
vectors or wave functions� describing physical states� then the transformed
states �� � Ua� and �� � Ua� satisfy the condition

��� ��� � Ua��Ua�� � U
��
a Ua���� � ����� ����

Thus� unitary transformations are important in quantum mechanics because
they leave transition matrixes invariant�

If the HamiltonianH of a physical system is invariant under a symmetry
group G� then all members of a multiplet belonging to an irreducible unitary
representation have the same energy� as we now show� Now consider the
eigenvalue equation

H�n � En�n� ����

If we operate on this equation with Ua� we get

UaH�n � UaHU��
a Ua�n � EnUa�n� ����

Now if H � and ��
n are de
ned as

H � � UaHU��
a � ��

n � Ua�n� ����

our equation becomes
H ���

n � En�
�
n� ����

But because Ua is a symmetry group� by de
nition it leaves the Hamilto�
nian H invariant� so that H � � H This implies that Ua commutes with the
Hamiltonian�

HUa � UaH� or�H�Ua� � �� ����
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where �H�Ua� � HUa � UaH is called the commutator of H and Ua� Then
Eq� ���� becomes simply

H��
n � En�

�
n� ����

so that the transformed wave functions ��
n are also eigenfunctions of the

Hamiltonian with the same energy eigenvalue� But the transformed wave
functions are in general linear combinations of all members of the original
multiplet� Therefore� in order for Eq� ���� to be true� all members of the
multiplet must have the same energy eigenvalue� We mention that if the
representation is reducible� the new wave functions are not in general linear
combinations of all the wave functions belonging to the representation� so
that all the wave functions do not need to have the same energy�

It should be clear from the above arguments that if any operator A com�
mutes with the Ua� then all members of a multiplet have the same eigenvalue
of the operator A� Thus� for example� let us consider the rotation group
R��� Not only is the Hamiltonian invariant under rotations� so that all
members of a multiplet have the same energy� but Ua also commutes with
the operator J�� so that all members of a multiplet have the same eigenvalue
of J�� namely� JJ � ���

��� Lie groups

We have noted that a group may have a 
nite or in
nite number of
elements� A Lie group has a continuously in
nite number of elements char�
acterized by a 
nite number of parameters which can vary continuously�
Furthermore� if an element of a Lie group is characterized by a set of r pa�
rameters collectively denoted by a a � a�� a����ar�� and another element is
characterized by a set of parameters b� then the product element is charac�
terized by a set of parameters c which are analytic functions of a and b�

As an example of a Lie group� consider the rotations in two dimensions�
These are characterized by a parameter �� The transformation is

x�� � x� cos � � x� sin ��

x�� � x� sin � � x� cos �� �����

The transformation can be written in matrix form as

x� � R��x� �����

where

x �

�
x�
x�

�
� R �

�
cos � � sin �
sin � cos �

�
� �����
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The rotation matrix R�� is the group element characterized by the single
parameter �� Rotations in two dimensions constitute an abelian group� but
in more dimensions the rotation group is nonabelian� Note that the groups
Rn� are faithful representations of themselves in n dimensions�

The group multiplication law for rotations in � dimensions can be stated
as follows� If

R�� � R���R���� �����

then
� � �� � ��� �����

The rotation groups are compact� This means that the parameters
vary over a �nite� closed region� For example� the parameter � of the two�
dimensional rotation group varies over the interval � � � � ���

On the other hand� the translation groups are not compact because the
parameters are unbounded� For example� a translation in � dimension�

x� � x � a�

is characterized by a parameter a which can vary from �� to �� Likewise�
the group of Lorentz transformations is not compact because the group is
characterized by a parameter v the velocity� which varies in the interval
� � v � c� which is open at one end� Rotations and Lorentz transformations
are both subgroups of the Lorentz group�

The concepts of simple and semisimple Lie groups are important but
somewhat complicated� An oversimpli
ed de
nition� which is adequate for
our purposes� is that a Lie group is simple if it is nonabelian and has no
proper invariant Lie subgroups� It is semisimple if it is nonabelian and has no
abelian invariant Lie subgroups� Clearly� a simple group is also semisimple�
If a group is the direct product of two or more groups H� H ������ then the
subgroups H� H ����� are invariant� The direct product of simple and�or
semisimple Lie groups is semisimple�

Recall that the local gauge group of the standard model is SU�� �
SU���U��� This group is not semisimple because it has an abelian invari�
ant subgroup U��� However� the group SU�� � SU�� is semisimple� The
groups SU�� and SU�� are simple�

��� Lie algebras

Let us consider a Lie group of transformations� We obtain the Lie algebra
of the group by considering group elements which di�er only in
nitessimally
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from the identity� From these elements we can construct operators called
generators which allow us to obtain a unitary representation of the group�
More precisely� we obtain all the elements of the group which can be gener�
ated by continuous transformations from the identity� There is one generator
for each parameter of the group� Methods for obtaining the generators of a
Lie group have been discussed in many places see� e�g�� Lichtenberg� ������

Let the generators of a Lie group be Xi� i � �� ����r� where the group
is characterized by r real parameters ai� If the generators are Hermitian� a
unitary representation of an arbitrary group element Ua is given by

Ua � e�i
P

aiXi �

It can be shown that the Xi form a Lie algebra� which means that they
satisfy the algebraic equations

�Xi�Xj � � i

rX
k��

ckijXk� �����

Here the commutator �A�B� � AB�BA and the ckij are constants called the
structure constants of the group� Some people call other constants bkij � ickij �
the group structure constants�� There is no signi
cance to the fact that
we write ckij with both lower and upper indices in Eq� ������ We do this
because in the future we shall use the summation convention of omitting the
summation sign and summing over a repeated upper and lower index in
any order�� The structure constants of a Lie algebra can di�er with di�erent
choices of generators�

As we see from Eq� ������ a Lie algebra has the property that the
commutator of any two members of the algebra generators of the Lie group�
is a linear combination of the members of the Lie algebra� We also see that the
algebra is in general neither commutative nor associative� A representation

of a Lie algebra is a set of matrices which obey the commutation relations of
the algebra�

If a Lie group is abelian� all the commutators of its Lie algebra vanish�
i�e� all its structure constants are zero� The maximum number of commuting
generators of a Lie group is called the rank of the group� Since any generator
commutes with itself� every Lie group is at least rank one� The k commuting
generators of a rank k Lie group can be simultaneously diagonalized in a
matrix representation�

If a Lie group of rank k is semisimple and compact� then one can con�
struct from the members of its Lie algebra k nonlinear invariant operators�
called Casimir operators� which commute with every member of the algebra�
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As an example� let us consider the Lie algebra and Casimir operators of
the familiar rotation group in three dimensions R��� This group is charac�
terized by � parameters for example� the Euler angles�� Therefore� it has
three generators� which can be taken to be the familiar angular momentum
operators Jx� Jy� and Jz� They satisfy the Lie algebra

�Jx� Jy� � iJz� �h � �� �����

and cyclic permutations� This group is rank one because none of the Ji
commutes with any other� It is also semisimple actually� simple�� so that it
has one Casimir operator J� given by

J� � J�x � J�y � J�z � �����

A representation of the Casimir operator in n dimensions commutes with all
the members of an irreducible representation in n dimensions� Therefore� by
Schur	s lemma� a representation of the Casimir operator is a multiple of the
unit matrix�

It is convenient to denote the generators of R�� by J�� J�� and J�� and
write

�Ji� Jj� � i	kijJk� i� j� k � �� �� �� �����

where 	kij � 	ijk is completely antisymmetric in its indices and 	��� � ��
Then we see that the structure constants of R�� are given by 	ijk or i	ijk �
depending on whether the structure constants are de
ned with or without
the i� It is easy to show from the de
nition of rotations that the number of
parameters of Rn� is n� � n�
��

��� Unitary groups and algebras

The unitary group in n dimensions Un� is the group of n� n matrices
Ua satisfying

Uy
a � U��

a � �����

where a stands for the parameters of the group� the dagger denotes the
Hermitian conjugate matrix� and the superscript �� denotes the inverse� By
de
nition� for any matrix A� we have Ay�ij � A�

ji� with the asterisk denoting
the complex conjugate�

A complex matrix in n dimensions is speci
ed by �n� real numbers� If
the matrix is unitary� there are n� relations among these numbers� so that
Un� is characterized by n� parameters� The group U�� is one�dimensional
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and is characterized by only one parameter� Each element of U�� is a phase
ei��

The special unitary groupsSUn� have matrices with determinants equal
to unity� This provides another relation so that SUn� is characterized by
n� � � parameters� The rank of SUn� is n � �� The SUn� groups are
semisimple and compact� so that SUn� has n� � Casimir operators�

Like R��� SU�� has � parameters and is of rank �� In fact� the gen�
erators of SU�� satisfy the same Lie algebra as the generators of R���
This implies that the two groups are locally isomorphic i�e�� the mapping
of a neighborhod of one onto a neighborhood of the other is one�to�one� and
globally homomorphic� In fact� the homomorphism is two�to�one from SU��
onto R���

The groupsUn� and SUn� are matrix groups� and so are faithful repre�
sentations of themselves� In discussing representations of the unitary groups�
we usually con
ne ourselves to SUn�� The reason is that the algebra of Un�
is the same as the algebra of SUn� � U��� and all the representations of
U�� are one dimensional� The group SUn� has n�� so�called fundamental
representations� Of these� two are n�dimensional if n � �� There is only one
fundamental two�dimensional� representation if n � ��

The group SUn� also has a representation of n� � � dimensions� the
same number as the number of generators of the group� This representation
is called the adjoint representation�

We can construct n�dimensional representations of the algebra of SUn��
For n � �� we can chose these matrices to be the familiar Pauli spin matrices
��� ��� and ��� given by

�� �

�
� �
� �

�
� �� �

�
� �i
i �

�
� �� �

�
� �
� ��

�
� �����

The Pauli matrices satisfy the commutation relations

��i� �j � � �i	
k
ij�k� �����

Note the factor � di�erence between the structure constants when expressed
in terms of the �	s rather than in terms of the J 	s� given in Eq� ������ This
follows because �i � �Ji� and is an example of the fact that the structure
constants depend on the representation of the Lie algebra� Still another
representation of the Lie algebra of SU�� or R�� is by the two�dimensional
matrices ��� ��� and ��� where

�� �

�
� �
� �

�
� �� �

�
� �
� �

�
� �����

��



The matrix �� is called a raising operator and �� is called a lowering operator
because of their action on the eigenvectors of the operator �� see Section
����� The matrices �� and �� can be written in terms of �� and �� as follows�

�� � �� � i���
�� �� � �� � i���
��

The Casimir operator of SU�� is the same as that of R��� We can write
the two�dimensional Casimir operator in terms of the Pauli matrices�

J� �
�

�
���

where

�� �
�X

i��

��i � ����� � ����� � ��� � �����

We now turn to SU��� The generalization of the Pauli matrices are the
so�called Gell�Mann matrices i i � �� ������� which are given by

� �

�
� � � �
� � �
� � �

�
A � � �

�
� � �i �
i � �
� � �

�
A � � �

�
� � � �
� �� �
� � �

�
A �

� �

�
� � � �
� � �
� � �

�
A � � �

�
� � � �i
� � �
i � �

�
A � �����

� �

�
� � � �
� � �
� � �

�
A � 	 �

�
� � � �
� � �i
� i �

�
A � 
 �

�p
�

�
� � � �
� � �
� � ��

�
A �

The i satisfy the commutation relations

�i� j � � �if
k
ijk� �����

with summation implied� The fijk are themselves often called the structure
constants of the group� They are given in Table ����

There are two Casimir operators of SU��� one quadratic and the other
cubic in the generators� We shall have occasion to use only the quadratic
Casimir operator F �� which is given by

F � �
�

�
� �

�

�


X
i��

�i � �����

��



Table ���� Nonvanishing structure constants of SU��� The fijk are anti�
symmetric under permutation of any two indices�

ijk fijk ijk fijk

��� � ��� ���
��� ��� ��� ����
��� ��
� ���

p
�
�

��� ��� ���
p
�
�

��� ���

We now introduce a di�erent representation for the generators� which
is suitable to generalization to any SUn�� We introduce the notation Ha�
a � �� ����n � �� for the mutually commuting generators which can be
simultaneously diagonalized� and the notation Eab for the n��n nondiagonal
generators� These are n� n matrices with matrix elements given by

Ha�jk � �jk�

aX
l��

�jl � a�j�a���� �����

Eab�jk � �aj�bk� a �� b� �����

where �ab are elements of the unit matrix� If a � b� Eab is a lowering operator�
if a � b� it is a raising operator� Also� Eab � Ey

ba� In SU���

Ha � ��� E�� � ��� E�� � ��� �����

We see from Eqs� ����� and ����� that the SU�� generators are

H� �

�
� � � �
� �� �
� � �

�
A � H� �

�
� � � �
� � �
� � ��

�
A � E�� �

�
� � � �
� � �
� � �

�
A �

E�� �

�
� � � �
� � �
� � �

�
A � E�� �

�
� � � �
� � �
� � �

�
A � E�� �

�
� � � �
� � �
� � �

�
A � �����

E�� �

�
� � � �
� � �
� � �

�
A � E�� �

�
� � � �
� � �
� � �

�
A �

��



It should be clear from the examples we have given for SU�� and SU��
that it is straightforward to write down the matrix generators of any SUn�
in both the i and Ha� Eab� representations up to normalization constants��

We can use the lowering operatorsEa���a and their hermitian conjugates
to obtain the Clebsch�Gordan coe cients of any SUn�� We show in the next
section how this is done�

The trace of a matrix is the sum of its diagonal elements� The n� � �
generators of SUn� are traceless matrices in n dimensions� Any real n� n
traceless matrix can be written as a linear combination of them� and any real
n � n matrix can be written as a linear combination of them and the unit
matrix in n dimensions�

��� Multiplets of unitary groups

The n�dimensional generators of SUn� operate on n�dimensional col�
umn vectors� Clearly� there are n linearly independent vectors� which we may
denote by ua� a � �� ����n�� A convenient representation for these vectors is
that the j�th row of ua is equal to �aj � In SU�� the ua are

u� �

�
�

�

�
� u� �

�
�

�

�
� �����

In SU�� they are

u� �

�
� ��
�

�
A � u� �

�
� ��
�

�
A � u� �

�
� ��
�

�
A � �����

We can order the vectors from highest to lowest� such that ua is higher than ub
if a � b� The vectors ua of SUn� are said to belong to the 
rst fundamental

representation� Altogether� SUn� has n � � inequivalent so�called funda�
mental representations� two of which have n dimensions� except for SU���
which has only one fundamental representation� All the multiplets of SUn�
can be built up from the vectors of the 
rst fundamental representation using
only the raising and lowering matrices of the n�dimensional representation of
the Lie algebra� Sometimes� however� it is convenient to use more than one
fundamental representation in building the multiplets�

The eigenvalues of the Ha operating on a state vector is called the weight
m of the vector� For example� in SU��� we see from Eqs� ����� and
����� that H��H��u� � ��� ��u�� therefore� the weight m of u� is m �
m��m�� � ��� ���

��



We see from the de
nitions of Eab and the ua� that

Eabuc � ua�bc� �����

With our ordering of the vectors such that ua is higher than ub if a � b� we
can see that the operators Eab are indeed raising or lowering operators for
a � b or a � b respectively� We shall restrict ourselves to the the lowering
operators Ea���a and their hermitian conjugates� which are raising operators�

Let us use the ua in SU�� and SU�� to build up some other multi�
plets of these groups� We start with SU��� which is a case which should be
familiar� To make things more concrete� u� and u� can be the spin�up and
spin�down wave functions state vectors� of a particle of spin ���� As another
possibility� they can be the isospin wave functions of a u and d quark respec�
tively� If we wish to consider N�particle wave functions� we start with the
wave function u���u������u�N�� where the numbers in parentheses stand
for particle �� particle �� etc� A simpler notation is to omit the numbers in
parentheses� and by convention write the wave function of particle � 
rst�
etc� We shall adopt this simpler notation in the following� We also introduce
the notation that the lowering operator Eab operating on an N�particle state
is given by

Eab �

NX
i��

Eabi�� �����

It is best to begin with only two particles� Let �� � u�u� and operate
on �� with the lowering operator

E�� � E���� �E���� � ���� � ����� �����

We get
E���� � u�u� � u�u� �

p
���� �����

where we have de
ned �� to be a normalized state� Repeating the operation�
we get

E���� �
p
�u�u� �

p
���� �����

If we operate on �� we get �� Thus� starting from two doublets of SU��� we
have obtained a triplet state �i� corresponding to spin or isospin �� We next
construct a state �� orthogonal to ��� We see that �� must be given by

�� � u�u� � u�u��

p
�� �����

��



If we operate on �� we get �� as we expect� so that this state is a singlet�
corresponding to spin or isospin �� We can obtain the eigenvalues of the
diagonal operators J� and J� by directly operating on the �i and ���

The coe cients multiplying the product wave functions uiuj in the ex�
pressions for �i and �i are known as Clebsch�Gordan coe cients� In the case
we have considered� these Clebsch�Gordan coe cients are unique� but in the
case of the product of three or more wave functions� the Clebsch�Gordan
coe cients can depend on somewhat arbitrary de
nitions of wave functions�
We can see this as follows� If we start with the product u�u�u�� we can use
the lowering operator E�� to construct all the symmetric wave functions be�
longing to the same multiplet as u�u�u�� The problem arises when we want to
construct other multiplets� For example� consider the unnormalized� wave
function � given by

� � u�u�u� � u�u�u� � u�u�u�� �����

There are two independent wave functions orthogonal to �� and the Clebsch�
Gordan coe cients depend on what linear combination of these wave func�
tions we choose� The choice in some instances is given by convention� but
real questions of physics can in�uence what choice is convenient�

Let us now generalize to SU��� The �i and �� from SU�� are also wave
functions of SU��� but they are not complete multiplets� We can operate
on �� with E�� to get

�� � u�u� � u�u��

p
�� �����

Operating on �� with E��� we get

�� � u�u� � u�u��

p
�� �����

and operating on �� with E��� we get after normalizing

�� � u�u�� �����

Thus� the �i are a sextet of SU��� Likewise� from ��� we can obtain

�� � u�u� � u�u�� �� � u�u� � u�u�� �����

so that the �i are a triplet of SU���
We now de
ne a new triplet of vectors �ua given by

�u� � ��� �u� � ���� �u� � ��� �����

��



By explicit construction we 
nd

Eab�uc � ��ub�ac� �����

This di�ers from the action of Eab on uc� The �ua are the vectors belonging
to the second fundamental representation of SU���

��� Young tableaux

A Young tableau or Young diagram describes the symmetry of a collec�
tion of an integer � identical particles� each of which can be in one of several
available states� We shall con
ne our considerations to the description of
Young diagrams in the case that the symmetry group is Un� or SUn� and
the particles belong to the 
rst fundamental representation of the group�
Then the number of possible states of a particle is also n� An example is
a collection of 
ve electrons� each of which can be in one of two spin states
spin up or spin down�� In this case � � �� n � ��

A Young tableau is a collection of boxes� one for each particle� arranged
in rows and columns to represent the symmetry of the state� symmetric in
rows� antisymmetric in columns� A proper tableau is one in which each row
is no longer than the one above it and each column is no longer than the one
to the left of it� When we refer to a Young tableau� we shall mean a proper
tableau unless otherwise speci
ed� An example of a proper tableau is the
following�

�����

We begin by using Young tableaux in connection with SU��� We denote
the basis vectors of the fundamental doublet of SU�� by u� and u�� These
vectors may� for example� denote the two states of a particle with spin ����
Another notation for these one�particle states is by means of a Young tableau
with a single box� We make the identi
cation

u� � � � u� � � �����

The single box without a number stands for both members of the doublet�
The same considerations hold for U���

Now suppose we have a two�particle state� If it is a symmetric �s� we
denote it by a row� and if is an antisymmetric state �a� by a column�

�s � � �a � �����

��



These tableaux represent multiplets which are di�erent than the two�dimen�
sional fundamental multiplet� Consider 
rst the symmetric state� If both
particles are in the state u� or both are in the state u�� the corresponding
tableaux are

� � � � � �

There is one symmetric state with one particle having the state vector u�
and the other having the vector u�� namely u�u� � u�u��


p
�� We adopt

the convention of writing the state vector of the 
rst particle at the left� the
vector of the second particle next� etc� This convention saves us the trouble
of writing �u���u����u���u����


p
��� This symmetric state is represented

by the tableau
� � �

The arrangement
� �

is obviously the same as the previous arrangement� and must not be counted�
It is called a nonstandard arrangement� Thus� the symmetric state is a
triplet� There is only one antisymmetric two�particle state u�u��u�u��


p
��

corresponding to the arrangement

�
�

�

The other arrangement
�
�

is nonstandard and must not be counted�
The above considerations for U�� or SU�� can be generalized to any

Un� or SUn� and lead us to the following de
nition�
A standard arrangement of a tableau of Un� or SUn� is a proper

tableau containing a postive integer i in each box � � i � n� such that
the integers increase in going from top to bottom in a column and do not
decrease in going left to right in a row� Hereafter� unless we explicitly state
otherwise� an arrangement will mean a standard arrangement�

An important theorem which we do not prove is that the number N of
standard arrangements of a Young tableau with positive integers no greater

��



than n is equal to the dimension of an irreducible representation of Un� or
SUn��

We see that a Young tableau for Un� or SUn� consists of � boxes in
no more than n rows� The tableaux are limited to n rows because one cannot
antisymmetrize a con
guration of more than n particles when each particle
has only n available states�

As an example� consider a collection of 
ve electrons� each of which can
be in one of two spin states spin �up� u� or spin �down� u��� In this case
� � �� n � �� and the symmetry group of the spins is SU��� If we include
the lepton number in our description an additive quantum number�� then
the symmetry group is U�� or SU���U��� We do not distinguish between
these last two groups� as we use only the Lie algebra� which is the same for
both�� The dimensionality is the same whether the lepton number is included
in the description� Electrons must obey Fermi statistics� that is� their state
vectors must be antisymmetric under the interchange of all the coordinates
of any two electrons� However� the symmetry under the interchange of only
the spins is given by any standard Young tableau�

Consider a three�electron state belonging to the Young tableau

This state has the same multiplicity as the one�electron state belonging to
the tableau

but the lepton number is � in the 
rst case and � in the second� If we are
interested only in the SU�� of the spins and not in the lepton number� the
two diagrams are equivalent in that they correspond to the same quantum
numbers�

To avoid the complication of the quantum number associated with the
U�� subgroup of Un�� we often restrict ourselves to SUn�� Then all
columns with n boxes may be removed from a given tableau� as there is
only one way to antisymmetrize a state of n particles� each of which has n
degrees of freedom� The number of states Nn is equal to the result obtained
by counting the number of ways one can put positive integers � n in the
remaining boxes� consistent with the rules that numbers must not decrease
going from left to right in any row and must increase going from top to
bottom in any column�

��



We see that in the case of SUn�� a tableau with � boxes can also
denote states of the corresponding symmetry containing a di�erent number
of particles� We can therefore divorce the concept of the symmetry of a state
corresponding to a Young tableau from the concept of particles belonging to
the 
rst fundamental representation�

A tableau with no more than n � � rows can be speci
ed by a set of
n � � integers pi� which is the number of boxes in row i minus the number
of boxes in row i � �� The multiplicity Nn of any diagram is a function
of the pi� It is a complicated combinatorial problem to 
nd the number
of standard arrangements of a tableau with a given p� The formula for
Nnp�� p����pn��� � Nnp� is known for any n but we write it down just for
n � � and n � �� For SU�� we have

N�p� � p� �� �����

The number of states of a given angular momentum j is �j��� Then� using
Eq� ������ we can make the identi
cation

p � �j� �����

For SU�� the formula is

N�p� � p� � ��p� � ��p� � p� � ��
�� �����

These formulas give the number of states in a multiplet belonging to an
irreducible representation of the group with the symmetry speci
ed by the
Young tableau p�

We see that for SU�� the numberN� can be any positive integer� How�
ever� for SUn� with n � �� the numbers Nn include only a proper subset
of the positive integers� For example� in SU��� the numbers N� have the
values �� �� �� �� ��� ��� etc� as determined either by counting the standard ar�
rangements of Young tableaux or from Eq� ������ substituting non�negative
integers for p� and p��

All the formulas Nnp� are symmetric under the interchange

pi � pn�i�

that is�

Nnp�� p����pn��� � Nnpn�����p��� �����

��



Two Young tableaux which transform into each other under this transforma�
tion are called conjugate tableaux� and the irreducible representations which
act on them are called conjugate representations� The 
rst fundamental
representation of SU�� is characterized by p�� p�� � �� ��� the second fun�
damental representation is the conjugate representation� and is characterized
by p�� p�� � �� ��� However� it is common to characterize these and other
representations� by a single number which gives their multiplicity� in the case
of the 
rst and second representations� we use � and �� respectively� Conju�
gate representations have the same dimensionality� but conjugate tableaux
do not necessarily have the same number of boxes� If a tableau is unchanged
under the transformation of interchanging pi and pn�i� it is self�conjugate�
and likewise for the corresponding representation� Since all representations of
SU�� consist of a single row� all representations of SU�� are self�conjugate�

We now show how to build all irreducible representations of SUn� start�
ing from the 
rst fundamental one� First we note that a product of two or
more representations is in general reducible� We can see this by considering
the basis vectors on which they act� It is simplest to begin with SU��� The
product states are written using Young tableaux as

�

These stand for the four product states

u�u�� u�u�� u�u�� u�u��

But we know that to obtain the basis vectors of irreducible representations
we must take the linear combinations which correspond to the symmetric
and antisymmetric Young tableaux� This result is true in any SUn�� We
write

� � � �����

In SU��� the multiplicities are

SU�� � �� � � � � �� �����

In SU��� we have
SU�� � �� � � � � ��� �����

��



and in any SUn� we have

SUn� � n� n � nn� ��
� � nn� ��
�� �����

In the above examples we have found the irreducible representations
contained in the product of two irreducible representations� This decom�
position is called the Clebsch�Gordan series� If the decomposition contains
no representation more than once� the product is called simply reducible� If
n � �� the decomposition of n � �n is di�erent from the decomposition of
n� n� We have

SUn� � n� �n � n� � �� � �� �����

which is di�erent from the decomposition given in Eq� ������ In particular�
in SU�� we have

�� �� � � � �� �����

We now tell how to 
nd the Clebsch�Gordan series for the product of
any two representations of SUn�� We do not give the proof� as it is quite
complicated even the recipe is complicated��

Recipe� We draw the Young tableaux of the two representations� marking
each box of the second with the number of the row to which it belongs� We
then attach the boxes of the second tableau in all possible ways to the 
rst
tableau� subject to the following rules for the combined tableaux�
�� Each tableau should be proper�
�� No tableau should have a column with more than n boxes� and we can
remove all columns with n boxes�

�� The numbers must not decrease from left to right in a row�
�� The numbers must increase from top to bottom in a column�
�� We can make a path by moving along each row from the right� starting
at the top� At each point of the path� the number of boxes encountered
with the number i must be less or equal to the number of boxes with
i� ��
As an example� if we follow the rules� we 
nd the irreducible represen�

tations contained in �� � of SU�� to be

�� � � �� � �� � ��� � � � � � �� �����

We see that the Clebsch�Gordan series contains two equivalent representa�
tions� namely� the two �	s� This means that the product of ��� is not simply
reducible�

��



The product of any two representations of SU�� is simply reducible�
but this result does not hold for any n � �� Even for SU��� the product
of three representations is not necessarily simply reducible� For example� in
SU��� we have

�� �� � � � � � � �� �����

If two or more equivalent representations appear in the reduction of a
product� the use of group theory alone is not su cient to enable us to label
the states� We must know something of the physics of the problem in order
to obtain the most useful labeling� The Clebsch�Gordan coe cients are also
not determined uniquely without additional input�

For example� the reduction given in Eq� ����� can come about from
obtaining the irreducible multiplets from three electron spins� One of the
two doublets arises by combining the spins of the 
rst two electrons to give
a triplet and then combining the third spin to give a doublet� The other
doublet arises from combining the 
rst two spins to form a singlet and then
combining the third spin to give a doublet� Group theory says nothing about
how the 
rst two spins in fact combine� as that depends on the forces involved�
As another example� in SU�� we have

�� �� � � �� � � � � � �� �����

The way the two �	s are chosen in either the decomposition ����� or �����
depends on the physics�

��	 Evaluating quadratic Casimir operators

The group SUn� has n�� Casimir operators� one of which is quadratic
in the generators� The quadratic Casimir of SUn� may be evaluated by
making use of the raising and lowering operators� For SU�� this operator
is J� and is given by

J� �
�

�
����� � ����� � ��z �� �����

We take advantage of the fact that J� is an invariant operator to operate on
the particular state for which �� vanishes� We eliminate the term ���� by
making use of the commutation relation

���� ��� � �z� �����

��



This enables us to write J� when operating on our particular state� only in
terms of the diagonal operator �z� Since �z is an additive quantum number�
it is straightforward to evaluate J� for any representation� Details are given
in books on quantum mechanics� The answer is J� � jj � ��� or� since
p � �j�

J� �
�

�
p
�

�
p � ��� �����

The same method works for any SUn� except that the algebra is more
complicated� In particular� for SU�� we get

F � � p� � p� �
�

�
p�� � p�� � p�p��� ������

��



�� A LITTLE ABOUT GAUGE FIELD THEORY

In this chapter we introduce and discuss �eld theory� emphasizing gauge
�eld theory� By a gauge �eld theory� we mean a �eld theory which is in�
variant under a group of local gauge transformations� including the case in
which the gauge group is nonabelian� We de�ne both local and global gauge
transformations later in this chapter� We restrict ourselves to a �eld theory
describable by a Lagrangian� so that the Lagrangian of a gauge theory is
invariant under gauge transformations�

We require� as is customary� that our �eld theory be local� i�e�� that the
basic interaction among �elds should occur at a single space�time point� so as
not to violate causality� However� we should remain open to the possibility
that a theory with a small amount of non�locality may in fact provide a better
description of nature� We also require our �eld theory to be invariant under
the proper Poincar�e group� so as not to violate invariance under translations�
rotations� and Lorentz transformations� We also require the theory to have
a positive de�nite Hamiltonian� so that a stable vacuum state should exist�

A �eld theory having the properties of locality� proper Poincar�e invari�
ance� and a stable vacuum we will call for short a relativistic �eld theory�
Such a theory can be proved to be invariant under the combined symmetry
operation CPT taken in any order� where C is charge conjugation� P is parity�
and T is time reversal� This theorem is called the CPT theorem� The CPT
theorem has as a consequence that every kind of particle has an antiparticle�
which has the same mass and lifetime as the particle� If the particle has
any kind of charge� or any internal additive quantum numbers di�erent from
zero� such as baryon number� the antiparticle has anticharge and opposite
values of the additive quantum numbers� and so is distinct from the particle�
Furthermore� it can also be proved of a relativistic �eld theory that� given
the two possibilities of fermi and bose statistics� the quanta of �elds with
integral spin must be bosons� and the quanta of �elds with half�integral spin
must be fermions� This theorem is called the spin�statistics theorem� We do
not prove either the CPT theorem or the spin�statistics theorem here� There
is a classic book on this topic by R� F� Streater and A� S� Wightman called
PCT� Spin and Statistics� and All That� Another source is chapters � and 	
of Introduction to Quantum Field Theory by P� Roman�

Experimentally� we know of no violation either of the CPT theorem or
of the spin�statistics theorem� This gives us con�dence that local �eld theory

�




is a good approximation to the real world� or at least is a good approximation
to that part of the world which is presently accessible to experiment�

We require our �eld theory �i�e�� the Lagrangian of the theory� to be
invariant under a group of local gauge transformations in order to make
the theory analogous to the successful theory of quantum electrodynamics
�QED�� The gauge group of QED is U�
�� which is an abelian group� In
order to describe elementary particles� we must generalize the idea of gauge
invariance to invariance under nonabelian gauge groups� In particular� in
considering the strong and electroweak interactions� we generalize to the
nonabelian gauge groups SU�� and SU���� Good treatments of gauge �eld
theory are by Huang �
���� and by Aitchison and Hey �
�	���

��� From coordinates to �elds

The Lagrangian of a �eld is a generalization of a Lagrangian of a collec�
tion of particles to a continuously in�nite number of degrees of freedom� We
�rst review the Lagrangian

L � L�q�� ���qn� �q�� ��� �qn� ���
�

for a collection of particles with generalized coordinates qi and their time
derivatives �qi� We de�ne an action A by

A �

Z t�

t�

Ldt� �����

The principle of stationary action says �A � � for an arbitrary variation
which vanishes at the end points� This variation leads to Lagrange�s equa�
tions of motion� Let us go through this exercise�

�A �

Z t�

t�

�Ldt �
X
i

Z t�

t�

�
�L

�qi
�qi �

�L

� �qi
� �qi

�
dt � ��

We write � �qi �
�
�t �qi and integrate by parts� obtaining

�A �
X
i

Z t�

t�

�
�L

�qi
� �

�t

�L

� �qi

�
�qidt � ��

since the �qi vanish at the end points� Because the �qi are arbitrary in the
interval� we get the Lagrangian equations of motion�

�L

�qi
� �

�t

�L

� �qi
� �� ����

��



The Hamiltonian H is

H �
nX
i��

pi �qi � L� �����

where pi is de�ned by

pi �
�L

� �qi
� �����

Suppose the Lagrangian is a sum of terms Li� each of which depends
only on one coordinate and its time derivative� Then we write

L �
X
i

Li�qi� �qi�� �����

If all Li are the same functions of their arguments� we can drop the subscript
on Li and write

L �
X
i

L�qi� �qi� �����

and

H �
X
i

H�pi� qi�� ���	�

where

H�pi� qi� � pi �qi � L� �����

Let us rewrite Eq� ������ showing explicitly that qi and �qi depend explicitly
on t�

L �
X
i

L�qi�t�� �qi�t��� ���
��

Suppose now that the number of defrees of freedom increases to a continu�
ously in�nite number� so that the index i becomes a parameter x� Then Eq�
���
�� becomes

L �

Z
dxL�q�x� t�� �q�x� t��� ���

�

where here L is a Lagrangian density �although usually we call it simply the
Lagrangian�� Because L now depends on the continuous parameter x� it may
contain a partial derivative with respect to x� Therefore� we generalize L
and write

L � L�q�x� t�� �q�x� t�
�t

�
�q�x� t�

�x
�� ���
��

�



When q is a function of a continuous variable� we call it a �eld� in this case
a scalar �eld� and usually denote it by the symbol ��

We now generalize to the case where x is not a single parameter but is
replaced by a three�vector x� which stands for three parameters� We let

x� � �t� x� y� z� � �x�� x�� x�� x�� � �t�x�� ���
�

Also we let g�� � g�� be the metric tensor with diagonal elements �
��
��
�
�
� and zeros elsewhere� We de�ne x� � g��x

� � where we are using the
convention that a repeated upper and lower index �in either order� is summed
over� It follows from this de�nition that x� � �t��x��y��z�� The quantity
x� is called a contravariant four�vector� and x� is called a covariant four�
vector� If A� and B� are two four�vectors� then the product A�B� � A�B

�

is a Lorentz scalar� We sometimes write a four�vector A� as A for short� and
denote scalar products as A� or A �B�

The momentum four�vector is

p� � �E� px� py� pz� � �p�� p�� p�� p��� ���
��

In quantum mechanics we make the replacements

E � i���t� p� �ir� ���
��

Then

p� � �i
�

�t
� ir� � �i

�

�x�
� i

�

�x�
� i

�

�x�
� i

�

�x�
��

or

p� � i
�

�x�
� i��� ���
��

We now return to the Lagrangian density given in Eq� ���
�� and consider
the case in which x gets replaced by the three�vector x� We also use the
notation � instead of q� Then the Lagrangian becomes

L � L��� ��
�t

�
��

�x
�
��

�y
�
��

�z
� � L��� ����� ���
��

In Eq� ���
��� � � ��x��� but we have omitted the argument x��
The action A is given by

A �

Z
dtL �

Z
d�xL� ���
	�

��



As before� the equation of motion is obtained by letting the action be sta�
tionary� We get

�L
��

� ��
�L

������
� �� ���
��

This is shorthand for

�L
��

�
�

�t

�L
� ��

�
�

�x

�L
������x�

�
�

�y

�L
������y�

�
�

�z

�L
������z�

�

We de�ne a conjugate �eld � as

� �
�L
� ��

� � �� � ����� ������

Then the Hamiltonian �density� is

H � � ��� L� ����
�

A Lagrangian density must be a Lorentz scalar� But the �eld itself may
have more than one component and transform di�erently from a scalar� The
�elds of relevance to us here are scalar �elds �e�g� the Higgs �eld�� whose
quanta are particles of spin �� spinor �elds �e�g� the electron �eld�� whose
quanta are particles of spin 
��� and vector �elds �e�g� the electromagnetic
�eld or the gluon �elds�� whose quanta are particles of spin 
� We shall not
discuss the gravitational �eld� which has spin ��

��� Scalar �elds

We consider a complex scalar �eld � with mass m and a Lagrangian
�density� given by

L � ���
�����m����� 	������� ������

where the constant 	 is the self�interaction coupling strength� In obtaining
the equations of motion we treat � and �� as independent �elds� Using Eq�
���
�� we get

���
���m��� �	���� � �� �����

���
��� �m��� � �	���� � �� ������

If 	 � �� � and �� satisfy a Klein�Gordon equation for a free �eld�

��



In order to obtain the Hamiltonian �density�� we rewrite L as follows�

L � ��� ���r�� � r��m����� 	�������

The conjugate �momentum� �elds are

� �
�L
� ��

� ���� �� �
�L
� ���

� ��� ������

Then H is
H � j�j� � jr�j� �m�j�j� � 	j�j�� ������

It is instructive to write L in terms of real �elds 
 and �� de�ned by

� � �
 � i���
p
�� ������

After substitution into Eq� ������ and some algebra we get

L �



�
��
�

�
 �



�
����

�� � 


�
m��
� � ���� 


�
	�
� � ����� ����	�

This Lagrangian describes the sum of two real free �elds� each of mass m�
plus a term proportional to 	� which describes the interactions of the �elds
with themselves and with each other�

To obtain the Hamiltonian� we �rst subsitute Eq� ������ into Eq� �������
obtaining

