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H. von Löhneysen, Karlsruhe, Germany
W. Weise, Garching, Germany



The Lecture Notes in Physics
The series Lecture Notes in Physics (LNP), founded in 1969, reports new devel-
opments in physics research and teaching—quickly and informally, but with a high
quality and the explicit aim to summarize and communicate current knowledge in
an accessible way. Books published in this series are conceived as bridging
material between advanced graduate textbooks and the forefront of research and to
serve three purposes:

• to be a compact and modern up-to-date source of reference on a well-defined
topic

• to serve as an accessible introduction to the field to postgraduate students and
nonspecialist researchers from related areas

• to be a source of advanced teaching material for specialized seminars, courses
and schools

Both monographs and multi-author volumes will be considered for publication.
Edited volumes should, however, consist of a very limited number of contributions
only. Proceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic
formats, the electronic archive being available at springerlink.com. The series
content is indexed, abstracted and referenced by many abstracting and information
services, bibliographic networks, subscription agencies, library networks, and
consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the
managing editor at Springer:

Christian Caron
Springer Heidelberg
Physics Editorial Department I
Tiergartenstrasse 17
69121 Heidelberg/Germany
christian.caron@springer.com



Luis Álvarez-Gaumé • Miguel Á. Vázquez-Mozo

An Invitation to Quantum
Field Theory

123



Luis Álvarez-Gaumé
Theory Unit
Physics Department
CERN
Geneva 23
Switzerland
e-mail: Luis.Alvarez-Gaume@cern.ch

Miguel Á. Vázquez-Mozo
Departamento de Física Fundamental
Universidad de Salamanca
Plaza de la Merced s/n
37007 Salamanca
Spain
e-mail: vazquez@usal.es

ISSN 0075-8450 e-ISSN 1616-6361
ISBN 978-3-642-23727-0 e-ISBN 978-3-642-23728-7
DOI 10.1007/978-3-642-23728-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011937783

� Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcast-
ing, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the German Copyright Law of
September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To my mother and to the memory of my father
(L.A.-G.)

A mis padres
Für Kerstin

(M.A.V.-M.)





Preface

This book is intended to provide an introduction to quantum field theory at an
elementary level. The reader is supposed to know special relativity, electromag-
netism and quantum mechanics. Quantum field theory is a vast subject that pro-
vides us with the basic tools to understand the physics of the elementary
constituents of matter. There are excellent textbook expositions of the subject in
the literature (see the references to Chap. 1), and it is not our intention to write one
more. We have selected a representative sample of topics containing some of the
more innovative and challenging concepts and presented them without too many
technical details. Few proofs are included, the concepts are exhibited by working
out examples and analogies. We have been careful to include all numerical factors
in the equations, although the reader is often not required to understand more than
their general features. Adequate references are provided where one can find all the
necessary technical details. We prime the discussion of the main ideas over the
mathematical details necessary to obtain the final results, which often require a
more in-depth presentation of the subject. As its title indicates, this book tries to
motivate the reader to study quantum field theory, not to provide a thorough
presentation.

The guiding principle for the topics chosen was to present some basic aspects of
the theory that contain some conceptual subtleties, or at least we found them subtle
when learning the subject ourselves. We have paid special attention to the reali-
zation of symmetries in particle physics. The notion of symmetry is central in
modern physics, and we present its many different aspects: global and local
symmetries, explicit, spontaneously broken, anomalous continuous symmetries,
discrete symmetries. We give a detailed account of the standard model of the
strong, weak and electromagnetic interactions, our current understanding of the
origin of mass, the general features of renormalization theory, as well as a cursory
description of effective field theories and the problem of naturalness in physics.
Sometimes the presentation gets a bit more abstract, as in the chapters on discrete
symmetries (Chap. 11) and effective field theories (Chap. 12). We have delayed on
purpose the study of discrete space-time symmetries in order to develop all the
necessary background needed to explore some of their fascinating consequences.
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In particular we present an outline of the first principles derivation of the CPT
theorem and the spin-statistics connection. Among the few Feynman diagrams
evaluated in full detail we have chosen Compton scattering in the Thomson limit
to understand polarisation in the cosmic microwave background radiation and its
sensitivity to primordial gravitational waves.

By lack of space and purpose, few proofs have been included. Instead, very
often we illustrate a concept or property by describing a physical situation where it
arises. Full details and proofs can be found in the many textbooks in the subject,
and in particular in the ones provided in the bibliography. We should nevertheless
warn the reader that we have been a bit cavalier about references. Our aim has
been to provide mostly a (not exhaustive) list of reference for further read-
ing. We apologize to those authors who feel misrepresented.

The book grew out of lectures at the CERN—Latin-American schools of High
Energy Physics held in Malargüe (2005), Medellín (2009) and Natal (2011), and of
undergraduate and graduate courses at the University of Salamanca (2005–2010).
We would like to thank in particular Gilvan Alves, Teresa Dova, Miriam Gand-
elman, Christophe Grojean, Nick Ellis, Egil Lillestøl, Marta Losada and Enrico
Nardi, for the opportunity to present this material and for the wonderful atmo-
sphere they created during the schools. We are also grateful to Bob Jaffe who
motivated us (through our Springer editor Christian Caron) to turn the original
notes into book form. We also want to thank Chris for his patience and under-
standing. We would like to thank José L. F. Barbón and Agustín Sabio Vera for
reading a preliminary version of this book and their many suggestions.

We have learned so much about quantum field theory from so many colleagues
that it is difficult to list them all. However we would like to thank in particular:
Sidney Coleman, Daniel Z. Freedman, David Gross, Roman Jackiw, Julius Wess
and Edward Witten from whom we have learned a great deal about the subject.
Any remaining misconceptions in the text are entirely our fault.

Geneva and Salamanca
June 2011

Luis Álvarez-Gaumé
Miguel Á. Vázquez-Mozo
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Chapter 1
Why Do We Need Quantum Field Theory
After All?

Quantum field theory is the basic tool to understand the physics of the elementary
constituents of matter (see [1–15] for an incomplete list of textbooks in the subject).
It is both a very powerful and a very precise framework: using it we can describe
physical processes in a range of energies going from the few millions electrovolts
typical of nuclear physics to the thousands of billions of the Large Hadron Collider
(LHC). And all this with astonishing precision.

In this first chapter our aim is to explain why quantum mechanics is not enough
and how quantum field theory is forced upon us by special relativity. We will review
a number of riddles that appear in the attempt to extend the results of quantum
mechanics to systems where relativistic effects cannot be ignored. Their resolution
requires giving up the quantum mechanical description of a single particle to allow
for the creation and annihilation of particles. As we will see, quantum fields provide
the right tool to handle this.

1.1 Relativistic Quantum Mechanics

In spite of the impressive success of quantum mechanics in describing atomic physics,
it was immediately clear after its formulation that its relativistic extension was not free
of difficulties. These problems were clear already to Schrödinger, whose first guess
for a wave equation of a free relativistic particle was the Klein–Gordon equation1

(
∂2

∂t2 −∇2 + m2
)
ψ(t, x) = 0. (1.1)

This equation follows directly from the relativistic “mass-shell” identity E2 = p2+
m2 using the correspondence principle

1 We use natural units �= c = 1. A summary of the units and conventions used in the book can
be found in Appendix A.
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2 1 Why Do We Need Quantum Field Theory After All?

E → i
∂

∂t
,

p→− i∇. (1.2)

Plane wave solutions to the wave equation (1.1) are readily obtained

ψ(t, x) = e−i pμxμ = e∓i Ept+ip·x (1.3)

with

Ep =
√

p2 + m2. (1.4)

In order to have a complete basis of functions, we must include both signs in the
exponent. The probability density is read from the time component of the conserved
current

jμ = i

2

(
ψ∗∂μψ − ∂μψ∗ψ

)
, (1.5)

Since j0 = E, we find that it is not positive definite.
A complete, properly normalized, continuous basis of solutions of the Klein–

Gordon equation (1.1) labelled by the momentum p is given by

f p(t, x) = 1

(2π)
3
2
√

2Ep

e−i Ept+ip·x,

f−p(t, x) = 1

(2π)
3
2
√

2Ep

ei Ept−ip·x. (1.6)

Defining the inner product

〈ψ1|ψ2〉 = i
∫

d3x
(
ψ∗1 ∂0ψ2 − ∂0ψ

∗
1ψ2

)
,

the states (1.6) form an orthonormal basis

〈 f p| f p′ 〉 = δ(p− p′),
〈 f−p| f−p′ 〉 = −δ(p− p′), (1.7)

〈 f p| f−p′ 〉 = 0. (1.8)

The wave functions f p(t, x) describe states with momentum p and energy Ep =√
p2 + m2. On the other hand, the wave functions f−p(t, x) not only have negative

scalar product but they correspond to negative energy states

i
∂

∂t
f−p(t, x) = −

√
p2 + m2 f−p(t, x). (1.9)
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Fig. 1.1 Spectrum of the
Klein–Gordon wave equation

Energy

m

0

−m

Therefore the energy spectrum of the theory satisfies |E | > m and is unbounded
from below (see Fig. 1.1). Although in the case of a free theory the absence of a
ground state is not necessarily a fatal problem, once the theory is coupled to the
electromagnetic field this is the source of all kinds of disasters, since nothing can
prevent the decay of any state by the emission of electromagnetic radiation.

The problem of the instability of the “first-quantized” relativistic wave equation
can be heuristically tackled in the case of spin- 1

2 particles, described by the Dirac
equation

(
−iβ

∂

∂t
+ α · ∇ − m

)
ψ(t, x) = 0, (1.10)

where α and β are 4× 4 matrices

αi =
(

0 iσi
−iσi 0

)
, β =

(
0 1
1 0

)
, (1.11)

with σi the Pauli matrices (see Appendix A) and the wave function ψ(t, x) has four
components: it is a Dirac spinor, an object that will be studied in more detail in
Chap. 3. The wave equation (1.10) can be thought of as a kind of “square root” of
the Klein–Gordon equation (1.1), since the latter can be obtained as

(
−iβ

∂

∂t
+ α · ∇ − m

)† (
−iβ

∂

∂t
+ α · ∇ − m

)
ψ(t, x)

=
(
∂2

∂t2 − ∇2 + m2
)
ψ(t, x). (1.12)

An analysis of Eq. (1.10) along the lines of the one presented for the
Klein–Gordon equation leads again to the existence of negative energy states and
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Fig. 1.2 Creation of a
particle-antiparticle pair in
the Dirac sea picture

Energy

m

−m

particle

antiparticle (hole)

photon

Dirac Sea

a spectrum unbounded from below as in Fig. 1.1. Dirac, however, solved the insta-
bility problem by pointing out that now the particles are fermions and therefore they
are subject to Pauli’s exclusion principle. Hence, each state in the spectrum can be
occupied by at most one particle, so the states with E = m can be made stable if we
assume that all the negative energy states are filled.

If Dirac’s idea restores the stability of the spectrum by introducing a stable vacuum
where all negative energy states are occupied, the so-called Dirac sea, it also leads
directly to the conclusion that a single-particle interpretation of the Dirac equation
is not possible. Indeed, a photon with enough energy (E > 2m) can excite one of the
electrons filling the negative energy states, leaving behind a “hole” in the Dirac sea
(see Fig. 1.2). This hole behaves as a particle with equal mass and opposite charge that
is interpreted as a positron, so there is no escape to the conclusion that interactions
will produce particle-antiparticle pairs out of the vacuum.

1.2 The Klein Paradox

In spite of the success of the heuristic interpretation of negative energy states in the
Dirac equation this is not the end of the story. In 1929 Oskar Klein stumbled into
an apparent paradox when trying to describe the scattering of a relativistic electron
by a square potential using Dirac’s wave equation [16] (for pedagogical reviews
see [17–19]). In order to capture the essence of the problem without entering into
unnecessary complication we will study Klein’s paradox in the context of the Klein–
Gordon equation.

Let us consider a square potential with height V0 > 0 of the type showed in
Fig. 1.3. A solution to the wave equation in regions I and II is given by

ψI (t, x) = e−i Et+i p1x + Re−i Et−i p1x ,

ψI I (t, x) = T e−i Et+i p2x , (1.13)

where the mass-shell condition implies
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Fig. 1.3 Illustration of the
Klein paradox

x

V(x)

V0Incoming

Reflected

Transmited

p1 =
√

E2 − m2, p2 =
√
(E − V0)2 − m2. (1.14)

The constants R and T are computed by matching the two solutions across the
boundary x = 0. The conditionsψI (t, 0) = ψI I (t, 0) and ∂xψI (t, 0) = ∂xψI I (t, 0)
imply that

T = 2p1

p1 + p2
, R = p1 − p2

p1 + p2
. (1.15)

At first sight one would expect a behavior similar to the one encountered in the
nonrelativistic case. If the kinetic energy is bigger than V0 both a transmitted and
reflected wave are expected, whereas when the kinetic energy is smaller than V0
one only expects to find a reflected wave, the transmitted wave being exponentially
damped within a distance of a Compton wavelength inside the barrier.

This is indeed what happens if E −m > V0. In this case both p1 and p2 are real
and we have a partly reflected, and a partly transmitted wave. In the same way, if
V0 − 2m < E − m < V0 then p2 is imaginary and there is total reflection.

However, in the case when V0 > 2m and the energy is in the range 0 < E −m <

V0 − 2m a completely different situation arises. In this case one finds that both p1
and p2 are real and therefore the incoming wave function is partially reflected and
partially transmitted across the barrier. This is a shocking result, since it implies that
there is a nonvanishing probability of finding the particle at any point across the
barrier with negative kinetic energy (E − m − V0 < 0)! This weird result is known
as Klein’s paradox.

As with the negative energy states, the Klein paradox results from our insis-
tence in giving a single-particle interpretation to the relativistic wave function. In
fact, a multiparticle analysis of the paradox [17] shows that what happens when
0 < E − m < V0 − 2m is that the reflection of the incoming particle by the barrier
is accompanied by the creation of particle-antiparticle pairs out of the energy of the
barrier (notice that the condition implies that V0 > 2m, the threshold for the creation
of a particle-antiparticle pair).
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This particle creation can be understood by noticing that the sudden potential step
in Fig. 1.3 localizes the incoming particle with mass m in distances smaller than its
Compton wavelength λ = 1/m. This can be seen by replacing the square potential
by another one where the potential varies smoothly from 0 to V0 > 2m in distance
scales larger than 1/m.This case was worked out by Sauter shortly after Klein pointed
out the paradox [20]. He considered a situation where the regions with V = 0 and
V = V0 are connected by a region of length d with a linear potential V (x) = V0x/d.
When d > 1/m he found that the transmission coefficient is exponentially small.2

1.3 From Wave Functions to Quantum Fields

The creation of particles is impossible to avoid whenever one tries to localize a
particle of mass m within its Compton wavelength. Indeed, from the Heisenberg
uncertainty relation we find that if Δx ∼ 1/m, the fluctuations in the momentum
will be of order Δp ∼ m and fluctuations in the energy of order

ΔE ∼ m (1.16)

can be expected. Therefore, in a relativistic theory, the fluctuations of the energy are
enough to allow for the creation of particles out of the vacuum. In the case of a spin- 1

2
particle, the Dirac sea picture shows clearly how, when the energy fluctuations are
of order m, electrons from the Dirac sea can be excited to positive energy states, thus
creating electron–positron pairs.

It is possible to see how the multiparticle interpretation is forced upon us by rela-
tivistic invariance. In non-relativistic quantum mechanics observables are represented
by self-adjoint operator that in the Heisenberg picture depend on time. Therefore
measurements are localized in time but are global in space. The situation is radi-
cally different in the relativistic case. Since no signal can propagate faster than the
speed of light, measurements have to be localized both in time and space. Causality
demands then that two measurements carried out in causally-disconnected regions
of space–time cannot interfere with each other. In mathematical terms this means
that if OR1 and OR2 are the observables associated with two measurements localized
in two causally-disconnected regions R1, R2 (see Fig. 1.4), they satisfy

[OR1 ,OR2 ] = 0, if(x1 − x2)
2 < 0, for all x1 ∈ R1, x2 ∈ R2. (1.17)

Hence, in a relativistic theory, the basic operators in the Heisenberg picture must
depend on the space–time position xμ. Unlike the case in non-relativistic quantum
mechanics, here the position x is not an observable, but just a label, similarly to the
case of time in ordinary quantum mechanics. Causality is then imposed microscop-
ically by requiring

2 In Sect. 13.1 we will see how, in the case of the Dirac field, this exponential behavior can be
associated with the creation of electron–positron pairs due to a constant electric field (Schwinger
effect).
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Fig. 1.4 Two regions
R1, R2 that are causally
disconnected

[O(x),O(y)] = 0, if (x − y)2 < 0. (1.18)

A smeared operator OR over a space–time region R can then be defined as

OR =
∫

d4xO(x) fR(x) (1.19)

where fR(x) is the characteristic function associated with R,

fR(x) =
{

1 x ∈ R

0 x /∈ R
. (1.20)

Equation (1.17) follows now from the microcausality condition (1.18).
Therefore, relativistic invariance forces the introduction of quantum fields. It is

only when we insist in keeping a single-particle interpretation that we crash against
causality violations. To illustrate the point, let us consider a single particle wave
function ψ(t, x) that initially is localized in the position x = 0

ψ(0, x) = δ(x). (1.21)

Evolving this wave function using the Hamiltonian H = √−∇2 + m2 we find that
the wave function can be written as

ψ(t, x) = e−i t
√−∇2+m2

δ(x) =
∫

d3k

(2π)3
eik·x−i t

√
k2+m2

. (1.22)
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Fig. 1.5 Complex contour C
for the computation of the
integral in Eq. (1.23)

k

mi

C

Integrating over the angular variables, the wave function can be recast in the form

ψ(t, x) = −i

4π2|x|
∞∫
−∞

kdkeik|x|e−i t
√

k2+m2
. (1.23)

The resulting integral can be evaluated using the complex integration contour C
shown in Fig. 1.5. The result is that, for any t > 0, ψ(t, x) = 0 for any x. If we
insist in interpreting the wave function ψ(t, x) as the probability density of finding
the particle at the location x at the time t, the probability leaks out of the light cone,
thus violating causality.