� � � �
 � i ����
p
�� �� � � �
 � i ����

p
��

or
�
 � �� � ����

p
�� �� � ��� � ���

p
�� ������

If we substitute Eqs� ������ and ������ into ������ and introduce the notation

�� � �
� �� � ��� �����

we get

H �



�
�
� �




�
��� �




�
�r
�� � 


�
�r��� � 


�
m��
� � ��� �




�
�
� � ����� ���
�

We obtain the equations of motion by substituting Eq� ������ into either
����� or ������� We get

���
�
 �m�
 � 	�
� � ���
 � �� �����

��



���
�� �m�� � 	�
� � ���� � �� ����

��� Spinor �elds

We consider the Lagrangian for a free Dirac spinor �eld � with mass m�
The Lagrangian �density� is given by

L � ���i��� �m��� �����

where the � are � � � Dirac matrices which we de�ne shortly� We can get
the equation of motion by varying the action with respect to ��� treating it
as independent of �� We obtain the free Dirac equation in covariant form�

�i��� �m�� � �� �����

This equation may be more familiar in a form which is not obviously Lorentz
invariant� namely

�� � p� �m�� � E�� �����

where p � �ir� E � i���t� and

� �

�
� �
� �

�
� � �

�
I �
� �I

�
� �����

with the elements of � and � being �� � matrices� Here I is the �� � identy
matrix and � � ���� ��� ���� where the �i are the usual Pauli matrices� We
multiply Eq� ����� on the left by �� obtaining

��� � p�m�� � �E�� ���	�

since �� � 
� If we compare ���	� with ������ remembering that i�� �
p� � �E��p�� we see that

i � ��i �i � 
� �� �� � � �� �����

The �eld �� is related to � by

�� � �y�� ������

where y denotes Hermitian conjugate�

��



We can verify explicitly that the � satisfy the following anticommuta�
tion relations

f�� �g � �g��� ����
�

where g�� � g�� is a diagonal matrix with diagonal elements �
��
��
��
�
and the anticommutator fA�Bg � AB �BA� We de�ne

� � � � i����� ������

Then
f�� �g � �� �����

We have the following explicit representation for the  matrices�

� �

�
I �
� �I

�
� i �

�
� �i
��i �

�
� � �

�
� I
I �

�
� ������

Other representations of the  matrices exist in the literature� The above
considerations also apply to the massless Dirac spinor �eld �m � ��� If a
spinor is massless� we can de�ne �elds which are eigenstates of �� which
is called the chirality operator� The eigenstates� called states of de�nite
chirality� have eigenvalues �
� If the eigenvalue is 
� the state is said to be
right handed� if the eigenvalue is �
� the state is called left handed� A state
having a de�nite mass greater than zero is not an eigenstate of chirality� but
is a linear combination of left�handed and right�handed states with equal
weight�

We have con�ned our attention to Dirac spinors� Even if a Dirac spinor
has no electric charge� it is distinct from its antiparticle� There is also the
possibility of an uncharged Majorana spinor� which is the same as its an�
tiparticle�

��� Vector �elds

We �rst consider the free electromagnetic �eld� which we denote by A��
Photons� which are the quanta of this �eld� have spin 
 and negative parity�
We de�ne F�� by

F�� � ��A� � ��A�� ������

The A� and F�� are given in terms of the �scalar� �actually� the time compo�
nent of a ��vector� potential �� the three�vector potential A� and the electric
and magnetic �elds E and B by

A� � ���A�� F�� �

�
B�

� �Ex �Ey �Ez

Ex � �Bz By

Ey Bz � �Bx

Ez �By Bx �

�
CA � ������

�	



According to the de�nition ������� we have

E � �r�� �A� B � r�A� ������

Also� the de�nition ������ implies that

r �B � �� r�E � � �B� ����	�

These are two of Maxwell�s equations in empty space�
We get the other two of Maxwell�s equations from the Lagrangian equa�

tions of motion� The Lagrangian is

L � �


�
F��F

�� ������

or

L � �


�
���A��

�A� � ��A��
�A��� ������

where we have used ������ and interchanged dummy indices in two terms�
This Lagrangian yields the equations of motion

��F
�� � �� ����
�

which correspond to
r�B � �E� r �E � �� ������

These are the third and fourth of Maxwell�s equations in empty space� In
the presence of a charge density � and a current density j� these equations
become

r�B � �E� j� r �E � �� �����

If we de�ne a four�vector current �density�

j� � ��� j�� ������

then in regions where there exists a current we have

��F
�� � j�� ������

The current is conserved if
��j

� � �� ������

��



We can prove that the current is conserved by taking the partial derivative
of Eq� ������ and interchanging dummy indices in one of the two terms�
obtaining Eq� ������� Let us write Eq� ������ in three�vector notation� using
Eq� ������� We get

��

�t
�r � j � �� �������

Let us integrate Eq� ������ over a volume of space so large that it contains
all the charge and current and use Gauss� theorem� which says

Z
vol

r � jd�x �

Z
surf

j � d�x�

Then� because j vanishes on the surface enclosing the volume� we get

�e � �� ����	��

where the charge e is given by

e �

Z
�d�x� ������

Our result ����	� says that if the four�vector current density is conserved� so
is the charge�

Next consider a complex vector �eld with mass� The Lagrangian density
is

L � �


�
F �
��F

�� �m�A�
�A

�� ������

This can be rewritten as

L � ���A�
�F

�� �m�A�
�A

�� ����
�

We obtain the Lagrangian equations of motion by treating A�
� and A� as

independent� Because

�L
�A�

�

� m�A�� ��
�L

����A�
��

� ��F
�� �

we get the equations of motion�

��F
�� �m�A� � �� ������

	�



If we set m � � and assume A� is real� we recover Maxwell�s equations� This
is simpler than starting with a Lagrangian containing real �elds�

Let us write the complex �eld A� in terms of real �elds as

A� � �A�
� � iA�

� ��
p
�� ����

Then the mass term in Eq� ����
� becomes

m�A�
�A

� �



�
m��A��A

�
� �A��A

�
� �� ������

We see from this equation that for a real vector �eld� m� is twice the coe��
cient of the term in the Lagrangian which is quadratic in the �eld� whereas�
as we see from ����
�� for a complex vector �eld�m� is equal to the coe�cient
of the quadratic term in the Lagrangian�

��� Global and local gauge symmetries

Let us consider the Lagrangian �density� for a free Dirac �eld� say the
�eld of an electron� As we have seen in Section ��� the Lagrangian is given
by

L � ���i��� �m��� ������

where � is a function of the space�time four�vector x�
Now let us make a unitary transformation U� on � and ���

�� � U��� ��� � U�
�
��� U� � e�i�� ������

where � is any constant independent of x� We �nd by direct substitution
that L is invariant under the transformation� namely

L� � ����i��� �m��� � L� ������

The U� belong to the unitary group in one dimensionU�
�� which is therefore
a symmetry group of the free Dirac equation�

The Lagrangian for a scalar �eld with self interaction

L � ���
�����m�

��
��� 	������ ����	�

is also invariant under this transformation� as can be easily checked�
The transformation U� � e�i� was originally introduced without the i�

and corresponded to a change of scale or gauge� For this reason it was called

	




a gauge transformation� and the name stuck after the introduction of the i�
More properly� it should be called a phase transformation� Because U� is in�
dependent of the space�time point x �now a four�vector�� the transformation
is called a global gauge transformation�

The symmetry of a Lagrangian under a global gauge transformation
is� according to Noether� s theorem� connected to a conservation law� In
this case� there is an additive number conservation law� Examples from
the standard model are lepton family number and baryon number� These
conservation laws are strictly true in the classical version of the standard
model� but are violated by anomalies in the quantized version �Section ��	��

Now consider a gauge transformation

U� � e�i��x	� ������

Because this transformation varies from point to point in space�time� it is
called a local gauge transformation� It is reasonable to ask that the La�
grangian of a �eld be invariant under such a transformation because the
phase is not observable in quantum mechanics� Therefore� the phase of the
�eld at one space�time point should have nothing to do with the phase at
another point� We do not� however� let ��x� be quite so arbitrary because
we require that its derivative exist� The group is still U�
� independently of
whether � depends on x�

The Lagrangian for the free Dirac �eld and the Lagrangian for the self�
interacting scalar �eld are not invariant under local gauge transformations
because these Lagrangians contain derivatives with respect to the �elds� In
each case the transformed Lagrangian picks up an extra term arising from
the derivative of ��x�� We need to �nd a way to compensate for this term
by replacing the derivative �� by a so�called covariant derivative D�� The
covariant derivative involves a new �eld� a vector �eld A��x�� called a gauge
�eld� We de�ne D� by

D� � �� � ieA��x�� ������

where e is a constant�
In what follows� for brevity we omit writing down explicitly the x de�

pendence of � and A�� If we replace �� by D� in the Lagrangian for the free
Dirac �eld we obtain the new Lagrangian

L � ���i�D� �m��� ����
�

Then this new Lagrangian will be invariant under local gauge transformations
if we let A� transform in such a way as to cancel the extra term arising from

	�



the derivative with respect to �� It can be readily veri�ed that A� must
transform like

A�
� � A� �




e
���� ������

This transformation of A� should work for any Lagrangian which does
not contain any derivatives higher than the �rst� In particular� the La�
grangian for a scalar �eld will also become gauge invariant if �� is replaced
by D� when operating on � and by D�

� when operating on ���

The �eldA� is a legitimate vector �eld� and so its kinetic part��
�
F��F

��

should be added to the Lagrangian� where F�� is given by Eq� ������� How�
ever� we cannot include a mass term of the form �

�m
�
AA�A

� in the Lagrangian
because such a term is not gauge invariant� Then the gauge�invariant La�
grangian for a Dirac �eld and massless vector �eld is

L	 � ���i�D� �m�� � 


�
F��F

�� � �����

Similarly� the gauge�invariant Lagrangian for a scalar �eld and a massless
vector �eld is

L� � D�
��

�D���m�
��

��� 	������ 


�
F��F

�� � ������

It is instructive to rewrite L	 as

L	 � ���i��� �m�� � 


�
F��F

�� � e ���A��� ������

The last term is an interaction term which can be written

Lint � �ej�A�� j� � ����� ������

where j� is called a current� This current is a neutral vector current� and it
is coupled to a neutral vector �eld A�� The coupling strength e of the inter�
action is called a charge� If e is the electric charge� A� is the electromagnetic
�eld�

The current given in ������ can be shown to transform like a four�vector
under Lorentz transformations� With the aid of the  matrices and spinor
�elds� currents with other transformation properties can be constructed� ���
transforms as a scalar� ���� like a pseudoscalar� ����� like an axial vector�
and ������ like a second�rank tensor� where

��� �



�
i��� ��� ������

	



It is seen that gauge invariance is a powerful principle� as use of it leads
from a free �eld theory to a �eld theory with an interaction whose form is
determined just from the requirement of gauge invariance� In the case in
which there is a single four�vector �eld introduced� the gauge group of the
Lagrangian is U�
�� This is the invariance group of electromagnetism� As
far as we know� it is an exact� manifest symmetry� The gauge principle we
have discussed in this section leads to a vector current coupled to a vector
gauge �eld�

In accordance with Noether�s theorem� local gauge invariance is con�
nected to a conservation law� namely� the conservation of the four�vector
current� The conservation of the current has as a consequence the conser�
vation of charge� Of course� conservation of charge number holds� as this
conservation law follows from invariance under either a global or local gauge
transformation� But if the transformation is local� we have in addition the
conservation of the strength of the charge� as measured by the strength of
the coupling of the current to the gauge �eld� In the previous section� we
demonstrated the conservation of the four�vector current and the charge for
Maxwell�s equations� which are gauge invariant�

With a slight modi�cation� the local gauge principle can also accomodate
an axial vector current� TheWeinberg�Salammodel contains parity�violating
currents with both vector and axial vector parts� An anomaly prevents the
axial vector current from being conserved in the quantized version of the
theory� There is an additional complication in that the gauge symmetry
of the model is spontaneously broken� We discuss spontaneous symmetry
breaking in Section ����

��	 Nonabelian gauge �elds

We can consider a group of gauge transformations other than U�
�� For
example� suppose we have n complex scalar �elds �i� each of which satis�es
a Lagrangian including self�interactions� We can collect the �i in a column
vector � and consider the transformation

�� � U��� U� � e�iT��� ����	�

where T is an r�component vector� each component of which is an n � n
matrix� Here T � � is short for Ta�

a and the �a are constants� �We are
using the summation convention�� In the case of the free Dirac Lagrangian�
the four�component spinor � �eld becomes a �n�component spinor� and the
transformation operator is U� just as in the scalar case�

	�



The transformationsU� form a group� An interesting case is one in which
the group is a nonabelian Lie group G� This will be true if the matrices Ta
do not commute but satisfy a Lie algebra

�Ta� Tb� � ifcabTc� ������

The U� form an n�dimensional unitary representation of G� and the Ta are
generators of the group�

If the constants �a are independent of x� the Lagrangians of the � and
� �elds are invariant under the group of transformations� However� if the �a
are functions of x� then the Lagrangians are not invariant� However� just as
in the case where the group was U�
�� we can �nd a covariant derivative so
that the Lagrangians are invariant under the transformations� We shall use
a somewhat di�erent procedure and restrict ourselves to in�nitesimal gauge
transformations

U� � e�iT�� � 
� iT � �� ���	��

Instead of a single gauge �eld A� we now need r vector gauge �elds A�
a or

A�� one for each generator �or one for each parameter� of the Lie group� As
before� we introduce a covariant derivative� in the present case given by

D� � �� � igT �A�� ���	
�

where g is a constant analogous to the charge e� The Dirac Lagrangian
formally looks the same as in Eq� ����
�� except that in the present case �
has �n components and D� is given by ���	
��

In order to �nd out how A� must transform under a gauge transforma�
tion� we substitute ���	
� into ����
�� make the gauge transformation ���	���
and keep terms only up to �rst order in �� After some algebra we �nd that
the Lagrangian is gauge invariant if

�A�
��

c � Ac
� �




g
���

c � �aAb
�f

c
ab� ���	��

Note that if the structure constants all vanish� then we get the usual trans�
formation properties of A�

�� For example� in the case in which the symmetry
is just the direct product of di�erent U�
� groups� the theory is essentially
as easy to treat as for a single U�
��

Let us return to the nonabelian case� We also wish to add the kinetic
energy of the gauge �elds to the Lagrangian� It turns out� however� that the
term F�� � F�� is not invariant under a gauge transformation unless

F a
�� � ��A

a
� � ��A

a
� � gfabcA

b
�A

c
� � ���	�

	�



�Again� if the group is abelian� the structure constants vanish� and the ex�
pression is the usual one��

The Dirac Lagrangian in the nonabelian case is

L � ���i�D� �m�� � 


�
F�� � F�� � ���	��

Again the gauge �elds must be massless� because the mass terms are not
gauge invariant�

In view of the fact that F�� is given by Eq����	�� the term in the
Lagrangian proportional to F�� � F�� contains self�interactions of the gauge
�elds as well as their kinetic energy�

If we are to make a �eld theory invariant under local SU�n� gauge trans�
formations� we require n��
 gauge �elds� one each for the parameters of the
group� These �elds transform under the n��
 dimensional representation of
SU�n�� This representation is called the adjoint representation� Associated
with the symmetry are n� � 
 conserved currents�

Nonabelian local gauge transformations were �rst treated by Yang and
Mills �
���� for the group SU���� The gauge �elds Aa

� are sometimes called
Yang�Mills �elds�

��
 Spontaneous symmetry breaking

Among the symmetries we recognize in nature� some are only approx�
imate� As we have already remarked� we commonly classify approximate
symmetry in three categories�

� The Lagrangian is a sum of two terms� one of which respects the sym�

metry �i�e�� is invariant under the transformation�� and the second of
which does not� but is small�

�� The Lagrangian respects the symmetry� but the ground state �lowest
energy or vacuum state� of the system does not�

� Both the Lagrangian and the classical ground state respect the symme�
try� but the quantized version of the theory contains an anomaly which
breaks the symmetry�
An example of a case in which the symmetry is violated in the La�

grangian is parity violation� Both the strong and electromagnetic interac�
tions conserve parity� but the weak interaction does not� As a consequence�
the e�ect of parity violation at low energy is small in most reactions except in
special cases in which neither the strong nor the electromagnetic interation
contributes�
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The second case� in which the Lagrangian respects the symmetry but the
vacuum does not� is called spontaneous symmetry breaking� The symmetry
is called a hidden symmetry� in contrast to a manifest symmetry� We here
treat the case of hidden symmetry� and in the next section we brie y discuss
what we mean by a symmetry which is broken by an anomaly�

If the vacuum state does not respect the symmetry of the Lagrangian�
then we shall see that the vacuum must be degenerate� i�e�� there must exist
more than one solution to the Lagrangian equations of motion with the same
energy� Also� there can exist higher�energy states of the system which do not
respect the symmetry� However� at su�ciently high temperature we expect
the symmetry to be �restored�� i�e�� to be manifest�

Let us consider a complex scalar �eld with a Lagrangian given by

L � ���
�����m����� 	������� ���	��

This Lagrangian makes good sense in the limit 	 � �� as then the Lagrangian
describes a free �eld with mass m� If 	 �� 
� then the term 	������ can be
considered as a perturbation and so � can continue to be interpreted as �eld
with mass m� only now weakly interacting�

Suppose now that we replace m� by ���� so that the Lagrangian is

L � ���
����� ������ 	������� ���	��

The Hamiltonian corresponding to this Lagrangian is

H � j ��j� � jr�j� � ��j�j� � 	j�j�� ���	���

If 	 � �� H is not positive de�nite� and� what is worse� becomes arbitrar�
ily large and negative as j�j increases� Therefore� L is not an acceptable
Lagrangian for 	 � �� and so one cannot do perturbation theory in 	�

We now look for an acceptable interpretation for the Lagrangian given
in Eq� ���	��� Let us write the Hamiltonian of Eq� ���	�� as

H � H� � V� ���		�

where
H� � j ��j� � jr�j�� V � ���j�j� � 	j�j�� ���	��

Let j�j � �� Then
V � ����� � 	��� ������
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It can be seen that V has a minimum at

� � ��� �� � ��
p
�	� ����
�

Therefore� the vacuum or lowest�energy state �� of the classical �eld occurs
when the �eld has the value j��j � ���

Now the Lagrangian ���	�� is invariant under global gauge transforma�
tions of the form U� � e�i�� However� the vacuum state �� is not invariant
under the transformation� because the transformed state is ��� � e�i����
The energy of ��� is the same as the energy of ��� hence� the degeneracy�
Because � can take on an in�nite number of values� the vacuum is in�nitely
degenerate�

In order to give a physical interpretation of the Lagrangian ������ we
make the change of variables

��x� � �v � 
�x� � i��x���
p
�� ������

where v is a constant given by

v �
p
��� � ��

p
	� ��� ��

Then� substituting ������ into ���	�� and using ����� to eliminate �� we
obtain

L �



�
��
�

�
� 


�
��	v��
��




�
����

��� 


�
	�
�������	v
�
������ ������

where we have dropped the constant 	v����
We see that the L of Eq� ������ is the Lagrangian for two real scalar

�elds 
 and � including interactions� Furthermore� the �eld 
 has mass
m�

� � �	v�� while the �eld � is massless� Thus� although the complex �eld �
has no obvious physical interpretation �it appears to have imaginary mass��
the real �elds 
 and � can be interpreted physically� the �rst has mass and
the second is massless�

Because L��� is invariant under a global gauge transformation� so is
L�
� ��� But the vacuum state �� is not invariant� and so the symmetry of
L is spontaneously broken� In our case the spontaneous symmetry breaking
gives rise to a massless �eld �� whose quanta are massless scalar particles�
It is a rather general phenomenon that the spontaneous breaking of a global

symmetry gives rise to a massless scalar particle� This particle is called a
Goldstone boson�

		



We next consider spontaneous symmetry breaking for a Lagrangian
which is invariant uner a local gauge transformation� Again we consider
the case of a complex scalar �eld � with an apparently imaginary mass� The
Lagrangian is �do not confuse the constant � with the index ��

L � �


�
F��F

�� �D�
��

�D��� ������ 	������� ������

This Lagrangian is invariant under the local gauge transformation

�� � e�i��� A�
� � A� �




e
���� ������

where � is a function of x� To get a physical interpretation� we make the
change of variables

� � �v � 
�ei�
v�
p
�� ������

If 
 and � are small� ������ reduces to ������ in lowest order� At the same
time we make the following change of variables for A� �

A� � B� � 


ev
���� ����	�

We next make the gauge transformation

�� � e�i�
v�� A�
� � A� �




ev
���� ������

Then we get
�� � �v � 
��

p
�� A�

� � B�� ���
���

Substituting ������ into ������� we get

L � �


�
F��F

�� �



�
�e�v��B�B

� �



�
��
�

�
 � 


�
��	v��
�

�



�
e�B�B

���v
 � 
��� 	v
� � 


�
	
�� ���
�
�

where �� � v�	 and again we have dropped a constant term� In ���
�
��

F�� � ��A� � ��A� � ��B� � ��B�� �
���

The �rst two terms are the Lagrangian for a vector �eld B� with massm�
B �

e�v�� The next two terms are the Lagrangian for a scalar �eld 
 with mass

	�



m�
� � �	v�� The remaining terms are interaction terms� The � �eld has

disappeared�
We started with a Lagrangian with four independent degrees of freedom�

two for the massless vector �eldA� and two for the complex scalar �eld �� We
end up with a massive vector �eld B� � which has three degrees of freedom�
and a massive real scalar �eld 
 which has one degree of freedom� When
we considered a global gauge transformation� we found a massless Goldstone
boson in addition to the massive scalar �eld� Here the Goldstone boson has
disappeared� but its degree of freedom has given the vector �eld B� a mass�
This is called the Higgs mechanism� The remaining massive scalar is called
a Higgs boson�

��� A few words about quantization

Thus far� the gauge �elds we have discussed can be considered as clas�
sical �elds� However� modern successful theories of elementary particles are
quantum theories� It is therefore necessary to quantize the �elds� Two main
methods of quantization have been treated in the literature� canonical quan�
tization and path�integral quantization� Path�integral quantization appears to
be the more useful of the two for quantizing nonabelian gauge �eld theories�

Here� we do not undertake the rather lengthy process of quantizing gauge
�elds� but note that Aitchison and Hey �
�	�� discuss canonical quantization
and Huang �
���� discusses path�integral quantization� A more detailed and
advanced treatment of quantization methods is given in the book by Itzyk�
son and Zuber �
�	��� The object of quantization is to obtain the so�called
Feynman rules for evaluating the theory in a perturbation expansion� Each
term in the perturbation series corresponds to a Feynman diagram or Feyn�
man graph� In discussing the consequences of a �eld theory we customarily
simply write down the Feynman graph corresponding to a particular term
in the perturbation expansion of the theory rather than writing down the
mathematical formula for the term� We discuss Feynman graphs in more
detail in Chapter ��

The quanta of free �elds may be either massless or massive� except that
the quanta of a gauge �eld connected with a manifest gauge symmetry are
massless� The quanta of scalar �elds �scalar particles� have spin � and pos�
itive parity� If the parity is negative� the particles are pseudoscalars� The
particles of vector �elds �vector particles� have spin 
 and negative parity�
If the parity is positive� the particles are axial vectors� The quanta of the
spinor �elds we discuss have spin 
!�� If they are di�erent from their antipar�
ticles� they are Dirac spinors� if they are the same as their antiparticles� they
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are Majorana spinors� Because of the conservation of angular momentum�
spinors are produced in pairs� or� alternatively� one spinor may be destroyed
and another created�

The perturbation expansion of a relativistic gauge �eld theory contains
in�nite terms� A procedure to eliminate these in�nities is called renormal�

ization� At present� when the principal way we have to evaluate gauge �eld
theory is by perturbation theory� such a theory must be renormalizable to
be useful� Here� we do not discuss how to renormalize a theory� See� for
example� Itzykson and Zuber �
�	���

It may happen that the classical version of a �eld theory has a certain
symmetry� but the quantized version does not� If this occurs� we say that the
theory has an anomaly� In practice� this means that certain Feynman graphs�
called anomalous graphs� do not respect the symmetry� This shows up as a
nonvanishing divergence of a current which is expected to be conserved� In
some cases one may obtain an estimate of how much the symmetry is violated
in a particular process by approximately evaluating the relevant anomalous
graph� In other cases� however� one can obtain such an estimate only in an
approximate nonperturbative treatment of the quantized theory�

If a gauge theory has any anomalies which violate gauge invariance�
then the renormalizability of the theory may also be destroyed� We reject
such a theory at present for the practical reason that we don�t know how to
solve it� �Future developments in mathematics may change this situation��
On the other hand� the quantized version of a theory may have an anomaly
which preserves renormalizability and violates only a global symmetry of the
classical theory� If the anomaly leads to an e�ect which is large enough to
be observable� one has a test of the quantized version of the theory�

�




�� THE STANDARD MODEL

The standard model is a nonabelian local gauge �eld theory which is
invariant under the gauge group SU����SU����U���� The model consists of
two parts	 the Weinberg
Salam model� which is based on the spontaneously
broken gauge group SU��� � U��� and quantum chromodynamics� which is
based on the manifestly invariant gauge group SU����

��� The Weinberg�Salam model

We �rst consider the Weinberg
Salam model� which is sometimes called
the Glashow
Weinberg
Salam model� �Other people have also made sub�
stantial contributions to it�� This model is a nonabelian gauge theory with
spontaneous symmetry breaking� The model is sometimes called a uni�ed
theory of weak and electromagnetic interactions� However� these interactions
are not completely uni�ed because the model contains two dierent coupling
constants� one associated with SU��� and the other with U���� Nevertheless�
the model certainly relates the weak and electromagnetic interactions� and
so it is rightly called a theory of electroweak interactions� Although it would
seem as if we could treat the groups SU��� and U��� separately because they
enter only as a direct product� in actual fact� we cannot� owing to the fact
that the groups are mixed in the vacuum state because of spontaneous sym�
metry breaking� The manifest symmetry group U���em of electromagnetism
is not the U��� of SU����U��� but contains parts of both SU��� and U����

The SU��� of the direct product�group is sometimes denoted by SU���L
because it concerns left�handed currents �to be de�ned shortly� or SU���i
because it is the group of weak isospin� The U��� of the direct�product group
is sometimes called U���y because it is the group of weak hypercharge �I and
Y are also used��

Since the time of Fermi�s theory of weak interactions� it was known from
experiment that a charged weak current exists� By a charged current we here
mean a current which carries electric charge� An example of a charged weak
current is the current carried by an electron and its antineutrino as they
move along� It was later proposed that the weak interaction should be a
gauge theory� which would have as a consequence that the charged current
be coupled to charged vector �gauge� bosons �now calledW��� One di�culty
with this picture is that it was believed that gauge bosons must be massless�
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like the photon� However� the range of weak interactions is very short� and
so the force carrier must be very heavy�

Another di�culty with the gauge idea is that the two generators of the
charged currents do not form a Lie algebra� As a consequence� there is no
group of gauge transformations which leaves the Lagrangian invariant� To
remedy this situation� it was proposed that the W� and the photon are a
triplet of bosons connected with the broken gauge group SU���� �It was be�
lieved the group had to be broken to allow the weak bosons to have mass��
However� Glashow realized that this solution was not plausible because the
electromagnetic interaction conserves parity but the weak interaction does
not� Therefore� Glashow proposed that a neutral weak boson �now called the
Z��� should also exist� A gauge theory with three weak bosons and the pho�
ton� requires a four�parameter gauge group� In ���� Glashow proposed that
the four�parameter group SU����U��� is the gauge group of the electroweak
interaction� Because the Z is neutral� it must be coupled to a weak neutral

current� So Glashow predicted the existence of the weak neutral current in
����� �� years before it was discovered�

As we have discussed� the quanta of gauge �elds are supposed to be
massless� However� Glashow realized that if the three weak bosons he pro�
posed actually exist� they must have large masses or they would have been
observed well before ����� �The weak bosons were� in fact� �rst observed in
the early ����s�� Glashow was not able to give a reason why weak bosons
should have masses greater than zero� Subsequently� Higgs ������ and others
found a mechanism for spontaneous symmetry breaking� which gives masses
to gauge bosons� This mechanism involves introducing a complex scalar
Higgs �eld� as we have discussed in Chapter �� The application of the Higgs
mechanism to break the electroweak gauge symmetry spontaneously and to
give masses to the weak bosons is due to Weinberg ������ and Salam ������
and also to Ward �Salam and Ward� ������ In the Weinberg
Salam model�
the Higgs �eld is also used to generate fermion masses�

We discuss the Lagrangian of the Weinberg
Salam model primarily for
the electron e and electron neutrino � �we omit the subscript e on the symbol
for the electron neutrino�� The Lagrangian contains similar terms for each
family of leptons� The Lagrangian for each family of quarks is also similar
but a little more complicated because� unlike neutrinos in the model� all
quarks have mass and charge� So� for the moment� we are going to deal with
only a single generation�

Before writing down the Lagrangian� we introduce some notation� We
let the symbol for a particle stand for its �eld and write a lepton current l�
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for the electron and its neutrino	

l� � �e���� � ���� �����

This �weak� lepton current diers from the electromagnetic current j� � �e��e
in two important ways	 First� unlike the neutral electromagnetic current� l�
is a charged current� as can be seen from the fact that it contains the charged
�eld �e� but instead of the charged �eld e to neutralize it� it contains rather
the neutral �eld �� Second� because of the factor ���� � ���� l� contains
both a vector and an axial vector part� and thus does not conserve parity�
The current l� is phenomenological and is based on what we knew about the
weak interactions of electrons and neutrinos after the discovery in ���� that
these interactions did not conserve parity and after the realization that the
structure of the weak current was vector minus axial vector�

We now introduce projection operators PR and PL which operate on
four�component Dirac spinors� These operators� when operating on spinors
with zero mass� project them onto positive �right�handed� and negative �left�
handed� chirality states respectively� The projection operators are given by

PR �
�

�
�� � ���� PL �

�

�
�� � ���� �����

If a spinor � has mass� then �L � PL� is not entirely a negative�helicity
state� and �R � PR� is not entirely a positive�helicity state� Nevertheless�
it is customary to call �L and �R left�handed and right�handed respectively�

There are some interesting properties of the chiral spinors �L and �R�
Consider what happens to �L under conjugation�

�L � �PL��
y�� � �yP y

L�
� � �����

However� �� is hermitian and anticommutes with ��� so P y
L�

� � ��PR and

�L � �PR � �����

From this� we can immediately see that the fermion mass term in the La�
grangian couples left� and right�handed spinors� i�e��

��� � �L�R � �R�L �����

and
�L�L � �R�R � � � �����
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However� if we place a single gamma matrix between the two spinors then
the handness of both spinors must be the same� For example�

�L�
��R � �PR�

�PR� � ���PLPR� � � � �����

The kinetic term of the fermion Lagrangian can be written as

������� � ��L�
����L � ��R�

����R � �����

We now introduce the left� and right�handed spinors

eL � PLe� eR � PRe� �L � PL�� �R � PR�� �����

In the standard model� � is massless and �R � �� The assumption that the
neutrino is massless is made only for simplicity� If the neutrino turns out to
have a mass greater than �� then a �R can easily be introduced� �If m� � ��
then the statement �R � � is not invariant under Lorentz transformations��

Using Eqs� ����� and ����� and the fact that for any projection operator
P � we have P � � P � we can write l� as

l� � �eL���L� ������

where we have also made use of the fact that �� anticommutes with all the
other � matrices�

In the last chapter we worked hard to understand how to construct a
non�Abelian gauge theory by starting with a globally invariant theory� To
promote the global invariance to a local invariance� we had to replace ordinary
derivatives for the fermion and scalar �elds by the covariant derivative� We
also had to add terms to the Lagrangian for the gauge �elds themselves�
This means that we have a simple program for constructing a model� First�
decide on a gauge group� Next� decide on the representations for the fermions�
Finally� decide on the representations for the scalar particles and arrange to
break the symmetry� if necessary� If you make all the right choices� you might
win a trip to Stockholm�

Let�s try to understand the details of this for the StandardModel� Recall
that the gauge group is SU��� � SU��� � U���� To select the fermions�
we just have to specify a representation for each component of the gauge
group� It should be clear to you by now that the quarks all belong to the
� representation of color and the leptons� which don�t carry color� are color
singlets� For the weak isospin group� we chose to put left�handed fermions
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in doublets and right�handed fermions in singlets� This accounts for the
observed parity violation of the weak interaction� The U��� group is known
as weak hypercharge� and its representations are one dimensional� All we
have to specify is the magnitude of the hypercharge� To do this we will try
to impose the weak analog of the Gell�Mann Nisijima formula� �See Eqs� �����
and �������

Q � iz � yW 	� � ������

where Q is the charge in units of e� iz is the weak isospin eigenvalue and yW
is the weak hypercharge� Let�s work out the hypercharges of the quark and
lepton multiplets�

For the neutrino� electron doublet� we have Q� � � � iz � yW 	� �
�	� � yW 	� � yW � ��� For the quark doublet that contains uL and dL�
Qu � �	� � �	� � yW 	�� yW � �	�� For the eR� Qe � �� � iz � yW 	� �
��yW 	�� yW � ��� Similarly� we can calculate the necessary hypercharges
for the uR and dR� To summarize� we list all the representations� �rst in terms
of the �eld� then we label the representations by �color representation� weak
isospin representation� weak hypercharge���

�L
eL

�
��� �����

eR ��� ������
uL
dL

�
��� �� �	��

uR ��� �� �	��

dR ��� ����	��

������

It should be clear from the fact the the weak hypercharge of uR and uL dier
that weak and strong hypercharge are very dierent quantum numbers� After
we have arranged for the symmetry breaking and identify the photon we must
go back and show that it comes into the covariant derivative multiplied by
e�iz � yW 	��� For the next several pages� we are going to be ignoring the
terms in the weak Lagrangian that depend upon the quarks� The basic points
that we are trying to make can be most easily seen in the lepton sector� At
the end of the section� we will add the quarks and see what complications
arise�

Let�s introduce some simplifying notation�

L �
�
�L
eL

�
� L � ��L� eL�� ������
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and
R � eR� ������

We can introduce globally invariant terms in the Lagrangian density that are
kinetic terms for the free leptons�

LL � �Li����L� ������

and
LR � �Ri����R� ������

These two terms are invariant under a global SU��� transformation for the
lepton doublet L of the form

U� � e�i� ����� 
 � � � 
a�
a� ������

�Of course� the singlet R does not change under an SU��� transformation��
This theory is also invariant under global U��� transformations of the

form
U� � e�iy� � ������

We make the theory locally invariant by introducing the SU��� gauge �eld
A� which is a ��component vector in the internal space of SU��� as well
as being a Lorentz ��vector and the U��� gauge �eld B�� Later� after we
spontaneously break the symmetry� we shall see the relation between the
�elds A�� B� and the �elds for W� Z� and ��

To make the theory locally gauge invariant� we replace partial derivatives
by covariant derivatives� Note the form of the covariant derivative depends
on the representation of the �eld upon which it acts� We are thus led to
write the Lagrangian for the left�handed and right�handed �elds as

LL � �Li����� �
�

�
ig
 �A� �

�

�
ig�yB��L� ������

LR � �Ri����� �
�

�
ig�yB��R� ������

where g and g� are the coupling constants for SU��� and U���� respectively�
We note that the factor of �	� multiplying g� is purely conventional and that
the value of y is dierent for L and R� Also� with this convention for the
coupling� under a U��� local gauge transformation�

B� � B�
� � B� �

�

g�
����x� � ������
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The transformation rule for the SU��� gauge �elds can be found in Chapter
��

We can write LL � LR in a more succinct fashion by introducing a
covariant derivative

D� � �� � igT �A� �
�

�
ig�yB�� ������

where T is the weak isospin operator� This operator is equal to �

�

 when

operating on an SU��� doublet and has the value � when operating on an
SU��� singlet� Then the gauge Lagrangian is

LL � LR � �Li��D�L� �Ri��D�R� ������

where here D� is given by Eq� ������� Note that there are no fermion mass
terms in Eq� ������� A mass term is not gauge invariant because such a
term contains equal amounts of left� and right�handed �elds� which transform
dierently under gauge transformations� �It is necessary for the left and right
�elds to transform dierently in order that parity not be conserved��

To the two terms LL � LR we add the Lagrangian for the gauge �elds

LG � ��
�
A�� �A�� � �

�
B��B

�� � ������

where
B�� � ��B� � ��B�� ������

Aa
�� � ��A

a
� � ��A

a
� � gabcA

b
�A

c
� � ������

This second formula is sometimes written schematically as

A�� � ��A� � ��A� � gA� �A� � ������

Because A� is nonabelian� LG contains self�interaction terms of this �eld as
well as kinetic energy terms�

If the electroweak Lagrangian consisted only of the sum of LL� LR� and
LG� it would not be spontaneously broken� and the gauge �elds and fermions
would remain massless� To break the symmetry spontaneously� we need to
proceed to the next step of our model building program� i�e�� add a Higgs
�eld �� We have to decide what representation to choose for �� Since we
don�t want to break the color group� � should be a color singlet� The smallest
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nontrivial representation of SU��� is the doublet� so we consider two complex
scalar �elds

� �

�
��

��

�
� ������

The superscripts refer to the electric charges of the Higgs �elds� The reason
we need two complex Higgs �elds rather than one is that we need three
degrees of freedom to generate spontaneously the masses of three gauge �elds
�the W� and the Z��� The remaining degree of freedom will show up as a
neutral massive Higgs �eld� �It also turns out that this doublet can give mass
to the fermions� so it economically serves two purposes� as we will soon see��
You might wonder if we could more economically use a real SU��� triplet� i�e��
a vector to break the symmetry� Unfortunately� since this �eld can carry no
U��� hypercharge �it is real so can�t undergo a phase transformation�� it can
only break the SU��� and not the U���� There would remain two massless
gauge bosons� This Higgs choice would also not give mass to the fermions�
so we still would have to add a doublet� a rather ugly state of aairs�

The Lagrangian of the Higgs �eld� including its interaction with the
gauge �elds� is

LH � �D���
yD��� ���y� � ���y��� ������

We shall see that the Lagrangian LH will generate masses of the weak gauge
�eld� but before we do that there are some additional invariant terms that
we can add to our Lagrangian� These are the terms that can give rise to
fermion masses�

The Higgs
fermion coupling is often called a Yukawa coupling� as it was
Yukawa who �rst postulated a coupling between spin � particles �mesons� and
spin ��� particles �nucleons�� In general� it takes the form ������� where we
can now take any combinations of the fermion �elds and the Higgs �eld that
has a globally invariant product� Recall that before we had the Higgs �eld a
mass term was ruled out by global SU��� invariance since all the left�handed
spinors are in doublets and the right�handed parts are in singlets� A mass
term which multiples left� and right�handed parts together is necessarily an
SU��� doublet� but now when we multiply by a Higgs doublet� we can form
an SU��� singlet� A term of the form �L�R is globally invariant if the Higgs
�eld has hypercharge ��� �This notation is fairly condensed� The SU���
indices on �L and � are contracted to form a singlet� The Dirac indices on �L
and R are contracted to from a Lorentz scalar��

To summarize� the Yukawa coupling between the Higgs and the electron
has the form

LY � ����L�R� �R�yL�� ������
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where � is the coupling strength� and we have added the complex conjugate
of the term we formed above� The subscript Y on LY stands for Yukawa�
As we shall see� this term leads to spontaneous generation of the electron
mass� We introduce similar Yukawa couplings of the Higgs to other massive
fermions as we shall see at the end of this section�

The electroweak Lagrangian Lew is given by

Lew � LL � LR � LG � LH � LY � ������

where the various terms are given in Eqs� ������� ������� ������� and �������
In Lew� the term containing �� is of the wrong sign for � to be interpreted as
a mass� Therefore� this Lagrangian is not written in a form which is suitable
for doing perturbation theory� To obtain a physical interpretation� we make
a change of variables for the �eld �	

� � ei�����v
�

�
�v � ��	

p
�

�
� ������

where v is a positive constant and ��� ��� ��� and � are four real �elds replacing
the two complex �elds of Eq� �������

Now we make an SU��� gauge transformation

�� � e�i�����v�� ������

The �elds L and A� also get transformed� However� we do not need to
substitute the explicit transformations into the Lagrangian because we did
not specify the form of the old �elds� We can therefore interpret the L and
A� as the new �elds after the transformation� The net eect of all this is
merely to substitute

� �

�
�

�v � ��	
p
��

�
������

into the Lagrangian of Eq� ������� The � �eld has apparently disappeared�
but its degrees of freedom will appear in another guise	 namely� to give
masses to the three weak gauge bosons�

To see this we make yet another change in variables� writing

W�
� � �A�

� � iA�

��	
p
�� ������
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Then� after using ������ and ������ and the fact that the Higgs �eld has
hypercharge y � �� we obtain for the Higgs term in the Lagrangian

LH �
�

�
������ �

�

�
g�W��W�

� �v � ���

�
�

�
�gA�� � g�B���gA�

� � g�B���v � ���

�
�

�
v���v � ��� � �

�
��v � ����

������

The quantities v and � enter the Lagrangian symmetrically� except in the
derivative term� because they were put in symmetrically� However� they
have very dierent interpretations	 v is a constant and � is a real neutral
scalar �eld� Using Eq� ������ and the identity e � eL � eR� we obtain the
Higgs Yukawa term	

LY � ���v � ���ee	
p
�� ������

We can identify various terms in Eqs� ������ and ������ as spontaneously
generated mass terms� Comparing these equations with previous Lagrangians
for massive �elds �see Chapter ��� we obtain the result that the weak boson�
the electron� and the Higgs have masses given by

mW � gv	�� me � �v	
p
�� m	 � v

p
��� ������

In the Lagrangian ������ the combination gA�
�� g�B� appears quadratically�

multiplied by a constant� Therefore� this linear combination of �elds has
mass� and we identify it� after normalization� with the Z� �eld

Z� �
gA�

� � g�B�

�g� � g������
� ������

This real �eld has mass

mZ � v�g� � g������	�� ������

Let us introduce the Weinberg angle �W by the de�nition

tan �W � g�	g� ������

We drop the subscript on �W for the remainder of this section� We get from
Eqs� ������ and ������	

mW � mZ cos �� ������
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Also Eq� ������ becomes

Z� � A�

� cos � �B� sin �� ������

We introduce a linear combination of �elds which is orthogonal to Z�	

A� � A�

� sin � �B� cos �

�
g�A�

� � gB�

�g� � g������

������

We note from Eq� ������ that no mass term appears for this �eld and that it
has no interaction with the Higgs �eld �� We identify A� with the ordinary
electromagnetic �eld�

Now that we have identi�ed the electromagnetic �eld� we must go back
and verify that its coupling to particles is proportional to T��Y	� which was
previously identi�ed with the charge� To see this� we return to Eq� ������
where we saw that the covariant derivative contains the terms

igT �A�

� �
�

�
ig�Y B�� ������

Using Eqs ������ and ������ to express this in terms of the physical Z� and
A� �elds� we �nd the couplings

i
gg�

�g� � g������

�
T � �

Y

�

�
A� � i

�

�g� � g������

�
g�T � � g��Y

�

�
Z�� ������

So we see that the photon coupling is� indeed� proportional to the combina�
tion of weak isospin and hypercharge that we have been calling the charge�

If we express all of LL � LR in terms of the new �elds and eliminate g�

by using the Weinberg angle� we get

LL � LR ���Li�
����L � �ei����e� g���L�

�eLW
�

� � �eL�
��LW

�
� �	

p
�

�
�

�
g
cos ��

cos �
�eL�

�eLZ� � g
sin� �

cos �
�eR�

�eRZ�

� �

�

g

cos �
��L�

��LZ� � g sin ��e��eA��

������
Of course� the electromagnetic �eldA� interacts with the electron �eld� which
is charged� but not with the neutrino �eld� which is neutral� The magnitude
e of the electron charge is

e � g sin �� � � e�	�� � �	���� ������
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Note that the symbol e here stands for the magnitude of the electron charge�
but in other places stands for the electron �eld� It should be clear from the
context which is meant�

Returning to LY � we see from Eq� ������ that it contains the term
����eep�� which describes the Yukawa interaction of the Higgs �eld with
the electron �eld� Because of Eq� ������� the coupling strength can be writ�
ten

�
p
� � �me	v� ������

Thus� the interaction of the Higgs �eld with an electron �or� more generally�
with any fermion� is proportional to the mass of the electron �fermion��

The original electroweak Lagrangian for the electron� neutrino� gauge
�elds� and Higgs �eld contained the parameters g� g�� �� �� and �� Instead of
these parameters we can use combinations of them� �In fact� above we have
always used v rather than � as one of the two parameters in LH�� An equally
good set is �� �� me� mW � and m	� The parameters � and me are of course
well known� The masses of the W and Z bosons have been measured� and
their ratio gives cos �� Alternatively� mW and � can be deduced from exper�
imental information on low�energy weak interactions	 mW can be related to
the measured coupling constant GF appearing in Fermi�s old theory of weak
interactions� and � can be related to the measured ratio of the neutral to the
charged weak current� The relationship between mW and GF is

m�

W � ��	�sin� �GF

p
��� �����a�

An equivalent and useful relationship between G and g and MW is

GFp
�
�

g�

�M�
W

� �����b�

In fact� the low energy measurements enabled physicists to predict the masses
of theW and Z before these bosons were discovered� We discuss these topics
again in Chapter ��

The quantity � �or alternatively� m	� is still unknown� There is no term
in the Lagrangian which relates either of these two quantities to low�energy
experiments� and� despite many experiments to search for the Higgs boson�
it has not been observed�

We have considerably oversimpli�ed our discussion of the measurement
of the parameters in the electroweak Lagrangian� First of all� the measured or
physical charges and masses are not the ones that enter into the Lagrangian�
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The parameters of the Lagrangian are so�called bare charges and masses�
which have to be renormalized to obtain the physical charges and masses�
Only in lowest�order in perturbation theory are the bare masses and the
physical masses the same� Secondly� in comparing measurements to theory�
we have to make so�called radiative corrections to take into account the fact
that low�energy �infrared� photons are not observed in the experiments� We
discuss these topics in a little more detail in Chapter ��

Thus far� we have written the Lagrangian for only one pair of fermions�
the electron and its neutrino� Similar terms occur in the model for each
family of leptons� and an additional parameter is required for each charged
lepton� Quarks also participate in weak interactions� and a similar term in
the Lagrangian occurs for each left�handed quark doublet and each right�
handed quark singlet�

There are some dierences between the electroweak Lagrangian for lep�
tons and for quarks� First� all quarks have mass� and so have right�handed as
well as left�handed couplings� Therefore� in the standard model with three
families there are six masses or Yukawa couplings for the quarks� but only
three for the leptons� Second� all quarks have charge� and so are coupled to
the electromagnetic �eld� Also� because the quark charges are fractional� the
values of their weak hypercharge are dierent from the values for leptons as
we see in Eq� ������� Third� the negatively�charged quarks which are mass
eigenstates� denoted by d� s� and b� are not the states which participate as
left�handed doublets in the electroweak Lagrangian� It is not di�cult to see
how this can come about� Recall that the Yukawa terms involve one fermion
spinor� one antifermion spinor and the Higgs �eld� Once there are several
generations� there is no reason that the fermion and antifermion spinors have
to belong to the same generation� So� the Yukawa coupling becomes a ma�
trix and once the spontaneous symmetry breaking occurs� we have to �nd
the eigenvalues of the matrix to identify the quarks that are mass eigenstates
�i�e�� make a change of basis�� Since the charge ���� and charge ���� quarks
have completely independent Yukawa couplings �as we shall see below�� there
is no relationship between the two changes of basis� and the u quark is found
to interact with some combination of d� s and t� the mass eigenstates�

The left�handed doublets for three quark families are

L� �

�
uL
d�L

�
� L� �

�
cL
s�L

�
� L� �

�
tL
b�L

�
� ������

where d�� s�� and b� are linear combinations of d� s� and b� A unitary matrix
V connects the primed and unprimed quantities� The matrix equation is
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conventionally written

�
� d�

s�

b�

�
A �

�
�Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

�
A
�
� d
s
b

�
A � ������

A unitary matrix in n dimensions is characterized by n� real parameters�
However� owing to the fact that certain phases of �elds are unobservable� the
number of parameters is reduced to �n���� parameters� of which �

�
n�n��� are

angles and �

�
�n����n��� are CP �violating phases� In two dimensions� there

is only one parameter� the Cabibbo ������ angle� The formalism in the two�
dimensional case is due to Glashow et al� ������� In three dimensions� the
mixing matrix V is the CKM or Cabibbo
Kobayashi
Maskawa �Kobayashi
and Maskawa� ����� matrix� and is characterized by three angles �ij �i � j�
and one phase �� which violates the combined discrete symmetry CP � The
CKM matrix may be parametrized in several ways� One common way is
given by the Particle Data Group �Hikasa et al�� Phys� Rev� D��� ��� Part
II� �����	

V �

�
� c��c�� s��c�� s��p�
�s��c�� � c��s��s��p� c��c�� � s��s��s��p� s��c��
s��s�� � c��c��s��p� �c��s�� � s��c��s��p� c��c��

�
A � ������

where cij � cos �ij � sij � sin �ij � and p� � e�i
�
In discussing weak decays of particles of only the �rst two families� we

can approximate the CKM matrix by a � � � matrix containing only one
parameter� the Cabibbo angle ���	

V �
�

c�� s��
�s�� c��

�
������

because empirically the angles ��� and ��� are small�
In the quark sector� the left and right Lagrangians are similar to those

for the lepton sector� given by Eqs� ������ and ������� except that in LL the
L gets replaced by the Li of Eq� ������ for each family and the LR contains
two terms for each family� The gauge and Higgs Lagrangians LG and LH are
unaltered� but the Yukawa Lagrangian of Eq� ������ gets additional terms�
It is instructive to write LY explicitly for the �rst quark family� We get

LY � ��d��Lud�Rd � �Rd�
yLud�� �u��Lud�

CRu � �Ru�
CyLud�� ������
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where �u and �d are the coupling strengths �parameters� and �C is given by

�C �

�
���

����
�
� ������

If neutrinos have mass� we can add right�handed �elds for them and
include three Yukawa terms to generate their masses� We can also include
a matrix similar to the CKM matrix to describe their left�handed couplings�
This will entail the introduction of another � parameters� We emphasize�
however� that this is not the only way to introduce neutrino masses into the
standard model�

��� Quantum chromodynamics

Quantum chromodynamics is a nonabelian local gauge theory based on
the gauge group SU���� The theory of QCD results from a straightforward
application to SU��� of the ideas which Yang and Mills ������ �rst applied
to SU����

The group SU��� was chosen because of evidence that quarks come in
three colors� The earliest evidence came from baryons� The proton and other
low�energy baryons apparently have wave functions which are symmetric
under the interchange of a pair of quarks of the same �avor� This is most
easily seen for the ��� baryon� which has spin ��� and is composed of
three u quarks� A spin���� wave function is totally symmetric under the
interchange of any two spin coordinates� Also� there is evidence that the
three quarks are in states with zero orbital angular momentum� so that the
spatial wave function is also symmetric� But if quarks have half�integral spin�
their wave function should be antisymmetric under the interchange of any
pair �the quarks should behave like fermions� not bosons�� To rectify this
situation� it was postulated that the quarks contain an additional degree of
freedom� called color by Gell�Mann �although he was not the �rst to propose
the new degree of freedom�� Because a baryon contains three quarks� it is
plausible that a quark can have any of three colors� and the wave function
is antisymmetric in the color degree of freedom� Other evidence for the
existence of three colors is given in later chapters�

Since SU��� is characterized by eight parameters� QCD has eight gauge
�elds� The quanta of these �elds are called gluons� These gluons play a role
analogous to the role of photons in QED� The fermions of the theory are the
quarks� which play a role analogous to the role of charged leptons in QED�

Color is the QCD analogy of electric charge� and is really strong charge�
that is� the charge of the strong interaction� However� while there is only

���



one kind of electric charge �plus its anticharge�� there are three kinds of
strong charges and their anticharges� or� as we usually say� three colors and
three anticolors� A consequence of the nonabelian nature of the SU��� gauge
theory is that the gluons are also required to carry color �or rather� both color
and anticolor�� This is in contrast to the QED case� in which the photon does
not carry electric charge�

The symmetry of QCD is a manifest symmetry� and this implies that
the gauge �elds are massless� Naively� then� we might expect that the strong
forces have a long range and that we can observe free massless gluons� In
fact� strong forces are short range� and no free gluons have been observed�
Free quarks also have not been observed although at least some of them
apparently have small masses� A way out of this dilemma is to assume that
the forces are so strong that they con�ne any colored particle to the interior
of hadrons� Although there have been many attempts to prove that QCD
con�nes color� this has not been accomplished� However� the result of all the
eort has been to make it plausible that QCD does in fact con�ne colored
particles� We discuss the problem of con�nement in Chapter ��

To construct QCD� we start with a Lagrangian describing the behavior
of a free massless quark �eld �� which has �� components	 � components for
each of the � colors� The free Lagrangian is

L � ��i������ ������

The mass of the quark is assumed to be generated by spontaneous symmetry
breaking of the electroweak interaction� whether by means of coupling to a
Higgs �eld or by some other mechanism� If one is considering QCD by itself�
without the electroweak interaction� it is acceptable to add a mass term as
input to the Lagrangian�

We next require that the Lagrangian be invariant under local nonabelian
gauge transformations of SU���� namely

�� � U�� U � e�iF�� � e�iFa�
a

� ������

where the Fa are the eight generators of SU���� In order to make the La�
grangian invariant under such gauge transformations� we must replace the
derivative by the covariant derivative

D� � �� � igsF �G�� ������

where gs is the strong coupling constant and the Ga
� are eight gauge �gluon�

�elds� We also add the kinetic energy to the gauge �elds and add a mass
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term which presumably arises from the electroweak sector of the standard
model� Then we obtain the Lagrangian

LQCD � ���i��D� �m�� � �

�
G�� �G�� � ������

where
Ga
�� � ��G

a
� � ��G

a
� � gsf

a
bcG

b
�G

c
� ������

and the fabc are the structure constants of SU���� Of course� if we add the La�
grangian LQCD to the electroweak Lagrangian� we omit the term containing
the massm� as this mass already appears in the electroweak Lagrangian and
we don�t need the ��i����� terms since they are also in the electroweak co�
variant derivative� Another way of saying this is that the complete covariant
derivative is of the form

D� � �� � igsF �G� � igT �A� �
�

�
ig�yB�� ������

where the multiplicities of the representations corresponding to the matrices
F and T and the value of y are given for each representation in Eq� �������
The �eld � in the Lagrangian LQCD has �� components for one quark �avor�
The Lagrangian for six quark �avors contains a sum of six terms� each of
which is like the Lagrangian LQCD with its own �eld �q of mass mq� Alter�
natively� one may regard � in Eq� ������ as a ���dimensional �eld and m as
a diagonal mass matrix with � distinct values�

Because of the last term in ������� the Lagrangian ������ contains� in
addition to an interaction of quarks with the gauge �eld G�� also interactions
of the gauge �elds with themselves� Let us make an analogy between charge of
QED and color of QCD� The QED gauge �eld �electromagnetic �eld� couples
to all charged �elds� but not to itself because it is neutral� In the QCD case�
however� the gauge �elds couple to all colored �elds including themselves�
Note that in order for this self coupling to exist �i�e�� in order for the gluon
�elds to carry color�� the group must be nonabelian� We see this directly
from Eq� ������� where the self�coupling term containing gs vanishes if the
structure constants vanish�

Because the burden of accounting for quark masses is placed on the
Weinberg
Salam model� QCD contains only one input parameter� the cou�
pling constant gs� or the more commonly used �s � g�s	����� This makes
QCD a very pretty theory indeed� However� despite its beauty� QCD has
proved very di�cult to evaluate� especially in the nonperturbative regime�

���



As we shall see in Chapter �� the eective coupling constant �s depends
on the energy and�or four�momentum transfer at which it is measured� At
an energy of �� GeV� �s � ����� Because of a property of QCD known as
asymptotic freedom �Politzer ����� Gross and Wilczek ������ �s decreases as
the four�momentum transfer increases� In Chapter � we describe asymptotic
freedom and discuss why it holds�

An additional coupling constant� which gives rise to a strong CP �violat�
ing term� is sometimes included in QCD� There is no empirical evidence for
such a term� and we set it equal to zero� A large number of physicists have
tried to understand why the coupling constant that violates CP is either zero
or too small to have been measured so far� However� discussion of this subject
is beyond our scope here� and we refer the reader to papers by Peccei and
Quinn ������� Weinberg ������� and Wilczek ������ as well as a treatment
in the book by Huang �������

��� Symmetries of the standard model

The Lagrangian of the standard model is invariant under the local gauge
group SU��� � SU��� � U���� However� as we have seen� the vacuum state
does not have this full symmetry� but rather the local gauge symmetry
SU��� � U���em� This is the manifest local gauge symmetry of the phys�
ical world �excluding gravity� at energies at or below the mass of the Z
boson� At energies su�ciently higher than that� we expect the full gauge
symmetry to be restored�

The standard model has a number of other symmetries� We have not
really discussed Poincar�e invariance� but it can be directly shown that the
Lagrangian of the standard model is invariant under the proper Poincar�e
group� The proper Poincar�e group consists of translations� rotations� and
Lorentz transformations� but excludes the discrete symmetry operations P �
C� and T � As with all local �eld theories invariant under the proper Poincar�e
group and having a stable vacuum� the standard model is invariant under
CPT � However� the weak sector of the model violates C and P separately�
Furthermore� as we have noted� with three families� the weak sector violates
CP invariance unless the phase � of the CKM matrix is zero� If CP is
violated� then� because of CPT invariance� T is also violated� It is interesting
that with only two families� the CKMmatrix has only one parameter� so that
CP is conserved �although C and P are separately violated independently of
the number of families because of the structure of the theory�� With a fourth
family� the CKM matrix contains � parameters� but no new symmetries are
broken�
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The strong and electromagnetic sectors of the standard model are in�
variant under C� P � and T separately� although in principle the strong sector
can contain a term violating CP and therefore T � It is not known why the
coupling strength of the strong CP �violating term is either zero or too small
to have been measured so far�

The Lagrangian of the standard model is also invariant under global
gauge transformations associated with the conservation of baryon number
and the three lepton family numbers� As we have noted in Section ���� be�
cause of an anomaly the quantized theory exactly conserves only A � L�
Theoretical estimates of the breaking of A and L separately lead to the
conclusion that violations are too small to be observable under present con�
ditions� in agreement with the fact that no violation has yet been observed�
However� we do not know of any fundamental principle which requires these
invariances and conservation laws to be exact�

In addition� the strong and electromagnetic �but not the weak� sectors�
are invariant under global gauge transformations associated with quark and
lepton �avor number conservation� Isospin conservation in the strong sector
appears to be an approximate symmetry associated with the fact that the
mass dierence between the u and d quarks is much smaller than the con�
stituent masses of these quarks� The u and d constituent masses� in turn� are
probably related to the scale parameter � of QCD� which we discuss in the
next chapter� Lastly� we mention that QCD has a broken chiral symmetry�
We do not discuss chiral symmetry in these notes� but refer to a treatment
in the book by Huang �������

��� Parameters of the standard model

The Weinberg
Salam model with three families contains as parameters
� coupling constants� the masses of the W and Higgs bosons� the masses
of � charged leptons� the masses of � quarks� and the � parameters of the
CKM matrix� for a total of �� parameters� If the neutrinos have masses
dierent from zero and can be included in the standard model in the same
fashion as quarks� then up to � additional parameters will be necessary� �
for the neutrino masses and � for a neutrino mixing matrix analogous to the
CKM matrix� But� as we have already remarked� there are other ways to
incorporate neutrino masses and mixing into a modi�ed standard model� If
a fourth family exists� there will be at least an additional � parameters	 �
fermion masses �the fourth neutrino must be heavy or it would have been
observed� and � more parameters in the CKM mixing matrix �even without
neutrino mixing�� Most of these parameters are connected to the Higgs
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sector� which is considered the least satisfying part of the model�
In addition� there are one or two parameters associated with QCD� The

�rst is the strong�interaction coupling constant� The second is a parame�
ter associated with strong CP violation� but in the present version of the
standard model this parameter is set equal to zero� The reason that QCD
contains so few parameters is that the burden of giving the quarks masses is
placed in the Higgs sector of the Weinberg
Salam model�

Many physicists are not happy with a theory containing at least ��
parameters ���� if we count the strong CP phase which is extremely close
to zero�� There have been many attempts to invent a better theory� so far
without marked success�
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Chapter 1

The Basics

Frank Porter Ph 129b January 3, 2009

Def: A group is a pair (G, ◦), where G is a set, and ◦ is a binary operation
(“multiplication”) defined on G such that:

1. G is closed under ◦:

a ◦ b ∈ G ∀a, b ∈ G.

2. ◦ is associative:

(a ◦ b) ◦ c = a ◦ (b ◦ c) ∀a, b, c ∈ G.

3. ∃ a right identity element, e ∈ G, such that:

a ◦ e = a ∀a ∈ G.

4. For some right identity e, ∃ for each a ∈ G at least one right inverse,
a−1 ∈ G, such that

a ◦ a−1 = e.

We say “(G, ◦) is a group”, or simply, “G is a group.” The operation, ◦, is
referred to as the group multiplication, or, simply, multiplication.

Some examples to illustrate this definition:

• The set of integers under addition is a group (denoted Z).

• The set of people is not a group (need an operation).

• The set of non-singular 2 × 2 matrices under matrix multiplication is a
group (denoted GL(2), for “general linear group in 2 dimensions”).

There are several immediate consequences of the group axioms:
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This note defines some mathematical structures which are useful in the
discussion of angular momentum in quantum mechanics (among other things).

Def: A pair (G, ◦), where G is a non-empty set, and ◦ is a binary operation
defined on G, is called a group if:

1. Closure: If a, b ∈ G, then a ◦ b ∈ G.

2. Associativity: If a, b, c ∈ G, then a ◦ (b ◦ c) = (a ◦ b) ◦ c.

3. Existence of right identity: There exists an element e ∈ G such
that a ◦ e = a for all a ∈ G.

4. Existence of right inverse: For some right identity e, and for any
a ∈ G, there exists an element a−1 ∈ G such that a ◦ a−1 = e.

The ◦ operation is typically referred to as “multiplication”.
The above may be termed a “minimal” definition of a group. It is amusing

(and useful) to prove that:

1. The right identity element is unique.

2. The right inverse element of any element is unique.

3. The right identity is also a left identity.

4. The right inverse is also a left inverse.

5. The solution for x ∈ G to the equation a ◦ x = b exists and is unique,
for any a, b ∈ G.

We will usually drop the explicit ◦ symbol, and merely use juxtaposition to
denote group multiplication. Note that both G (the set) and ◦ (the “mul-
tiplication table”) must be specified in order to specify a group. Where the
operation is clear, we will usually just refer to “G” as a group.

Def: An abelian (or commutative) group is one for which the multiplica-
tion is commutative:

ab = ba ∀ a, b ∈ G. (1)

1



Def: The order of a group is the number of elements in the set G. If this
number is infinite, we say it is an “infinite group”.

In the discussion of infinite groups of relevance to physics (in particular,
Lie groups), it is useful to work in the context of a richer structure called an
algebra. For background, we start by giving some mathematical definitions
of the underlying structures:

Def: A ring is a triplet 〈R,+, ◦〉 consisting of a non-empty set of elements
(R) with two binary operations (+ and ◦) such that:
1. 〈R,+〉 is an abelian group.
2. (◦) is associative.
3. Distributivity holds: for any a, b, c ∈ R

a ◦ (b+ c) = a ◦ b+ a ◦ c (2)

and
(b+ c) ◦ a = b ◦ a+ c ◦ a (3)

Conventions:
We use 0 (“zero”) to denote the identity of 〈R,+〉 . We speak of (+) as ad-
dition and of (◦) as multiplication, typically omitting the (◦) symbol entirely
(i.e., ab ≡ a ◦ b).

Def: A ring is called a field if the non-zero elements of R form an abelian
group under (◦).

Def: An abelian group 〈V,⊕〉 is called a vector space over a field 〈F,+, ◦〉
by a scalar multiplication (∗) if for all a, b ∈ F and v, w ∈ V :

1. a ∗ (v ⊕ w) = (a ∗ v)⊕ (a ∗ w) distributivity

2. (a + b) ∗ v = (a ∗ v)⊕ (b ∗ v) distributivity

3. (a ◦ b) ∗ v = a ∗ (b ∗ v) associativity

4. 1 ∗ v = v unit element (1 ∈ F )

2



Conventions:
We typically refer to elements of V as “vectors” and elements of F as
“scalars.” We typically use the symbol + for addition both of vectors and
scalars. We also generally omit the ∗ and ◦ multiplication symbols. Note
that this definition is an abstraction of the definition of vector space given
in the note on Hilbert spaces, page 1.

Def: An algebra is a vector space V over a field F on which a multiplication
(◦) between vectors has been defined (yielding a vector in V ) such that
for all u, v, w ∈ V and a ∈ F :

1. (au) ◦ v = a(u ◦ v) = u ◦ (av)

2. (u+v)◦w = (u◦w)+(v ◦w) and w ◦ (u+v) = (w ◦u)+(w ◦v)

(Once again, we often omit the multiplication sign, and hope that it is
clear from context which quantities are scalars and which are vectors.)

We are interested in the following types of algebras:

Def: An algebra is called associative if the multiplication of vectors is as-
sociative.

We note that an associative algebra is, in fact, a ring. Note also that
the multiplication of vectors is not necessarily commutative. An important
non-associative algebra is:

Def: A Lie algebra is an algebra in which the multiplication of vectors
obeys the further properties (letting u, v, w be any vectors in V ):

1. Anticommutivity: u ◦ v = −v ◦ u.

2. Jacobi Identity: u ◦ (v ◦ w) + w ◦ (u ◦ v) + v ◦ (w ◦ u) = 0.

We may construct the idea of a “group algebra”: Let G be a group,
and V be a vector space over a field F , of dimension equal to the order of
G (possibily ∞). Denote a basis for V by the group elements. We can now
define the multiplication of two vectors in V by using the group multiplication
table as “structure constants”: Thus, if the elements of G are denoted by gi,
a vector u ∈ V may be written:

u =
∑

aigi

3



We require that, at most, a finite number of coefficients ai are non-zero. The
multiplication of two vectors is then given by:

(∑
aigi

) (∑
bjgj

)
=

∑

 ∑

gigj=gk

aibj


 gk

[Since only a finite number of the aibj can be non-zero, the sum
∑

gigj=gk
aibj

presents no problem, and furthermore, we will have closure under multipli-
cation.]

Since group multiplication is associative, our group algebra, as we have
constructed it, is an associative algebra.

4
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Theorem: If x ∈ G and x◦x = x, and if e is a right identity such that property
(4) holds, then x = e.

Proof:
x = x ◦ e e = right identity

= x ◦ (x ◦ x−1) property (4)
= (x ◦ x) ◦ x−1 associativity
= x ◦ x−1 by assumption
= e property (4)

QED

Theorem: The right inverse is also a left inverse: If (G, ◦) is a group with
identity e, and a ◦ a−1 = e, then a−1 ◦ a = e.

Proof: Let f = a−1 ◦ a. Then:

f ◦ f = (a−1 ◦ a) ◦ (a−1 ◦ a)
= a−1 ◦ (a ◦ (a−1 ◦ a)) associativity
= a−1 ◦ ((a ◦ a−1) ◦ a)) associativity
= a−1 ◦ (e ◦ a) right inverse
= (a−1 ◦ e) ◦ a associativity
= a−1 ◦ a right identity
= f assumption
= e previous theorem

QED

Hence, we may drop the “right” and simply say “inverse”.
Several other properties can also be quickly proven:

Theorem: The right identity is unique.

Theorem: The right identity is also a left identity.

Theorem: The inverse is unique.

Theorem: The solutions to a ◦ x = b and to x ◦ a = b, where a, b ∈ G exist
(x ∈ G), and are unique.

Theorem: The inverse of a product a ◦ b is:

(a ◦ b)−1 = b−1 ◦ a−1.

This may be readily extended to higher order products.

We usually drop the explicit notation for the group multiplication, and use
concatenation to denote multiplication, unless doing so would be unclear.

Some important groups have an additional property:
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Figure 1.1: Illustration that the result of successive rotations in three dimensions
depends on the order of the rotations.

Def: If G is a group such that

ab = ba ∀a, b ∈ G,

then G is called an abelian, or commutative, group.

For example, Z is an abelian group. GL(2) is a non-abelian group:
(

0 1
1 0

) (

0 1
−1 0

)

�=
(

0 1
−1 0

) (

0 1
1 0

)

.

For a more “physically relevant” example, the group of rotations in two dimen-
sions is abelian, but the group of rotations in three dimensions is non-abelian:

Rz(π/2)Ry(π/2) �= Ry(π/2)Rz(π/2).

See Fig. 1.

Some groups are almost trivial:

Def: If G is a group such that the powers of one element generate the group,
then the group is called cyclic:

a, a2, a3, . . . , an = e.

For example, the group Zn = {0, . . . , n− 1} under modulo n addition is a
cyclic group. The powers of 1 generate the group, with 1n = 0 = e. Obviously,
a cyclic group is also abelian.

The number of elements in a group is an important basic parameter:
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Def: If there are a finite number, n, of elements in a group, then it is said to
be a finite group, of order n. Otherwise, it is an infinite group.

For an infinite group, the infinity may be denumerable (for example, Z),
or non-denumerable (for example, GL(2)) For a finite group, we may explicitly
give a multiplication table, or Cayley table, as a table with n columns and n
rows. For example consider a group of order five, with elements a, b, c, d, and
e, where e is the identity. A possible multiplication table for such a group is
shown in Table 1.1.

Table 1.1: An example of a multiplication table for a group of order five. The
row labels indicate the left multiplicand and the column labels the right multi-
plicand. Thus, for example, the product db = a may be found in the last row
of the table.

L \R e a b c d
e e a b c d
a a b c d e
b b c d e a
c c d e a b
d d e a b c

We can remark several things concerning this table:

• By the existence and uniqueness of the solution to ax = b, the multiplica-
tion table must be a Latin square – every element occurs exactly once in
each row or column. This is a statement of the so-called “rearrangement
lemma”: If pb = pc, then b = c.

• Since our example is symmetric about the diagonal, it specifies an abelian
group.

• Noting that b = a2, c = ab = a3, d = ac = a4, and e = ad = a5, we see
that this is a cyclic group.

• Finally, we may remark that there exists no group of order five which is
not cyclic. In fact, we have given the only group multiplication table for
order five, up to renaming of the elements.

1.1 Permutation Group

We introduce here a very important class of groups, known as the permutation
or symmetry groups. We denote by Sn the group of all possible permutations
or rearrangements of n objects. As there are n! ways of rearrangeing n objects
(taken to be distinct), Sn is a group of order n!.
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Let us develop some of the notational tools used in discussing Sn. We imag-
ine that we have a set of n “slots”, arranged in a line, into which we are going
to place our n objects, one per slot. For example, we use the array:

(1, 2, 3, . . . , n) (1.1)

to denote that object “1” is in the first slot (the first position in the array),
object “2” is in the second slot, etc. A permutation of these objects may be
written as

p =
(

1 2 3 . . . n
p1 p2 p3 . . . pn

)

. (1.2)

In this case, object “1” in slot one has been replaced by object “p1”, object “2”
in slot two has been replaced by object “p2”, etc.

The identity element is just to “do nothing”:

e =
(

1 2 3 . . . n
1 2 3 . . . n

)

. (1.3)

The inverse of element p above is:

p−1 =
(

p1 p2 p3 . . . pn

1 2 3 . . . n

)

. (1.4)

That is, we have the product e = p−1p:

p−1p =
(

p1 p2 p3 . . . pn

1 2 3 . . . n

) (

1 2 3 . . . n
p1 p2 p3 . . . pn

)

. (1.5)

This notation is a bit more cumbersome than we need, since we don’t really
need to keep track of the slots, only what objects are replacing which other
objects. For example, consider the permutation in S5:

p =
(

1 2 3 4 5
4 1 5 2 3

)

. (1.6)

In this case, object one is being replaced by object 4, which is being replaced
by object two, and object two is being replaced by object one. Also, objects
3 and 5 are being switched. We could write this as (1 → 4 → 2 → 1) and
(3 → 5 → 3). We call these sub-rearrangements “cycles”, and shorten the
notation to p = (142)(35). Permutation p consists of a “3-clycle” and a “2-
cycle”. Note that (142) = (214), but (142) is not the same as (124). The
inverse permutation is:

p−1 =
(

4 1 5 2 3
1 2 3 4 5

)

= (412)(35) = (124)(35). (1.7)

We may check in cycle notation:

pp−1 = [(142)(35)] [(124)(35)] = e (1.8)
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For example, in the first operation, object 1 is replaced by object 2. In the
second operation, object 2 is replaced by object 1, putting object 1 back into
its original position. On final simplification in notation – we may drop the
“one-cycles” as understood, for example:

(123)(4)(5)(6) = (123). (1.9)

As an example, the reader is encouraged to construct the multiplication table
for S3, shown in Table 1.2. Notice that this is a non-abelian group.

Table 1.2: The multiplication table for permutation group S3.

L \R e (12) (13) (23) (123) (132)
e e (12) (13) (23) (123) (132)

(12) (12) e (132) (123) (23) (13)
(13) (13) (123) e (132) (12) (23)
(23) (23) (132) (123) e (13) (12)

(123) (123) (13) (23) (12) (132) e
(132) (132) (23) (12) (13) e (123)

The reader is cautioned that different conventions exist for the notation for
the elements of the symmetry groups. Here, I adopt the convention of Wu-Ki
Tung and of Hamermesh; and not that of Mathews & Walker.

This concludes our introduction to the most basic elements of group theory.
We now proceed to slightly more sophisticated notions.

1.2 Classes

We first introduce the idea of equivalence of two elements of a group:

Def: Given a group G, two elements a, b ∈ G are said to be equivalent if there
exists an element u ∈ G such that

u−1au = b. (1.10)

The equivalence of two elements is denoted a ∼ b.

We remark that this defines a true equivalence relation, since the following
properties of an equivalence are satisfied:

1. Reflexivity: a ∼ a, ∀a ∈ G. To see this, simply take u = e.

2. Symmetry: If a ∼ b, then b ∼ a. Since, if u−1au = b, then a = v−1bv,
where v = u−1.
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3. Transitivity: If a ∼ b, and b ∼ c, then a ∼ c. The reader should verify
this.

If we consider groups of operators, the equivalence of two group elements
may be described as: If you first “do u”, then “do a” and finally “undo u”,
and the result of all this is the operation b, then a and b are equivalent. More
concretely, consider the group of all rotations in three dimensions. A rotation
by 45◦ about the x-axis is equivalent to a rotation by 45◦ about the y axis. To
see this, take u to be a rotation about the z-axis by 90◦:

Rx(45◦) = Rz(−90◦)Ry(45◦)Rz(90◦). (1.11)

More generally, any two rotations by the same angle are equivalent. This gives
a nice intuitive feel for what equivalence means: Since we can find a rotation
relating any two given axes of rotations, rotations by the same angle about
these two axes are equivalent. We remark that in the future we will consider
smaller groups of rotations which may not contain the necessary rotation from
one axis to another. In this case the rotations by the same angle will no longer
be equivalent.

The notion of equivalence will permit a great simplification in the study of
group structure, through the use of equivalence classes:

Def: The subsets of G consisting of elements of G which are equivalent to each
other are called the classes of G.

Some remarks are in order:

1. The simplification we will achieve will be attained through the treatment
of a class as a single object, where the distinctions among its members is
(often) unimportant.

2. Different classes of a group are, by transitivity, disjoint sets. Every element
of the group belongs to some class, that is, the union of all classes is the
entire group.

3. The identity element is always in a class by itself, since

u−1eu = e, ∀u ∈ G. (1.12)

4. In an abelian group, every element is in a class by itself, since in this case

u−1au = a, ∀u ∈ G. (1.13)

1.3 Subgroups

Another important concept in the study of group structure is the possibility
that a group may contain other groups as subsets:
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Def: If (G, ◦) is a group, and S ⊂ G is a non-empty subset of G, such that
(S, ◦) is a group, then S is called a subgroup of G.

For example, {e} is a subgroup ofG, and G itself is a subgroup of G. A subgroup
which is neither of these “trivial” cases is referred to as a proper subgroup of G.
For a more interesting example, consider once again the group of all rotations
in three dimensions. Pick any axis. The set of all rotations about the chosen
axis is a proper subgroup of the entire rotation group.