The bottom line of the analysis of this chapter is clear: a fully relativistic quantum
theory must give up the idea of describing the system in terms of the wave function of a
single particle. As a matter of fact, relativistic quantum mechanics is, at best, a narrow
boundary area. It might be a useful tool to compute the first relativistic corrections
in certain quantum systems. However it runs into serious trouble as soon as one tries
to use it for a full-fledged relativistic description of the quantum phenomena. Next
we will see how quantum field theory provides the right framework to handle these
problems.
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Chapter 2
From Classical to Quantum Fields

We have learned how the consistency of quantum mechanics with special relativity
forces us to abandon the single-particle interpretation of the wave function. Instead
we have to consider quantum fields whose elementary excitations are associated
with particle states, as we will see below. In this chapter we study the basics of field
quantization using both the canonical formalism and the path integral method.

2.1 Particles and Quantum Fields

In any scattering experiment the only information available to us is the set of quantum
numbers associated with the set of free particles in the initial and final states. Ignoring
for the moment other quantum numbers like spin and flavor, one-particle states are
labelled by the three-momentum p and span the single-particle Hilbert space H1

|p〉 ∈H1, 〈p|p′〉 = δ(p− p′). (2.1)

The states {|p〉} form a basis of H1 and therefore satisfy the closure relation

∫
d3 p|p〉〈p| = 1. (2.2)

The group of spatial rotations acts unitarily on the states |p〉. This means that for
every rotation R ∈ SO(3) there is a unitary operator U (R) such that

U (R)|p〉 = |Rp〉 (2.3)

where Rp represents the action of the rotation on the vector p, (Rp)i = Ri
j p j .Using

a spectral decomposition, the momentum operator can be written as

P̂i =
∫

d3 p|p〉pi 〈p|. (2.4)

L. Álvarez-Gaumé and M. Á. Vázquez-Mozo, An Invitation to Quantum Field Theory, 11
Lecture Notes in Physics 839, DOI: 10.1007/978-3-642-23728-7_2,
© Springer-Verlag Berlin Heidelberg 2012
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With the help of Eq. (2.3) it is straightforward to check that the momentum operator
transforms as a vector under rotations:

U (R)−1 P̂iU (R) =
∫

d3 p|R−1p〉pi 〈R−1p| = Ri
j P̂ j , (2.5)

where we have used that the integration measure is invariant under SO(3).
Since, as argued above, we are forced to deal with multiparticle states, it is conve-

nient to introduce creation-annihilation operators associated with a single-particle
state of momentum p

[
â(p), â†(p′)

]
= δ(p− p′),

[
â(p), â(p′)

] = [
â†(p), â†(p′)

]
= 0, (2.6)

such that the state |p〉 is created out of the Fock space vacuum |0〉 (normalized such
that 〈0|0〉 = 1) by the action of a creation operator â†(p)

|p〉 = â†(p)|0〉, â(p)|0〉 = 0 for all p. (2.7)

Covariance under spatial rotations is all we need if we are interested in a nonrela-
tivistic theory. However in a relativistic quantum field theory we must preserve more
that SO(3), we need the expressions to be covariant under the full Poincaré group
ISO(1, 3) consisting of spatial rotations, boosts and space-time translations (see
Sect. 3.1 and Appendix B). Therefore, in order to build the Fock space of the theory
we need two key ingredients: first an invariant normalization for the states, since we
want a normalized state in one reference frame to be normalized in any other inertial
frame. And secondly a relativistic invariant integration measure in momentum space,
so the spectral decomposition of operators is covariant under the full Poincaré group.

Let us begin with the invariant measure. Given an invariant function f(p) of the
four-momentum pμ of a particle of mass m with positive energy p0 > 0, there is an
integration measure which is invariant under proper Lorentz transformations1

∫
d4 p

(2π)4
(2π)δ(p2 − m2)θ(p0) f (p), (2.8)

where the factors of 2π are introduced for later convenience, and θ(x) is the Heaviside
step function

θ(x) =
{

0 x < 0

1 x > 0
. (2.9)

The integration over p0 can be easily done using the delta function identity

1 The identity p2 = m2 satisfied by the four-momentum of a real particle will be referred to in
the following as the on-shell condition.
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δ[g(x)] =
∑

xi=zeros of g

1

|g′(xi )|δ(x − xi ), (2.10)

valid for any function g(x) with simple zeroes. In our case this implies

δ(p2 − m2) = 1

2p0 δ

(
p0 −

√
p2 + m2

)
+ 1

2p0 δ

(
p0 +

√
p2 + m2

)
. (2.11)

The second term has support on states with negative energy and therefore does not
contribute to the integral. We can write

∫
d4 p

(2π)4
(2π)δ(p2 − m2)θ(p0) f (p) =

∫
d3 p

(2π)3
1

2
√

p2 + m2
f

(√
p2 + m2,p

)
.

(2.12)
Hence, the relativistic invariant measure is given by

∫
d3 p

(2π)3
1

2Ep
with Ep ≡

√
p2 + m2. (2.13)

Once we have an invariant measure the next step is to find an invariant normaliza-
tion for the states. We work with a basis {|p〉} of eigenstates of the four-momentum
operator P̂μ

P̂0|p〉 = Ep|p〉, P̂ i |p〉 = pi |p〉. (2.14)

Since the states |p〉 are eigenstates of the three-momentum operator we can express
them in terms of the non-relativistic states |p〉 introduced in Eq. (2.1)

|p〉 = N (p)|p〉 (2.15)

with N(p) a normalization to be determined now. The states {|p〉} form a complete
basis, so they should satisfy the Lorentz invariant closure relation

∫
d4 p

(2π)4
(2π)δ(p2 − m2)θ(p0)|p〉〈p| = 1. (2.16)

At the same time, this closure relation can be expressed, using Eq. (2.15), in terms
of the nonrelativistic basis of states {|p〉} as

∫
d4 p

(2π)4
(2π)δ(p2 − m2)θ(p0)|p〉〈p| =

∫
d3 p

(2π)3
1

2Ep
|N (p)|2|p〉〈p|. (2.17)

Using Eq. (2.4) we get the expression (2.16) provided

|N (p)|2 = (2π)3(2Ep). (2.18)
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Taking the overall phase in Eq. (2.15) so that N(p) is real and positive, we define the
Lorentz invariant states |p〉 as

|p〉 = (2π) 3
2
√

2Ep|p〉, (2.19)

and given the normalization of |p〉 we find the one of the relativistic states to be

〈p|p′〉 = (2π)3(2Ep)δ(p− p′). (2.20)

It might not be obvious at first sight, but the previous normalization is Lorentz
invariant. Although it is not difficult to show this in general, here we consider the
simpler case of 1+1 dimensions where the two components (p0, p1) of the on-shell
momentum p2 = m2 can be parametrized in terms of a single hyperbolic angle λ as

p0 = m cosh λ, p1 = m sinh λ. (2.21)

Now, the combination 2Epδ(p1 − p′1) can be written as

2Epδ(p
1 − p′1) = 2m cosh λ δ(m sinh λ− m sinh λ′) = 2δ(λ− λ′), (2.22)

where we have made use of the property (2.10) of the delta function. Lorentz trans-
formations in 1 + 1 dimensions are labelled by a parameter ξ ∈ R and act on the
momentum by shifting the hyperbolic angle λ → λ + ξ. However, Eq. (2.22) is
invariant under a common shift of λ and λ′, so the whole expression is obviously
invariant under Lorentz transformations.

To summarize what we did so far, we have succeeded in constructing a Lorentz
covariant basis of states for the one-particle Hilbert space H1. The generators of
space-time translations act on the basis states |p〉 as

P̂μ|p〉 = pμ|p〉, (2.23)

whereas the action of Lorentz transformations is implemented by the unitary operator

U (Λ)|p〉 = |Λμv pv〉 ≡ |Λp〉 with Λ ∈ SO(1, 3). (2.24)

This transformation is compatible with the Lorentz invariant normalization (2.20),

〈p|p′〉 = 〈p|U (Λ)−1U (Λ)|p′〉 = 〈Λp|Λp′〉. (2.25)

On H1 the operator P̂μ admits the following spectral representation

P̂μ =
∫

d3 p

(2π)3
1

2Ep
|p〉pμ〈p|. (2.26)

Using (2.25) and the fact that the measure is invariant under Lorentz transformation,
one can easily show that P̂μ transform covariantly under SO(1, 3)
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U (Λ)−1 P̂μU (Λ) =
∫

d3 p

(2π)3
1

2Ep
|Λ−1 p〉pμ〈Λ−1 p| = Λμv P̂v. (2.27)

A set of covariant creation-annihilation operators can be constructed now in terms
of the operators â(p), â†(p) introduced above

α̂(p) ≡ (2π) 3
2
√

2Epâ(p), α̂†(p) ≡ (2π) 3
2
√

2Epâ†(p). (2.28)

with the Lorentz invariant commutation relations
[
α̂(p), α̂†(p′)

]
= (2π)3(2Ep)δ(p− p′),

[
α̂(p), α̂(p′)

] = [
α̂†(p), α̂†(p′)

]
= 0. (2.29)

Particle states are created by acting with any number of creation operators α(p) on
the Poincaré invariant vacuum state |0〉 satisfying

〈0|0〉 = 1,

P̂μ|0〉 = 0,

U (Λ)|0〉 = |0〉, for all Λ ∈ SO(1, 3). (2.30)

A general one-particle state | f 〉 ∈H1 can be written as

| f 〉 =
∫

d3 p

(2π)3
1

2Ep
f (p)α̂†(p)|0〉, (2.31)

while a n-particle state | f 〉 ∈H ⊗n
1 is

| f 〉 =
∫ [

n∏
i=1

d3 pi

(2π)3
1

2ωpi

]
f (p1, . . . ,pn)α̂

†(p1) . . . α̂
†(pn)|0〉. (2.32)

That these states are Lorentz invariant can be checked by noticing that from the
definition of the creation-annihilation operators follows the transformation

U (Λ)α̂(p)U (Λ)† = α̂(Λp) (2.33)

and the corresponding one for creation operators.
As we have argued above, the very fact that measurements have to be local-

ized implies the necessity of introducing quantum fields. Here we will consider the
simplest case of a quantum scalar field φ̂(x) satisfying the following properties:

• Hermiticity

φ̂(x)† = φ̂(x). (2.34)
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• Microcausality Since measurements cannot interfere with each other when
performed in causally disconnected points of space-time, the commutator of two
fields has to vanish outside the relative light-cone

[
φ̂(x), φ̂(y)

]
= 0, (x − y)2 < 0. (2.35)

• Translation invariance

ei P̂·a φ̂(x)e−i P̂ ·a = φ̂(x − a). (2.36)

• Lorentz invariance

U (Λ)†φ̂(x)U (Λ) = φ̂(Λ−1x). (2.37)

• Linearity To simplify matters we will also assume thatφ(x) is linear in the creation-
annihilation operators α(p), α†(p)

φ̂(x) =
∫

d3 p

(2π)3
1

2Ep

[
f (p, x)α̂(p)+ g(p, x)α̂†(p)

]
. (2.38)

Since φ̂(x) should be hermitian we are forced to take g(p, x) = f (p, x)∗.
Moreover, φ(x) satisfies the equations of motion of a free scalar field, (∂μ∂μ +
m2)φ̂(x) = 0, only if f(p, x) is a complete basis of solutions of the Klein–Gordon
equation. These considerations leads to the expansion

φ̂(x) =
∫

d3 p

(2π)3
1

2Ep

[
e−i Ept+ip·xα̂(p)+ ei Ept−ip·xα̂†(p)

]
. (2.39)

It can be checked that φ̂(x) and ∂t φ̂(x) satisfy the equal-time canonical commu-
tation relations [

φ̂(t, x), ∂t φ̂(t, y)
]
= iδ(x − y). (2.40)

The general (non-equal time) commutator

[
φ̂(x), φ̂(x ′)

]
= iΔ(x − x ′) (2.41)

can also be computed using the expression (2.39). The functionΔ(x− y) is given by

iΔ(x − y) = −Im
∫

d3 p

(2π)3
1

2Ep
e−i Ep(t−t ′)+ip·(x−x′)

=
∫

d4 p

(2π)4
(2π)δ(p2 − m2)sign(p0)e−i p·(x−x ′), (2.42)



2.1 Particles and Quantum Fields 17

where the sign function is defined as

sign(x) ≡ θ(x)− θ(−x) =
{

1 x > 0
−1 x < 0

. (2.43)

Using the last expression in Eq. (2.42) it is easy to show that iΔ(x − x ′) vanishes
when x and x ′ are space-like separated. Indeed, if (x − x ′)2 < 0 there is always
a reference frame in which both events are simultaneous, and since iΔ(x − x ′) is
Lorentz invariant we can compute it in this frame. In this case t = t ′ and the expo-
nential in the second line of (2.42) does not depend on p0. Therefore, the integration
over p0 gives

∞∫
−∞

dp0ε(p0)δ(p2 − m2)

=
∞∫
−∞

dp0
[

1

2Ep
ε(p0)δ(p0 − Ep)+ 1

2Ep
ε(p0)δ(p0 + Ep)

]

= 1

2Ep
− 1

2Ep
= 0. (2.44)

So we have concluded that iΔ(x − x ′) = 0 if (x − x ′)2 < 0, as required by micro-
causality. Notice that the situation is completely different when (x − x ′)2 ≥ 0, since
in this case the exponential depends on p0 and the integration over this component
of the momentum does not vanish.

2.2 Canonical Quantization

So far we have contented ourselves with requiring a number of properties from the
quantum scalar field: existence of asymptotic states, locality, microcausality and
relativistic invariance. With only these ingredients we have managed to go quite
far. The previous results can also be obtained using canonical quantization. One
starts with a classical free scalar field theory in the Hamiltonian formalism and
obtains the quantum theory by replacing Poisson brackets by commutators. Since
this quantization procedure is based on the use of the canonical formalism, which
gives time a privileged role, it is important to check at the end of the calculation that
the resulting quantum theory is Lorentz invariant. In the following we will briefly
overview the canonical quantization of the Klein–Gordon scalar field.

The starting point is the action functional S[φ(x)]which, in the case of a free real
scalar field of mass m is given by

S[φ(x)] ≡
∫

d4xL (φ, ∂μφ) = 1

2

∫
d4x

(
∂μφ∂

μφ − m2φ2
)
. (2.45)
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The equations of motion are obtained, as usual, from the Euler–Lagrange equations

∂μ

[
∂L

∂(∂μφ)

]
− ∂L
∂φ
= 0 =⇒ (∂μ∂

μ + m2)φ = 0. (2.46)

In the Hamiltonian formalism the physical system is described in terms of the
field φ(x), its spatial derivatives and its canonically conjugated momentum

π(x) ≡ ∂L

∂(∂0φ)
= ∂φ

∂t
. (2.47)

The dynamics of the system is determined by the Hamiltonian functional

H ≡
∫

d3x

(
π
∂φ

∂t
−L

)
= 1

2

∫
d3x

[
π2 + (∇φ)2 + m2

]
. (2.48)

The canonical equations of motion can be written in terms of Poisson brackets.
Given two functionals A[φ, π ], B[φ, π ] of the canonical variables

A[φ, π ] =
∫

d3xA (φ, π), B[φ, π ] =
∫

d3xB(φ, π), (2.49)

their Poisson bracket is defined by

{A, B}PB ≡
∫

d3x

(
δA

δφ

δB

δπ
− δA

δπ

δB

δφ

)
. (2.50)

Here δ
δφ

denotes the functional derivative defined as

δA

δφ
≡ ∂A

∂φ
− ∂μ

[
∂A

∂(∂μφ)

]
. (2.51)

In particular, the canonically conjugated fields satisfy the following equal time
Poisson brackets

{φ(t, x), φ(t, x′)}PB = {π(t, x), π(t, x′)}PB = 0,

{φ(t, x), π(t, x′)}PB = δ(x − x′), (2.52)

The canonical equations of motion are

∂0φ(x) = {φ(x), H}PB, ∂0π(x) = {π(x), H}PB, (2.53)

where H is the Hamiltonian of the system.
In the case of the scalar field, a general solution of the classical field equations

(2.46) can be obtained by working with the Fourier transform of the equation of
motion

(∂μ∂
μ + m2)φ(x) = 0 =⇒ (−p2 + m2)φ̃(p) = 0, (2.54)
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whose general solution can be written as2

φ(x) =
∫

d4 p

(2π)4
(2π)δ(p2 − m2)θ(p0)

[
α(p)e−i p·x + α(p)∗eip·x]

=
∫

d3 p

(2π)3
1

2Ep

[
α(p)e−i Ept+p·x + α(p)∗ei Ept−p·x] (2.55)

and we have required φ(x) to be real. The conjugate momentum is

π(x) = − i

2

∫
d3 p

(2π)3

[
α(p)e−i Ept+p·x − α(p)∗ei Ept−p·x]. (2.56)

Canonical quantization proceeds by replacing classical fields with operators and
Poisson brackets with commutators according to the rule

i{·, ·}PB −→ [·, ·]. (2.57)

Nowφ(x) andπ(x) are promoted to operators by replacing the functionsα(p), α(p)∗
by the corresponding operators

α(p) −→ α̂(p), α(p)∗ −→ α̂†(p). (2.58)

Moreover, demanding [φ(t, x), π(t, x′)] = iδ(x − x′) forces the operators α̂(p),
α̂(p)† to have the commutation relations found in Eq. (2.29). Therefore they are
identified as a set of creation-annihilation operators creating states with well-defined
momentum p out of the vacuum |0〉. In the canonical quantization formalism the
concept of particle appears as a result of the quantization of a classical field.