For finite groups there is an important theorem concerning the order of
subgroups:

Theorem: (Lagrange) The order of a subgroup of a finite group is a divisor
of the order of the group.

Thus, any group of prime order has only two subgroups, {e} and G, and no
proper subgroups. For example, consider the group of rotations about a given
axis by angles 2π(m/n), where n > 1 is a prime number, and m = 0, 1, . . . , n−1.
This group is of prime order, hence has no proper subgroups according to the
theorem. The reader should quickly verify that this is indeed the case.

The proof of Lagrange’s theorem is instructive, and introduces some addi-
tional concepts:

Proof: Consider group G of order g < ∞, and subgroup H of order h. If
H = G, then the theorem is trivially satisfied, with h = g.

Suppose H �= G. Let a be an element in G that is not in H . Denote the
elements of H by

e = H1, H2, H3, . . . , Hh. (1.14)

Form the products

{ae = a, aH2, aH3, . . . , aHh} = “aH” = {aHi|i = 1, 2, . . . , h}. (1.15)

Each product must be distinct, since if aHi = aHj then a−1(aHi = aHj)
yields Hi = Hj . Furthermore, no product aHi is contained in H , since
if aHi ∈ H for some i, then (aHi)H−1

i = a ∈ H (since H−1

i ∈ H). But
a /∈ H by assumption.

Thus, we have two disjoint sets of h distinct elements, H and aH , which
are contained in G. If {z|z ∈ H or z ∈ aH} = G, then g = 2h, and the
theorem holds. Otherwise, there must be an element b ∈ G such that
b /∈ H and b /∈ aH . In this case, we proceed as before, forming the set

bH = {bHi|i = 1, 2, . . . , h}, (1.16)

again finding that bH and H are disjoint sets.

Furthermore, aH and bH are disjoint sets, since if aHi = bHj for some i
and j, then aHiH

−1

j = bHjH
−1

j = b ∈ aH . But b /∈ aH by assumption. If
the sets H , aH , and bH comprise all of the elements of G then g = 3h and
the theorem holds. Otherwise, we repeat the process of finding disjoint
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subsets with h elements each, until we have exhausted the elements of
G. Thus, G is the sum of a finite number of distinct sets containing h
elements each:

G = H + aH + bH + . . .+ kH, (1.17)

and hence g = mh wherem is an integer (called the index of the subgroup
H under the group G). This completes the proof.

The sets of elements of the form aH , where a ∈ G and H is a subgroup of
G are called the left cosets of H in G. We could just as easily have proven the
theorem using right cosets, that is sets of the form Ha.

We may note that for a finite group G, any element a will have some lowest
power p, called its order, such that ap = e. This is true because the sequence
a, a2, a3, . . . cannot continue to generate new elements for a finite group; it must
eventually repeat. The sequence a, a2, a3, . . . , ap = e is called the period of a.
Notice now that the period of a is the smallest subgroup of G which contains
a. Since it is a subgroup, the order of a must be a divisor of the order of G, for
any finite group G. Thus, we find in particular that any finite group of prime
order must be a cyclic group (and hence also abelian).

It is useful to keep in mind these facts as we examine the structure of groups.

Def: If a subgroup S ⊂ G is such that

g−1Sg = S, ∀g ∈ G, (1.18)

then S is called an invariant subgroup of G.

The notation Sg, where S is a set of elements and g is an element, means the
set of elements obtained by multiplying every element of S by g. An invariant
subgroup consists of classes – if it contains part of a class, it must contain the
entire class. For example, any subgroup of an abelian group is an invariant
subgroup. For an invariant subgroup we also have that:

gS = Sg, ∀g ∈ G. (1.19)

That is, the left and right cosets of S in G are identical.
To get a better intuition into the notion of an invariant subgroup, the reader

should ponder the following examples of subgroups of the rotation group:

1. Consider the group of all proper and improper rotations (that, is, we
include the spatial inversion, or parity operator, P). The group of all
proper rotations is an invariant subgroup of this group.

2. Consider the group of all (proper) rotations. The subgroup of all rotations
about a specified axis is not an invariant subgroup.

Finally, the concepts of “simple” and “semi-simple” groups will be useful in
the classification of groups in terms of basic subgroup structure:

Def: A group is called simple if it does not contain any proper invariant sub-
groups. A group is called semi-simple if it does not contain any abelian
invariant subgroups.
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1.4 Some Groups

We’ll conclude this chapter with a table of some groups that we encounter
frequently:

Symbol Elements Operation

Z integers addition
Zn 0, 1, . . . , n− 1 addition, modulo n
Q rationals addition
Q∗ rationals, except 0 multiplication
R reals addition
R∗ reals, except 0 multiplication
C complex addition
C∗ complex, except 0 multiplication
S complex on unit circle multiplication
Sn nth roots of unity multiplication
Sn permutations of n objects successive permutations
GL(n) non-singular complex n× n matrices matrix multiplication
GL(nR) non-singular real n× n matrices matrix multiplication
SL(n) GL(n) with determinant one matrix multiplication
U(n) n× n unitary matrices matrix multiplication
SU(n) U(n) with determinant one matrix multiplication
O(n) n× n real unitary matrices matrix multiplication
SO(n) ≡ O+(n) O(n) with determinant one matrix multiplication

The “G” in the symbols stands for “general”, the “L” is for “linear”, the
“U” is for “unitary”, and the “O” is for “orthogonal”. For the matrix groups,
the “S” is for “special”, and means deteminant one.

1.5 Exercises

1. Which of the following define groups? If not a group, give at least one
axiom which is violated.

(a) The set of all real numbers, excluding zero, under division. That
is, if a and b are non-zero real numbers, the proposed binary group
operation is c = a ◦ b ≡ a/b.

(b) The set of all Hermitian n×n matrices, under matrix multiplication.

(c) The set of all Hermitian n× n matrices, under matrix addition.

(d) The set of all operations (rotations and reflections) which leave a
tetrahedron invariant. For convenience, you may wish to imagine
a coordinate system in which the origin is at the “center” of the
tetrahedron (this is a “fixed” point under the symmetry operations).

2. Prove the five theorems stated at the bottom of page 2.
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3. Write down the multiplication table, using cycle notation, for symmetry
group S4. You don’t need to do the whole table if you find it too tedious,
but at least do all columns, and enough rows to show an example of each
cycle structure.

4. Decompose symmetry group S4 into classes.

5. List all of the proper subgroups of symmetry group S4.

6. Find all of the invariant subgroups of symmetry group S4.
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Chapter 2

Crystallographic Point
Groups

Frank Porter Ph 129b January 4, 2009

Cyrstals are characterized by periodic structure, or symmetry. The notion
of a point group has to do with the symmetry operations on a geometric object,
with a fixed point, that is, those operations such as rotations and reflections
which leave the object invariant. Those point symmetries which are also con-
sistent with periodic crystal structure (translational symmetry) yield the Crys-
tallographic Point Groups. Thus, for example, the symmetry of the cube is
consistent with crystal structure, while that of the icosahedron is not. To be
explicit, we have the definition:

Def: A three-dimensional lattice of points is said to have translational symme-
try if there exists some set of “primitive” translations, {a1, a2, a3} such
that every point in the lattice may be reached from another point by a
translation of the form:

T(t1, t2, t3) = t1a1 + t2a2 + t3a3, (2.1)

where t1, t2, t3 are integers.

There are a total of 32 Crystallographic Point Groups (we’ll just say “point
groups” here for brevity). These are listed in this chapter.

2.1 Notation

We use the notation Rx(θ) to indicate a rotation by angle θ about the x axis.
We use the notation Mx to indicate a mirror plane in which the normal to the
mirror is along the x-axis.

There exists more than one system of notation for the groups we discuss
here. The simple Schönflies notation will suffice here. In this notation, a Cn

13
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×

Figure 2.1: The uniaxial group C1.

is used to designate an n-fold rotation axis. For example, C4 implies a four-fold
rotation axis (with associated rotations of ±π/2, π, e = 2π). The notation may
also be used to indicate a particular rotation, e.g., C3 indicates a rotation by
2π/3 about the designated axis, while C−1

3 indicates a rotation by −2π/3.
We may add the inversion operator (parity) I to obtain the improper rota-

tions. In Schönflies notation, S2 = I. Closely associated with this is the mirror
reflection, indicated by σ (for a reflection in a plane). If the reflection is through
a plane perpendicular to a specified rotation axis, then an h subscript is added,
giving σh. It is readily seen that a reflection followed by a rotation by π about
the axis perpendicular to the mirror plane is the same as an inversion:

S2 = I = C2σh. (2.2)

We generalize the S2 notation to include n-fold axes. Hence,

Sn = Cnσh = σhCn. (2.3)

It is helpful to have a pictorial representation. We will adopt something
known as “stereograms”. This will be developed in the course of listing the 32
point groups.

2.2 The 32 Crystallographic Point Groups

We start with a theorem, which limits the possible symmetry axes that need to
be considered:

Theorem: The only possible proper rotations consistent with translational
symmetry are Cn, n = 1, 2, 3, 4, 6.

Proof of this is left to the reader.
We are ready to make the list. We’ll start with the groups with the least

symmetry. We start with what are known as the “uniaxial” groups, those with
a single n-fold axis. The first is C1, see Fig. 2.1.

In this figure, we see a dashed circle and a ×. For now, the reader may wish
to imagine that there is a disk, represented by the circle, with a peg sticking up
above the plane of the disk at the ×. Thus, there is no symmetry, either under
rotations or mirrors (we suppose that there is no symmetry under splitting the
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Figure 2.2: The uniaxial groups C2, C3, C4, and C6.
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Figure 2.3: The uniaxial groups C1h, C2h, C3h, C4h, and C6h.

peg lengthwise in half). An anisotropic array of lattice sites may have this
symmetry (or lack of symmetry).

Next, Fig. 2.2 shows the remaining uniaxial groups containing no mirror
planes. Again, you may imagine that the × marks are pegs sticking up from the
plane of the disk. Alternatively, you may imagine that the disk has only one peg,
and the additional × marks show what happens to the peg under the actions
of the group. Thus, for example, C3 has a three-fold symmetry: rotations by
±2π/3 leave it invariant.

Next, we add a mirror plane, first in the plane of the “disk”, see Fig. 2.3.
We have added two new features to our graphical notation: The outline of
the disk has become solid, rather than dashed. This indicates that there is a
mirror plane in the plane of the disk. Also, we have added small circle symbols
(each here overlapping a ×, but this isn’t always the case). You may think of
the circle as indicating a peg sticking out below the plane of the disk. Thus,
the illustration for C1h indicates symmetry with respect to a mirror reflection
through the plane of the disk. The “h” in the Schönflies notation indicates a
horizontal mirror plane, where “horizontal” is the plane of the disk.

We get four more groups by taking away the horizontal mirror plane and
adding a vertical mirror plane, see Fig. 2.4. Note that C1v is the same as C1h,
since there is no uniquely defined principal axis. Also, note that adding one
vertical mirror plane implies others in general. For example, in the case of C2v,
adding a mirror plane (My) in the x− z plane gives one also in the y− z plane
(assuming the principal two-fold rotation axis is the z-axis), since:

Rz(π)My = Mx. (2.4)
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Figure 2.4: The uniaxial groups C2v, C3v, C4v, and C6v.
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Figure 2.5: The uniaxial groups S2, S4, and S6.

We may also consider the improper rotations, starting with the simple in-
version, S2. The inversion followed by a rotation by angle π is the same as a
mirror, e.g., C1h, hence does not generate a new group. The inversion followed
by a rotation by π/2 generates S4. Ultimately, we end up with three new groups
by considering the improper rotations with a single principal axis, see Fig. 2.5.
Note that S2 and S6 contain the inversion symmetry, while S4 does not. Also, be
aware that the notation for these groups has nothing to do with the overlapping
notation for the permutation groups.

This completes the “uniaxial” groups. We next consider adding a two-fold
rotation axis perpendicular to the principal axis of Cn, obtaining the “dihedral”
groups, Dn. These are shown in Fig. 2.6. Note that adding such a two-fold axis
to C1 just gives C2, as C1 doesn’t have any well-defined axis in the first place.

×

×

×

×
×

D2 3 4 6DDD

×
×

×
×

×
×

×

×

×

×

Figure 2.6: The dihedral groups D2, D3, D4, and D6.
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Figure 2.7: The dihedral groups D2h, D3h, D4h, and D6h.
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Figure 2.8: The dihedral groups D2d and D3d.

We may likewise add a two-fold rotation axis perpendicular to the principal
axis of Cnh, obtaining the additional dihedral groups, Dnh, see Fig. 2.7. Adding
such an axis to C1h just gives C2v, rather than a new group.

We may also add a two-fold axis perpendicular to the principal axis for the
improper rotation groups Sn. In the case of S2, we obtain C2h rather than a
new group. Thus, we have two new dihedral groups, called D2d and D3d. They
are graphed in Fig. 2.8.

This brings the total to 27 groups so far. There are an additional five
groups, known as the “cubic groups” that do not have a principal axis with
all other axes perpendicular to it. All of these remaining five have a three-fold
axis equidistant from three mutually perpendicular two- or four-fold axes. The
first group is the group of proper rotations of the tetrahedron (that is, those
rotations which take a tetrahedron with some orientation into a tetrahedron
with the same orientation, with indistinguishable faces). This group is labeled
T .

The second of these groups is the full tetrahedral symmetry group, Td, in-
cluding mirror planes. The third group, Th, is obtained by adding the inversion
operation to T . Note that the tetrahedron is not invariant under the opera-
tions of this group. The fourth group, O, is the group of proper rotations of
the octahedron. Equivalently, it is the group of proper rotations of the cube,
noting that the faces of the octahedron may be identified with the vertices of
a cube, and vice versa. The final group is the full symmetry group Oh of the
octahedron, obtained by adding the inversion to O or to Td.
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2.3 Exercises

1. Give the multiplication table for D3h.

2. List the classes of C6v.

3. Consider the symmetry group, C4v, of the square, consisting of the rota-
tions about the axis perpendicular to the square, and reflections about the
vertical, horizontal, and diagonal axes in the plane of the square (but no
mirror plane in the plane of the square). List all of the group elements,
and classify them into classes of equivalent elements. Find all subgroups
and identify the invariant subgroups.

4. List the elements of the tetrahedral symmetry group Td, and categorize
by class.

5. We have looked at the permutation group S4 and the tetrahedral sym-
metry group Td. Show that these two groups are isomorphic, giving an
explicit mapping between the elements of the two groups.



Chapter 3

Representation Theory

Frank Porter Ph 129b January 27, 2009

Groups may be very abstract objects and operations in general, and it would
be convenient if we could always put them in some standard, equivalent form,
and in particular a form that lends itself to easy manipulation. This is the
motivation for the following discussion.

Def: Let (G, ◦) and (H, ∗) be two groups. These groups are called isomorphic
(G ∼= H) if:

1. There exists a one-to-one mapping φ : G → H from G onto H such
that

2. φ(a ◦ b) = φ(a) ∗ φ(b), ∀a, b ∈ G.

Note that (1) implies that G and H have the same order, and (2) implies that
the multiplication tables ofG and H are “identical”, up to relabeling of elements
(as specified by the mapping φ). Statements about the structure of group G are
equivalent to statements about the structure of group H , and we may choose
to study either case for convenience.

A somewhat less rigid correspondence is given by:

Def: Let (G, ◦) and (H, ∗) be two groups. A mapping φ from G into H is called
a homomorphism if: φ(a ◦ b) = φ(a) ∗ φ(b), ∀a, b ∈ G.

In this case, the mapping may be many-to-one. An extreme case occurs with
H being a group of order one (the identity element), and all elements of G are
mapped into this element of H .

Def: An isomorphism of a group into itself is called an automorphism. A ho-
momorphism of a group into itself is called an endomorphism.

In physical applications, the most prevalent isomorphisms and homomor-
phisms of abstract groups are into matrix groups:

19
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Def: A (matrix) representation of a group G is a group of matrices (with group
multiplication given by matrix multiplication) obtained by a homomor-
phism of G into the set of n× n matrices. A matrix representation which
is an isomorphism is called a faithful representation of the group.

It is perhaps worth demonstrating that if G is represented by non-singular
matrices D, then D(e) = I is the identity matrix: We start by noting that
D(e)2 = D(ee) = D(e). Now,

D(g−1) = D(g−1)I
= D(g−1)D(g)D(g)−1

= D(g−1g)D(g)−1

= D(e)D(g)−1.

Multiplying by D(e), we find, D(e)D(g−1) = D(e)D(g)−1. Multiply both sides
now by D(e)−1, to find that D(g−1) = D(g)−1. Thus, we see that, in a non-
singular representation, the matrix representing the inverse of a group element
is just the inverse of the matrix representing the original group element. In
particular,

D(e) = D(g)D(g−1)
= D(g)D(g)−1

= I.

3.1 Poincaré Group

An important example of a group representation is the representation of the
Poincaré group with a set of 5 × 5 matrices. The Poincaré group is also known
as the inhomogeneous Lorentz group, and is denoted by L̄. It is the group con-
sisting of all homogeneous Lorentz transformations (velocity boosts, rotations,
and reflections, including time-reversal), plus all translations in spacetime. The
abstract group L̄ may be represented by the set of all 5×5 matrices of the form:

Λ(M, z) =

⎛

⎜

⎜

⎜

⎝

z1

M
z2
z3
z4

0 0 0 0 1

⎞

⎟

⎟

⎟

⎠

, (3.1)

where M is a 4 × 4 matrix which “preserves the invariant interval”1 when mul-
tiplying 4-vectors, and z = (z1, z2, z3, z4) is any element of R4.

1The invariant interval (squared) between vectors a and b is (a − b)2 = (a4 − b4)2 − (a1 −
b1)2 − (a2 − b2)2 − (a3 − b3)2.
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Thus, an inhomogeneous Lorentz transformation is a transformation of the
form:

{x′} = Λ(M, z){x} = {Mx+ z}, (3.2)

where we use the artifice for any four-vector x:

{x} ≡

⎛

⎜

⎜

⎜

⎝

x1

x2

x3

x4

1

⎞

⎟

⎟

⎟

⎠

. (3.3)

This permits us to express an inhomogeneous transformation as a linear trans-
formation.

Our representation is actually isomorphic to L̄. Note, however, that the
n × n identity matrix (pick any n) is also a representation for L̄, although no
longer an isomorphism. In fact, the n × n unit matrix is a representation for
any group, although “trivial”.

There are some important subgroups of the Poincaré group, such as:

1. The group Tr, of all pure translations in spacetime is a proper subgroup
of L̄. A representation for Tr is the set of matrices of the form:

Λ(I, z) =

⎛

⎜

⎜

⎜

⎝

1 0 0 0 z1
0 1 0 0 z2
0 0 1 0 z3
0 0 0 1 z4
0 0 0 0 1

⎞

⎟

⎟

⎟

⎠

, (3.4)

2. The group L, of homogeneous Lorentz transformations is another sub-
group of L̄, with a representation:

Λ(M, 0) =

⎛

⎜

⎜

⎜

⎝

0

M
0
0
0

0 0 0 0 1

⎞

⎟

⎟

⎟

⎠

. (3.5)

Note that both Λ(M, 0) and M itself provide representations for L.

Intuitively, we might suppose that Tr is in fact an invariant subgroup of
L̄. For example, if we first perform a rotation, then do a translation, then
“undo” the rotation, we think the overall result should be a translation. See
Fig. 3.1. However, our intuition may become strained when we include boosts
and reflections, so let us see whether we can make a convincing demonstration.

If Tr is an invariant subgroup of L̄, we must show that:

Λ−1(M, z′)Λ(I, z)Λ(M, z′) ∈ Tr, ∀Λ(M, z′) ∈ L̄. (3.6)
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Tr(0,0,1) R ( )/- ππR (y / 2 )

Tr(-1,0,0)

Figure 3.1: Illustration suggesting that Ry(−π/2)Tr(0, 0, 1)Ry(π/2) =
Tr(−1, 0, 0).

So far, we have avoided knowing the “multiplication table” for L̄. But now life
would be much easier if we knew it. So, what is

Λ(M ′, z′)Λ(M ′′, z′′)? (3.7)

We could find the answer by considering the faithful representation:

Λ(M, z) =

⎛

⎜

⎜

⎜

⎝

z1

M
z2
z3
z4

0 0 0 0 1

⎞

⎟

⎟

⎟

⎠

, (3.8)

and seeing what ordinary matrix multiplication gives us. The reader is encour-
aged to try this.

However, it is perhaps more instructive to remember that the elements of L̄
are transformations in spacetime, and approach the question by looking at the
action of Λ ∈ L̄ on an arbitrary 4-vector. Thus, recalling that Λ(M, z){x} =
{Mx+ z}, we have:

Λ(M ′, z′)Λ(M ′′, z′′){x} = Λ(M ′, z′){M ′′x+ z′′}
= {M ′(M ′′x+ z′′) + z′}
= Λ(M ′M ′′,M ′z′′ + z′){x}. (3.9)

This relation holds for any 4-vector x, hence we have the multiplication table:

Λ(M ′, z′)Λ(M ′′, z′′) = Λ(M ′M ′′,M ′z′′ + z′). (3.10)

To see whether Tr is an invariant subgroup of L̄, we also need to know the
inverse of Λ ∈ L̄: What is Λ−1(M, z)? Since the identity element is obviously
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the transformation where we “do nothing”, Λ(I, 0), we must find Λ−1 ∈ L̄ such
that

Λ−1(M, z)Λ(M, z) = Λ(I, 0). (3.11)

Since Λ−1 ∈ L̄, we must be able to parameterize it with a matrix M ′ and a
translation z′: Λ−1(M, z) = Λ(M ′, z′), so that

Λ(M ′, z′)Λ(M, z) = Λ(I, 0). (3.12)

Use the multiplication table to obtain:

Λ(I, 0) = Λ(M ′, z′)Λ(M, z)
= Λ(M ′M,M ′z + z′). (3.13)

Thus,
Λ−1(M, z) = Λ(M−1,−M−1z). (3.14)

We are finally ready to prove that Tr is an invariant subgroup of L̄:

Λ−1(M, z′)Λ(I, z)Λ(M, z′) = Λ(M−1,−M−1z′)Λ(M, z + z′) (3.15)
= Λ(M−1M,M−1(z + z′) −M−1z′)
= Λ(I,M−1z) ∈ Tr ∀Λ(M, z′) ∈ L̄.

Hence, Tr is an invariant subgroup of L̄.
Given any element Λ(M, 0) ∈ L, we have an isomorphism of Tr into Tr:

Λ(I, z) → Λ(I,M−1z). (3.16)

That is, we have an automorphism on Tr.

3.2 Regular Representation

For any finite groupG = {g1, g2, . . . , gn}, with multiplication table gigj = gk, we
may construct an isomorphic representation by a set of n×n matrices. Consider
the following expression:

gigj = gmΔm
ij . (3.17)

A formal sum over m = 1, 2, . . . n is implied here. In fact, only one term in the
sum is non-zero, with

Δm
ij = δm

k , (3.18)

where δm
k is the Kronecker delta, as follows from the group multiplication table

(index k is a function of i and j). We have the theorem:

Theorem: The regular representation, formed by the matrices (Δi)k
j = Δk

ij , i =
1, 2, . . . , n, forms an isomorphic representation of G.
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Proof: To understand a bit better what is going on, note that the matrices
consist entirely of zeros and ones, where the matrix representing group
element a ∈ G has ones in locations such that a times an element of G
specified by the column index gives an element of G given by the row
index. Consider now:

agk = gmΔm
ak, (3.19)

where we use the group element a also as its index in the set of elements.
Notice that

(Δa)m
k = δm

ak
, (3.20)

where gak
≡ agk determines index ak. Suppose ab = c, for a, b, c ∈ G. Let

us check that this multiplication table is preserved by our representation:

(Δa)k
m(Δb)m

j = δk
am
δm
bj

= δk
abj

= δk
cj

= (Δc)k
j . (3.21)

This follows since

gabj
≡ agbj

= abgj

= cgj

= gcj , (3.22)

that is, abj = cj . The remaining aspects of the proof are left to the reader.

We deal in the following with finite-dimensional representations.

3.3 Equivalence of Representations

Def: Two n× n matrix representations, D and D′, where D(g) and D′(g) are
the matrices representing group element g in the two representations, are
said to be equivalent if there exists a non-singular matrix S such that

D′(g) = S−1D(g)S, ∀g ∈ G. (3.23)

It is readily checked that this defines a true equivalence relation; the reader
is encouraged to do so. Note that the matrix S need not be a member of either
representation. If D and D′ are equivalent representations, we write D ∼ D′.

A transformation of this form may be regarded as simply a change in ba-
sis for the vector space upon which our matrices operate. Hence, equivalent
representations are identical as far as the intrinsic internal group structure is
concerned. Presuming we are really interested in this intrinsic structure, we
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would like to be able to concentrate on those statements which are independent
of “coordinate” system. That is, we are interested in studying quantities which
are invariant with respect to similarity transformations.

In principle, there are n such invariant quantities, corresponding to the n
eigenvalues. However, we typically don’t need to study all n. In fact, just one
invariant, the trace (sum of the eigenvalues), contains sufficient information for
many purposes. Recall

Tr [D(g)] =
n
∑

i=1

Dii(g). (3.24)

This is invariant under similarity transformations:

Tr [D′(g)] = Tr
[

S−1D(g)S
]

= Tr
[

SS−1D(g)
]

= Tr [D(g)] . (3.25)

3.4 Characters

The trace of a representation matrix plays a very important role, so it gets a
special name:

Def: The trace of D(g) is called the character of g in the representation D.

The character is usually denoted with the Greek letter chi:

χ(g) = Tr [D(g)] . (3.26)

We have seen that equivalent representations have the same set of characters.
We have the further fact:

Theorem: Given a representation D, any two group elements belonging to the
same class have the same character.

The proof of this is straightforward: Suppose that g1 and g2 belong to the same
class in G. Then there exists an element h ∈ G such that

h−1g1h = g2. (3.27)

Thus, in representation D, we must have:

D
(

h−1
)

D (g1)D(h) = D (g2) . (3.28)

Note also that D(h)D(h−1) = D(e) (we are not assuming that D(h)−1 exists
here, as our representation could be singular). Thence,

χ(g2) = Tr [D(g2)]
= Tr

[

D(h−1)D(g1)D(h)
]
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= Tr
[

D(h)D(h−1)D(g1)
]

= Tr [D(e)D(g1)]
= Tr [D(eg1)]
= Tr [D(g1)]
= χ(g1). (3.29)

Thus, given a representation D, we can completely specify the character
structure by evaluating the character for one member of each class – the char-
acter is a “class function”.

We are often interested in more than one representation for a given group G.
In this case, we can add labels to the representations to distinguish them, for
example, D(a), D(b), . . .. We similarly label the characters, e.g., χ(a), χ(b), . . .. If
we have a class, say Ci, in representation (a), we may refer to the “character of
the class” as χ(a)(Ci).

3.5 Unitary Representations

Unitary matrices are especially nice. They preserve the lengths of vectors when
operating on a complex vector space. The inverse is easy to compute: If U is
a unitary matrix, then U−1 = U †, where the † means to take the transpose of
the complex conjugate matrix. Thus, it is quite nice to learn that:

Theorem: If G is a finite group, then every non-singular representation (that
is, representation by non-singular matrices) is equivalent to a unitary rep-
resentation.

Thus, at least for finite groups, it is sufficient to consider representations by
unitary matrices. The proof of this theorem is instructive:

Proof: We suppose we are given a (non-singular, but possibly non-unitary) n×
n representation,D, ofG. We may regard an element of the representation
as a linear operator on an n-dimensional vector space. Define a scalar
product on the vector space by

(x, y) ≡
n
∑

i=1

x∗i yi, (3.30)

where x and y are any pair of vectors.

Suppose that we have a matrix U with the property that:

(Ux,Uy) = (x, y), ∀x, y. (3.31)

That is, U “preserves the scalar product”. Let us see what this condition
requires for U :

(Ux,Uy) =
n
∑

i=1

(Ux)∗i (Uy)i
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=
n
∑

i=1

⎡

⎣

n
∑

j=1

U∗
ijx

∗
j

⎤

⎦

[

n
∑

k=1

Uikyk

]

=
n
∑

i=1

n
∑

j=1

n
∑

k=1

(

U †)
ji
Uikx

∗
jyk

=
n
∑

j=1

n
∑

k=1

(

U †U
)

jk
x∗jyk

=
n
∑

j=1

x∗jyj (by assumption). (3.32)

But x and y are arbitrary vectors, hence we must have
(

U †U
)

jk
= δjk, (3.33)

or U † = U−1, that is U must be a unitary matrix.

We wish to show that our given representation, D, is equivalent to some
unitary representation, say D′. For this to be true there must exist a
transformation T such that

D′ = T−1DT, (3.34)

where we mean that this transformation is applied to every element of the
representation. If we can find a transformation T such that

(D′(a)x,D′(a)y) = (x, y), ∀x, y and ∀a ∈ G, (3.35)

then by the above discussion we will have found a unitary representation.

We construct a suitable transformation by the following technique, which
introduces an approach that will be useful elsewhere as well. Let g be the
order of G. Define an “average” over the elements of the group:

{x, y} ≡ 1
g

∑

a∈G

(D(a)x,D(a)y) . (3.36)

In a sense {x, y} is the average scalar product over all group elements,
with respect to representation D, acting on the vectors x and y. Notice
that {x, y} itself defines a scalar product, since

1. {x, x} ≥ 0 and {x, x} = 0 if and only if x = 0;

2. {x, y} = {y, x}∗;
3. {x, cy} = c{x, y};
4. {x1 + x2, y} = {x1, y} + {x2, y}.
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We remark that it is the first property that requiresD to be a non-singular
representation.

Now let b be any element of G, and consider:

{D(b)x,D(b)y} =
1
g

∑

a∈G

(D(a)D(b)x,D(a)D(b)y)

=
1
g

∑

a∈G

(D(ab)x,D(ab)y)

=
1
g

∑

a∈G

(D(a)x,D(a)y)

= {x, y}. (3.37)

The third step is valid because the multiplication table is a Latin square:
Summing products ab over all a ∈ G is the same as summing ab over all
ab ∈ G; the only difference is the ordering in the sum. This “invariance”
of the sum is a property that will often come in handy.

Thus, we have shown that D(b) is a unitary operator (that is, it preserves
the scalar product) with respect to the {, } scalar product. It is not nec-
essarily a unitary operator with respect to the (, ) scalar product, that is
D is not necessarily a unitary matrix representation. Somehow, we would
like to find a transformation which takes this desired unitary property
under the {, } scalar product back into the (, ) scalar product. In other
words, we wish to transform from a basis suitable for (, ) to one suitable
for {, }.
Consider a set of n orthonormal vectors with respect to (, ):

(ui, uj) = δij , (3.38)

and a set orthonormal with respect to {, }:
{vi, vj} = δij . (3.39)

Let T be the transformation operator which takes u’s to v’s:

vi = Tui. (3.40)

An arbitrary vector x may be expanded in the u basis as:

x =
n
∑

i=1

xiui, (3.41)

where the xi are the components in the u basis. Consider the transformed
vector Tx:

Tx = T

n
∑

i=1

xiui =
n
∑

i=1

xiTui =
n
∑

i=1

xivi. (3.42)
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Thus, the components of the transformed vector in the new basis v are
the same as the components of the un-transformed vector in the old basis
u. We have

{Tx, T y} =
n
∑

i=1

n
∑

j=1

x∗i yj{vi, vj}

=
n
∑

i=1

x∗i yi

= (x, y). (3.43)

Now consider the representation

D′ ≡ T−1DT, (3.44)

which is equivalent to D. Evaluate the scalar product:

(D′(a)x,D′(a)y) =
(

T−1D(a)Tx, T−1D(a)Ty
)

= {D(a)Tx,D(a)Ty} (since {x, y} = (T−1x, T−1y))
= {Tx, T y} (since D(a) is a unitary operator wrt {, })
= (x, y). (3.45)

Hence, D′(a), for any a ∈ G, is a unitary operator with respect to the (, )
scalar product. Therefore, D′(a) is a unitary matrix. This completes the
proof.

3.6 Reducible and Irreducible Representations

Def: Given any two representations, D(1) and D(2), of a group G, we may
construct a new representation simply be forming the matrix direct sum:

D(g) =
(

D(1)(g) 0
0 D(2)(g)

)

≡ D(1)(g) ⊕D(2)(g). (3.46)

A representation which is equivalent to a representation of this form is
called fully reducible. A representation which is equivalent to a represen-
tation of the form:

(

D(1)(g) A(g)
0 D(2)(g)

)

(3.47)

is called reducible. A representation which is not reducible is called irre-
ducible

Note that the definition of reducibility is equivalent to the statement that
there exists a proper invariant subspace, V1, in the Euclidean space operated on
by the representation. The further restriction of full reducibility is equivalent
to the statement that the orthogonal complement of V1 is also an invariant
subspace.
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Theorem: If a reducible representation, D(G), is equivalent to a unitary rep-
resentation, then D(G) is fully reducible.

Proof: Let U(G) be a unitary representation which is equivalent to D(G), and
let V be the Euclidean space operated on by U . By assumption, there ex-
ists a proper invariant subspace V1 ⊂ V under the actions of U(G). Define
an orthonormal basis for V , consisting of the vectors {ei, i = 1 . . . n}, such
that the first n1 basis vectors span V1. Let V2 be the othogonal comple-
ment of V1, spanned by basis vectors {ei, i = n1+1 . . . n}. We demonstrate
that V2 is also an invariant subspace under U(G). Since U(G) is unitary,
we have, for any g ∈ G:

(U(g)ei, U(g)ej) = (ei, ej) (3.48)

Suppose ej ∈ V1 and ei ∈ V2. Then U(g)ej ∈ V1, since V1 is invariant.
Further, since (ei, ej) = 0, U(g)ei is orthogonal to any vector in V1, since
we could pick any ej ∈ V1, and the set of all vectors {U(g)ej|ej ∈ V1}
spans V1. Thus, U(g)ei is in V2. Therefore, V2 is also an invariant subspace
under U(G). QED

Since we will be dealing here with representations which are equivalent to
unitary representations, we may assume that our representations are either fully
reducible or irreducible. In our study of group structure, two equivalent irre-
ducible representations are not counted as distinct.

The irreducible representations (or “irreps”, for short) are important because
an arbitrary representation can be expressed as a direct sum of irreps. For
illustration,

D(g) =

⎛

⎜

⎝

D(1)(g)
D(2)(g)

0

0
D(3)(g)

D(3)(g)

⎞

⎟

⎠
= D(1)(g)⊕D(2)(g)⊕2D(3)(g).

(3.49)
Note that the reduction of a representation to irreps may include some irreps
multiple times.

There are some important properties of irreps, under the name of “Schur’s
lemmas”:

Theorem: If D and D′ are irreps of G, and if matrix A satisfies

D(g)A = AD′(g), ∀g ∈ G, (3.50)

then either D ∼ D′ or A = 0.

Proof: Note that A may not be a square matrix, as the dimensions of repre-
sentations D and D′ could be different. We may consider D and D′ to be
sets of operators on vector spaces V and V ′, respectively. The range of A
is

RA = {x ∈ V : x = Ax′, where x′ ∈ V ′}. (3.51)
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RA is an invariant subspace of V , since

D(g)x = D(g)Ax′, for any x ∈ RA

= AD′(g)x′, (by assumption)
∈ RA, since D′(g)x′ ∈ V ′. (3.52)

But since D is an irrep, this means that either RA = V or RA = {0} (that
is, A = 0).

Now consider
N ′ ≡ {x′ ∈ V ′ : Ax′ = 0}. (3.53)

This is referred to as the null space of A in V ′. It is an invariant subspace
of D′ in V ′ since, if x′ ∈ N ′, then

AD′(g)x′ = D(g)Ax′ = D(g)0 = 0. (3.54)

But D′ is irreducible, therefore either N ′ = V ′ (hence A = 0) or N ′ = {0}.
IfN ′ = {0}, then the equationAx′ = Ay′ implies x′ = y′, and the mapping
A is one-to-one and onto.

We have so far shown that either A provides an isomorphism between V
and V ′ or A = 0. If an isomorphism, then A is invertible, and

D(g) = AD′(g)A−1, ∀g ∈ G. (3.55)

That is, D and D′ are equivalent representations in this case. We remark
that two irreps can be equivalent only if they have the same dimension.

Theorem: D is an irrep if and only if, given matrix A such that

AD(g) = D(g)A, ∀g ∈ G, (3.56)

then A is a constant times the identity matrix.

Proof: Consider the eigenvalue equation

Ax = λx, (3.57)

where x ∈ V . If x is an eigenvector with eigenvalue λ, then

AD(g)x = D(g)Ax = λD(g)x ∀g ∈ G. (3.58)

That is, D(g)x is also an eigenvector of A belonging to eigenvalue λ. The
subspace of eigenvectors belonging to λ is invariant with respect to D.
Hence, there are three possiblities: either D is reducible, or this subspace
is V , or the subspace consists only of x = 0. If the subspace is V , then
A has only one eigenvalue, and A = λI. If the subspace is x = 0, then
A = 0.
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Note that the second theorem provides a test for irreducibility: Given a
representation D, we look for a matrix A such that AD(g) = D(g)A for all
g ∈ G, and see whether it must be true that A = λI. For example, consider an
abelian group G. Certainly any one-dimensional representation is irreducible,
since any number A is a constant times 1. Suppose we have a representation of
dimension larger than one. Since G is abelian, we must have

D(a)D(b) = D(b)D(a), ∀a, b ∈ G. (3.59)

Thus, pick A = D(a) for some element a of G. Then AD(b) = D(b)A for all
b ∈ G. But if A = λI for every a ∈ G, then D is reducible. Suppose there
exists a ∈ G such that A = D(a) �= constant × I. Then by the lemma, D must
be reducible. We have just shown that all irreps of an abelian group must be
one-dimensional.

To pursue this example further with a concrete case, consider the abelian
group Z5 = {0, 1, 2, 3, 4} (with group multiplication given by addition modulo
five). The inequivalent irreducible matrix representations are shown in Ta-
ble 3.1; note that they are all one-dimensional.