From the expressions of φ̂ and π̂ in terms of the creation-annihilation operators
we can evaluate the Hamiltonian operator. After a simple calculation one arrives at

Ĥ = 1

2

∫
d3 p

(2π)3

[
α̂†(p)α̂(p)+ (2π)3 Epδ(0)

]

=
∫

d3 p

(2π)3
1

2Ep
Epα̂

†(p)α̂(p)+ 1

2

∫
d3 pEpδ(0). (2.59)

The first integral has a simple physical interpretation: the integrand is the number
operator of particles with momentum p, weighted by the energy Ep of the particle
and integrated using the Lorentz-invariant measure. The second term diverges and it
is equal to the expectation value of the Hamiltonian in the ground state, 〈0|Ĥ |0〉. It
measures the energy stored in the vacuum.

We should make sense of the divergent vacuum energy in Eq. (2.59). It has two
sources of divergence. One is of infrared origin and it is associated with the delta

2 In momentum space, the general solution to this equation is φ̃(p) = f (p)δ(p2−m2), with f(p)
a completely general function of pμ. The solution in position space is obtained by inverse Fourier
transform. The step function θ(p0) enforces positivity of the energy.
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function evaluated at p = 0, reflecting the fact that we work in infinite volume. The
second one comes from the integration of Ep at large values of the momentum and
it is then an ultraviolet divergence. The infrared divergence can be regularized by
putting the system in a box of finite but large volume and replacing δ(0) ∼ V . Since
now the momentum gets discretized, we have

Evac ≡ 〈0|Ĥ |0〉 =
∑

p

1

2
Ep. (2.60)

Written in this form the interpretation of the vacuum energy is straightforward. A
free scalar quantum field can be seen as a infinite collection of harmonic oscillators
per unit volume, each one labelled by p. Even if those oscillators are not excited,
they contribute to the vacuum energy with their zero-point energy, given by 1

2 Ep.

Due to the ultraviolet divergence, the vacuum contribution to the energy adds up to
infinity even working at finite volume: there are modes with arbitrary high momentum
contributing to the sum, pi ∼ ni

Li
, with Li the sides of the box of volume V and ni

an integer.
For many practical purposes we can shift the origin of energies and subtract the

vacuum energy. This is done by replacing Ĥ by the normal-ordered Hamiltonian

:Ĥ:≡ Ĥ − 〈0|Ĥ |0〉 = 1

2

∫
d3 p

(2π)3
α̂†(p)α̂(p). (2.61)

In spite of this, in the next section we will see that under certain conditions the
vacuum energy has observable effects. In addition, in general relativity the energy of
the vacuum is a source of the gravitational field and contributes to the cosmological
constant (see Chap. 12).

All relevant information about the free scalar field theory is encoded in the time-
ordered correlation functions

Gn(x1, . . . , xn) = 〈0|T
[
φ̂(x1) . . . φ̂(xn)

]
|0〉. (2.62)

The symbol T indicates that we have a time-ordered product, i.e. the noncommuting
field operators are multiplied in the order in which they occur in time. For example,
for the time-ordered product of two scalar fields we have

T
[
φ̂(x1)φ̂(x2)

]
= θ

(
x0

1 − x0
2

)
φ̂(x1)φ̂(x2)+ θ

(
x0

2 − x0
1

)
φ̂(x2)φ̂(x1). (2.63)

The generalization to monomials with more than two operators is straightforward:
operators evaluated at earlier times always appear to the right.

In the case of our free scalar field theory the only independent time-ordered corre-
lation function is the Feynman propagator G2(x1, x2). After some manipulations, it
can be written as

〈0|T
[
φ̂(x1)φ̂(x2)

]
|0〉 =

∫
d4 p

(2π)4
ie−i p·(x1−x2)

p2 − m2 + iε
. (2.64)
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The term iε in the denominator is a reminder of how to surround the poles in the
integration over p0. This is crucial to reproduce correctly the step functions in the
time-ordered product (2.63). To calculate higher order correlation functions one uses
a mathematical result known as Wick’s theorem that allows to write a time-ordered
product as a combination of normal-ordered products with coefficients given by the
Feynman propagator G2(x1, x2).We will not give a general proof but state it for the
case of three fields

(2.65)

The pairs of operators connected by braces, called Wick contractions, have to be
replaced by a Feynman propagator according to

(2.66)

From this example we read the structure of the general case: the time-ordered product
of n fields can be written as the sum of all monomials of n fields with any number of
Wick contractions (from 0 to the integer part of n

2 ) done in all possible nonequivalent
ways. In each of these monomial the product of those fields that are not Wick-
contracted is always normal ordered.3

Using this result the correlation functions (2.62) can be easily computed. Since
the vacuum expectation value of a normal ordered operator is zero, the only terms
that contribute are those in which all fields are Wick-contracted among themselves.
This automatically implies that all time-ordered correlation functions with an odd
number of scalar fields are equal to zero. For correlation functions with an even
number of insertion we illustrate how it works in the case of the four-point function,
where there are three different contractions

(2.67)

3 We remind the reader that in a normal-ordered product all annihilation operators appear to the
right.
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Replacing now each Wick contraction by the corresponding propagator according to
(2.66), we find

G4(x1, . . . , x4) = G2(x1, x2)G2(x3, x4)+ G2(x1, x3)G2(x2, x4)

+ G2(x1, x4)G2(x2, x3). (2.68)

Any other correlation function is computed in terms of G2(x1, x2) following the
same algorithm. In fact, this property is the defining feature of any free quantum
field theory: the propagator completely determines all other correlation functions of
the theory.

2.3 The Casimir Effect

The vacuum energy encountered in the quantization of the free scalar field is not
exclusive of this theory. It is also present in other field theories and in particular in
quantum electrodynamics. In 1948 Hendrik Casimir pointed out [1] that although
a formally divergent vacuum energy would not be observable, any variation in this
energy would be (see [2–4] for comprehensive reviews).

To show this he devised the following experiment. Consider a couple of infinite,
perfectly conducting plates placed parallel to each other at a distance d (see Fig. 2.1).
The plates fix the boundary condition of the vacuum modes of the electromagnetic
field. These modes are discrete in between the plates (region II), while outside them
they have a continuous spectrum (regions I and III). The vacuum energy of the
electromagnetic field is equal to that of two massless scalar fields, corresponding to
the two physical polarizations of the photon (see Sect. 4.2). Hence we can apply the
formulae derived above.

A naive calculation of the vacuum energy in this system gives a divergent result.
This infinity can be removed by subtracting the vacuum energy corresponding to the
situation where the plates are removed

E(d)reg = E(d)vac − E(∞)vac. (2.69)

This subtraction cancels the contribution of all the modes outside the plates. The
boundary conditions of the electromagnetic field at the conducting plates dictate the
quantization of the momentum modes perpendicular to them according to p⊥ = nπ

d ,

with n a non-negative integer. When the size of the plates is much larger than their
separation d, the momenta parallel to the plates p‖ can be treated as continuous. For
n > 0 there are two polarizations for each vacuum mode of the electromagnetic field,
each one contributing

1

2

√
p2‖ + p2⊥ (2.70)

to the vacuum energy. When p⊥ = 0 (i.e., n = 0) the modes of the field are effec-
tively (2+1)-dimensional and there is only one physical polarization. Taking all these
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Fig. 2.1 Illustration of the
Casimir effect. In regions I
and II the spetrum of modes
of the momentum p⊥ is
continuous, while in the
space between the plates
(region II) it is quantized in
units of πd

Region I Region II

Conducting plates

Region III

d

elements into account, we write

E(d)reg = S
∫

d2 p‖
(2π)2

1

2
|p‖| + 2S

∫
d2 p‖
(2π)2

∞∑
n=1

1

2

√
p2‖ +

(nπ

d

)2

− 2Sd
∫

d3 p

(2π)3
1

2
|p|, (2.71)

where S is the area of the plates. The factors of two count the two propagating degrees
of freedom of the electromagnetic field, as discussed above.

The integrals and the infinite sum in Eq. (2.71) are divergent. In order to define
them we insert an exponential damping factor4

E(d)reg = 1

2
S
∫

d2 p⊥
(2π)2

e−
1
Λ |p‖||p‖| + S

∞∑
n=1

∫
d2 p‖
(2π)2

e
− 1
Λ

√
p2‖+( nπ

d )
2
√

p2‖ +
(nπ

d

)2

− Sd

∞∫
−∞

dp⊥
2π

∫
d2 p‖
(2π)2

e
− 1
Λ

√
p2‖+p2⊥

√
p2‖ + p2⊥, (2.72)

where Λ is an ultraviolet cutoff. It is now straightforward to see that in terms of the
function

4 Alternatively, one could introduce any cutoff function f (p2⊥ + p2‖) going to zero fast enough as
p⊥, p‖ → ∞. The result is independent of the particular function used in the calculation.
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F(x) = 1

2π

∞∫
0

ydye−
1
Λ

√
y2+( xπ

d )
2
√

y2 +
( xπ

d

)2

= 1

4π

∞∫

( xπ
d )

2

dze−
√

z
Λ
√

z (2.73)

the regularized vacuum energy can be written as

E(d)reg = S

⎡
⎣1

2
F(0)+

∞∑
n=1

F(n)−
∞∫

0

dx F(x)

⎤
⎦. (2.74)

This expression can be evaluated using the Euler-MacLaurin formula [5]

∞∑
n=1

F(n)−
∞∫

0

dx F(x) =− 1

2
[F(0)+ F(∞)]+ 1

12

[
F ′(∞)− F ′(0)

]

− 1

720

[
F ′′′(∞)− F ′′′(0)

]+ · · · (2.75)

Our function satisfies F(∞) = F ′(∞) = F ′′′(∞) = 0 and F ′(0) = 0, whereas
higher derivative terms give contributions that go to zero as the cutoff is sent to
infinity. Hence the value of E(d)reg is determined by F ′′′(0). Computing this term
and taking the limit Λ→∞ we find the result

E(d)reg = S

720
F ′′′(0) = − π2S

720d3 . (2.76)

This shows that the vacuum energy between the two plates decreases when their
separation is reduced. Therefore there should be a force per unit area between the
plates given by

PCasimir = − π
2

240

1

d4 . (2.77)

The minus sign indicates that the force is attractive. This is called the Casimir effect.
It was experimentally measured for the first time in 1958 by Sparnaay [6] and since
then the Casimir effect has been checked with better and better precision in a variety
of situations [2–4].

2.4 Path Integrals

The canonical quantization formalism relies in the Hamiltonian formulation of the
theory. It has the obvious disadvantage of singling out time from the spatial coordi-
nates, making Lorentz covariance nonexplicit. This could be avoided if quantization
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could be carried out directly in the Lagrangian formalism, where Lorentz covariance
is explicit. This is achieved by the path integral quantization method introduced by
Feynman [7, 8]. In addition, when applied to the quantization of fields, path integral
quantization presents many advantages over canonical quantization.

To describe the main ideas of path integral quantization we will not enter into
technical details that can be found in many available textbooks [9–12]. Also, to
make the discussion more transparent, we first illustrate the method in the case of
nonrelativistic quantum mechanical system with a single degree of freedom denoted
by q and Lagrangian L(q, q̇). To quantize this theory we only need to know its
propagator defined by

K (q, q ′; τ) = 〈q ′; τ |q; 0〉. (2.78)

Here we have used the Heisenberg representation where the time-independent
eigenstates of the time-dependent operator q(t) are denoted by |q; t〉. Physically,
K (q, q ′; τ) represents the amplitude for the system to “propagate” from q to q ′ in a
time τ. That the knowledge of the propagator is enough to solve the quantum system
can be seen by noticing that the Schrödinger wave function ψ(t, q) at any time can
be written in terms of the initial data as

ψ(t, q ′) =
∞∫
−∞

dq K (q, q ′; t)ψ(0, q). (2.79)

This equation follows from the fact that K (q, q ′; τ) is the Green function of the
time-dependent Schrödinger wave equation.

Another physically meaningful quantity is the fixed-energy propagator, defined
in terms of (2.78) by5

G(q, q ′; E) =
∞∫

0

dτe
i
�

Eτ K (q, q ′; τ). (2.80)

This propagator is the Green function for the time-independent Schrödinger problem
(Ĥ − E)ψ(t, q) = 0. In fact, G(q, q ′; E) contains all the information about the
spectrum of the theory codified in the structure of its singularities in the complex E
plane.

Both K (q, q ′; τ) and G(q, q ′; E) can be calculated using canonical quantiza-
tion. Here instead we would rather follow the Lagrangian formalism and use of the
following observation due to Dirac [13]

〈q + δq; t + δt |q; t〉 ∼ exp

[
i

�
δt L

(
q,
δq

δt

)]
. (2.81)

5 For the remaining of this chapter we restore the powers of �.
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It states that the amplitude for the propagation of the system between q and q+δq in
an infinitesimal time δt can be expressed in terms of the Lagrangian function of the
system. We justify this equation in the case of a particle moving in one dimension in
the presence of a potential V(q),

〈q + δq; t + δt |q; t〉 = 〈q + δq|e− i
�
δt Ĥ |q〉

= 〈q + δq|e−
i
�
δt

[
p̂2

2m+V (q̂)

]
|q〉. (2.82)

The kinetic and potential energy in the exponent can be taken to commute up to terms
of order (δt)2.Hence, to linear order in δt, the exponential can be split into two terms
depending respectively on q̂ and p̂. Inserting between them the completeness relation
for the momentum eigenstates we find

〈q + δq; t + δt |q; t〉 =
∞∫
−∞

dpe
i
�

pδq− i
�
δt

[
p2

2m−V (q)

]
. (2.83)

We complete now the square and perform the Gaussian integration over the
momentum to arrive at

〈q + δq; t + δt |q; t〉 =
√

m

2π i�δt
e

i
�

[
1
2 m

(
δq
δt

)2−V (q)

]
. (2.84)

This calculation shows that the proportionality constant omitted in Eq. (2.81) does
not depend on the value of the coordinate q.

To compute the propagator (2.78) we split the time interval τ in N + 1 subintervals
of duration δt and insert the identity,

∫
dq|q; nδt〉〈q; nδt | = 1 for n = 1, . . . , N , at

each intermediate time

K (q, q ′; τ) =
⎛
⎝
∞∫
−∞

N∏
i=1

dqi

⎞
⎠ 〈q ′; τ |qN ; Nδt〉 . . . 〈q1; δt |q; 0〉. (2.85)

This representation of the propagator can be interpreted as a summation over contin-
uous discretized paths defined by qn = q(nδt) and satisfying the boundary conditions
q(0) = q, q(τ ) = q. We can go now to the continuous limit of the path by taking
δt → 0 and N → ∞ while keeping Nδt = τ fixed. Then, each overlap inside the
integral can be evaluated using Eq. (2.81) and the result defines the path integral

〈q ′; τ |q; 0〉 = N

∫

q(0)=q

q(τ )=q′

Dq(t) exp

⎡
⎣ i

�

τ∫
0

dt L(q, q̇)

⎤
⎦, (2.86)
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where N is a normalization constant. This equation is a shorthand to indicate that
the quantum mechanical amplitude (2.78) is obtained by summing over all possible
trajectories q(t) joining the points q and q ′ in a time τ, each one weighted by a phase
given by the action of the corresponding trajectory measured in units of �.

From a purely technical point of view, the path integral formulation of quantum
mechanics does not present any important advantage over other quantization methods,
notably canonical quantization. It is however in quantum field theory that path
integrals show their real power. Path integrals for quantum field theories can be
constructed by looking at a quantum field φ(t, x) as a quantum mechanical system
with one degree of freedom per point of space x. In other words, x is treated as a
(continuous) label counting the number of degrees of freedom of the system. Now,
as in the quantum mechanical case, path integrals can be used to write the amplitude
for the system to evolve from the field configuration φ0(x) at t = 0 to φ1(x) at
t = τ.

〈φ1(x); τ |φ0(x); 0〉 = N

∫

φ(0,x)=φ0(x)

φ(τ,x)=φ1(x)

Dφ(t, x)e
i
�

S[φ(t,x)], (2.87)

where S[φ(t, x)] is the action functional of the theory. As above, this expression states
that the amplitude is obtained by summing over all field configurations interpolating
between the boundary values at t = 0, and t = τ, each one multiplied by the phase
factor exp{ i

�
S[φ(t, x)]}.