Table 3.1: The irreducible representations of Z5.

g \ irrep D(1) D(2) D(3) D(4) D(5)

0 1 1 1 1 1
1 1 e2πi/5 e4πi/5 e6πi/5 e8πi/5

2 1 e4πi/5 e8πi/5 e2πi/5 e6πi/5

3 1 e6πi/5 e2πi/5 e8πi/5 e4πi/5

4 1 e8πi/5 e6πi/5 e4πi/5 e2πi/5

3.7 Orthogonality Theorems

The Schur’s lemmas are also useful in proving the very important “orthogonality
relations”. These theorems are important tools in determining the essential
structure of the irreps for a group.

The first theorem may appropriately be referred to as the “general orthog-
onality relation”.

Theorem: If D(i) and D(j) are irreps, where i �= j label inequivalent irreps,
then

∑

g∈G

D(i)(g)μνD
(j)(g−1)αβ =

h

�i
δijδανδβμ, (3.60)

where h is the order of the group, and �i is the dimension of representation
D(i).
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Proof: Let A be any �i × �j matrix (�i rows and �j columns). Define

MA ≡
∑

g

D(i)(g)AD(j)(g−1). (3.61)

Note the use once again of the technique of summing over the group. Now
consider

D(i)(b)MA =
∑

g

D(i)(b)D(i)(g)AD(j)(g−1)

=
∑

g

D(i)(b)D(i)(g)AD(j)(g−1)D(j)(b−1)D(j)(b)

=

[

∑

g

D(i)(bg)AD(j)((bg)−1)

]

D(j)(b)

= MAD
(j)(b), (by the rearrangement lemma).(3.62)

By Schur’s lemma, either D(i) ∼ D(j) (that is, i = j) or MA = 0.

If i �= j, then MA = 0. Picking A such that Aνα = 1 and all other elements
are zero, we obtain:

∑

g

D(i)(g)μνD
(j)(g−1)αβ = 0, ∀μ, ν, α, β. (3.63)

If i = j, then we may simplify the notation, letting D(i) = D(j) = D. We
have:

D(b)MA = MAD(b), ∀b ∈ G. (3.64)

By the other Schur’s lemma, this means that MA is a multiple of the
identity:

∑

g

D(g)AD(g−1) = λAI, (3.65)

where the value of the multiple depends on A. Pick matrix A so that
Aνα = 1, with all other elements zero. Then

∑

g

D(g)μνD(g−1)αβ = δμβλνα, (3.66)

where the Kronecker delta gives the components of the identity matrix,
and λνα is the constant multiplying the identity.

To determine λνα, set μ = β and sum over μ:

�i
∑

μ=1

λνα =
∑

g

∑

μ

D(g)μνD(g−1)αμ

�iλνα =
∑

g

[

D(g−1)D(g)
]

αν
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=
∑

g

D(g−1g)αν

= hδαν , (3.67)

where we have used the fact that any irrep that is equivalent to a unitary
representation is non-singular, and hence D(e) = I. This completes the
proof.

Our theorem holds whether the irreps are unitary or not. For a unitary repre-
sentation we can restate the general orthogonality relation in a more convenient
form. For a unitary irrep, we have

D(j)(g−1) = D(j)(g)−1 = D(j)(g)†. (3.68)

For unitary irreps we can thus rewrite the general orthogonality relation as
∑

g∈G

D(i)(g)μνD
(j)(g)∗βα =

h

�i
δijδανδβμ, (3.69)

In obtaining some consequences of this theorem, it is useful to regard the
group G as generating an h-dimensional vector space, and to interpret D(i)(g)μν

as the “gth” component of a vector in this space. The labels i, μ, ν identify a
particular vector. The theorem tells us that all such distinct vectors in the space
are orthogonal. Let us count how many distinct vectors there are: For a given
representation, there are �2i pairs μ, ν, so the number of distinct vectors is

nr
∑

i=1

�2i ,

where nr is the number of (inequivalent) irreducible representations. Since it
is an h-dimensional space, we cannot have more than h linearly independent
vectors, hence,

nr
∑

i=1

�2i ≤ h. (3.70)

In fact, we will soon see that equality holds.2

This equality is a very useful fact to know in approaching the problem of
finding irreducible representations. For example, suppose we have a group of
order 6. In this case the possible dimensions of the irreducible representations
are: (i) {�i} = {1, 1, 1, 1, 1, 1}, corresponding to an abelian group, isomorphic
to Z6; and (ii) {�i} = {1, 1, 2}, which can be shown to correspond to the lowest-
order non-abelian group. There are no other possibilities for a group of order
6.

The general orthogonality relation yields some subsidiary orthogonality rela-
tions for characters, which are very important in evaluating and using character
tables.

2We will shortly prove equality by considering the identity element in the regular represen-
tation, and showing that its reduction into irreps is such that each irrep occurs in the regular
representation a number of times that is equal to the dimension of the irrep.
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Theorem: (First Orthogonality Relation) Given a group G of order h, with nc

classes and Nk elements in class k, then for unitary irreps D(i) and D(j):

nc
∑

k=1

χ(i)(Ck)∗χ(j)(Ck)Nk = hδij . (3.71)

Proof: Start with the general orthogonality relation for irreducible (unitary)
representations D(i) and D(j):

∑

g∈G

D(i)(g)∗μνD
(j)(g)αβ =

h

�i
δijδμαδνβ.

We are interested in characters, so let μ = ν, α = β, and sum over μ and
α:

∑

g∈G

χ(i)(g)∗χ(j)(g) =
h

�i
δij

�i
∑

μ=1

�i
∑

α=1

δμαδμα

= hδij .

We complete the proof by replacing the summation
∑

g∈G with
∑nc

k=1
Nk.

QED

As with the general orthogonality relation, we may make a geometrical in-
terpretation: Distinct vectors in a space of dimension equal to the number of
classes (nc) are orthogonal (with respect to “weight” Nk). But now the distinct
vectors are labelled only by the index (i), and so there are only nr (the number
of irreducible representations) of them. Since the number of distinct vectors
cannot exceed the dimension of the space, we have nr ≤ nc.

Our first orthogonality relation tells us that, for irreducible representations
D(i), the vectors,

χ(i) =
(

χ(i)(C1), χ(i)(C2), . . . , χ(i)(Cnc)
)

, i = 1, . . . , nr, (3.72)

form a set of nr orthogonal vectors (with respect to weight Nk) and hence span
an nr-dimensional subspace of an nc-dimensional space. Note that the weight
Nk poses no essential difficulty, since we could always absorb it into the definiton
of the vectors if we choose: χ(i)(Ck) → χ(i)(Ck)

√
Nk.

An arbitrary vector in our subspace may be expanded according to:

χ =
nr
∑

i=1

aiχ
(i). (3.73)

In fact, the character of an arbitrary representation may be so expanded, since

D = ⊕nr

i=1
aiD

(i), (3.74)
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which, upon taking the trace of both sides, yields Eq. 3.73. By components,
this is:

χ(Ck) =
nr
∑

i=1

aiχ
(i)(Ck). (3.75)

We can define the inner product between any two vectors by:

λ · χ =
nc
∑

k=1

λ(Ck)χ(Ck)∗Nk. (3.76)

To find the expansion coefficients, ai, take:

χ · χ(j) =
nr
∑

i=1

aiχ
(i) · χ(j)

=
nr
∑

i=1

ai

nc
∑

k=1

χ(i)(Ck) · χ(j)(Ck)∗Nk

=
nr
∑

i=1

aihδij first orthogonality relation

= ajh. (3.77)

Thus, we have:

ai =
1
h

nc
∑

k=1

Nkχ(Ck)χ(i)(Ck)∗. (3.78)

This permits us to prove the following:

Theorem: In the regular representation D of of a group of order h, each irre-
ducible representation appears exactly �i times. Furthermore,

nr
∑

i=1

�2i = h. (3.79)

Proof: Recall that the regular representation consists of the matrices (with k, j
labelling components):

{Δk
ij , i = 1, . . . , h},

where, if gigj = gk then

Δm
ij =

{

1 m = k
0 otherwise.

Thus,

χ(g) =
{

h g = e
0 otherwise, (3.80)

since the regular representation of the identity is the h×h identity matrix,
and if g �= e, then all diagonal elements of the regular representation are
zero, by the fact that if gf = f , then g = e.
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Now consider the expansion of the regular representation in terms of irre-
ducible representations:

χ =
nr
∑

i=1

aiχ
(i).

Using

ai =
1
h

nc
∑

k=1

χ(Ck)χ(i)(Ck)∗Nk,

we find that ai = �i, because the irreducible representation of the identity
is the �i × �i unit matrix. Hence, each irreducible representation occurs
exactly �i times in the regular representation.

Finally, since h = χ(e) =
∑nr

i=1
�iχ

(i)(e), we find
∑nr

i=1
�2i = h, which

completes the proof. QED

We are now ready to obtain the “second orthogonality relation”:

Theorem: (Second Orthogonality Relation) Given a group G of order h, with
nr irreducible unitary representations, we have:

nr
∑

i=1

χ(i)(Ck)∗χ(i)(Cm) =
h

Nk
δkm, (3.81)

and nr = nc.

Proof: From the general orthogonality relation, we have
∑nr

i=1
�2i = h orthonor-

mal (up to a factor of h/�i) vectors labelled by i, μ, ν, with h components
labelled by g. Since there are h vectors, and the space is h-dimensional,
this is a complete orthonormal set, which we can express by:

nr
∑

i=1

�i
∑

μ=1

�i
∑

ν=1

�i
h
D(i)(g)∗μνD

(i)(g′)μν = δgg′ . (3.82)

That is, the sum of the projection operators onto each of the orthogonal
directions is the identity matrix. Sum this expression over g ∈ Ck, and
g′ ∈ Cm to obtain:

nr
∑

i=1

�i
∑

μ=1

�i
∑

ν=1

�i
h

∑

g∈Ck

D(i)(g)∗μν

∑

g′∈Cm

D(i)(g′)μν = δkmNk. (3.83)

To sum the left-hand side we use:
∑

g∈Ck

D(i)(g) =
Nk

�i
χ(i)(Ck)I. (3.84)

Let us quickly demonstrate this. Let

S ≡
∑

g∈Ck

D(i)(g) (3.85)
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Consider, for any a ∈ G:

D(i)(a−1)SD(i)(a) =
∑

g∈Ck

D(i)(a−1)D(i)(g)D(i)(a)

=
∑

g∈Ck

D(i)(a−1ga)

= S, (3.86)

where the final step follows because a−1ga ∈ Ck and the sum is the same
for any a ∈ g. Thus, SD(i)(a) = D(i)(a)S for all a ∈ G, and by Schur’s
lemma S must therefore be a multiple of the identity. Deriving the con-
stant is left to the reader. We thus obtain:
nr
∑

i=1

�i
∑

μ=1

�i
∑

ν=1

�i
h

∑

g∈Ck

D(i)(g)∗μν

∑

g′∈Cm

D(i)(g′)μν =
nr
∑

i=1

�i
∑

μ=1

�i
∑

ν=1

�i
h

NkNm

�2i
χ(i)(Ck)∗χ(i)(Cm)δμν

=
nr
∑

i=1

�i
∑

μ=1

NkNm

h�i
χ(i)(Ck)∗χ(i)(Cm)

=
nr
∑

i=1

NkNm

h
χ(i)(Ck)∗χ(i)(Cm).

Substituting into Eq. 3.83, this gives the desired orthogonality relation,
Eq. 3.81.

Now, we can intepret Eq. 3.81 as stating that vectors in a nc-dimensional
subspace of an nr-dimensional space are orthogonal. Hence, nr ≥ nc.
But we already have nc ≥ nr, from our discussion following the first
orthogonality relation, hence nr = nc. QED

These theorems are of great help in reducing the effort required to construct
and check character tables, which we discuss next.

3.8 Character Tables

If a group G has classes C1, C2, . . . , Cnc , then it must have nc irreducible repre-
sentationsD(1), D(2), . . . , D(nc), with characters χ(1)(Ck), χ(2)(Ck), . . . , χ(nc)(Ck), k =
1, . . . , nc. We can summarize this in a character table, see Table 3.2.

There are several useful things to note concerning a character table:

1. It is a square table, with nc = nr rows and nc = nr columns.

2. The rows must be orthogonal (remembering to take the complex conjugate
of one of them), from the second orthogonality relation.

3. The columns must be orthogonal, with Nk as weighting factors, accord-
ing to the first orthogonality relation (again remembering complex conju-
gates).
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Table 3.2: Skeleton of a character table.

�i → �i = 1 �2 · · · �nc

Nk class ↓; irrep → χ(1) χ(2) · · · χ(nc)

N1 = 1 C1 = {e} �1 = 1 �2 · · · �nc

N2 C2 1 · · · · · · · · ·
...

...
...

...
...

...
Nnc Cnc 1 · · · · · · · · ·

4. By convention, we let C1 be the class consisting of the identity element.
In every irrep the matrix for the identity is the identity matrix. Therefore:

χ(k)(C1) = �k, (3.87)

where �k is the dimension of irrep k.

5. As demonstrated earlier, we must have
nc
∑

i=1

�2i = h. (3.88)

6. The simplest representation of any group is to represent every element by
the number one (the “unit” or “identity” representation). This is an irrep,
which we by convention here denote D(1). Then the first column of the
character table is a string of ones.

Various other facts may be derived and used, but this set is already quite pow-
erful in reducing the amount of work required to construct the character table
for a group.

3.9 Decomposition of Reducible Representations

Suppose that we have a representation of a group, which may be reducible. If
we have found the character table we may decompose our representation into a
direct sum of irreps:

We start by writing the decomposition as:

D = a1D
(1) ⊕ a2D

(2) ⊕ · · · ⊕ anrD
(nr), (3.89)

where nr is the number of irreps, and the ai are non-negative integers to be
determined. Noting that characters are just traces, we have that the character
for class Ck must be:

χ(Ck) = Tr [D(g ∈ Ck)]

=
nr
∑

i=1

aiχ
(i)(Ck). (3.90)
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Figure 3.2: The three springs example, showing the coordinate system. Each co-
ordinate pair has its origin at the center of its respective mass in the equilibrium
position.

Finally, we use the first orthogonality relation to isolate a particular coeffi-
cient, obtaining,

aj =
1
h

nc
∑

k=1

χ(j)∗(Ck)χ(Ck)Nk. (3.91)

3.10 Example Application

For our first example of a physical application, we consider an arrangement
of springs and masses which have a particular symmetry in the equilibrium
position. We’ll consider here the case of an equilateral triangle, expanding on
the example in Mathews & Walker chapter 16.

Suppose that we have a system of three equal masses, m, located (in equilib-
rium) at the vertices of an equilateral triangle. The three masses are connected
by three identical springs of strength k. See Fig. 3.2. The question we wish to
answer is: If the system is constrained to move in a plane, what are the normal
modes? We’ll use group theory to analyze what happens when a normal mode is
excited, potentially breaking the equilateral triangular symmetry to some lower
symmetry.

Let the coordinates of each mass, relative to the equilibrium position, be
xi, yi, i = 1, 2, 3. The state of the system is given by the 6-dimensional vector:
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η = (x1, y1, x2, y2, x3, y3), as a function of time. The kinetic energy is:

T =
m

2

6
∑

i=1

η̇2
i . (3.92)

Likewise, the potential energy, for small perturbations about equilibrium, is
given by:

V =
k

2

⎧

⎨

⎩

(x2 − x1)2 +

[

−1
2
(x3 − x2) +

√
3

2
(y3 − y2)

]2

+

[

1
2
(x1 − x3) +

√
3

2
(y1 − y3)

]2
⎫

⎬

⎭

.

(3.93)
Or, we may write:

V =
k

2

6
∑

i,j=1

Uijηiηj , (3.94)

where

U =
1
4

⎛

⎜

⎜

⎜

⎜

⎜

⎝

5
√

3 −4 0 −1 −√
3√

3 3 0 0 −√
3 −3

−4 0 5 −√
3 −1

√
3

0 0 −√
3 3

√
3 −3

−1 −√
3 −1

√
3 2 0

−√
3 −3

√
3 −3 0 6

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (3.95)

The equations of motion (F = ma) are:

mη̈i = −∂V
∂ηi

= −k
6
∑

j=1

Uijηj . (3.96)

In a normal mode,
η = Aeiωt, (3.97)

where A is a constant 6-vector, and hence,

−mω2ηi = −k
6
∑

j=1

Uijηj , (3.98)

or,
6
∑

j=1

Uijηj = ληi, where λ =
mω2

k
. (3.99)

That is, the normal modes are the eigenvectors of U , with frequencies given in
terms of the eigenvalues. In principle, we need to solve the secular equation
|U −λI| = 0, a sixth-order polynomial equation, in order to get the eigenvalues.
Let’s see how group theory can help make this tractable, by incorporating the
symmetry of the system.
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Each eigenvector “generates” an irreducible representation when acted upon
by elements of the symmetry group. Consider a coordinate system in which U
is diagonal (such a coordinate system must exist, since U is Hermitian):

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λa

. . .
λa

λb

. . .
λb

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (3.100)

where the first na coordinate vectors in this basis belong to eigenvalue λa, and
transform among themselves according to irreducible representation D(a), and
so forth.

What is the appropriate symmetry group? Well, it must be the group,
C3v, of operations which leaves an equilateral triangle invariant. This group is
generated by taking products of a rotation by 2π/3, which we will call R, and a
reflection about the y-axis, which we will call P . The entire group is then given
by the 6 elements {e,R,R2, P, PR, PR2}. Note that this group is isomorphic
with the group of permutations of three objects, S3. The classes are:

{e}, {R,R2}, {P, PR, PR2}. (3.101)

As there are three classes, there must be three irreducible representations, and
hence their dimensions must be 1, 1, and 2. Thus, we can easily construct the
character table in Table 3.3.

The first row is given by the dimensions of the irreps, since these are the
traces of the identity matrices in those irreps. The first column is all ones,
since this is the trivial irrep where every element of C3v is represented by the
number 1. The second and third row of the second column may be obtained by
orthogonality with the first row (remembering the Nk weights), noticing that in
a one-dimensional representation the traces are the same as the representation.
In particular, the representation of R must be a cube root of one, and the
representation of P must be a square root of one. Finally, the second and
third rows of the final column are readily determined using the orthogonality
relations. Note that in this example, we don’t actually need to construct the
non-trivial representations to determine the character table. In general, it may
be necessary to construct a few of the matrices explicitly.

There is a 6-dimensional representation of C3v which acts on our 6-dimensional
coordinate space. We wish to decompose this representation into irreducible rep-
resentations (why? because that will provide a breakdown of the normal modes
by their symmetry under C3v). It is sufficient to know the characters, which we
obtain by explicitly considering the action of one element from each class.

Clearly, η = D(e)η, hence D(e) is the 6 × 6 identity matrix. Its character is
χ(C1) = 6.
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Table 3.3: Character table for C3v.

�i → �i = 1 �2 = 1 �3 = 2
Nk class ↓; irrep → χ(1) χ(2) χ(3)

1 {e} 1 1 2
2 {R,R2} 1 1 −1
3 {P, PR, PR2} 1 −1 0

m

m

m

k k

k

x

y

y

y

x x1

2

3

3

1

2

Figure 3.3: The three springs example, showing result of a rotation by 2π/3.

Now consider a rotation by 2π/3, see Fig. 3.3. The 6×6 matrix representing
this rotation is:

D(R) =

⎛

⎝

0 0 r
r 0 0
0 r 0

⎞

⎠ , (3.102)

where r is the 2 × 2 rotation matrix:

r =
(

cos 2π
3

− sin 2π
3

sin 2π
3

cos 2π
3

)

=
1
2

(−1 −√
3√

3 −1

)

. (3.103)

We see that the trace is zero, that is χ(C2) = 0.
The action of P is to interchange masses 1 and 2, and reflect the x coordi-



44 CHAPTER 3. REPRESENTATION THEORY

nates:

D(P ) =

⎛

⎝

0 p 0
p 0 0
0 0 p

⎞

⎠ , (3.104)

where p is the 2 × 2 reflection matrix:

p =
(−1 0

0 1

)

. (3.105)

We see that the trace is again zero, that is χ(C3) = 0.
With these characters, we are now ready to decompose D into the irreps of

C3v. We wish to find the coefficients a1, a2, a3 in:

D = a1D
(1) ⊕ a2D

(2) ⊕ a3D
(3). (3.106)

They are given by:

aj =
1
h

nc
∑

k=1

Nkχ
(j)∗(Ck)χ(Ck). (3.107)

The result is:

a1 =
1
6
(1 · 1 · 6 + 2 · 1 · 0 + 3 · 1 · 0) = 1

a2 =
1
6
(1 · 1 · 6 + 2 · 1 · 0 + 3 · −1 · 0) = 1 (3.108)

a3 =
1
6
(1 · 2 · 6 + 2 · −1 · 0 + 3 · 0 · 0) = 2.

That is,
D = D(1) ⊕D(2) ⊕ 2D(3). (3.109)

In the basis corresponding to the eigenvalues we thus have:

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ1

λ2

λ31

0

0
λ31

λ32

λ32

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (3.110)

where λ1 corresponds to D(1), λ2 to D(2), and λ31, λ32 to two instances of D(3).
Thus, we already know that there are no more than four distinct eigenvalues,
that is, some of the six modes have the same frequency.

Let’s see that we can find the actual frequencies without too much further
work. Consider D(g)U in this diagonal coordinate system. In this basis we must
have:

D(g) =

⎛

⎜

⎝

D(1)(g)
D(2)(g) 0

0 D(3)(g)
D(3)(g)

⎞

⎟

⎠
, (3.111)
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and hence,

D(g)U =

⎛

⎜

⎝

λ1D
(1)(g)

λ2D
(2)(g) 0

0
λ31D

(3)(g)
λ32D

(3)(g)

⎞

⎟

⎠
. (3.112)

We don’t know what this coordinate system is, but we may consider quantities
which are independent of coordinate system, such as the trace:

Tr [D(g)U ] = λ1χ
(1)(g) + λ2χ

(2)(g) + (λ31 + λ32)χ(3)(g). (3.113)

Referring to Eqn. 3.95 we find, for g = e:

Tr [D(e)U ] = TrU =
1
4
(5 + 3 + 5 + 3 + 2 + 6) = 6. (3.114)

For g = R:

Tr [D(R)U ] = Tr
1
2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0
−1 −√

3√
3 −1

−1 −√
3

0 0√
3 −1

0 −1 −√
3 0√

3 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

×

1
4

⎛

⎜

⎜

⎜

⎜

⎜

⎝

5
√

3 −4 0 −1 −√
3√

3 3 0 0 −√
3 −3

−4 0 5 −√
3 −1

√
3

0 0 −√
3 3

√
3 −3

−1 −√
3 −1

√
3 2 0

−√
3 −3

√
3 −3 0 6

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
1
8
(1 + 3 − 3 + 3 + 4 + 0 + 1 − 3 + 3 + 3) =

3
2

(3.115)

For g = P :

Tr [D(P )U ] = Tr

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 −1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

1
4

⎛

⎜

⎜

⎜

⎜

⎜

⎝

5
√

3 −4 0 −1 −√
3√

3 3 0 0 −√
3 −3

−4 0 5 −√
3 −1

√
3

0 0 −√
3 3

√
3 −3

−1 −√
3 −1

√
3 2 0

−√
3 −3

√
3 −3 0 6

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
1
4
(4 + 0 + 4 + 0 − 2 + 6) = 3. (3.116)

This gives us the three equations:

6 = λ1 + λ2 + 2(λ31 + λ32)
3
2

= λ1 + λ2 − (λ31 + λ32) (3.117)

3 = λ1 − λ2.
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Hence,

λ1 = 3 (3.118)
λ2 = 0 (3.119)

λ31 + λ32 =
3
2
. (3.120)

To determine λ31 and λ32, we could consider another invariant, such as

TrU2 = λ2
1 + λ2

2 + 2
(

λ2
31 + λ2

32

)

. (3.121)

Alternatively, we may use some physical insight: There must be three degrees
of freedom with eigenvalue 0, corresponding to an overall rotation of the system
and overall translation of the system in two directions. Thus, choose λ31 = 0
and then λ32 = 3/2.

The frequencies are ω =
√

λk/m. The highest frequency is ω =
√

3k/m, cor-
responding to the “breathing mode” in which the springs all expand or contract
in unison. Note that this is the mode corresponding to the identity representa-
tion; the symmetry of the triangle is not broken in this mode.

3.11 Another example

Let us consider another simple example (again an expanded discussion of an
example in Mathews & Walker, chapter 16), to try to get a more intuitive picture
of the connection between eigenfunctions and irreducible representations:

Consider a square “drumhead”, and the connection of its vibrational modes
with representations of the symmetry group of the square. We note that two
eigenfunctions which are related by a symmetry of the square must have the
same eigenvalue – otherwise this would not be a symmetry. The symmetry
group of the square (see Fig. 3.4) is generated by a 4-fold axis, plus mirror
planes joining the sides and vertices.

This group has the elements:

{e,Ma,Mb,Mα,Mβ, R±π/2, Rπ}. (3.122)

Thus, the order is h = 8. The classes are readily seen to be:

C1 = {e}
C2 = {Ma,Mb}
C3 = {Mα,Mβ} (3.123)
C4 = {Rπ}
C5 = {Rπ/2, R−π/2}

We must have
∑nr

i=1
�2i = 8, but nr = 5, and therefore �1 = �2 = �3 = �4 = 1,

and �5 = 2 are the dimensions of the irreducible representations.
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M

MM
M

a

b

α
β

Figure 3.4: The symmetry group of the square.

+

Figure 3.5: The lowest excitation of the square drumhead. The “plus” in the
center is supposed to indicate that the whole drumhead is oscillating back and
forth through the plane of the square.
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Figure 3.6: A higher excitation of the square drumhead.
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+
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Figure 3.7: Two additional excitations of the square drumhead, corresponding
to one-dimensional representations.

Let us consider some vibrational modes and see what representations they
generate: The lowest mode is just when the whole drumhead vibrates back and
forth, Fig. 3.5.

The action of any group element on this mode is to transform it into itself,
hence, this mode generates the trivial representation where all elements are
represented by the number 1.

Another mode is shown in Fig. 3.6.
This mode is also non-degenerate, hence it must generate also a one-dimensional

representation, but it is no longer the trivial representation, since it is not in-
variant under the action of all of the elements of the group. For example, Rπ/2

yields a minus sign on this mode.
Likewise, the modes shown in Fig. 3.7 are non-degenerate and generate new

one-dimensional irreducible representations. It may be seen that these one-
dimensional irreps are all inequivalent, as the actions of the group elements
differ in the different irreps.

Finally, we have the degenerate modes illustrated in Fig. 3.8. These two
modes transform among themselves under the group operations, hence generate
a two-dimensional irreducible representation.

We might wonder about the modes illustrated in Fig. 3.9. These also gen-
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_+

+

_

Figure 3.8: Two degenerate modes, generating a two-dimensional representa-
tion.

_

+

+

_

Figure 3.9: Another pair of degenerate modes, generating a two-dimensional
representation.

erate a two-dimensional irrep. However, the reader is encouraged to show that
this irrep is equivalent to the one above.

We might also wonder about the modes illustrated in Fig. 3.10. These also
generate a two-dimensional representation. In this case, however, the represen-
tation is reducible.

There are also modes which generate the same irreps already considered, but
corresponding to higher excitations. For example, see Fig. 3.11

3.12 Direct Product Theory

The direct product of two matrices A and B is the set of product elements
obtained by multiplying every element of A by every element of B. It is con-
venient to think of these products as arranged in a “direct product matrix”
form. For example, if A is n× n, and B is m×m, the direct product matrix is
nm×nm. The multiplication of direct product matrices is defined so that they
can describe successive transformations in a “product” space. A product space
is formed out of two spaces so that a transformation in the product space is a
combination of transformations done separately in each of the ordinary spaces
such that the rule of successive transformations is obeyed in each of the ordinary
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_+

+

_+

+

Figure 3.10: Another pair of degenerate modes, generating a two-dimensional
representation, but this time a reducible representaion.

++

_

Figure 3.11: A higher excitation, generating the identity representation.
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spaces separately.
Thus, if A,A′ are operators in space a, and B,B′ are operators in space

b, then A′′ = AA′ is the successive operation of A′, then A in space a, and
B′′ = BB′ is the successive operation of B′, then B in space b. Suppose we
define “direct product” operators C = A ⊗ B, and C′ = A′ ⊗ B′. Then we
require that

C′′ = CC′

= (A⊗B)(A′ ⊗B′)
= AA′ ⊗BB′

= A′′ ⊗B′′ (3.124)

By components, this is:

C′′
ik,jm =

∑

p,q

Cik,pqC
′
pq,jm

=
∑

p,q

AipBkqA
′
pjB

′
qm, since...

=
∑

p,q

AipA
′
pjBkqB

′
qm

= A′′
ijB

′′
km. (3.125)

One possible way to write out the direct product matrix is:

C = A⊗B =

⎛

⎝

a11B a12B · · ·
a21B a22B · · ·

...
...

⎞

⎠ . (3.126)

If we are given two groups, Ga = ({ai}, ◦) of order ha and Gb = ({bi}, ∗) of
order hb, the direct product group, Ga⊗Gb, is formed by the elements consisting
of all ordered pairs (ai, bj) with multiplication defined by:

(ai, bj)(ak, b�) ≡ (ai ◦ ak, bj ∗ b�). (3.127)

As usual, we typically drop the explicit operation symbols in the hopes that
the appropriate operation is understood from context. The reader is urged to
demonstrate that we have in fact defined a group here.

We list some facts concerning direct product groups:

1. In the groups Ga = {ai}and Gb = {bi}, the indices i and j run over some
index sets, not necessarily finite or even countable. The order of Ga ⊗Gb

is the product of the orders of the two groups, i.e., hahb. This may be
infinite.

2. If ea is the identity element of Ga and eb is the identity element ofGb, then
the set of elements in Ga⊗Gb of the form (ea, bi) yields a subgroup isomor-
phic with Gb, and those of the form (ai, eb) yield a subgroup isomorphic
with Ga.



52 CHAPTER 3. REPRESENTATION THEORY

Table 3.4: Character table for C3v.

�i → �i = 1 �2 = 1 �3 = 2
Nk class ↓; irrep → χ(1) χ(2) χ(3)

1 {e} 1 1 2
2 {R,R2} 1 1 −1
3 {P, PR, PR2} 1 −1 0

Table 3.5: Character table for the inversion group, I.

�i → �i = 1 �2 = 1
Nk class ↓; irrep → χ(1) χ(2)

1 {e} 1 1
1 {i} 1 −1

3. The classes of the direct product group are given by the direct products
of the classes of the original groups.

4. The direct products of the matrices representing Ga and Gb provide rep-
resentations of Ga ⊗ Gb under the matrix multiplication rule for direct
product matrices.

5. If D(i)
a (ar) and D(j)

b (bs) are irreps of Ga and Gb, respectively, then

D(ij)
c (crs) ≡ D(i)

a (ar) ⊗D
(j)
b (bs) (3.128)

is an irrep of Gc = Ga ⊗Gb. Furthermore, there are no additional irreps
besides those constructed in this way. Note that this, plus the previous
item on representations, implies that the character table of the product
group is:

χ(ij)
c (crs) = χ(i)

a (ar)χ
(j)
b (bs). (3.129)

Let’s look at an example of the construction of a character table for a direct
product group. Suppose we have the symmetry group C3v of the equilateral
triangle. We have already obtained the character table for this group in our
example on springs in Section 3.10. This table is repeated in Table 3.4. Recall
that R stands for a rotation by 2π/3, and P is one of the mirrors containing
the rotation axis and a vertex.

Now suppose that we wish to add to this group the operation of inversion.
The resulting group is called D3d. The inversion group, I, is a two-element
group, consisting of the identity e and the inversion operator i. The only possible
character table for a group of order two is shown in Table 3.5.

We wish to obtain the character table for the product group D3d = C3v ⊗I.
Recall that the character of a representation is the trace of a matrix, so we must
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Table 3.6: Character table for D3d.

�i → �i = 1 �2 = 1 �3 = 2 �4 = 1 �5 = 1 �6 = 2
Nk class ↓; irrep → χ(1) χ(2) χ(3) χ(4) χ(5) χ(6)

1 C1 = {e} 1 1 2 1 1 2
2 C2 = {R,R2} 1 1 −1 1 1 −1
3 C3 = {P, PR, PR2} 1 −1 0 1 −1 0
1 C4 = {ie} 1 1 2 −1 −1 −2
2 C5 = {iR, iR2} 1 1 −1 −1 −1 1
3 C6 = {iP, iPR, iPR2} 1 −1 0 −1 1 0

determine the trace of a direct product matrix. If c = a⊗ b is the matrix direct
product of matrices a and b, then

χ(c) = χ(a⊗ b)

=
∑

k�

(a⊗ b)k�,k�

=
∑

k

akk

∑

�

b��

= χ(a)χ(b). (3.130)

There will be 2 × 3 = 6 irreps for our product group (we have doubled the
number of classes of D3. The character table must be as shown in Table 3.6.

The order of D3d is h = 12, which agrees with the sum of the squares of the
dimensions of the irreps �k = 1, 1, 1, 1, 2, 2. We remark also that the character
table looks like the direct product of the input character tables:

(

1 1
1 −1

)

⊗
⎛

⎝

1 1 2
1 1 −1
1 −1 0

⎞

⎠ . (3.131)

Expressing a group as a direct product of smaller groups provides a useful
method for studying the irreps of the larger group. Note that I = {e, i} is an
abelian invariant subgroup of D3d (gag−1 ∈ I, ∀a ∈ I and ∀g ∈ D3d). There-
fore, D3d is not a simple group (since it contains a proper invariant subgroup),
nor is it semi-simple (since the invariant subgroup is abelian).

We may write the suggestive notation C3v = D3d/I and refer to C3v as
the “factor group” or “quotient group”. Since C3v is the group that leaves the
triangle invariant, we refer to it as the “little group” of D3d (or the “little group
of the triangle”).
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3.13 Generating Additional Representations

Given one or more representations D of a group G, there are various ways of
generating additional representations. We have already seen the direct sum
method. Let us now see some others. Relax, for now, the assumption of unitary
representations. First, there are three simple operations on representation D
which will give us (possibly) new representations of the same dimension:

1. Adjoint Representation: Given a group G with a (invertible) represen-
tation D(a), a ∈ G, consider the set of matrices obtained by taking the
inverse transpose of D(a): [D(a)−1]T . This is also a representation of G,
since,

[D(ab)−1]T = [D(b)−1D(a)−1]T

= [D(a)−1]T [D(b)−1]T ,

hence, the multiplication table is preserved. This is called the “adjoint
representation”, D̄.

2. Complex Conjugate Representation: Given a representation D, consider
the matrices formed by taking the complex conjugate of the elements of
D(a): [D(a)]∗. We have,

D(ab)∗ = [D(a)D(b)]∗

= D(a)∗D(b)∗,

so this also defines a representation. It is called the “complex conjugate
representation”, D∗.

3. Finally, we also obtain a representation by taking the complex conjugate
of the adjoint representation:

[D(a)−1]† = D̄(a)∗. (3.132)

We note that D, D̄, D∗, D̄∗ are all either reducible or irreducible represen-
tations, which may, or may not, be equivalent. Thus, this is one thing to try
towards finding new (irreducible) representations for G. Note that if we have a
unitary representation, which is always possible for a finite group,

D̄(g) = [D(g)−1]T = [D(g)†]T = D∗(g), (3.133)

hence, the adjoint representation is identical with the complex conjugate repre-
sentation.

If the representation is real, then D(g) = D(g)∗, and χ(g) is real. If, instead,
we know that χ(g) is real, then χ(g) = Tr[D(g)] = Tr[D(g)∗], and therefore D
and D∗ are equivalent. If, on the other hand, χ(g) is complex, then D and D∗

are not equivalent representations. We can state these observations in the form
of a theorem:
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Theorem: D and D∗ are equivalent representations if and only if their char-
acters are real.

Let us revisit briefly our general orthogonality relation. Since we stated it
for finite groups, we have been justified in assuming we can always deal with
unitary representations. However, we might happen to deal at some point with a
non-unitary representation. In general, the orthogonality relation for irreducible
representations D(i), and D(j) reads:

∑

g∈G

D(i)(g)μνD
(j)(g−1)αβ =

h

�i
δijδμβδνα. (3.134)

In terms of this general relation, we can repeat the earlier derivation of the
“first orthogonality relation”, setting ν = μ, β = α, and summing over μ and
α, to obtain:

∑

g∈G

χ(i)(g)χ(j)(g−1) = hδij . (3.135)

But, in the adjoint representation, D̄(g) = [D(g)−1]T = D(g−1)T , and hence
χ̄(g) = χ(g−1). Therefore,

∑

g∈G

χ(i)(g)χ̄(j)(g) = hδij , (3.136)

or, in terms of classes:

nc
∑

k=1

Nkχ
(i)(Ck)χ̄(j)(Ck) = hδij . (3.137)

Likewise, our second orthogonality relation in general is:

nr
∑

i=1

χ(i)(Ck)χ(i)(C−1

� ) =
h

Nk
δk�, (3.138)

where C−1

� means take the inverses of the elements in class C�. Or, using again
χ̄(g) = χ(g−1)

nr
∑

i=1

χ(i)(Ck)χ̄(i)(C�) =
h

Nk
δk�, (3.139)

With these forms, the expansion coefficients for the decomposition of an
arbitrary representation, D, into irreps become:

am =
1
h

nc
∑

k=1

Nkχ(Ck)χ̄(m)(Ck). (3.140)
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3.14 Kronecker Products and Clebsch-Gordan

Coefficients

Given two representations D(i) and D(j) of a group G, we may construct a new
representation, D(i×j), by taking the direct product matrices:

D(i×j)(g) = D(i)(g) ⊗D(j)(g). (3.141)

In components:
D(i×j)(g)αβ,μν = D(i)(g)αμD

(j)(g)βν . (3.142)

It is left to the reader to verify that D(i×j) is in fact a representation for G. It is
called a product representation or a Kronecker product. As with direct product
groups, we find:

χ(i×j)(g) = χ(i)(g)χ(j)(g). (3.143)

Let us now assume that D(i) and D(j) are irreducible representations. The
product representation D(i×j) may, however, be reducible. We would like to
find the decomposition into irreps:

D(i×j) = a1D
(1) ⊕ · · · ⊕ anrD

(nr). (3.144)

This reduction is called the Clebsch-Gordan series. For the coefficients, we have:

am =
1
h

nc
∑

k=1

Nkχ
(i×j)(Ck)χ̄(m)(Ck)

=
1
h

∑

g∈G

χ(i×j)(g)χ̄(m)(g)

=
1
h

∑

g∈G

χ(i)(g)χ(j)(g)χ̄(m)(g). (3.145)

For example, in the note on rotations in quantum mechanics (section 10),
the Clebsch-Gordan series for the group SU(2) (an isomorphic representation
of the rotation group in quantum mechanics) is obtained:

D(i×j) =
i+j
⊕

m=|i−j|
D(m). (3.146)

We’ll proceed now to define the notion of “Clebsch-Gordan coefficients” (note
that the am coefficients in the reduction above are sometimes referred to as
Clebsch-Gordan coefficients; this will not be our usage). We start by expressing
the Clebsch-Gordan series in a different notation:

D(i×j) =
nr
⊕

m=1

amD
(m) =

nr
⊕

m=1

(ijm)D(m). (3.147)
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That is, (ijm) ≡ am, and our coefficient names now contain explicitly the
information of which product representation we are looking at. Notice that
there is a symmetry, (ijm) = (jim), since D(m) will appear the same number
of times in D(i×j) as in D(j×i).

For physical applications (e.g., quantum mechanical angular momentum),
we are especially interested in determining the basis functions for the represen-
tations in the Kronecker product. For the irrep D(i) (that is, for the vector
space acted upon by this representation) we have the basis functions:

{ψ(i)
α ;α = 1, 2, . . . , �i}, (3.148)

where �i is the dimension of irrep i. Likewise, for irrep D(j) we have basis
functions:

{φ(j)
β ;β = 1, 2, . . . , �j}. (3.149)

Since we are considering the product representation D(i) ⊗D(j) we may ask
for the �m functions

{ω(m)
γ ; γ = 1, . . . , �m} (3.150)

that are linear combinations of the products ψ(i)
α and φ

(j)
β , and which form a

basis for the irrep D(m). Such a set of functions {ω(m)
γ } exists only if D(m) is

contained in D(i) ⊗D(j), that is, only if (ijm) > 0.
Now, (ijm) may be one, but (ijm) > 1 is also possible, in which case there

will be more than one such sets of functions. In general, there will be precisely
(ijm) independent sets of functions {ω(m)

γ } formed from the products ψ(i)
α φ

(j)
β .

We’ll label them:
{ω(mτm)

γ ; τm = 1, . . . , (ijm)} (3.151)

More explicitly, these are functions of the form:

ω(mτm)
γ =

�i
∑

α=1

�j
∑

β=1

ψ(i)
α φ

(j)
β (iα, jβ|mτmγ) (3.152)

The quantities (iα, jβ|mτmγ) are called Clebsch-Gordan coefficients.
It is important to understand that all we are really doing here is describing

a transformation of basis between alternative bases in the space operated on by
the product representation. We remark also that in the case of the quantum
mechanical rotation group, the numbers τm are never greater than one - the
rotation group is said to be simply reducible.

The total number of functions ω(mτm)
γ must be the same as the total number

of product functions ψ(i)
α φ

(j)
β :

nr
∑

m=1

(ijm)�m = �i�j. (3.153)
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Hence, the Clebsch-Gordan coefficients make a �i�j × �i�j matrix. As our ex-
pansion for ω(mτm)

γ is just a basis transformation, we can write the inverse
transformation:

ψ(i)
α φ

(j)
β =

∑

γ,m,τm

(mτmγ|iα, jβ)ω(mτm)
γ . (3.154)

Substituting back into the original equation (3.152), we find:

ω(mτm)
γ =

∑

α,β

∑

γ′,m′,τ ′
m

(m′τ ′mγ
′|iα, jβ)(iα, jβ|mτmγ)ω(m′τ ′

m)

γ′ , (3.155)

or,
∑

α,β

(m′τ ′mγ
′|iα, jβ)(iα, jβ|mτmγ) = δmm′δτmτ ′

m
δγγ′. (3.156)

Alternatively, substituting Eqn. 3.152 into Eqn. 3.154, we obtain:
∑

m,τm,γ

(iα′, jβ′|mτmγ)(mτmγ|iα, jβ) = δαα′δββ′. (3.157)

At least for unitary representations, it may be shown that the matrix of Clebsch-
Gordan coefficients is a matrix which puts D(i) ×D(j) into reduced form.

3.15 Angular Momentum in Quantum Mechan-
ics

The theory of angular momentum in quantum mechanics is developed in detail
in the note on this subject linked to the Ph 129 page. Here, we’ll summarize
a few of the key elements relative to our discussion of group theory. As the
rotation group is an infinite group, we’ll also remark on the extension of our
discussion to infinite groups.

As an explicit function, the spherical harmonic Y�m is given by:

Y�m(θ, φ) =
(−1)�

2��!

√

2�+ 1
4π

(�+m)!
(�−m)!

eimφ 1
(sin θ)m

(

d

d cos θ

)�+m
(

1 − cos2 θ
)�
,

(3.158)
where 0 ≤ θ ≤ π, and 0 ≤ φ < 2π. However, it is perhaps more profound
to define the Y�m in terms of the matrices D�(R) which give the irreducible
representations of the rotation group.

Consider the rotation R expressed in terms of the Euler angles α, β, γ:

R = R(α, β, γ) = Rz(γ)Ry(β)Rz(α). (3.159)

Choosing α = 0, a vector along the z-axis may be rotated to θ = β and φ = γ.
We consider the rotation matrices with components:

D�(γ, β, α)mm′ = e−i(mγ+m′α)d�
mm′(β)

= 〈�m|D�(R)|�,m′〉, (3.160)
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with the interpretation that these are the rotaton matrices acting on a vector
space of functions corresponding to angular momentum �. We then define the
spherical harmonics:

Y�m(θ, φ) ≡
√

2�+ 1
4π

D∗�
m0(φ, θ, 0). (3.161)

Note that since m′ = 0, the spherical harmonics describe states with integer
angular momentum only.

As mentioned before, the Clebsch-Gordan coefficients describe a change of
basis. Consider a system of two “particles”, with spins j1 and j2. We may
describe the (angular momentum) state of these particles according to:

|j1m1j2m2〉, (3.162)

where m1 and m2 are the z-components of the spins. However, we might also
describe the state by specifying the total angular momentum, j, and the total
component along the z-axis, m (= m1 +m2):

|j1j2jm〉. (3.163)

This situation corresponds to the reduction of a product representation D(j1) ⊗
D(j2) into irreducible representations D(j). The Clebsch-Gordan coefficients
(also known in this context as vector addition or Wigner coefficients) merely
tell us how to transform from one basis to the other. For example,

|j1j2jm〉 =
∑

m1,m2

(j1m1, j2m2|jm)|j1m1j2m2〉, (3.164)

where we have omitted the τj = 1.
As mentioned already, we may show that for the rotation group (SU(2)) the

Clebsch-Gordan series is

D(j1×j2) =
j1+j2
⊕

j=|j1−j2|
D(j). (3.165)

The proof of this relies on

χ(j1×j2) = χ(j1)χ(j2), (3.166)

and on the orthogonality relations:

1
h

∑

g∈G

χ(i)(g)χ̄(j)(g) = δij . (3.167)

But this is an infinite group, h = ∞. We are faced with the issue of defining
“ 1

h

∑

g∈G”.
To generalize this to the case of an infinite group, notice that 1

h

∑

g∈G is a
kind of average over the elements of the group. Since the rotation group depends
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on three continuously varying parameters, we expect our sum to become some
kind of integral. The question in constructing the appropriate integral is how
to weight the various regions in parameter space. That is, we need to define
a notion of the size of a set of rotations; we need a measure function, μ({R}),
where {R} is some set of rotations.

The measure function must satisfy the property that no rotation gets any
bigger weight than any other. Consider a set {R} of rotations. We can obtain
another set of rotations, {R0R} by applying a specified rotation, R0, to each
element of this set. The rotated set should be the same size as the original set.
We require the following invariance of the measure (considering rotation group
O+(3)):

μ({R}) = μ({R0R}), ∀R0 ∈ O+(3). (3.168)

For O+(3), the invariant measure, normalized such that the integral over the
set of all rotations is one, is:

μ(dR) =
1

8π2
sin θdθdψdφ, (3.169)

for rotations parameterized by the Euler angles:

0 ≤ ψ < 2π
0 ≤ θ ≤ π (3.170)
0 ≤ φ < 2π.

(3.171)

For SU(2), the range of φ becomes 0 ≤ φ < 4π, and the normalized invariant
measure is:

μ(dR) =
1

16π2
sin θdθdψdφ. (3.172)

See the note on angular momentum in quantum mechanics for a more detailed
discussion.

In general, we may define such a measure on a group. If the group is “com-
pact” (e.g., the rotation group is compact because it may be parameterized by
parameters on a compact set), then it is possible to define a measure such that
the measure μ(G) over the entire group is finite. In this case, many of our proofs
may be readily modified to apply to the infinite groups. For example, every rep-
resentation of a compact group is equivalent to a unitary representation. The
rearrangement lemma, so handy in several of our proofs, reads,

∫

G

f(u)μ(du) =
∫

G

f(uv)μ(du), ∀v ∈ G. (3.173)

In the case of SU(2), this is:

1
16π2

∫ 2π

0

dψ

∫ 1

−1

d cos θ
∫ 4π

0

dφf [R(ψ, θ, φ)] = (3.174)

1
16π2

∫ 2π

0

dψ

∫ 1

−1

d cos θ
∫ 4π

0

dφf [R(ψ0, θ0, φ0)R(ψ, θ, φ)] .



3.16. EXERCISES 61

The invariant measure on a group is referred to as the Haar measure.
We’ll expand on these notions in our note on Lie groups.

3.16 Exercises

1. For the Poincare group L̄, show that any element Λ(M, z) can be written
as a product of a pure homogeneous transformation followed by a pure
translation. Also show that it can be written as a pure translation followed
by a pure homogeneous transformation.

2. Show that the object {x, y} defined in Eqn. 3.36 is a scalar product.

3. Carry out the steps to demonstrate the decomposition of a representation
into irreps,

D = a1D
(1) ⊕ a2D

(2) ⊕ · · · ⊕ anrD
(nr), (3.175)

with coefficients:

aj =
1
h

nc
∑

k=1

χ(j)∗(Ck)χ(Ck)Nk. (3.176)

4. Derive the constant in Eqn. 3.84, that is, determine λ in:

∑

g∈Ck

D(i)(g) = λI. (3.177)

5. Show that the two irreps generated according to Figs. 3.8 and 3.9 are
equivalent.

6. Consider the group of all rotations in two dimensions: G = {R(θ) : 0 ≤ θ <
2π}. As a linear operator on vectors in a two-dimensional Euclidean space,
the elements of G may be represented (faithfully, or isomporphically) by
the set of 2 × 2 matrices of the form:

D(θ) =
(

cos θ − sin θ
sin θ cos θ

)

. (3.178)

Show that this group can be decomposed into two one-dimensional repre-
sentations, i.e., that you can find a transformation such that every element
of G can be represented in the form:

D(θ) =
(

f(θ) 0
0 g(θ)

)

, (3.179)

where the new representation is still faithful. You should find explicit
expressions for f and g.

Hint: You want to find a similarity transformation, which just corresponds
to a change in basis. You might consider the basis transformation so
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often encountered in quantum mechanics and in optics, corresponding
to describing states in terms of “circular polarization” instead of “linear
polarization”.

7. Consider the dihedral group D3, which is isomorphic with the group of
permutations of three objects, S3. Let V2 be a two-dimensional Euclidean
space spanned by orthonormal vectors ex, ey. Give the representation,
D, of the elements of D3 with respect to this basis. That is, express the
transformed vectorsD(g)ei in terms of the original basis, and hence obtain
representation D.

8. Consider the symmetry group, C4v, of the square, consisting of rotations
about the axis perpendicular to the square, and reflections about the ver-
tical, horizontal, and diagonal axes in the plane of the square (but no
mirror plane in the plane of the square).

(a) Construct a suitable set of irreducible representations of C4v. That
is, up to equivalence, construct all of the irreducible representations
of this group.

(b) Give the character table for C4v.

9. In problem 6 you consider the reducibility of a two-dimensional repre-
sentation of the group of rotations in two dimensions. We may remark
that this is an abelian group. Let us generalize that result: Consider a
group, G, with a unitary representation D, consisting of unitary matrices
D(g), g ∈ G. If G is an abelian group, show that any such representation
is, by a similarity transformation, equivalent to a representation by diag-
onal matrices (i.e., by a direct sum of 1 × 1 matrices). Note that we have
already used group theory (Schur’s lemma) to argue the truth of this. In
this problem, I want you to use what you know about matrix theory to
demonstrate the result.

10. Construct the character table for the tetrahedral symmetry group Td. You
may wish to keep a copy of your result for problem 12.

11. Let’s take a peek at the relation of irreductible representations and the
invariant subspaces of a vector space: Let V be the 6-dimensional function
space consisting of polynomials of degree 2 in the two real variables x and
y:

f(x, y) = ax2 + bxy + cy2 + dx+ ey + h, (3.180)

where a, b, c, d, e, h are complex numbers. If x, y transforms under the di-
hedral group D3 (problem 7) as the coordinates of a 2-vector, then we
obtain a 6-dimensional representation of D3 on V . Identify the invariant
subspaces of V under D3, and the corresponding irreductible representa-
tions contained in this six dimensional representation (don’t be afraid to
use your intuition to make sure that what you find is sensible).
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12. At last we are ready for a real physics application of group theory. We
looked at the example of masses joined by springs in the shape of an
equilateral triangle in this note. Now, let us consider the problem of
four masses joined by springs. The four masses are at the corners of a
tetrahedron, and the springs form the edges of the tetrahedron. Thus,
there are six springs connecting the four masses. All four masses are
equal, and all six springs are identical.

We wish to determine the frequencies of the normal modes for this sys-
tem. Notice that to solve the secular equation, |V − λI| = 0, presents a
formidable image. A little physical intuition can reduce it somewhat, but
it would take real cleverness to solve it completely. This cleverness comes
in the form of group theory! Group theory permits one to incorporate in
a systematic and deliberate way everything we know about the symmetry
of the problem, hence reducing it to a simpler problem.

The problem is still not trivial – you should spend time thinking about
convenient approaches in setting things up, and about ways to avoid doing
unnecessary work. Above all, be careful, and check your results as you
proceed. You already obtained the character table for the tetrahedral
symmetry group in problem 10. This problem takes you the rest of the
way through solving for the frequencies of the normal modes.

(a) First step: Set up a 12-dimensional vector (coordinate system) de-
scribing the system, and derive the equations of motion, arriving
finally at a set of linear equations that could be solved, in principle,
to yield the frequencies of the normal modes.

(b) Second step: Obtain the character table for the twelve-dimensional
representation of the tetrahedral symmetry group that acts on your
12-dimensional vector describing the system. Decompose this repre-
sentation into irreducible representations.

(c) Final step: Obtain a small number of trace equations which you can
use to solve to obtain the frequencies of the normal modes. Give the
frequencies of the normal modes, and their degeneracies. Do your
answers make physical sense?

13. The “quaternion” group consists of eight elements,

Q = {1,−1, i,−i, j,−j, k,−k}, (3.181)

with multiplication table defined by (q is any element of Q):

1q = q

(−1)2 = 1
(−1)q = q(−1) = −q (3.182)

i2 = j2 = k2 = ijk = −1
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Find the character table for this group. Compare this character table
with the character table for dihedral group D4. Are these two groups
isomorphic?

14. As a follow-on to the drumhead example in this note, consider the symme-
try group of the regular pentagon, as given by a five-fold axis and several
mirror planes. Do not include the mirror plan containing the plane of the
pentagon itself (although you may amuse yourself by considering what
happens if you add this operation).

(a) List the group elements. Denote rotations with R’s, and mirror op-
erations with M ’s. Draw a picture! List the classes.

(b) Construct the character table for the irreducible representations of
this group.

(c) Consider the mode of oscillation of a pentagonal drumhead where a
nodal line extends from a vertex to the midpoint of the opposite side.
Define (with pictures) a basis for the space generated by this mode
and its degenerate partners. Give an explicit matrix for one element
of each class of the group for the representation of the pentagonal
symmetry group that is generated by these degenerate modes.

(d) Decompose the representation found in part (c) into irreducible rep-
resentations.

15. We would like to consider the (qualitative) effects on the energy levels of an
atom which is moved from freedom to an external potential (a crystal, say)
with cubic symmetry. Let us consider a one-electron atom and ignore spin
for simplicity. Recall that the wave function for the case of the free atom
looks something like Rnl(r)Ylm(θ, φ), and that all states with the same
n and l quantum numbers have the same energy, i .e., are (2l + 1)-fold
degenerate. The Hamiltonian for a free atom must have the symmetry of
the full rotation group, as there are no special directions. Thus, we recall
some properties of this group for the present discussion. First, we remark
that the set of functions {Ylm : m = −l,−l + 1, · · · , l − 1, l} for a given
l forms the basis for a (2l + l)-dimensional subspace which is invariant
under the operations of the full rotation group. [A set {ψi} of vectors is
said to span an invariant subspace Vs under a given set of operations {Pj}
if Pjψi ∈ Vs ∀i, j.] Furthermore, this subspace is “irreducible,” that is, it
cannot be split into smaller subspaces which are also invariant under the
rotation group.

Let us denote the linear transformation operator corresponding to element
R of the rotation group by the symbol P̂R, i.e.:

P̂Rf(�x) = f(R−1�x)

The way to think about this equation is to regard the left side as giving a
“rotated function,” which we evaluate at point �x. The right side tells us
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that this is the same as the original function evaluated at the point R−1�x,
where R−1 is the inverse of the rotation matrix corresponding to rotation
R. Since {Ylm} forms an invariant subspace, we must have:

P̂RYlm =
l
∑

m′
=−1

Ylm′Dl(R)m′m

The expansion coefficients, Dl(R)m′m, can be regarded as the elements of
a matrixDl(R). As we have discussed in general, and as you may see more
explicitly in the note on rotations in QM, D� corresponds to an irreducible
representation of the rotation group.

(a) Prove, or at least make plausible, the fact that Dl is an irreducible
representation of the rotation group. (Hint: You might show first
that it is a representation and then show irreducibility by finding a
contradiction with the supposition of reducibility).
Thus, for a free atom, we have that the degenerate eigenfunctions
of a given energy must transform according to an irreducible repre-
sentation of this group. If the eigenfunctions transform according to
the lth representation, the degeneracy of the energy level is (2l + 1)
(assuming no additional, “accidental” degeneracy).

(b) We will need the character table of this group. Since all elements in
the same class have the same character, we pick a convenient element
in each class by considering rotations about the z-axis, R = (α, z)
(means rotate by angle α about the z-axis). Thus:

P̂(α,z)Y�m = e−imαY�m

(which you should convince yourself of).
Find the character “table” of the rotation group, that is, find χ�(α),
the character of representation D� for the class of rotations through
angle α. If you find an expression for the character in the form of a
sum, do the sum, expressing your answer in as simple a form as you
can. Note that the answer is given in the text, just fill in the missing
steps to your satisfaction.

(c) Let us put our atom into a potential with cubic symmetry. Now the
symmetry of the free Hamiltonian is broken, and we are left with
the discrete symmetry of the cube. The symmetry group of proper
rotations of the cube is a group of order 24 with 5 classes. Call this
group “O”.
Construct the character table for O.

(d) Consider in particular how the f -level (l = 3) of the free atom may
split when it is placed in the “cubic potential”. The seven eigenfunc-
tions which transform according to the irreducible representation D3
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of the full group will most likely not transform according to an irre-
ducible representation of O. On the other hand, since the operations
of O are certainly operations of D3, the eigenfunctions will generate
some representation of O.
Determine the coefficients in the decomposition.

D3 = a1O
1 ⊕ a2O

2 ⊕ a3O
3 ⊕ a4O

4 ⊕ a5O
5,

where Oi are the irreducible representations of O. Hence, show how
the degeneracy of the 7-fold level may be reduced by the cubic po-
tential. Give the degeneracies of the final levels.
Note that we cannot say anything here about the magnitude of any
splittings (which could “accidentally” turn out to be zero!), or even
about the ordering of the resulting levels – that depends on the details
of the potential, not just its symmetry.
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Solutions to Problems

3.1 Exercises

1. For the Poincare group L̄, show that any element Λ(M, z) can be written
as a product of a pure homogeneous transformation followed by a pure
translation. Also show that it can be written as a pure translation followed
by a pure homogeneous transformation.

2. Show that the object {x, y} defined in Eqn. ?? is a scalar product.

3. Carry out the steps to demonstrate the decomposition of a representation
into irreps,

D = a1D
(1) ⊕ a2D

(2) ⊕ · · · ⊕ anrD
(nr), (3.1)

with coefficients:

aj =
1
h

nc
∑

k=1

χ(j)∗(Ck)χ(Ck)Nk. (3.2)

4. Derive the constant in Eqn. ??, that is, determine λ in:

∑

g∈Ck

D(i)(g) = λI. (3.3)

Solution: We can take the trace of both sides of this equation:

Tr

⎡

⎣

∑

g∈Ck

D(i)(g)

⎤

⎦ = Tr [λI] (3.4)

∑

g∈Ck

χ(i)(g) = λ�i (3.5)

19
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Nkχ
(i)(Ck) = λ�i, (3.6)

or
λ =

Nk

�i
χ(i)(Ck). (3.7)

This is the result asserted in Eqn. ??.

5. Show that the two irreps generated according to Figs. ?? and ?? are
equivalent.

6. Consider the group of all rotations in two dimensions: G = {R(θ) : 0 ≤ θ <
2π}. As a linear operator on vectors in a two-dimensional Euclidean space,
the elements of G may be represented (faithfully, or isomporphically) by
the set of 2 × 2 matrices of the form:

D(θ) =
(

cos θ − sin θ
sin θ cos θ

)

. (3.8)

Show that this group can be decomposed into two one-dimensional repre-
sentations, i.e., that you can find a transformation such that every element
of G can be represented in the form:

D(θ) =
(

f(θ) 0
0 g(θ)

)

, (3.9)

where the new representation is still faithful. You should find explicit
expressions for f and g.

Hint: You want to find a similarity transformation, which just corresponds
to a change in basis. You might consider the basis transformation so
often encountered in quantum mechanics and in optics, corresponding
to describing states in terms of “circular polarization” instead of “linear
polarization”.

7. Consider the dihedral group D3, which is isomorphic with the group of
permutations of three objects, S3. Let V2 be a two-dimensional Euclidean
space spanned by orthonormal vectors ex, ey. Give the representation,
D, of the elements of D3 with respect to this basis. That is, express the
transformed vectorsD(g)ei in terms of the original basis, and hence obtain
representation D.

8. Consider the symmetry group, C4v, of the square, consisting of rotations
about the axis perpendicular to the square, and reflections about the ver-
tical, horizontal, and diagonal axes in the plane of the square (but no
mirror plane in the plane of the square).

(a) Construct a suitable set of irreducible representations of C4v. That
is, up to equivalence, construct all of the irreducible representations
of this group.
Solution: The order of C4v is h = 8, with nc = 5 classes and
elements:
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i. C1 = {e}, the identity.
ii. C2 = {Mx,My}, mirror planes perpendicular to the square, con-

taining the horizontal (x) and vertical (y) symmetry axes of the
square, respectively.

iii. C3 = {Mu,Mv}, mirror planes perpendicular to the square, con-
taining the lines x = y and x = −y, respectively.

iv. C4 = {R+, R−}, rotations by ±90 degrees about the principal
axis of the square.

v. C5 = {R}, rotation by 180 degrees about the principal axis of
the square.

There are nr = nc = 5 irreps. We must have the sum of the squares of
the dimensions equal to 8. Given that we know that the identity rep is
of dimension 1, the possibilities are either {�i} = {1, 1, 1, 1, 1, 1, 1, 1}
or {1, 1, 1, 1, 4}. We may apply the reasoning we used in the case of
the square drumhead in class to obtain:

i. D(1)(g) = 1, ∀g ∈ C4v.
ii. D(2)({e,R,R±}) = 1, D(2)({Mx,My,Mu,Mv}) = −1.
iii. D(3)({e,R,Mx,My}) = 1, D(3)({R±,Mu,Mv}) = −1.
iv. D(4)({e,R,Mu,Mv}) = 1, D(4)({R±,Mx,My}) = −1.

v. D(5)(e) =
(

1 0
0 1

)

, D(5)(Mx) =
(−1 0

0 1

)

,

D(5)(My) =
(

1 0
0 −1

)

, D(5)(Mu) =
(

0 1
1 0

)

,

D(5)(Mv) =
(

0 −1
−1 0

)

, D(5)(R) =
(−1 0

0 −1

)

,

D(5)(R±) =
(

0 ∓1
±1 0

)

.

(b) Give the character table for C4v.
Solution: Just take the traces of the irreps in part (a) to get the
character table. The first four columns are just the irreps themselves.

9. In problem 6 you consider the reducibility of a two-dimensional repre-
sentation of the group of rotations in two dimensions. We may remark
that this is an abelian group. Let us generalize that result: Consider a
group, G, with a unitary representation D, consisting of unitary matrices
D(g), g ∈ G. If G is an abelian group, show that any such representation
is, by a similarity transformation, equivalent to a representation by diag-
onal matrices (i.e., by a direct sum of 1× 1 matrices). Note that we have
already used group theory (Schur’s lemma) to argue the truth of this. In
this problem, I want you to use what you know about matrix theory to
demonstrate the result.

10. Construct the character table for the tetrahedral symmetry group Td. You
may wish to keep a copy of your result for problem 12.
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11. Let’s take a peek at the relation of irreductible representations and the
invariant subspaces of a vector space: Let V be the 6-dimensional function
space consisting of polynomials of degree 2 in the two real variables x and
y:

f(x, y) = ax2 + bxy + cy2 + dx+ ey + h, (3.10)

where a, b, c, d, e, h are complex numbers. If x, y transforms under the di-
hedral group D3 (problem 7) as the coordinates of a 2-vector, then we
obtain a 6-dimensional representation of D3 on V . Identify the invariant
subspaces of V under D3, and the corresponding irreductible representa-
tions contained in this six dimensional representation (don’t be afraid to
use your intuition to make sure that what you find is sensible).

12. At last we are ready for a real physics application of group theory. We
looked at the example of masses joined by springs in the shape of an
equilateral triangle in this note. Now, let us consider the problem of
four masses joined by springs. The four masses are at the corners of a
tetrahedron, and the springs form the edges of the tetrahedron. Thus,
there are six springs connecting the four masses. All four masses are
equal, and all six springs are identical.

We wish to determine the frequencies of the normal modes for this sys-
tem. Notice that to solve the secular equation, |V − λI| = 0, presents a
formidable image. A little physical intuition can reduce it somewhat, but
it would take real cleverness to solve it completely. This cleverness comes
in the form of group theory! Group theory permits one to incorporate in
a systematic and deliberate way everything we know about the symmetry
of the problem, hence reducing it to a simpler problem.

The problem is still not trivial – you should spend time thinking about
convenient approaches in setting things up, and about ways to avoid doing
unnecessary work. Above all, be careful, and check your results as you
proceed. You already obtained the character table for the tetrahedral
symmetry group in problem 10. This problem takes you the rest of the
way through solving for the frequencies of the normal modes.

(a) First step: Set up a 12-dimensional vector (coordinate system) de-
scribing the system, and derive the equations of motion, arriving
finally at a set of linear equations that could be solved, in principle,
to yield the frequencies of the normal modes.

(b) Second step: Obtain the character table for the twelve-dimensional
representation of the tetrahedral symmetry group that acts on your
12-dimensional vector describing the system. Decompose this repre-
sentation into irreducible representations.

(c) Final step: Obtain a small number of trace equations which you can
use to solve to obtain the frequencies of the normal modes. Give the
frequencies of the normal modes, and their degeneracies. Do your
answers make physical sense?
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13. The “quaternion” group consists of eight elements,

Q = {1,−1, i,−i, j,−j, k,−k}, (3.11)

with multiplication table defined by (q is any element of Q):

1q = q

(−1)2 = 1
(−1)q = q(−1) = −q (3.12)

i2 = j2 = k2 = ijk = −1

Find the character table for this group. Compare this character table
with the character table for dihedral group D4. Are these two groups
isomorphic?

14. As a follow-on to the drumhead example in this note, consider the symme-
try group of the regular pentagon, as given by a five-fold axis and several
mirror planes. Do not include the mirror plan containing the plane of the
pentagon itself (although you may amuse yourself by considering what
happens if you add this operation).

(a) List the group elements. Denote rotations with R’s, and mirror op-
erations with M ’s. Draw a picture! List the classes.

(b) Construct the character table for the irreducible representations of
this group.

(c) Consider the mode of oscillation of a pentagonal drumhead where a
nodal line extends from a vertex to the midpoint of the opposite side.
Define (with pictures) a basis for the space generated by this mode
and its degenerate partners. Give an explicit matrix for one element
of each class of the group for the representation of the pentagonal
symmetry group that is generated by these degenerate modes.

(d) Decompose the representation found in part (c) into irreducible rep-
resentations.

15. We would like to consider the (qualitative) effects on the energy levels of an
atom which is moved from freedom to an external potential (a crystal, say)
with cubic symmetry. Let us consider a one-electron atom and ignore spin
for simplicity. Recall that the wave function for the case of the free atom
looks something like Rnl(r)Ylm(θ, φ), and that all states with the same
n and l quantum numbers have the same energy, i .e., are (2l + 1)-fold
degenerate. The Hamiltonian for a free atom must have the symmetry of
the full rotation group, as there are no special directions. Thus, we recall
some properties of this group for the present discussion. First, we remark
that the set of functions {Ylm : m = −l,−l+ 1, · · · , l − 1, l} for a given
l forms the basis for a (2l + l)-dimensional subspace which is invariant
under the operations of the full rotation group. [A set {ψi} of vectors is
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said to span an invariant subspace Vs under a given set of operations {Pj}
if Pjψi ∈ Vs ∀i, j.] Furthermore, this subspace is “irreducible,” that is, it
cannot be split into smaller subspaces which are also invariant under the
rotation group.

Let us denote the linear transformation operator corresponding to element
R of the rotation group by the symbol P̂R, i.e.:

P̂Rf(	x) = f(R−1	x)

The way to think about this equation is to regard the left side as giving a
“rotated function,” which we evaluate at point 	x. The right side tells us
that this is the same as the original function evaluated at the point R−1	x,
where R−1 is the inverse of the rotation matrix corresponding to rotation
R. Since {Ylm} forms an invariant subspace, we must have:

P̂RYlm =
l

∑

m′
=−1

Ylm′Dl(R)m′m

The expansion coefficients, Dl(R)m′m, can be regarded as the elements of
a matrix Dl(R). As we have discussed in general, and as you may see more
explicitly in the note on rotations in QM, D� corresponds to an irreducible
representation of the rotation group.

(a) Prove, or at least make plausible, the fact that Dl is an irreducible
representation of the rotation group. (Hint: You might show first
that it is a representation and then show irreducibility by finding a
contradiction with the supposition of reducibility).
Thus, for a free atom, we have that the degenerate eigenfunctions
of a given energy must transform according to an irreducible repre-
sentation of this group. If the eigenfunctions transform according to
the lth representation, the degeneracy of the energy level is (2l + 1)
(assuming no additional, “accidental” degeneracy).

(b) We will need the character table of this group. Since all elements in
the same class have the same character, we pick a convenient element
in each class by considering rotations about the z-axis, R = (α, z)
(means rotate by angle α about the z-axis). Thus:

P̂(α,z)Y�m = e−imαY�m

(which you should convince yourself of).
Find the character “table” of the rotation group, that is, find χ�(α),
the character of representation D� for the class of rotations through
angle α. If you find an expression for the character in the form of a
sum, do the sum, expressing your answer in as simple a form as you
can. Note that the answer is given in the text, just fill in the missing
steps to your satisfaction.
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(c) Let us put our atom into a potential with cubic symmetry. Now the
symmetry of the free Hamiltonian is broken, and we are left with
the discrete symmetry of the cube. The symmetry group of proper
rotations of the cube is a group of order 24 with 5 classes. Call this
group “O”.
Construct the character table for O.

(d) Consider in particular how the f -level (l = 3) of the free atom may
split when it is placed in the “cubic potential”. The seven eigenfunc-
tions which transform according to the irreducible representation D3

of the full group will most likely not transform according to an irre-
ducible representation of O. On the other hand, since the operations
of O are certainly operations of D3, the eigenfunctions will generate
some representation of O.
Determine the coefficients in the decomposition.

D3 = a1O
1 ⊕ a2O

2 ⊕ a3O
3 ⊕ a4O

4 ⊕ a5O
5,

where Oi are the irreducible representations of O. Hence, show how
the degeneracy of the 7-fold level may be reduced by the cubic po-
tential. Give the degeneracies of the final levels.
Note that we cannot say anything here about the magnitude of any
splittings (which could “accidentally” turn out to be zero!), or even
about the ordering of the resulting levels – that depends on the details
of the potential, not just its symmetry.
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Chapter 4

Lie Groups and Lie
Algebras

Frank Porter Ph 129b March 4, 2009

In this note we’ll investigate two additional notions:

1. The addition of a continuity structure on the group;

2. The addition of an algebraic structure on the group.

The former is the subject of Lie groups, and the latter is the subject of Lie
algebras. These are quite different concepts. However, we put them together
here because in physics we are heavily concerned with the conjunction of the
two ideas.1

4.1 Lie Groups

Formally, we have

Def: A Lie group is a group, G, whose elements form an analytic manifold such
that the composition ab = c (a, b, c ∈ G) is an analytic mapping of G×G
into G and the inverse a→ a−1 is an analytic mapping of G into G.

That is, a Lie group is a group with a continuity structure: derivatives may
be taken. Typically, we describe Lie groups by elements that are determined
differentiably by some set of continuously varying real parameters. If there are
r such parameters, we have an “r-parameter Lie group”.

We won’t here develop the theory of Lie groups from an abstract level.
Instead, we’ll directly mostly think in terms of representations by matrices,
where the matrices are specified by some number of continuosly varying real
parameters (up to possibly discrete points of discontinuity in some situations).

1The reader may wish to refer back to the note on Hilbert Spaces from Ph 129a for some
concepts.
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As with finite groups, it is convenient when we can deal with unitary repre-
sentations. This is guaranteed to be possible in the following case:

Theorem: Every finite-dimension representation of a compact Lie group is
equivalent to a unitary representation, and is either irreducible or fully
reducible.

By “compact” here we mean that the parameters that specify an element of the
Lie group vary over a compact set (i.e., over a closed set of finite extent). The
proof of this parallels the proof given for finite groups that we gave in the note
on representation theory, but now using the notion of an invariant integration
over the group. Compactness ensures that this integral will be finite.

The notions of compactness and invariance of the group integral are topolog-
ical concepts. There is a further topological property we will sometimes assume,
that the group is “connected”. By this, we mean that we can get to any element
of the group from the identity via a sequence of small steps.

For some examples:

• The group O+(3) (representing proper rotations in three dimensions) is a
compact, connected, 3-parameter Lie group.

• The group O(3) (proper and improper rotations in three dimensions) is a
compact, but not a connected group. It contains two disjoint categories
of elements, those with determinant +1, and those with determinant −1,
and it is not possible to continuously go from one to the other. This may
be regarded as the direct product group:

O(3) = O+(3) ⊗ I, (4.1)

where I is the inversion group.

• The Lorentz group (of proper homogeneous Lorentz transformations) is
connected, but not compact. This is a little more subtle – the lack of
compactness is due to the fact that there is a limit point of a sequence
of group elements that is not an element (consider a sequence of velocity
boosts in which v → 1).

• The improper, homogeneous Lorentz group is neither connected nor com-
pact.

We will sometimes also restrict discussion to simple compact Lie groups,
recalling that a simple group is one that contains no proper invariant subgroup.

If we have a compact Lie group, then we can define the invariant integral over
the group and also work with unitary representations without loss of generality.
The general orthogonality relation of finite groups may be generalized to include
compact Lie groups. For unitary irreducible representations D(i) and D(j) we
have:

∫

G

D(i)(g)μνD
(j)∗(g)αβμ(dg) =

1
�i
δijδμαδνβ . (4.2)
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We have assumed that the invariant integral over the group is normalized to
one:

∫

G

μ(dg) = 1. (4.3)

Let’s consider an example. In the note on representation theory, we defined
the spherical harmonic functions in terms of irreducible representations of the
rotation group:

Y�m(θ, φ) ≡
√

2�+ 1
4π

D�∗
m0(φ, θ, 0). (4.4)

Suppose we wish to know the orthogonality properties of the Y�m’s. We com-
pute:

∫

(4π)

Y�m(θ, φ)Y ∗
�′m′(θ, φ)d cos θdφ = (4.5)

√

(2�+ 1)(2�′ + 1)
4π

∫

(4π)

D�∗
m0(φ, θ, 0)D�′

m′0(φ, θ, 0)d cos θdφ

√

(2�+ 1)(2�′ + 1)
4π

∫

(4π)

D�∗
m0(φ, θ, α)D�′

m′0(φ, θ, α)d cos θdφ

√

(2�+ 1)(2�′ + 1)
8π2

∫

(8π2)

D�∗
m0(φ, θ, α)D�′

m′0(φ, θ, α)d cos θdφdα.(4.6)

We have used here the invariance of the integral when adding the rotation by
angle α about the x-axis, and averaging over this rotation. The result is now in
the form of the general orthogonality relation:

1
8π2

∫

(8π2)

D�∗
mn(φ, θ, α)D�′

m′n′(φ, θ, α)d cos θdφdα =
1

2�+ 1
δ��′δmm′δnn′ . (4.7)

Therefore,
∫

(4π)

Y�m(θ, φ)Y ∗
�′m′(θ, φ)d cos θdφ = δ��′δmm′ . (4.8)

A perhaps less-familiar but very important example may be found in classical
mechanics: Consider a system with generalized coordinates qi, i = 1, 2, . . . , n
and corresponding generalized momenta pi = ∂qiL, where L is the Lagrangian.
Hamilton’s equations are:

ṗi = −∂qiH, (4.9)
q̇i = ∂piH, (4.10)
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whereH is the Hamiltonian. We may rewrite this in terms of the 2n-dimensional
vector:

x ≡

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

q1
...
qn
p1

...
pn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (4.11)

as:
ẋ = J

∂H

∂x
, (4.12)

with

J =
(

0 I
−I 0

)

. (4.13)

That is, J is a 2n× 2n matrix written in terms of n× n submatrices 0 and I.
A canonical transformation is a transformation from x to y where

y =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Q1

...
Qn

P1

...
Pn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (4.14)

such that

ẏ = J
∂H [x(y)]

∂y
. (4.15)

That is, Hamilton’s equations are preserved under a canonical transformation.
We have

ẏi =
∑

j

∂yi

∂xj
ẋj , (4.16)

which may be written in matrix form:

ẏ = Mẋ, (4.17)

where
Mij ≡ ∂yi

∂xj
. (4.18)

Hence,

ẏ = MJ
∂H

∂x
. (4.19)

Now
∂H

∂xi
=

∑

j

∂H

∂yj

∂yj

∂xi
=

∑

j

∂H

∂yj
Mji, (4.20)
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or,
∂H

∂x
= MT ∂H

∂y
. (4.21)

We conclude that

ẏ = MJMT ∂H

∂y
, (4.22)

and that the transformation is canonical if

MJMT = J. (4.23)

A matrixM which satisfies the condition of Eqn. 4.23 is said to be symplectic.
The reader is encouraged to verify that the set of 2n× 2n symplectic matrices
forms a group, called the symplectic group, denoted Sp(2n).