Far more interesting, however, than the amplitudes (2.87) are the time-ordered
correlation functions of fields that we already studied in the case of a free scalar field.
For an interacting theory they are generalized to

Gn(x1, . . . , xn) = 〈Ω|T
[
φ̂(x1) . . . φ̂(xn)

]
|Ω〉. (2.88)

where |Ω〉 is the ground state of the theory. In Chap. 6 we will explain how the
correlation functions (2.88) are related to scattering amplitudes. Here we only want
to point out that they admit the following path integral representation6

〈Ω|T
[
φ̂(x1) . . . φ̂(xn)

]
|Ω〉 =

∫
Dφ(x)φ(x1) . . . φ(xn)e

i
�

S[φ(x)]
∫
Dφ(x)e

i
�

S[φ(x)] . (2.89)

In the left-hand side of this expression φ̂(x) is the field operator, while in the right-
hand side φ(x) represents a commuting function of the space-time coordinates.
Unlike Eq. (2.87), here the functional integration is performed over all field configu-
rations irrespective of any boundary conditions. Moreover, given that (2.89) contains
the quotient of two path integrals the overall numerical normalization N cancels

6 Here we focus on bosonic fields. Path integrals for fermions will be discussed in Chap. 3 (see
page 43).
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out. A salient feature of path integrals to be noticed here is that they automatically
implement time ordering.

Path integrals are not easy to evaluate. In fact they cannot be computed exactly
in most cases. This notwithstanding, path integrals provide an extremely useful tool
in quantum field theory. They can be formally manipulated to obtain results whose
derivation using canonical quantization methods would be much harder. The only
path integrals that can be computed exactly are the so-called Gaussian integrals
where the action functional of the theory is at most quadratic in the fields. This is
the case, for example, of the free scalar field theory whose canonical quantization
we studied in Sect. 2.2.

2.5 The Semiclassical Limit

One of the most interesting aspects of the application of the path integral formalism
to quantum mechanics is that it clarifies how the classical laws of motion emerge
from quantum dynamics. In the limit �→ 0 the phase exp

( i
�

S
)

varies wildly when
going from a path to a neighboring one. The consequence is that the contributions
from these paths to the propagator tend to cancel each other. There is however one
important exception to this that are those trajectories making the action stationary.
Since the linear perturbation of the action around these paths vanishes, these are the
only ones contributing to the functional integral (2.86) in the classical limit. This is
the way in which the classical laws of mechanics are recovered.

It is kind of remarkable how the principle of least action can be seen in this light
as a residual effect of quantum physics. What from the point of view of classical
mechanics is just an elegant principle to derive the Newtonian equations of motion
is in fact hinting at the existence of an underlying theory.

We can make this qualitative discussion more precise by looking at the case of
a nonrelativistic quantum particle moving in one dimension in the presence of a
potential V(q). The Lagrangian function of the system is

L(q, q̇) = 1

2
mq̇2 − V (q). (2.90)

We have argued that in the limit � → 0 the path integral (2.86) is dominated by
paths around the classical solution qcl(t) that solves the equations of motion with the
appropriate boundary conditions. Thus, the propagator K (q, q ′; τ) can be computed
in the semiclassical limit by considering only the contribution to the path integral
coming from paths that are “close” to the classical one. In technical terms this means
that we write

q(t) = qcl(t)+
√

�δq(t) (2.91)
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and integrate over the perturbation δq(t) keeping in the action only terms that are at
most linear in �

S[q] = Scl[q, q ′; τ ] + �

2

τ∫
0

dt
[
m(δq̇)2 − V ′′(qcl)(δq)

2
]
+ O(�3). (2.92)

Here Scl[q, q ′; τ ] is the action evaluated on the classical trajectory with the boundary
conditions q(0) = q and q(τ ) = q ′. Since qcl(t) satisfies the classical equations of
motion, the term linear in the perturbation vanishes.

With this prescription, the semiclassical propagator is given by

K (q, q ′; τ) �→0≈ N e
i
h Scl[q,q ′;τ]

∫
δq(0)=0
δq(τ )=0

D (δq) e
i
2

τ∫
0

dt
[
m(δq̇)2−V n

(
qcl (δq)2

)]

= N

√
i

2π�

∂2Scl[q, q ′; τ ]
∂q∂q ′ e

i
�

Scl[q,q ′;τ ]. (2.93)

Since the classical solution qcl(t) satisfies the boundary conditions, the perturbation
δq(t) has to vanish at both t = 0 and t = τ. The path integral over the fluctuations
is Gaussian and can be computed exactly for any potential V(q). Its evaluation is
however nontrivial. The details of the calculation can be found in the literature [9–12].

A similar analysis can be applied to the computation of the semiclassical limit of
the fixed-energy propagator G(q, q ′; E) defined in Eq. (2.80). Using the semiclas-
sical expression for the full propagator (2.93) we are left with the integral

G(q, q ′; E)
�→0≈ N

∞∫
0

dτ

√
i

2π�

∂2Scl[q, q ′; τ ]
∂q∂q ′

e
i
�
{Eτ+Scl[q,q ′;τ ]}, (2.94)

that has to be evaluated using the stationary phase method. The value τ = τc that
makes the phase stationary is the one solving the equation

E + ∂

∂τ
Scl[q, q ′; τ ]

∣∣∣∣
τ=τc

= 0. (2.95)

In this expression we recognize the Hamilton-Jacobi equation for a particle with
constant energy E. Hence, the path dominating the path integral in the semiclassical
computation of G(q, q ′; E) is the one solving the classical equation of motion

q̇cl(τ )
2 = 2

m

[
E − V (qcl)

]
. (2.96)

and connecting the points q and q ′. The calculation of τc reduces to the following
quadrature
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τc =
√

m

2

q ′∫
q

dz√
E − V (z)

. (2.97)

The calculation of the semiclassical propagators requires some extra care in situa-
tions where quantum tunneling can occur. This is the case, for example, of a particle
propagating in a barrier potential where the points q and q ′ are on different sides of
the barrier. The calculation of K (q, q ′; τ) in the limit �→ 0 can be done in this case
following the steps we have described, since there is always an above-the-barrier
classical trajectory joining the points q and q ′ in a time τ that dominates the path
integral.

The problem comes in the computation of G(q, q ′; E) when E is lower that
the maximum of the barrier, E < max[V (q)]. In this case there are no classical
trajectories going through the classically forbidden region and therefore no saddle
point value for the integral (2.94) is found in the domain of integration.

The key to solving the problem lies in performing an analytic continuation on
the integrand of (2.94) and deforming the integration contour to capture the saddle
points that occur for complex values of τ. For simplicity we concentrate on the case
shown on the left panel of Fig.2.2 where q and q ′ correspond to the classical turning
points of a trajectory with energy E. Now, to compute the saddle point values of τ
we have to continue the integrand of (2.97) and deform the contour of integration to
surround the branch cut joining q and q ′. As it happens, there is an infinite number
of critical values given by7

τn = −i(2n + 1)

√
m

2

q ′∫
q

dx√
V (x)− E

, n = 0, 1, . . . (2.98)

Here n is the number of times the contour surrounds the branch cut before reaching
the endpoint. As a matter of fact we only need to consider the saddle point with n = 0,
since the remaining ones give contributions to the semiclassical limit of G(q, q ′; E)
that are exponentially suppressed with respect to it.

This analysis shows that the quantum tunneling under a barrier proceeds semi-
classically as if the particle is propagating in imaginary time. A look at Eq. (2.94)
leads to a nice interpretation of this fact. This expression says that there are infi-
nitely many classical trajectories connecting the points q and q ′ that contribute to the
fixed-energy propagator describing the tunneling process. As we explained above,
all these real-time trajectories have energies above the height of the barrier. However,
when E < max{V (q)} and in the limit �→ 0, the coherent effect of all these paths
is “resummed” into a single imaginary-time trajectory with an energy below the
maximum of the barrier. This is called an instanton.

7 There is a global sign ambiguity associated with the sense in which the integration contour
surrounds the branch cut. Here we take it clockwise.
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q
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Fig. 2.2 On the left picture the tunneling of a particle with energy E from q to q ′ through the potential
barrier is represented. In the right panel we have depicted the Euclidean trajectory describing this
semiclassical tunneling

In fact, the imaginary-time trajectory that is found to dominate the path integral
computation of G(q, q ′; E) in the semiclassical limit is a solution of the equations of
motion derived from the Euclidean action SE [q], obtained by analytically continuing
the action of the system to imaginary times

S [q]
τ→−iτ→ i SE [q] = i

τ∫
0

dt

[
1

2
mq̇2 + V (q)

]
(2.99)

and the equations of motion of the Euclidean trajectories of energy E are

q̇2
cl =

2

m

[
− E + V (qcl)

]
. (2.100)

Heuristically these equations can be interpreted as those of a “real” particle with
energy −E in the inverted potential −V (q) (see the right panel of Fig. 2.2). From
this point of view, the infinite number of saddle points trajectories found above
correspond to this particle bouncing n times in the inverted potential before reaching
the endpoint at q ′. It should be clear, however, that the time parameter in Eq. (2.100)
does not have any meaning as a physical time.

The previous discussion carries over to field theory. By the same arguments used
above, the path integrals in (2.87) and (2.89) are dominated in the limit � → 0 by
those field configurations making the action stationary, that is, satisfying the Euler–
Lagrange equations. The semiclassical approximation is obtained by expanding
around these classical field solutions to second order in the perturbations and carrying
out the resulting Gaussian integral.