We remark that the evolution of the system in time corresponds to a sequence
of canonical transformations, and hence the time evolution corresponds to the
application of successive symplectic matrices. This finds practical application
in various situations, for example in accelerator physics.

We turn now to another feature of unitary representations. Let U be a
unitary matrix. Write

U = eiA ≡
∞
∑

n=0

(iA)n

n!
, (4.24)

where we leave it to the reader to investigate convergence. Now,

U−1 = U † =
(

eiA
)†

=

[ ∞
∑

n=0

(iA)n

n!

]†

=
∞
∑

n=0

[(−iA∗)n]T

n!

=
∞
∑

n=0

[

(−iA†)n
]

n!

= e−iA†
. (4.25)

But we also know that,
U−1 = e−iA, (4.26)

since A commutes with itself, and hence exponentials of multiples of A may be
treated like ordinary numbers in products. Therefore, we may take A = A†.
That is, A is a hermitian matrix.

Note that if we also have detU = 1, then A can be taken to be traceless:
The matrix A is hermitian, hence diagonalizable by a unitary transformation.
Let

Δ = SAS−1 = diag(λ1, λ2, . . . , λn), (4.27)
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be a diagonal equivalent of A, where S is unitary. Then, A = S−1ΔS, or

1 = det
(

eiS−1
ΔS

)

= det
∞
∑

k=0

1
k!

(

iS−1ΔS
)k

= detS−1

[ ∞
∑

k=0

1
k!

(iΔ)k

]

S

= det(S−1)det(S)det eiΔ

= exp

⎛

⎝i

n
∑

j=1

λj

⎞

⎠ . (4.28)

Thus, the sum of the eigenvalues is equal to 2πm, where m is an integer. Notice
that if m �= 0, we can define a new diagonal matrix Δ′ = Δ−2πmδ11, where δ11
is the matrix with the i, j = 1, 1 element equal to one, and all other elements
zero. The trace of Δ′ is zero. Hence A′ ≡ S−1Δ′S is also traceless. But
exp(iΔ′) = exp(iΔ), and therefore

U = S−1eiΔ′
S = exp(iS−1Δ′S) = eiA′

, (4.29)

where A′ is hermitian and traceless.
Suppose D is a unitary representation of a group G. Then the elements of

the group representation may be written in the form:

D(g) = exp [iεα(g)Xα] , (4.30)

where the summation convention on repeated indices is used, {Xα} is a set of
constant hermitian matrices, and {εα} is a set of real parameters.

We are in particular concerned here with Lie groups (with unitary represen-
tations assumed here). In that case, if G is an r-parameter Lie group, we can
find a set of r matrices Xα, α = 1, 2, . . . , r such that Eqn. 4.30 holds. We refer
to these matrices as the infinitesimal generators of the group. In this case, we
have the “fundamental theorem of Lie”:

Theorem: The local structure of a Lie group is completely specified by the
commutation relations among the generators Xα:

[Xα, Xβ ] = Cγ
αβXγ , α, β = 1, 2, . . . , r, (4.31)

where the coefficients Cγ
αβ (called the structure constants of the group)

are independent of the representation.

We investigate the proof of this, or rather of the Baker-Campbell-Hausdorff
theorem, in exercise 6.

The reader is encouraged to check that the structure constants must satisfy:

Cγ
αβ = −Cγ

βα, (4.32)
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and (with summation convention over repeated indices)

Cδ
αβC

ε
δγ + Cδ

γαC
ε
δβ + Cδ

βγC
ε
δα = 0. (4.33)

The matrices Xα may be regarded as operators on a vector space. If we
are doing quantum mechanics, and we have a hermitian set of operators, they
correspond to observables.

The commutator may be regarded as defining a kind of product, and the
matrices {Xα} as generating a vector space, which is closed under this product.
This brings us to the subject of Lie algrebras, in the next section.

4.2 Lie Algrebras

In the discussion of infinite groups of relevance to physics (in particular, Lie
groups), it is useful to work in the context of a richer structure called an alge-
bra. For background, we start by giving some mathematical definitions of the
underlying structures:

Def: A ring is a triplet 〈R,+, ◦〉 consisting of a non-empty set of elements (R)
with two binary operations (+ and ◦) such that:

1. 〈R,+〉 is an abelian group.

2. R is closed under ◦.
3. (◦) is associative.

4. Distributivity holds: for any a, b, c ∈ R

a ◦ (b+ c) = a ◦ b+ a ◦ c (4.34)
and

(b+ c) ◦ a = b ◦ a+ c ◦ a (4.35)

Conventions:
We use 0 (“zero”) to denote the identity of 〈R,+〉 . We speak of (+) as addition
and of (◦) as multiplication, typically omitting the (◦) symbol entirely (i.e.,
ab ≡ a ◦ b).

Def: A ring is called a field if the non-zero elements of R form an abelian group
under (◦).

Def: An abelian group 〈V,⊕〉 is called a vector space over a field 〈F,+, ◦〉 by
a scalar multiplication (∗) if for all a, b ∈ F and v, w ∈ V :

1. a ∗ (v ⊕ w) = (a ∗ v) ⊕ (a ∗ w) distributivity

2. (a+ b) ∗ v = (a ∗ v) ⊕ (b ∗ v) distributivity

3. (a ◦ b) ∗ v = a ∗ (b ∗ v) associativity

4. 1 ∗ v = v unit element (1 ∈ F )
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Conventions:
We typically refer to elements of V as “vectors” and elements of F as “scalars.”
We typically use the symbol + for addition both of vectors and scalars. We also
generally omit the ∗ and ◦ multiplication symbols. Note that this definition
is an abstraction of the definition of vector space given in the note on Hilbert
spaces, page 6.

Def: An algebra is a vector space V over a field F on which a multiplication
(×) between vectors has been defined (yielding a vector in V ) such that
for all u, v, w ∈ V and a ∈ F :

1. (au) × v = a(u × v) = u× (av)

2. (u+v)×w = (u×w)+(v×w) and w×(u+v) = (w×u)+(w×v)

(Once again, we often omit the multiplication sign, and hope that it is clear
from context which quantities are scalars and which are vectors.)

We are sometimes interested in the following types of algebras:

Def: An algebra is called associative if the multiplication of vectors is asso-
ciative.

We may construct the idea of a “group algebra”: Let G be a group, and V
be a vector space over a field F , of dimension equal to the order of G (possibly
∞). Denote a basis for V by the group elements. We can now define the
multiplication of two vectors in V by using the group multiplication table as
“structure constants”: Thus, if the elements of G are denoted by gi, a vector
u ∈ V may be written:

u =
∑

aigi

We require that, at most, a finite number of coefficients ai are non-zero. The
multiplication of two vectors is then given by:

(

∑

aigi

) (

∑

bjgj

)

=
∑

⎛

⎝

∑

gigj=gk

aibj

⎞

⎠ gk

[Since only a finite number of the aibj can be non-zero, the sum
∑

gigj=gk
aibj

presents no problem, and furthermore, we will have closure under multiplica-
tion.]

Since group multiplication is associative, our group algebra, as we have con-
structed it, is an associative algebra.

We note that an associative algebra is, in fact, a ring. Note also that the
multiplication of vectors is not necessarily commutative. An important non-
associative algebra is:

Def: A Lie algebra is an algebra in which the multiplication of vectors obeys
the further properties (letting u, v, w be any vectors in V ):
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1. Anticommutivity: u× v = −v × u.

2. Jacobi Identity: u× (v × w) + w × (u× v) + v × (w × u) = 0.

We concentrate on Lie algebras henceforth in this note, in particular on Lie
algebras associated with a Lie group. The generators, {Xα}, of a Lie group
generate a Lie algebra, where multiplication of vectors is defined as the com-
mutator. Just as for groups, we have the notion of a regular representation (or
also “adjoint representation”) of the Lie algebra. We may rewrite the identity
for the structure constants:

Cδ
αβC

ε
δγ + Cδ

γαC
ε
δβ + Cδ

βγC
ε
δα = 0. (4.36)

in the suggestive form:

Cδ
αβ

(Cδ)
ε
γ + (−Cβ)ε

δ (−Cα)δ
γ + (−Cα)ε

δ (Cβ)δ
γ = 0. (4.37)

Interpreting, e.g., Cα as a matrix with elements (Cα)ε
δ, where δ is the column

index, we find:
[Cα, Cβ ] = Cδ

αβCδ. (4.38)

The matrices Cα formed from the structure constants have the same commuta-
tion relations as the generators Xα of the Lie group, and hence form a repre-
sentation of the Lie algebra, called the regular or adjoint representation.

The problem of classifying Lie groups is essentially the problem of finding
the numbers {C} satisfying the requirements of Eqns. 4.32 and 4.33 above, and
then finding the r constant matrices which satisfy the commutation relations.
This problem was solved by Cartan in 1913. We list the simple Lie groups here:

The “classical Lie groups” are (except as noted, � = 1, 2, . . .):

1. The group of unitary unimodular (i.e., determinant equal to one) (�+1)×
(�+ 1) matrices, denoted A� or SU(�+ 1). This is an �(�+ 2)-parameter
Lie group, as the reader is encouraged to demonstrate.

2. The group of orthogonal unimodular (2�+ 1)× (2�+ 1) matrices, denoted
B� or SO(2�+1) or O+(2�+1). This is an �(2�+1)-parameter Lie group,
as the reader is encouraged to demonstrate.

3. The group of orthogonal unimodular (2�) × (2�) matrices, for � > 2, de-
noted D� or SO(2�) or O+(2�). This is an �(2�− 1)-parameter Lie group,
as the reader is encouraged to demonstrate. It may be noted that for � ≤ 2
the group is not simple.

4. The group of symplectic (2�)× (2�) matrices, denoted C� or Sp(2�). This
is an �(2�+1)-parameter Lie group, as the reader is encouraged to demon-
strate.

In addition, there are five “exceptional groups”: G4 with 14 parameters, F4

with 52 parameters, E6 with 78 parameters, E7 with 133 parameters, and E8

with 248 parameters.
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Consider briefly the example of the rotation group and associated Lie algebra
in quantum mechanics.2 In three dimensions, a rotation about the α̂ unit axis
by angle φ can be expressed in the form:

Rα̂(φ) = e−iβ·T , (4.39)

where β · T ≡ βxTx + βyTy + βzTz, β = β(α̂, φ), and Tx,y,z are the infinitesimal
generators of rotations in three dimensions:

Tx ≡
⎛

⎝

0 0 0
0 0 −i
0 i 0

⎞

⎠ , Ty ≡
⎛

⎝

0 0 i
0 0 0
−i 0 0

⎞

⎠ , Tz ≡
⎛

⎝

0 −i 0
i 0 0
0 0 0

⎞

⎠ . (4.40)

We may consider the application of successive rotations (which must be a
rotation):

e−iα·T e−iβ·T = e−iγ·T

=
∞
∑

m=0

(−iα · T )m

m!

∞
∑

n=0

(−iβ · T )n

n!

= 1 − i(α+ β) · T +
(−iα · T )2

2!
+

(−iβ · T )2

2!
+ (−iα · T )(−iβ · T ) +O

[

(α, β)3
]

= 1 − i(α+ β) · T +
[−i(α+ β) · T ]2

2!
− [α · T, β · T ]

2!
+O

[

(α, β)3
]

= exp
{

−i(α+ β) · T − [α · T, β · T ]
2!

+O
[

(α, β)3
]

}

. (4.41)

Thus, to this order in the expansion, we need to have the values of commutators
such as [Tx, Ty], but not of products TxTy. This statement is true to all orders,
as stated in the celebrated Campbell-Baker-Hausdorff theorem. Hence, every
order is linear in the T ’s, and therefore γ exists. This is also why we can learn
most of what we need to know about Lie groups by studying the commutation
relations of the generators, as indicated in the general “fundamental theorem of
Lie”.

It may be remarked that for a general, abstract Lie algebra, we should not
even think of the product [A,B] as AB−BA, since the product AB may not be
defined, while the “Lie product” denoted [A,B] may be. Of course, if we have
a matrix representation for the generators, then AB is defined. In physics we
typically deal with matrix representations, so referring to the Lie product as a
commutator is justified.

For our three-dimensional rotation generators, the Lie products are found
by evaluating the commutation relations of the matrices, with the result:

[Tα, Tβ] = iεαβγTγ , (4.42)

2Again, this example is considerably expanded upon in the note on the rotation group in
quantum mechanics, linked to the Ph 129 web page.
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where εαβγ is the “antisymmetric tensor” (in three dimensions), or “Levi-Civita
antisymmetric symbol”, defined by:

εαβγ ≡
{ +1 α, β, γ an even permutation of 1, 2, 3,
−1 α, β, γ an odd permutation of 1, 2, 3,
0 otherwise.

(4.43)

With these commutation relations, we may define an abstract Lie algrebra,
with generators (basis vectors) t1, t2, t3 satisfying the Lie products:

[tα, tβ ] = iεαβγtγ , (4.44)

We complete the Lie algebra by considering linear combinations of the t’s, re-
quiring:

[a · t+ b · t, c · t] = [a · t, c · t] + [b · t, c · t] (4.45)

and
[a · t, b · t] = −[b · t, a · t]. (4.46)

Our Lie algrebra satisfies the Jacobi indentity:

[a · t, [b · t, c · t]] + [b · t, [c · t, a · t]] + [c · t, [a · t, b · t]] = 0. (4.47)

The matrices Tx, Ty, Tz generate a representation of this Lie algebra with
dimension three, since the matrices are 3 × 3 and hence operators on a 3-
dimensional vector space. We note that the vector space of the Lie algebra
itself is also three-dimensional, but this is not required, and the two vector
spaces should not be confused.

Recalling quantum mechanics, we know that it is useful to define

t+ ≡ t1 + it2 (4.48)
t− ≡ t1 − it2. (4.49)

We may obtain the commutation relations

[t3, t+] = t+ (4.50)
[t3, t−] = −t− (4.51)
[t+, t−] = 2t3. (4.52)

We suppose that the t’s are represented by linear transformations, J , acting on
some vector space V , where V is of finite dimension, but not necessarily three
dimensions. We make the correspondence t± → J±, t3 → J3. Since none of
these generators commute, only one of J±, J3 can be diagonalized at a time. We
have the definition:

Def: The number of generators of a Lie algebra that can simultaneously be
“diagonalized” is called the rank of the Lie group.
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Thus, the rotation group is of rank 1.
We pick J3 to be in diagonal form with respect to some basis {v}. We label

the basis vectors by the diagonal element (eigenvalue) k:

J3vk = kvk. (4.53)

By repeated action of J± on vk it may be demonstrated that k is either in-
teger or 1

2
-integer, with some maximal value j, and the eigenvalues of J3 are

−j,−j + 1, . . . , j. This demonstration is commonly performed in quantum me-
chanics courses. There are 2j + 1 distinct eigenvalues, so the dimension of our
representation is ≥ 2j + 1. If we define our space to be the space spanned by
{vk, k = −j,−j + 1, . . . , j} then our space is said to be irreducible – there is no
proper subspace of V which is mapped onto itself by the various J ’s.

As remarked earlier, for a compact Lie group we may find a unitary rep-
resentation, and hence we may represent the generators of the associated Lie
algebra by hermitian matrices. Assuming we have done so, we find

[Xα, Xβ ]† = (XαXβ −XβXα)†

= X†
βX

†
α −X†

αX
†
β

= XβXα −XαXβ

= −[Xα, Xβ]. (4.54)

We thus have

Cδ∗
αβX

†
δ = Cδ∗

αβXδ

= [Xα, Xβ ]†

= −[Xα, Xβ]
= −Cδ

αβXδ. (4.55)

That is, Cδ∗
αβ = −Cδ

αβ, and the structure constants are thus pure imaginary for
a unitary representation.

We may introduce the concept of an operator for “raising and lowering in-
dices” or a “metric tensor”, by defining:

gμν = gνμ ≡ Cβ
μαC

α
νβ . (4.56)

It may be shown that for a semi-simple Lie group detg �= 0, where g is the
matrix formed by the elements gμν . Thus, in this case, g has an inverse, which
we define by:

gμνgνρ = δμ
ρ , (4.57)

where we have written the Kronecker function with one index raised.
The metric tensor may be used for raising or lowering indices, for example:

gαβgμνgνβ = gαβδμ
β = gαμ. (4.58)
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We have here “raised” the indices on gνβ. In general, given a quantity with lower
indices, we may define a corresponding quantity with upper indices according
to:

Aα ≡ gαβAβ . (4.59)

Or, given a quantity with raised indices, we may define a corresponding quantity
with lower indices:

Aα ≡ gαβA
β . (4.60)

In particular, we may define structure constants with all lower indices:

Cαβγ = Cδ
αβgδγ . (4.61)

The Cαβγ so defined is antisymmetric under interchange of any pair of indices.
Note that, if Cδ

αβ is pure imaginary, then g is real, and Cαβγ is pure imaginary.
Now consider the quantity

F ≡ gαβX
αXβ = XαXα = XαX

α, (4.62)

where the Xα are the infinitesimal generators of the Lie algebra. Consider the
commutator of F with any generator:

[F,Xγ ] = gαβ[XαXβ , Xγ ]
= gαβ {Xα[Xβ, Xγ ] + [Xα, Xγ ]Xβ}
= gαβ

(

Cδ
βγXαXδ + Cδ

αγXδXβ

)

= gαβCδ
βγXαXδ + gβαCδ

βγXδXα

= gαβCδ
βγ (XαXδ +XδXα)

= gαβgδεCβγε (XαXδ +XδXα)
= Cβγε

(

XβXε +XεXβ
)

= Cεγβ

(

XεXβ +XβXε
)

= −Cβγε

(

XεXβ +XβXε
)

= 0, (4.63)

since it is equal to its negative. Thus, F commutes with every generator, hence
commutes with every element of the algebra. By Schur’s lemma, F must be a
multiple of the identity, since if F commutes with every generator, then it must
commute with every element of the group in some irreducible representation. An
operator which commutes with every generator is known as a Casimir operator.

For example, consider again the rotation group in quantum mechanics. The
structure constants are

Cγ
αβ = iεαβγ . (4.64)

The metric tensor is thus

gμν = Cβ
μαC

α
νβ

= −εμαβενβα

= 2δμν . (4.65)
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Hence, Jα = 2Jα, and J2 = J2
1 + J2

2 + J2
3 is a Casimir operator, a multiple

of the identity. To determine the multiple, we consider the action of J2 on
a basis vector. This may be accomplished by writing it in the form J2 =
J2

z + 1

2
(J+J− + J−J+), where J± ≡ Jx ± iJy. This exercise yields the familiar

result
J2vk = j(j + 1)vk, (4.66)

where 2j + 1 is the dimension of the representation. Thus,

J2 = j(j + 1)I. (4.67)

4.3 Example: SU(3)

The group SU(3) consists of the set of unitary unimodular 3×3 matrices. In the
exercises, you show that it is an eight parameter group. Thus, we know that the
associated Lie algebra must have eight linearly independent generators. That
is, we wish to find a set of eight linearly independent traceless hermitian 3 × 3
matrices. It is readily demonstrated that the vector space of such matrices is
in fact eight dimensional, that is, our generators provide a basis for the vector
space of traceless hermitian 3 × 3 matrices.

There are many ways we could pick our basis for the Lie algebra. However,
it is generally wise to make as many as possible diagonal. In this case, there are
three linearly-independent 3 × 3 diagonal hermitian matrices, but the traceless
requirement reduces these to only two. The number of simultaneously diago-
nalizable generators is called the rank of the Lie algebra, hence SU(3) is rank
two.

A common choice for the generators, with two diagonal generators, is the
“Gell-Mann matrices”:

λ1 =

⎛

⎝

0 1 0
1 0 0
0 0 0

⎞

⎠ , λ2 =

⎛

⎝

0 −i 0
i 0 0
0 0 0

⎞

⎠ , λ3 =

⎛

⎝

1 0 0
0 −1 0
0 0 0

⎞

⎠ , (4.68)

λ4 =

⎛

⎝

0 0 1
0 0 0
1 0 0

⎞

⎠ , λ5 =

⎛

⎝

0 0 −i
0 0 0
i 0 0

⎞

⎠ , (4.69)

λ6 =

⎛

⎝

0 0 0
0 0 1
0 1 0

⎞

⎠ , λ7 =

⎛

⎝

0 0 0
0 0 −i
0 i 0

⎞

⎠ , λ8 =
1√
3

⎛

⎝

1 0 0
0 1 0
0 0 −2

⎞

⎠ . (4.70)

Notice the SU(2) substructure. For example, the upper left 2×2 submatrices of
λ1, λ2, and λ3 are just the Pauli matrices. The group SU(3) contains subgroups
isomorphic with SU(2) (but not invariant subgroups).

One area where SU(3) plays an important role is in the “Standard Model” –
SU(3) is the “gauge group” of the strong interaction (Quantum Chromodynam-
ics). In this case, the group elements describe transformations in “color” space,
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where color is the analog of charge in the strong interaction. Instead of the sin-
gle dimension of electromagnetic charge, color space is three-dimensional. The
SU(3) symmetry reflects the fact that all colors couple with the same strength
– there is no preferred “direction” in color space. In field theory, once the gauge
symmetry is specified, the form of the interaction is determined.

There is another example in particle physics where SU(3) enters. Instead of
the color symmetry just discussed, there is a “flavor” symmetry. The three light-
est quarks are called “up” (u), “down” (d), and “strange” (s). The quantum
number that distinguishes these is called flavor. The strong interaction couples
with the same strength to each flavor. Thus, we may make “rotations” in this
three-dimensional flavor space without changing the interaction. These rota-
tions are described by the elements of SU(3). The symmetry is actually broken,
because the u, d, and s quarks have different masses (also, the electromagnetic
and weak interaction couplings depend on flavor), but it is still a useful approx-
imation in many situations. We’ll develop this application somewhat further
here.

We use the Gell-Mann representation, in which λ3 and λ8 are the diagonal
generators. According to the assumption of SU(3) flavor symmetry, our opera-
tors in flavor space commute with the Hamiltonian. We’ll label our quark flavor
basis according to the eigenvalues of λ3 and λ8. It is conventional to notice
the SU(2) substructure of (λ1, λ2, λ3) and refer to the two-dimensional oper-
ations of these generators as operations on “isospin” (short for isotopic spin)
space. This is the ordinary nuclear isospin. It really doesn’t have anything to
do with angular momentum, but gets its “spin” nomenclature from the anal-
ogy with angular momentum where SU(2) also enters. By analogy with angular
momentum, a two-dimensional representation gets “third-component” quantum
numbers of ±1/2. That is, we define, in this representation,

I3 =
1
2
λ3 =

1
2

⎛

⎝

1 0 0
0 −1 0
0 0 0

⎞

⎠ . (4.71)

The eigenstates with I3 = +1/2,−1/2 are called the u quark and the d quark,
respectively. The strange quark in this convention has I3 = 0, it is an I = 0
state (an isospin “singlet”). Note that this three-dimensional representation of
SU(2) is reductible to two-dimensional and one-dimensional irreps.

For the other quantum number, we define the “hypercharge” operator, in
this representation:

Y =
1√
3
λ8 =

1
3

⎛

⎝

1 0 0
0 1 0
0 0 −2

⎞

⎠ . (4.72)

Thus, the u and d quarks both have Y = 1/3, and the s quark has Y = −2/3.
The basis for this three-dimensional representation of flavor SU(3) is illustrated
in Fig. 4.1.
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ud

s

1/3

-2/3

-1/2 1/2

Y

I 3

Figure 4.1: The 3 representation of SU(3), in the context of quark flavors.

Now, we can also generate additional representations of SU(3), and interpret
in this physical context. Under complex conjugation of an element of SU(3),

U = eiεαλα → U∗ = e−iεαλ∗
α . (4.73)

This generates a new three-dimensional representation, called 3̄. The I3 and Y
quantum numbers switch signs. Thus, the diagram for 3̄ looks like the diagram
for 3 reflected through the origin. We label the states ū, d̄, s̄, reflecting their
interpretation as anti-quark states. Notice that the complex conjugate repre-
sentation 3̄ is not equivalent to the 3 representation. This is a difference from
SU(2), where the two representations (2 and 2̄) are equivalent.

We may also generate higher dimension representations of SU(3) by forming
direct product representations. Some of these have special interpretation in
particle physics: Combining a quark with an anti-quark, that is, forming the
3⊗ 3̄ representation, gives meson states. Combining three quarks, 3⊗3⊗3, gives
baryons. As usual, these direct product representations may be expected to be
reducible. For example, we have the reduction to irreducible representations:
3 ⊗ 3̄ = 8 ⊕ 1. We will discuss the graph in Fig. 4.2 in class.

4.4 Exercises

1. Show that SU(n) requires (n − 1)(n + 1) real parameters to specify an
element.

2. Show that Cαβγ is antisymmetric under interchange of any pair of indices.

3. Show that the complex conjugate representation, 2̄, of SU(2) is equivalent
to the original 2 representation.

4. Consider the Helmholtz equation in two dimensions:

∇2f + f = 0, (4.74)
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Figure 4.2: The 3 ⊗ 3̄ = 8 ⊕ 1 representation of SU(3), in the context of quark
flavors.

where

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
. (4.75)

(a) Show that the equation is left invariant under the transformation:

τ(ε, θ, α, β) :
(

x
y

)

→
(

x′

y′

)

=
(

x cos θ − y sin θ + α
xε sin θ + yε cos θ + β

)

, (4.76)

where ε = ±1, −π ≤ θ < π, and α and β are any real numbers
(actually, α, β, and θ could be complex, but we’ll restrict to real
numbers here).

(b) The set of transformations {τ(ε, θ, α, β)} obviously forms a Lie group,
where group multiplication is defined as the application of successive
transformations. Is it a compact group? Is it connected? What is
the identity element? The group multiplication table can be shown
to be:

τ(ε1, θ1, α1, β1)τ(ε2, θ2, α2, β2) = τ(ε3, θ3, α3, β3), (4.77)

where

ε3 = ε1ε2 (4.78)
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θ3 = ε2θ1 + θ2 [mod(−π, π)] (4.79)
α3 = α2 cos θ1 − β2 sin θ1 + α1 (4.80)
β3 = ε1(α2 sin θ1 + β2 cos θ1) + β1. (4.81)

What is the inverse τ−1(ε, θ, α, β)?

5. We consider some properties of a group algebra which can be useful for ob-
taining characters: Let the elements of a class be denoted {a1, a2, . . . , ana},
the elements of another class be denoted {b1, b2, . . . , bnb

}, etc. Form ele-
ment A =

∑na

i=1
ai of the group algebra, and similarly for B, etc.

Suppose D is an n-dimensional irreducible representation. You showed in
problem 19 that

D(A) ≡
na
∑

i=1

D(ai) =
na

n
χ(A)I, (4.82)

where χ(A) is the character of irrep D for class A.

(a) Now consider the multiplication of two elements, A and B, of the
group algebra. Show that the product consists of complete classes,
i.e.,

AB =
∑

C

sCC, (4.83)

where sC are non-negative integers. You may find it helpful to show
that g−1ABg = AB for all group elements g.

(b) Finally, prove the potentially useful relation:

naχ(A)nbχ(B) = n
∑

C

scncχ(C). (4.84)

6. We have discussed Lie algrebras (with Lie product given by the commu-
tator) and Lie groups, in our attempt to deal with rotations. At one
point, we asserted that the structure (multiplication table) of the Lie
group in some neighborhood of the identity was completely determined
by the structure (multiplication table) of the Lie algebra. We noted that,
however intuitively pleasing this might sound, it was not actually a triv-
ial statement, and that it followed from the “Baker-Campbell-Hausdorff”
theorem. Let’s try to tidy this up a bit further here.

First, let’s set up some notation: Let L be a Lie algebra, and G be the
Lie group generated by this algebra. Let X,Y ∈ L be two elements of the
algebra. These generate the elements eX , eY ∈ G of the Lie group. We
assume the notion that if X and Y are close to the zero element of the Lie
algebra, then eX and eY will be close to the identity element of the Lie
group.

What we want to show is that the group product eXeY may be expressed
in the form eZ , where Z ∈ L, at least for X and Y not too “large”. Note
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that the non-trivial aspect of this problem is that, first, X and Y may
not commute, and second, objects of the form XY may not be in the Lie
algebra. Elements of L generated byX and Y must be linear combinations
of X,Y , and their repeated commutators.

(a) Suppose X and Y commute. Show explicitly that the product eXeY

is of the form eZ , where Z is an element of L. (If you think this is
trivial, don’t worry, it is!)

(b) Now suppose that X and Y may not commute, but that they are
very close to the zero element. Keeping terms to quadratic order in
X and Y , show once again that the product eXeY is of the form eZ ,
where Z is an element of L. Give an explicit expression for Z.

(c) Finally, for more of a challenge, let’s do the general theorem: Show
that eXeY is of the form eZ , where Z is an element of L, as long as
X and Y are sufficiently “small”. We won’t concern ourselves here
with how “small” X and Y need to be – you may investigate that at
more leisure.
Here are some hints that may help you: First, we remark that the
differential equation

df

du
= Xf(u) + g(u), (4.85)

where X ∈ L, and letting f(0) = f0, has the solution:

f(u) = euXf0 +
∫ u

0

e(u−v)Xg(v)dv. (4.86)

This can be readily verified by back-substitution. If g is independent
of u, then the integral may be performed, with the result:

f(u) = euXf0 + h(u,X)g, (4.87)

Where, formally,

h(u,X) =
euX − 1
X

. (4.88)

Second, if X,Y ∈ L, then

eXY e−X = eXc(Y ), (4.89)

where I have introduced the notation “Xc” to mean “take the com-
mutator”. That is, Xc(Y ) ≡ [X,Y ]. This fact may be demonstrated
by taking the derivative of

A(u;Y ) ≡ euXY e−uX (4.90)

with respect to u, and comparing with our differential equation above
to obtain the desired result.
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Third, assuming X = X(u) is differentiable, we have

eX(u) d

du
e−X(u) = −h(1, X(u)c)

dX

du
. (4.91)

This fact may be verified by considering the object:

B(t, u) ≡ etX(u) ∂

∂u
e−tX(u), (4.92)

and differentiating (carefully!) with respect to t, using the above two
facts, and finally letting t = 1.
One final hint: Consider the quantity

Z(u) = ln
(

euXeY
)

. (4.93)

The series:

�(z) =
ln z
z − 1

= 1 − z − 1
2

+
(z − 1)2

3
− · · · (4.94)

plays a role in the explicit form for the result. Again, you are not
asked to worry about convergence issues.

7. In the next few problems we’ll pursue further the example we discussed
in the notes and in class with SU(3). We consider systems made from
the u, d, and s quarks (for “up”, “down”, and “strange”). Except for the
differences in masses, the strong interaction is supposed to be symmetric
as far as these three different “flavors” of quarks are concerned. Thus, if
we imagine our matter fields to be a triplet:

ψ =

⎛

⎝

ψu

ψd

ψs

⎞

⎠ , (4.95)

then we expect invariance (under the strong interaction) under the trans-
formations

ψ → ψ′ = Uψ, (4.96)

where U is any 3 × 3 matrix. Thus, U is any element of SU(3), and the
interaction possesses SU(3) symmetry.

You have already shown that SU(n) is an (n2 − 1) parameter group.
Thus, SU(3) has 8 parameters, and an arbitrary element in SU(3) can
be expressed in the form:

U = exp

⎧

⎨

⎩

i

2

8
∑

j=i

ajλj

⎫

⎬

⎭

where the {λj} is a set of eight 3 × 3 traceless, hermitian matrices. One
such set is the following: (Gell-Mann)
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λ1 =

⎛

⎝

0 1 0
1 0 0
0 0 0

⎞

⎠ , λ2 =

⎛

⎝

0 −i 0
i 0 0
0 0 0

⎞

⎠ , λ3 =

⎛

⎝

1 0 0
0 −1 0
0 0 0

⎞

⎠ ,

λ4 =

⎛

⎝

0 0 1
0 0 0
1 0 0

⎞

⎠ , λ5 =

⎛

⎝

0 0 −i
0 0 0
i 0 0

⎞

⎠ ,

λ6 =

⎛

⎝

0 0 0
0 0 1
0 1 0

⎞

⎠ , λ7 =

⎛

⎝

0 0 0
0 0 −i
0 i 0

⎞

⎠ , λ8 =
1√
3

⎛

⎝

1 0 0
0 1 0
0 0 −2

⎞

⎠ .

If the aj are infinitesimal numbers, we have

ψ′ = (1 +
i

2

∑

ajλj)ψ

and hence, the quantities Λj = 1

2
λJ are called the generators of the in-

finitesimal transformations, or, simply, the generators of the group. These
generators satisfy the commutation relations: (and we have a Lie algebra)

[Λi,Λj] = ifijkΛk

.

Evaluate the structure constants, fijk, of SU(3).

8. We may find ourselves interested in “states” consisting of more than one
quark, thus we must consider (infinitesimal) transformations of the form

ψ → ψ′ = (1 + i�α · �Λ)ψ (4.97)

�α · �Λ ≡
8

∑

j=1

ajΛj

where the Λj may be represented by matrices of dimension other than 3.
Let us develop a simple graphical approach to dealing with this problem
(We could also use less intuitive method of Young diagrams, as in the final
problem of this problem set).

First, let us introduce the new operators (“canonical form”):

I± = Λ1 ± iΛ2 (4.98)
U± = Λ6 ± iΛ7 (4.99)
V± = Λ4 ± iΛ5 (4.100)
I3 = Λ3 (“3rd component of isotopic spin”) (4.101)

Y =
2√
3
Λ8 (“hypercharge”) (4.102)
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Second, we remark that only two of the 8 generators of SU(3) can be
simultaneously diagonalized (e.g., see the explicit λ matrices I wrote down
earlier). [Thus, SU(3) is called a group of rank 2 – in general, SU(n) has
rank n− 1.] We choose I3 and Y to be the diagonalized generators. Thus,
our states will be eigenstates of these operators, with eigenvalues which
will denote by i3 and y. With the structure constants, you may easily find,
e.g.,

[I3, I±] = ±I±
Thus, if ψ(is) is an eigenstate of I3 with eigenvalue is:

I3I+ψ(is) = I+(1 + I3)ψ(is) = I+(1 + is)ψ(i3)
= (1 + is)I+ψ(is) (4.103)

So I+ acts as a “raising” operator for i3, since I+ψ(is) is again an eigen-
state of I3, with eigenvalue 1 + is. Likewise, we have other commutation
relations, such as:

[I3, U±] = ∓1
2
U± (4.104)

[I3, V±] = ±1
2
V± (4.105)

[Y, I±] = 0 (4.106)
[Y, U±] = ±U± (4.107)
[Y, V±] = ±V± (4.108)
[I3, Y ] = 0 (4.109)

etc.

Thus, the action of the “raising and lowering” operators I±, U±, V± can
be indicated graphically, as in Fig. 4.3.
Thus, we may generate all states of an irreducible representation starting
with one state by judicious application of the raising and lowering opera-
tors. As a simplest example, and to keep the connection to quarks alive,
we consider the 3-dimensional representation: Let’s start at the u−quark;
it has i3 = 1

2
and y = 1

3
. See Fig. 4.4.

Why did we stop after we generated d and s, starting from u? Well,
clearly we can’t have more components (or “occupied sites”) than the
dimensional-maximum allowed. In fact, since this a 3-dimensional repre-
sentation, we can just look at the matrices we gave earlier and see that
the eigenvalues of I3 are going to be ± 1

2
and 0, and those of Y will be

1

3
, 1

3
, and − 2

3
. A little more consideration of the matrices convinces us

that, e.g., I+u = 0, I+s = 0, U+d = 0, etc.,
We have given the i3 − y graph for the “3” representation of SU(3). Now
give the corresponding graph for the “3∗” (or 3̄) representation, that is,
the conjugate representation.
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Figure 4.3: The actions of the SU(3) raising and lowering operators SU(3), in
the i3 − y state space.
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Figure 4.4: The 3 irreducible representation of SU(3), in the i3 − y state space.



50 CHAPTER 4. LIE GROUPS AND LIE ALGEBRAS

* * * * *

*

*

*

*

*

*
*

*
*

*

*

**

*

*

*

*

*

*

*

*

* * * *

*

*

*

*

* * *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

p

q

1233

Figure 4.5: The graph of the SU(3) irreducible representation (p, q) = (6, 2).
The numbers indicate the multiplicities at each site.

9. You are encouraged to develop the detailed arguments, using the com-
mutation relations for the following observations: The graph for a given
irreducible representation is a convex graph which is 6-sided in general
(or three-sided if a side length goes to zero). A graph (of an irreducible
rep.) is uniquely labelled by two numbers (p, q). An example will suffice
to get the idea across. Fig. 4.5 shows the graph for (p, q) = (6, 2). The
origin of the I3−y coordinate system is inside the innermost triangle. The
rule giving the multiplicity of states at each site is that i) the outermost
ring has multiplicity of 1, ii) as one moves to inner rings, the multiplicity
increases by one at each ring, until a triangular ring is reached, whereupon
no further increases occur.

By counting the total number of states (i.e., by counting sites, weighted
according to multiplicity), we arrive at the dimesionality of the represen-
tation. The result, as you may wish to convince yourselves, is

dim = N =
1
2
(p+ 1)(q + 1)(p+ q + 2)

For the 3 and 3∗ representations, give the corresponding pairs (p, q, ), and
check that the dimensions come out correctly.

One more remark: If we have p ≥ q, we denote the representation by its di-
mensionality N. If p < q. we call it a conjugate representation, and denote
it by N∗[e.g., (2, 0) is the representation 6, but 0, 2 is 6∗.] An alternative
notation is to use a “bar”, e.g., N̄ to denote the conjugate representa-
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Figure 4.6: The graph of the SU(3) representation for 3 × 3̄. Physical particle
names for the lowest pseudoscalar mesons are indicated at each site.

tion (since for unitary representations the adjoint and complex conjugate
representations are the same).

10. We know that the mesons are states of a quark and an antiquark. If you
have done everything fine so far, you will see that we can thus gener-
ate the mesons by 3 ⊗ 3∗. The result is shown in Fig. 4.6 (don’t worry
about the particle names, unless you’re interested) Using the rules given
above concerning irreducible representations, we find, from this graph, the
decomposition 3 ⊗ 3∗ = 8 ⊕ 1.

We know baryons are made of three quarks (no antiquarks). Make sure you
understand how I did the mesons, and apply the same graphical approach
to the baryons, and determine the decomposition of 3⊗ 3⊗ 3 into a direct
sum of irreducible reps. Do not use Young diagrams (next problem) to
do this problem, although you are encouraged to check you answer with
Young diagrams. You may find it amusing, if you know something about
particle properties, to assign some known baryon names to the points on
your graphs.

11. Go to the URL: http://pdg.lbl.gov/2007/reviews/youngrpp.pdf. Study
the section on “SU(n) Multiplets and Young Diagrams,” and use the
techniques described there to answer the following question: We consider
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the special unitary group SU(4). This is the group of unimodular unitary
4 × 4 matrices. We wish to consider the product representation of the ir-
reducible representation given by the elements of the group itself with the
irreducible representation formed by the isomorphism of taking the com-
plex conjugate of every element. This turns out to yield a representation
which is not equivalent to 4. We could call this new representation 4∗,
but it is perhaps more typical to use the notation 4̄. Note that, since we
are dealing with unitary matrices, the complex conjugate and the adjoint
representation are identical, so this notation is reasonable.

The question to be answered is: What are dimensions of the irreducible
representaations obtained in the decomposition of the product represen-
tation 4 ⊗ 4̄?

The principal purpose of this problem (which is mechanically very simple)
is to alert you to the existence of convenient graphical techniques in group
theory – most notably that of Young diagrams. We make no attempt yet
to understand “why it works”.

A few more words are in order concerning the language on the web page:
Since it is taken from the Particle Data Group’s “Review of Particle Prop-
erties,” it is concerned with the application to particle physics, and the
language reflects this. However, it is easily understood once one realizes
that the number of particles in a “multiplet” is just the dimension of a
representation for the group. Effectively, the particles are labels for basis
vectors in a space of dimension equal to the multiplet size. [The basic
physics motivation for the application of SU(n) to the classification and
properties of mesons and baryons is that the strong interaction is sup-
posed to be symmetric as far as the different flavors are concerned. The
“n” in this SU(n) is just the number of different flavors. Note that this
(flavor) SU(n) is a different application from the “color” SU(3) symmetry
in QCD.] Those of you who know something about particles may find it
amusing to try to attach some known particle names to the 4⊗4̄ multiplets.



Chapter 5

The Permutation Group
and Young Diagrams

Frank Porter Ph 129b March 3, 2009

5.1 Definitions

The permutation, or symmetric, group, Sn is interesting at least partly because
it contains subgroups isomorphic to all groups of order ≤ n. This result is
known as “Cayley’s theorem”. It is also of great value in tensor analysis as the
means to describe the tensor space in terms of symmetries under permutations
of indicies. Here, we develop a diagrammatic approach to determining the irre-
ducible representations of Sn, which will turn out to have applications beyond
this immediate one.

Recall that we can express an element of Sn in cycle notation. For example,
the element of S5:

p =
(

1 2 3 4 5
4 1 5 2 3

)

(5.1)

is described in cycle notation as (142)(35). We can make a useful correspondence
between cycle structures and the “partitions” of integer n:

Def: A partition of a positive integer n is a set of integers (λ1, λ2, . . . , λn) such
that

λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0, (5.2)

and
λ1 + λ2 + . . .+ λn = n. (5.3)

Consider the class structure of the symmetric group Sn. Classes are given
by cycle structures, i.e., a particular class is specified by giving the n numbers
ω1, ω2, . . . , ωn, where ωi is the number of i cycles in an element belonging to

53
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the class. Thus, for (142)(35) ∈ S5, ω1 = 0, ω2 = 1, ω3 = 1, ω4 = ω5 = 0.
Noticing that

∑n
i=1

iωi = n, we see that the specification of a class of the
symmetric group corresponds to the specification of a partition of n, according
to the construction:

λ1 = ω1 + ω2 + . . . ωn

λ2 = ω2 + . . . ωn

...
λn = ωn.

For our S5 example:

λ1 = 2
λ2 = 2
λ3 = 1 (5.4)
λ4 = 0
λ5 = 0,

and the sum of these numbers is five.
We use this correspondence in the invention of a graphical description known

as Young Diagrams.

Def: A Young Diagram is a diagram with n boxes arranged in n rows corre-
sponding to a partition of n, i.e., with row i containing λi boxes.

For example, the diagram:

, (5.5)

for S5 corresponds to λ1 = 2, λ2 = 2, λ3 = 1, and λ4 = λ5 = 0. Because of the
ordering of the λ’s, each row of a Young diagram has at most as many boxes as
the row above it.

Note that giving all the Young diagrams for a given n classifies all of the
classes of Sn. Since nc = nr it may not be surprising that such diagrams are also
useful in identifying irreducible representations of Sn. That is, there is a 1 : 1
correspondence between Young diagrams and irreducible representations of Sn.
Furthermore, these diagrams are useful in decomposing products of irreducible
representations.

Def: A Young tableau is a Young diagram in which the n boxes have been filled
with the numbers 1, . . . , n, each number used exactly once.
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For example:
4 1
2 3
5 . (5.6)

There are n! Young tableau for a given Young diagram.

Def: A standard Young tableau is a Young tableau in which the numbers appear
in ascending order within each row or column from left to right and top
to bottom.

For example, the following are the possible standard Young tableau with the
given shape:

1 2
3 4
5 ,

1 2
3 5
4 ,

1 3
2 4
5 ,

1 3
2 5
4 ,

1 4
2 5
3 . (5.7)

Def: A normal tableau is a standard Young tableau in which the numbers are
in order, left to right and top to bottom.

There is only one normal tableau of a given shape, e.g.,

1 2
3 4
5 . (5.8)

From a normal tableau, we may obtain all other standard tableau by suitable
permutations, for example:

Y1 :
1 2
3 4
5

(1)(2453)−−−−−−→ Y2 :
1 4
2 5
3

. (5.9)

That is, (2453)Y1 = Y2.

5.2 Examples: System of particles

Suppose we have a system of n identical particles, in which the Hamiltonian,
H , is invariant under permutations of the particles. Let xi be the coordinate
(position, spin, etc.) of particle i. Suppose ψ(x1, x2, . . . , xn) is an eigenfunction
of H belonging to eigenvalue E. Then any permutation of the particles:

Paψ =
(

1 2 · · · n
a1 a2 · · · an

)

ψ(x1, x2, . . . , xn)

= ψ(xa1 , xa2 , . . . , xan) (5.10)

is another eigenfunction belonging to the same eigenvalue.
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In quantum mechanics, we have symmetric wave functions, under inter-
change of any pair of particle coordinates, for bosons, and anti-symmetric wave
functions for fermions. Define a “symmetrizer operator” by:

S ≡ 1
n!

∑

P

P, (5.11)

where
∑

P is short for
∑

P∈Sn
, that is a sum over all permutations of the n

particle coordinates. Likewise, define an “anti-symmetrizer operator” by:

A ≡ 1
n!

∑

P

δPP, (5.12)

where
δP ≡

{+1 if P is even
−1 if P is odd.

(5.13)

We call δP the “parity” of the permutation. It is given by

δP = (−1)q, (5.14)

where q is the number of transpositions required to produce permutation P
starting from the normal tableau.

It is an exercise for the reader to show that a k-cycle has parity (−1)k−1.
Therefore, if a permutation, P , consists of � cycles with structure {k1, k2, . . . , k�}
then the parity of P is:

δP = (−1)
∑�

i=1
(ki−1)

= (−1)n−�, (5.15)

where the second line follows because
∑�

i=1
ki = n. The quantity n− � is called

the decrement of P .
We also leave it as an exercise for the reader to show that, for any Pa ∈ Sn:

PaS = S (5.16)
PaA = APa = δPaA (5.17)
S2 = S (5.18)
A2 = A. (5.19)

Thus, S and A act as projection operators.
Consider two-particle states. Let u and d be orthogonal single-particle

states1, and ψN = u(x1)d(x2). We have symmetrizer:

S12 =
1
2
(e+ P12), (5.20)

1Alternatively, we could be talking about the two angular momentum states of a spin-1/2
system, with u corresponding, say to spin “up”, and d to spin “down”.
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where e is the identity operator of S2. The operator S12 projects out the sym-
metric part of ψN :

ψS ≡ S12ψN =
1
2

[u(x1)d(x2) + d(x1)u(x2)] . (5.21)

Likewise, the anti-symmetrizer,

A12 =
1
2
(e− P12), (5.22)

projects out the antisymmetric piece:

ψA ≡ A12ψN =
1
2

[u(x1)d(x2) − d(x1)u(x2)] . (5.23)

Note that the combinations u(x1)u(x2) and d(x1)d(x2) are already symmetric.
Now we relate this discussion to our graphical formalism. The Young dia-

gram corresponds to the class of two 1-cycles, that is, the identity of S2. The
Young diagram corresponds to the class of one 2-cycle, that is transposition.
Thus, we make the identification of tableau:

1 2 with

⎧

⎨

⎩

u(x1)u(x2)
1

2
[u(x1)d(x2) + d(x1)u(x2)]

d(x1)d(x2),
(5.24)

and
1
2

with
1
2

[u(x1)d(x2) − d(x1)u(x2)] . (5.25)

That is, two boxes in a row correspond to a symmetric state, and two in a
column to an antisymmetric state.

Let’s try this with three-particle states, with u, d, s as orthonormal single
particle states. We’ll drop the x from our notation, and simply write ψN =
u(1)d(2)s(3). There are 3! = 6 linearly independent functions obtained by
permuting the 1, 2, 3 particle labels, or by permuting the state labels u, d, s.
We’ll do the latter, and also simplify our notation still further and drop the
particle labels, with the understanding that they remain in the order 123.

We rewrite the six linearly independent functions obtained by permutations
into a different set of six linearly independent functions, based on symmetry
properties under interchange. First, the completely symmetric arrangement:

ψS = S123ψN = S123uds

=
1
3!

(e+ P12 + P13 + P23 + P123 + P132)uds

=
1
3!

(uds+ dus+ sdu+ usd+ dsu+ sud). (5.26)

Once again, this corresponds to the identity class of three 1-cycles: 1 2 3 .
This symmetric state is invariant under the actions of S3, hence it generates the
one-dimensional identity representation.
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The completely antisymmetric arrangement is:

ψA = A123ψN = A123uds

=
1
3!

(e− P12 − P13 − P23 + P123 + P132)uds

=
1
3!

(uds− dus− sdu− usd+ dsu+ sud), (5.27)

corresponding to

1
2
3 . All actions of the S3 group on ψA yield ±1 times ψA. Thus,

this function is a vector in another one-dimensional invariant subspace under
the actions of the group elements and hence generates another one-dimensional
irreducible representation of S3. Note that it is not equivalent to the identity
representation.

There are four more functions to build; these must have mixed symmetry.
We may proceed by symmetrizing uds with respect to two particles, and then
antisymmetrizing with respect to two particles (or vice versa), with one particle
in common between the two operations.2 There is some arbitrariness in how we
choose to carry out this program. Let us take:

ψ1 = A13S12ψN = A13

1
2
(uds+ dus) =

1
4
(uds− sdu+ dus− sud)

ψ2 = A23S12ψN =
1
4
(uds− usd+ dus− dsu)

ψ3 = S13A12ψN =
1
2
(e+ P13)

1
2
(uds− dus) =

1
4
(uds+ sdu− dus− sud)

ψ4 = S23A12ψN =
1
4
(uds+ usd− dus− dsu). (5.29)

We note that ψ1 and ψ2 form an invariant subspace under S3:

(12)ψ1 =
1
4
(dus− dsu+ uds− usd) = ψ2

(13)ψ1 = −ψ1 (5.30)
(12)ψ2 = ψ1

(13)ψ2 =
1
4
(sdu− dsu+ sud− usd) = ψ2 − ψ1,

with the other S3 elements obtained by products of these. Likewise, ψ3 and ψ4

form an invariant subspace.
Typically, we want to form an orthogonal system. We may check whether

our states are orthogonal. For example,

(ψ1, ψ3) = (A13S12uds, S13A12uds)
= (uds, S12A13S13A12uds) = 0, (5.31)

2Note that

SijAij =
1

2
(e + Pij)

1

2
(e − Pij) =

1

4
(e + Pij − Pij − e) = 0. (5.28)

That is, our projections project onto orthogonal subspaces.
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since A13S13 = 0. Likewise, we find that

(ψ1, ψ4) = (ψ2, ψ3) = (ψ2, ψ4) = 0. (5.32)

However, we also find that (ψ1, ψ2) �= 0 and (ψ3, ψ4) �= 0, so our ψ1, ψ2, ψ3, ψ4

states do not yet form an orthogonal system. But we make take linear combi-
nations (a, b, c, d are normalization constants):

ψ′
1 = a(ψ1 + ψ2)

= − 1√
12

(2uds+ 2dus− sdu− sud− usd− dsu), (5.33)

ψ′
2 = b(ψ1 − ψ2)

= −1
2
(usd+ dsu− sdu− sud), (5.34)

ψ′
3 = c(ψ3 + ψ4)

=
1√
12

(2uds− 2dus+ sdu− sud+ usd− dsu), (5.35)

ψ′
4 = d(ψ3 − ψ4)

=
1
2
(−sdu+ sud+ usd− dsu), (5.36)

where we have normalized and adopted phase conventions.
Thus, we have a set of six orthonormal functions. Both ψ′

1 and ψ′
4 are

symmetric under the transposition (12), hence both correspond to the Young

tableau
1 2
3 . Likewise, ψ′

2 and ψ′
3 are antisymmetric under (12), corresponding

to tableau
1 3
2 . The states {ψ′

1, ψ
′
2} form an invariant subspace under S3, and

the states {ψ′
3, ψ

′
4} form another invariant subspace. Both subspaces lead to the

same irreducible representation of S3, a “mixed” representation (that is, neither
purely symmetric nor purely antisymmetric under transpositions), with Young
diagram . This is a two-dimensional representation, acting on either of the
two-dimensional invariant subspaces. For example,

(12)ψ′
1 = ψ′

1

(12)ψ′
2 = −ψ′

2 (5.37)

tells us that the (12) element is represented in this basis by:

D(12) =
(

1 0
0 −1

)

. (5.38)

Now notice that we are also generating an orthonormal basis of states of the
3 ⊗ 3 ⊗ 3 representation of SU(3)! We thus have a connection between SU(3)
and the permutation symmetry. Let us pursue this idea further in this example.
We’ll make the example more concrete by interpreting that the particles u, d, s



60CHAPTER 5. THE PERMUTATION GROUP AND YOUNG DIAGRAMS

as quark flavor eigenstates. In this case, we are generating the wavefunctions of
the baryons, in terms of quark flavor content. Now 3 × 3 × 3 = 27, so we are
dealing with a 27-dimensional representation of SU(3). We proceed to find the
decomposition of this into irreducible representations, and obtain the baryon
flavor wavefunctions:

First, we have,

1
2
3

= ψA =
1
6
(uds− dus+ sud− usd+ dsu− sdu) =

u
d
s
, (5.39)

where the graph on the left is our familiar Young tableau indicating complete
antisymmetry under transpositon of coordinates in S3. The graph on the right,
called a “Weyl tableau”, indicates that the wave function is also completely an-
tisymmetric under interchange of flavors in SU(3). This is the only completely
antisymmetric state: Any “rotation” in SU(3) gives back this state. Hence this
generates a one-dimensional representation of SU(3), the identity representa-
tion.

We have seen that we also have states with mixed symmetry under the
actions of S3. We found four such states comprised of uds, two associated with
1 2
3 and two with

1 3
2 . There are, in addition states with two identical quarks.

For example, we may obtain the
1 2
3 uud state by letting s→ u in ψ′

1:

ψ′
1 = − 1√

12
(2uds+ 2dus− sdu − sud− usd− dsu),

→ − 1√
12

(2udu+ 2duu− udu− uud− uud− duu),

= − 1√
12

(udu+ duu− 2uud),

→ − 1√
6
(udu+ duu− 2uud), (5.40)

where we have normalized to one in the last step.

Similarly, the
1 3
2 uud state is obtained from ψ′

2:

ψ′
2 = −1

2
(usd+ dsu− sdu− sud),

→ −1
2
(uud+ duu− udu− uud),

→ − 1√
2
(udu− duu). (5.41)

Notice that we get the same state by replacing the s quark in ψ′
3 with a u quark.

Likewise, ψ′
4 gives the same state as ψ′

1.
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Let us summarize the mixed symmetry states of the baryons:3

Baryon 1 2
3

1 3
2

Weyl

name (12) symmetric (12) antisymmetric tableau

N+ − 1√
6
(udu+ duu− 2uud) 1√

2
(udu− duu) u u

d

N0 1√
6
(udd+ dud− 2ddu) 1√

2
(udd− dud) u d

d

Σ+ 1√
6
(usu+ suu− 2uus) 1√

2
(usu− suu) u u

s

Σ0 − 1√
12

(2uds+ 2dus− sdu − 1

2
(usd+ dsu− sdu− sud) u d

s
−sud− usd− dsu)

Σ− 1√
6
(sdd+ dsd− 2dds) 1√

2
(sdd − dsd) d d

s

Λ0 1

2
(sud− sdu+ usd− dsu) 1√

12
(2uds− 2dus+ sdu u s

d
−sud+ usd− dsu)

Ξ0 − 1√
6
(uss+ sus− 2ssu) − 1√

2
(uss− sus) u s

s

Ξ− − 1√
6
(dss+ sds− 2ssd) − 1√

2
(dss− sds) d s

s

Thus, we have two eight-dimensional irreducible representations of SU(3)
with mixed symmetry. Together with the completely antisymmetric state, we
so far have irreducible representations of dimensions 1, 8, 8 in our 27-dimensional
3⊗3⊗3 product representation. We next consider the representation generated
by the completely symmetric states, corresponding to 1 2 3 . We may start
with:

ψS =
1√
6
(uds+ dus+ sdu+ usd+ dsu+ sud). (5.42)

The particle name attached to this state is Σ∗0. If we replace the s by a u, for
example, we get

1√
3
(udu+ uud+ duu), (5.43)

known as Δ+.
We summarize the symmetric states in a table:

Baryon 1 2 3 Weyl
name completely symmetric tableau

Δ++ uuu u u u

3Note that the superscripts give the electric charges of the states, where the u has charge
2
3

and the d and s both have charge − 1
3
. Thus the charge operator, Q is related to the I3 and

Y operators by Q = I3 + Y
2

.
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Δ+ 1√
3
(udu+ uud+ duu) u u d

Δ0 1√
3
(udd+ dud+ ddu) u d d

Δ− ddd d d d

Σ∗+ 1√
3
(uus+ usu+ suu) u u s

Σ∗0 1√
6
(uds+ dus+ sdu+ usd+ dsu+ sud) u d s

Σ∗− 1√
3
(dds+ dsd+ sdd) d d s

Ξ∗0 1√
3
(uss+ sus+ ssu) u s s

Ξ∗− 1√
3
(dss+ sds+ ssd) d s s

Ω− sss s s s

There are thus ten symmetric states, generating a ten-dimensional irre-
ducible representation of SU(3). We have once again found that 3 ⊗ 3 ⊗ 3 =
10 ⊕ 8 ⊕ 8 ⊕ 1 in SU(3). Notice that we can generate all of the irreducible
representations and bases from the “Weyl” diagrams, with two simple rules:

1. No column contains the same label twice.

2. Within each row or column, the state labels must be in non-decreasing or-
der (according to whatever convention is chosen for the ordering of u, d, s).

Let us notice something now: When we formed the 3⊗ 3⊗ 3 product repre-
sentation of SU(3), we obtained the Clebsch-Gordan series consisting of SU(3)
irreducible representations:

Number of irreps Dimension of irrep Young diagram

1 1

2 8

1 10

But we also obtained irreducible representations of S3. That is, we obtained
the decomposition of our 27-dimensional representation of S3, acting on our
27-dimensional state space, into the irreducible representaions of S3:

Number of irreps Dimension of irrep Young diagram

1 1 [13] =

8 2 [12] =

10 1 [3] =

Here we have introduced the notation [aibj . . .] to stand for a partition of n
with i occurrences of “a”, j occurrences of “b”, etc. The first one-dimensional
representation acts on the completely antisymmetric basis vector, the eight two-
dimensional representations act on the vectors of mixed symmetry, and the
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final ten one-dimensional representations act on each of the ten symmetric basis
vectors.

We notice a kind of “duality” between the number of irreducible represen-
tations of SU(3) and the dimensions of the S3 irreducible representations, and
vice versa. This result holds more generally than this example. The general
statement is:

Theorem: The multiplicity of the irreducible representation [f ] of Sn, denoted
by m[f ](Sn) is equal to the dimension of the irreducible representation [f ]
of SU(N), denoted by d[f ] (SU(N)):

m[f ](Sn) = d[f ] (SU(N)) , (5.44)

and vice versa:
m[f ] (SU(N)) = d[f ](Sn), (5.45)

in the same tensor space of dimension Nn.

We have introduced the language of a “tensor space” here, we’ll define and
discuss this in the next section.

We conclude this section with an important theorem on the irreducible rep-
resentations of Sn, generalizing the observations we have made for S2 and S3.
We introduce the notation Θλ to refer to the normal Young tableau associated
with partition of n specified by λ = {λ1, λ2, . . . , λn}. We let Θp

λ refer to the
standard tableau obtained by permutation p on Θλ.

Now define:

Def: The irreducible symmetrizer, or Young symmetrizer, ep
λ associated with

the Young tableau Θp
λ is

ep
λ ≡

∑

h,v

δvhv, (5.46)

where h is a horizontal permutaion of Θp
λ and v is a vertical permutaion.

An example should help to make this clear. Consider S3. We have (up to a
factor of 3! for S and A):

Θ3 = 1 2 3 : e3 =
∑

h

h =
∑

p∈S3

p = S (5.47)

Θ21 = 1 2
3

: e21 = [(e+ (12)] [e− (13)]

= e+ (12) − (13) − (132) (5.48)

Θ(23)

21 = 1 3
2

: e(23)21 = [(e+ (13)] [e− (12)]

= e+ (13) − (12) − (123) (5.49)
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Θ13 =
1
2
3

: e13 =
∑

v

δvv =
∑

p∈S3

δpp = A. (5.50)

This exhausts the standard tableau for S3.
We are ready for the theorem, which tells us that these irreducible sym-

metrizers generate the irreducible representations of Sn:

Theorem: The irreducible symmetrizers {eλ} associated with the normal Young
tableau {Θλ} generate all of the inequivalent irreducible representations
of Sn.

The general proof of this may be found in Tung and in Hamermesh. We’ll make
some observations here:

1. The number of inequivalent irreducible representations of Sn is given by
the number of different Young diagrams, since they can be put into 1:1
correspondence with the classes.

2. There is one eλ for each Young diagram, since there is one normal tableau
for each diagram. Thus, the number of elements of {eλ} is the number of
irreducible representations.

3. The remainder of the proof requires showing that each eλ generates an
inequivalent irreducible representation.

Notice that a corollary to this theorem is the fact that eλ and ep
λ generate

equivalent irreducible representations. We may further notice that the dimen-
sion of an irreducible representation [f ] of Sn is equal to the number of standard
Young tableaux associated with [f ] = [f1f2 . . . fn]. For example, in S3, 1 2 3

generates a one-dimensional representation,
1 2
3 and

1 3
2 generate a two-

dimensional representation, and

1
2
3 generates a one-dimensional representation.

We may check that 12 + 22 + 12 = 6, the order of S3.

5.3 Tensors and tensor spaces

Def: Let V be an N -dimensional vector space:

x =

⎛

⎜

⎜

⎝

x1

x2

...
xN

⎞

⎟

⎟

⎠

∈ V. (5.51)

The product of n vectors: x(1) ⊗ x(2) ⊗ · · · ⊗ x(n) forms a tensor of rank
n in a tensor space of Nn dimensions. That is the direct product space;
V ⊗ V ⊗ · · · ⊗ V is called a tensor space.
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We may denote the Nn tensor components by:

Ti1i2···in = xi1 (1)xi2 (2) · · ·xin(n), (5.52)

where the indices i1, . . . , in range over 1, 2, . . . , N .
Let G be a continuous group of linear transformations on V :

x −−−→
a ∈ G

x′ ⇒ x′ = ax, (5.53)

where a ∈ G is an N × N matrix (depending on the parameters of group G).
Under the action of a ∈ G, the tensor components transform according to:

T ′
i1i2···in

= ai1i′1ai2i′2 · · ·aini′nTi′1i′2···i′n , (5.54)

where it is understood that repeated indices are summed over.
Notice the connection with direct product representations: In the tensor

space, the transformation a ∈ G is represented by Nn ×Nn component matrix:

D(a) = a⊗ a⊗ a · · · ⊗ a, (5.55)

with components

D(a)i1i2···in,i′1i′2···i′n = ai1i′1ai2i′2 · · ·aini′n . (5.56)

This is a generalization of our earlier discussion on direct product matricies.
The representation D(a) is generally reducible with respect to both G and

Sn, the latter corresponding to symmetries with respect to permutations of the
indicies. For a tensor of rank n = 1 the relevant symmetric group is S1. Hence
the components of a vector x which form a tensor of rank one correspond to the
Young diagram .

Now consider the second rank tensor Ti1i2 . Permuting the indicies gives
Ti2i1 . We may form:

Ti1i2 ± Ti2i1 , (5.57)

forming the basis of the symmetric and antisymmetric product representations,
described by the Young diagrams and . The indicies i1 and i2 run from 1
to N . The matrix D(a) = a ⊗ a may be reduced to the direct sum of an anti-
symmetric representation and a symmetric representation. The antisymmetric
representation (of S2) has dimension

dA =
N(N − 1)

2
. (5.58)

We may see this as follows: The index i1 takes on values 1, . . . , N . For each
i1, i2 can take on N − 1 values different from i1. But each Ti1i2 − Ti2i1 occurs
twice (with opposite sign) in this counting, hence the factor of 1/2. This leaves
a symmetric representation with dimension

dS = N2 − N(N − 1)
2

=
N(N + 1)

2
. (5.59)
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Notice that the interchange of i1 with i2 corresponds to transposition p =
(12) on T ′

i1i2
= ai1i′1ai2i′2Ti′1i′2 , and therefore:

pT ′
i1i2 = T ′

i2i1 = ai2i′2ai1i′1Ti′2i′1

= ai1i′1ai2i′2Ti′2i′1
= ai1i′1ai2i′2pTi′1i′2 . (5.60)

Thus, any a ∈ G commutes with p ∈ S2. This property remains valid for nth

rank tensors: Let p ∈ Sn, and

Ti1i2···in = T(i) = xi1 (1)xi2(2) · · ·xin(n), (5.61)

where we have introduced a shorter notation for the indices. Then

(pT )(i) = xi1 (a1)xi2 (a2) · · ·xin(an)
= Tp(i), (5.62)

since the permutation of the n objects 1, 2, . . . , n is equivalent to the permutation
of the indicies i1, i2, . . . , in. Now,

(pT ′)(i) = T ′
p(i) = Dp(i)p(j)Tp(j)

= Dp(i)p(j) (pT )
(j)

= D(i)(j) (pT )
(j) , (5.63)

since D(a) is bisymmetric, that is invariant under the simultaneous identical
permutations of both the i’s and j’s.

Thus, any p ∈ Sn commutes with any transformation of linear operator G
on the tensor space. This is an important observation. It means that linear
combinations which have a particular permutation symmetry transform among
themselves, and can also be described by Young tableaux associated with the
same Young diagram, generating an invariant subspace of Sn. The space of an
n-rank tensor is reducible into subspaces of tensors of different symmetries. A
tensor space can be reduced with respect to both G and Sn, and a kind of duality
between a linear group G and a symmetric group Sn exists in a tensor space.
We noted this earlier in our 3⊗3⊗3 example under SU(3). The 27-dimensional
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representation of S3 has the reduction to block diagonal form:
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5.64)

The boxes here indicate possibly non-zero components of the matrix, not Young
diagrams! Likewise, the 27-dimensional representation of SU(3) has the reduc-
tion to block diagonal form:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5.65)

For another example, consider the 34-dimensional tensor space, generated
by (u, d, s) vectors in direct products of rank four (that is, N = 3, n = 4). Let
us determine the multiplicities of the irreducible representations of SU(3) and
S4 in the decompositions of the representations on this tensor space.

The irreducible representations accepted in this space by both groups have
Young diagrams:

4 31 22 211

Notice that the totally antisymmetric representation does not appear,
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because we cannot make a totally antisymmetric combination under S4 from
three distinct components (u, d, s).

Under S4, the dimensions of the surviving irreducible representations are:

1 2 3 4 dS4
4 = 1 ⇒ m

SU(3)

4 = 1

1 2 3
4
1 2 4
3
1 3 4
2

dS4
31 = 3 ⇒ m

SU(3)

31 = 3

1 2
3 4
1 3
2 4

dS4
22 = 2 ⇒ m

SU(3)

22 = 2

1 2
3
4
1 3
2
4
1 4
2
3

dS4
211 = 3 ⇒ m

SU(3)

211 = 3

To determine the multiplicities under S4, or the dimensions under SU(3), we
could do the same sort of constructive analysis as we did for 2⊗ 2 under SU(2)
or 3⊗ 3⊗ 3 under SU(3). For example, the dimension dSU(3)

211 is clearly 3, since

is completely antisymmetric in (u, d, s), hence of dimension one, and adding
one more u, d, or s gets us to three dimensions. Likewise, for the diagram

we have a 15-dimensional representation of SU(3), with a set of linearly
independent vectors:
uuuu
dddd
ssss
uuud+ uudu+ uduu+ duuu
uuus+ uusu+ usuu+ suuu
dddu+ ddud+ dudd+ uddd
ddds+ ddsd+ dsdd+ sddd
sssu+ ssus+ suss+ usss
sssd+ ssds+ sdss+ dsss
uudd+ udud+ uddu+ duud+ dudu+ dduu
uuss+ usus+ ussu+ suus+ susu+ ssuu
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ddss+ dsds+ dssd+ sdds+ sdsd+ ssdd
udsu+ udus+ uuds+ usdu+ usud+ uusd+ sudu+ suud+ dusu+ duus+ dsuu+ sduu
udsd+ udds+ duds+ usdd+ dusd+ sudd+ sdud+ dsud+ ddus+ dsdu + ddsu+ sddu
udss+ usds+ suds+ ussd+ susd+ ssud+ duss+ dsus+ sdus+ dssu+ sdsu+ ssdu

We could also use the general formula:

d
SU(N)

[f ]
=

N
∏

i<j

fi − fj + j − i

j − i
. (5.66)

For example, for , f = (4, 0, 0, 0) and

d
SU(3)

[4]
=

(

4 + 1
1

) (

4 + 2
2

) (

0 + 1
1

)

= 15, (5.67)

remembering that there is no j = 4 contribution since N = 3. Likewise,

d
SU(3)

[31]
=

(

3 − 1 + 1
1

) (

3 + 2
2

) (

1 + 1
1

)

= 15, (5.68)

d
SU(3)

[22]
=

(

2 + 1
1

) (

2 + 2
2

)

= 6, (5.69)

d
SU(3)

[211]
=

(

2
1

) (

3
2

)

= 3. (5.70)

Notice that
15 × 1 + 15 × 3 + 6 × 2 + 3 × 3 = 81 = 34, (5.71)

so all dimensions in the representation are accounted for in our reduction to
irreducible representations. We notice that there are no singlets in this decom-
position. A physical application of this is in SU(3)color, where we find that no
colorless (i.e., color singlet) four-quark states are possible. Under the hypothe-
sis that the physical hadron states are colorless, this implies that we should not
observe any particles made of four quarks.

5.4 Exercises

1. How many transpositions are required to generate a k-cycle? Hence, what
is the parity of a k-cycle?

2. Show that, for any Pa ∈ Sn:

PaS = S

PaA = APa = δPaA

S2 = S

A2 = A.
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3. We gave the representation of one element of the two-dimensional irre-
ducible representation of S3 in basis {ψ′

1, ψ
′
2} in Eqn. 5.38. Find the other

matrices in this representation.

4. Quarks are spin- 1

2
particles, hence they are fermions. According to quan-

tum mechanics , the wave function of a system of identical fermions must
be antisymmetric under the interchange of the fermions (the celebrated
“connection between spin and statistics”). To see the idea, first consider
a system of two electrons (an electron is also a spin- 1

2
particle). We put

the “first” electron at position x1, with spin orientation s1, and the sec-
ond at x2 with spin orientation s2. The wave function is ψ(x1, s1;x2, s2).
This wave function must be antisymmetric under interchange of the two
electrons:

ψ(x2, s2;x1, s1) = −ψ(x1, s1;x2, s2). (5.72)

Suppose our two electrons are in an orbital angular momentum L = 0
state. The spin states may be described by the z components of the
spins, ± 1

2
, which we’ll represent with arrows, ↑ for spin “up” and ↓ for

spin “down”. But in making a system of two electrons (with L = 0), we
are generating a product representation of SU(2) in angular momentum:
2 ⊗ 2 = 3 ⊕ 1. That is the irreducible representations of our total an-
gular momentum state are three-dimensional, corresponding to total spin
one, and one-dimensional or spin zero. We have already worked out the
symmetries of these combinations in this note: the spin one system is
symmetric under interchange, and the spin zero is antisymmetric. Note
that, since we have specified L = 0 the wave function is symmetric under
the interchange of the spatial coordinates. We may conclude that the only
way we can put two electrons together in an L = 0 state is with total spin
S = 0:

ψ(x2, s2;x1, s1) =
1√
2
(|e ↑; e ↓〉 − |e ↓; e ↑〉), (5.73)

where the symmetry under spatial interchange is not explicity shown.

Now let us return to quarks, and consider baryons. To keep this simple,
we’ll also put our three quarks together in a state with no orbital angular
momentum (S-wave). That is, the spatial state is symmetric under the
interchange of any pair of quarks. We’ll regard the “flavor” quantum
number (“u”, “d”, or “s”, or equivalently, I3, Y ) as analogous to the spin
projections, and regard them as additional quantum numbers that get
interchanged when we act on a wave function with permutations of the
quarks.

Treating the angular momentum, when we combine three quarks in S-
wave, we build the 2 ⊗ 2 ⊗ 2 = 4 ⊕ 2 ⊕ 2 representation of SU(2). Thus,
the three quarks could be in a total spin state of 1/2 or 3/2. The spin
3/2 state is clearly symmetric under interchange of the spins. The two
spin 1/2 representations have mixed symmetry. We may chose a basis
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for one of these representations that corresponds to symmetry under the
interchange of the quarks at x1 and x2 (or, quarks 1 and 2, for short):

χλ
+ = − 1√

6
(↑↓↑ + ↓↑↑ −2 ↑↑↓)

χλ
− = − 1√

6
(↑↓↓ + ↓↑↓ −2 ↓↓↑). (5.74)

Likewise, the spin basis wavefunctions for the other two dimension wave
function, with antisymmetry under interchange of the first two quarks,
may be chosen as:

χρ
+ =

1√
2
(↑↓↑ − ↓↑↑)

χρ
− =

1√
2
(↑↓↓ − ↓↑↓). (5.75)

We must deal with a small (but extremely important in physical implica-
tion!) complication before we construct the (spin, flavor) wave functions
of the S-wave baryons. Consider the Δ++ baryon. This is made of three u
quarks, clearly in a symmetric flavor state. It is also a spin- 3

2
particle, with

all of the quark spins aligned, that is, in a spin symmetric state. Thus,
the Δ++ is symmetric in spatial interchange (since it is S-wave), flavor
interchange, and spin interchange. Combined, it appears that we have
built a baryon which is symmetric under interchange of the constituent
quarks. But this violates our fermion principle, which says it must be
antisymmetric. This observation was historically one of the puzzles in the
1960’s when this model was proposed. Eventually, we learned that the
most promising way out was to give the quarks another quantum num-
ber, called “color”. To combine three quarks with three different colors
requires a minimum of three colors, hence the hypothesis that there are
three colors, and the relevant group for rotations in color space is also the
SU(3) group. It is a hypothesis (perhaps justifiable with QCD) that the
physical particles (such as baryons) we see are overall colorless. That is,
the color basis wave function corresponds to a singlet representation of
SU(3)color. We have already seen that the one-dimensional representa-
tion in the decompostion 3⊗3⊗3 = 10⊕8⊕8⊕1 is antisymmetric under
interchange. Thus, the introduction of color saves our fermi statistics. We
simply assume that the color wavefunction of baryons is antisymmetric.
Then the (space, spin, flavor) wave function must be overall symmetric.

Now consider the proton, a spin 1

2
baryon made with two u’s and a d. In

SU(3)flavor, the proton wave function must be some linear combination of

the basis states corresponding to the
1 2
3 and

1 3
2 representations (you

may wish to ponder why there is no 1 2 3 piece). Let us call the (12)-
symmetric wave functions φλ and the (12)-antisymmetric wave functions
φρ:
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φλ
uud = − 1√

6
(udu+ duu− 2uud) (5.76)

φρ
uud =

1√
2
(udu− duu). (5.77)

The problem you are asked to solve is: What is the wave function of a spin
up proton? Assume that the spatial wave function is symmetric, and give
the spin/flavor wave function. It is perhaps easiest to use some notation
such as kets, forming the wave function from kets of the form |u ↑ u ↑ d ↓〉,
etc.

Note: I won’t go into the physics further, but it should be remarked that
this isn’t just an idle exercise in mathematics – this wave function im-
plies observable physical consequences on quantities such as the magnetic
moment of the proton.
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