Field theories can have many vacua separated by energy barriers. For example, a
scalar field theory

S[φ] =
∫

d4x

[
1

2
ημv∂μφ∂vφ − V (φ)

]
. (2.101)
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has as many vacua as local minima of the potential V (φ), that we assume to
be bounded from below. The spectrum of excitations around each vacuum can
be computed using perturbation theory in powers of the corresponding coupling
constant. The perturbative analysis, however, is blind to transitions between different
vacua due to quantum tunneling.

The lesson we have learned in quantum mechanics can now be used to study the
semiclassical tunneling between different vacua in a field theory by means of an
analytic continuation to imaginary times. Letting t → −it, the Minkowski space-
time transforms in Euclidean space

ds2 = ημvdxμdxv =⇒ ds2 = −δμvdxμdxv. (2.102)

In the example of the scalar field theory discussed above, this analytical continuation
to imaginary time leads to the Euclidean action

SE [φ] =
∫

d4x

[
1

2
δμv∂μφ∂vφ + V (φ)

]
. (2.103)

Instantons, i.e. the solution to the field equations derived from this action, are inter-
preted in quantum field theory as representing semiclassical tunneling between the
different vacua of the theory. In Chap. 4 we will study field theory instantons in
some more detail in the case of nonabelian gauge theories, where their existence has
important physical consequences.
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Chapter 3
Theories and Lagrangians I: Matter Fields

Up to this point we have used a scalar field to illustrate our discussion of the quanti-
zation procedure. However, Nature is richer than that and it is necessary to consider
other fields with more complicated behavior under Lorentz transformations. Before
considering these other fields we pause and study the properties of the Lorentz group.

3.1 Representations of the Lorentz Group

The Lorentz group is the group of linear coordinate transformations that leave
invariant the Minkowskian line element. It has a very rich mathematical structure
that we review in Appendix B. Here our interest is focused on its representations.

In four dimensions the Lorentz group has six generators. Three of them are the
generators Ji of the group of rotations in three dimensions SO(3). A finite rotation
of angle ϕ with respect to the axis determined by a unitary vector e can be written
as

R(e, ϕ) = e−iϕ e·J, J =
⎛
⎝ J1

J2
J3

⎞
⎠. (3.1)

The other three generators of the Lorentz group are associated with boosts Mi along
the three spatial directions. A boost with rapidity λ along a direction u is given by

B(u, λ) = e−iλu·M, M =
⎛
⎝ M1

M2
M3

⎞
⎠. (3.2)

The six generators Ji , Mi satisfy the algebra[
Ji , J j

] = iεi jk Jk,

[Ji ,Mk] = iεi jk Mk,[
Mi ,M j

] = −iεi jk Jk,

(3.3)

L. Álvarez-Gaumé and M. Á. Vázquez-Mozo, An Invitation to Quantum Field Theory, 33
Lecture Notes in Physics 839, DOI: 10.1007/978-3-642-23728-7_3,
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The first line are the commutation relations of SO(3), while the second one implies
that the generators of the boosts transform like a vector under rotations. The six
generators of the Lorentz group can be collected into the six independent components
of an antisymmetric rank-two tensor Jμv according to

J0i = Mi , Ji j = εi jk Jk . (3.4)

They satisfy
[
Jμv,Jσλ

] = iημσJvλ − iημλJvσ + iηvλJμσ − iηvσJμλ. (3.5)

The Lorentz algebra in terms of Jμv has the same form in any space-time dimension.
The task of finding representations of the algebra (3.3) [or (3.5)] might seem diffi-

cult at first sight. In four dimensions the problem is greatly simplified by combining
the generators in the following way

J±k =
1

2
(Jk ± i Mk). (3.6)

Using (3.3), the new generators J±k are found to satisfy

[
J±i , J±j

]
= iεi jk J±k ,[

J+i , J−j
]
= 0.

(3.7)

Thus, the four-dimensional Lorentz algebra is equivalent to two copies of the algebra
of SU(2) ≈ SO(3). Their irreducible representations are identified by (s+, s−),
where s± = k± or k± + 1

2 (with k± ∈ N) are the spins of the representations of the
two copies of SU(2).

To get familiar with this way of labeling the representations of the Lorentz
group we study some particular examples. Let us start with the simplest one
(s+, s−) = (0, 0). This state is a singlet under J±i and therefore also under rota-
tions and boosts. Therefore we have a scalar.

The next interesting cases are ( 1
2 , 0) and (0, 1

2 ). States transforming in these
representations are respectively right and left-handed Weyl spinors. Their properties
will be studied in more detail below. Next we deal with ( 1

2 ,
1
2 ). Equation (3.6) shows

that Ji = J+i + J−i . Applying the rules of addition of angular momenta we find
that the states transforming in this representations decompose into a vector and a
scalar under three-dimensional rotations. A more detailed analysis shows that the
singlet state is identified with the time component of a four-vector, combining with
the triplet to form a vector under the Lorentz group.

We can consider more “exotic” representations. For example the (1, 0) and (0, 1)
representations correspond respectively to selfdual and anti-selfdual rank-two anti-
symmetric tensors Tμv = −T vμ,

Tμv = ±1

2
εμvσλT σλ (+ selfdual,− anti-selfdual), (3.8)
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Table 3.1 Representations of
the Lorentz group in terms of
the representations of SU(2)×
SU(2)

Representation Type of field

(0, 0) Scalar
( 1

2 , 0) Right-handed spinor
(0, 1

2 ) Left-handed spinor
( 1

2 ,
1
2 ) Vector

(1, 0) Selfdual antisymmetric 2-tensor
(0, 1) Anti-selfdual antisymmetric 2-tensor

where εμvσλ is the Levi-Civita symbol with four indices. Table 3.1 summarizes the
previous discussion.

To conclude our analysis of the representations of the Lorentz group we notice
that under parity the generators of SO(1,3) transform as1

P: Ji −→ Ji , P : Mi −→ −Mi . (3.9)

This implies that P: J±i −→ J∓i and therefore a representation (s1, s2) is transformed
into (s2, s1). As a consequence a vector ( 1

2 ,
1
2 ) is invariant under parity, whereas a

left-handed Weyl spinor ( 1
2 , 0) transforms into a right-handed one (0, 1

2 ) and vice
versa.

It is instructive to see how the representations of the Lorentz group differ from
those of SO(4), the isometry group of four-dimensional Euclidean space. Like the
Lorentz group, it is generated by a set of six generators Jμv whose algebra can
be obtained from Eq. (3.5) by replacing ημv → −δμv. The Lie algebra of SO(4) is
isomorphic to that of SU(2)× SU(2). This can be seen by introducing the generators

Na = ηa
μv Jμv, N

a = ηa
μv Jμv. (3.10)

The numerical coefficients ηa
μv and ηa

μv (with a = 1, 2, 3 and μ, v = 0, . . . , 3) are
called ’t Hooft symbols and are given by

ηa
μv = εaμv + δaμδv0 − δavδμ0,

ηa
μv = εaμv − δaμδv0 + δavδμ0. (3.11)

Here εaμv represents the Levi-Civita antisymmetric symbol with three indices and it
is taken to be zero whenever μ or v are equal to zero. Now it is not difficult to check
that the generators (3.10) satisfy the Lie algebra of SU(2)× SU(2)

[
N a, N b

]
= iεabc N c,

[
N

a
, N

b
]
= iεabc N

c
,

[
N a, N

b
]
= 0. (3.12)

This shows that the representations of SO(4) can also be labelled in terms of the
irreducible representations of SU(2).

1 Parity and other discrete symmetries are studied in detail in Chap. 11.
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3.2 Weyl Spinors

A Weyl spinor u± is a complex two-component object that transforms in the represen-
tations ( 1

2 , 0) and (0, 1
2 ) respectively. The generators J±i can be explicitly constructed

using the Pauli matrices as

J+i =
1

2
σi , J−i = 0 for

( 1
2 , 0

)
,

J+i = 0, J−i =
1

2
σi for

(
0, 1

2

)
.

(3.13)

Going back to J i and K i , we find that under a rotation of angle θ and axis n and a
boost of rapidity β = (β1, β2, β3) the spinors u± transform as

u± −→ e−
i
2 (θn∓iβ)·σ u±. (3.14)

To construct a free Lagrangian for the fields u± we have to look for quadratic
combinations of the fields that are Lorentz scalars. Defining σμ± = (1,±σi ), we can
construct the following quantities

u†
+σ

μ
+u+, u†

−σ
μ
−u−. (3.15)

The first thing to point out is that, since (J±i )† = J∓i , the hermitian conjugate fields

u†
± are in the (0, 1

2 ) and ( 1
2 , 0) representation respectively. The combinations (3.15)

transform as a four-vector under (3.14), due to the property

e
i
2 (θn±iβ)·σσμ±e−

i
2 (θn∓iβ)·σ = 
μv (θn,β)σ v±, (3.16)

where 
μv (θn,β) gives the transformation of the coordinates xμ.
Once the transformation properties of (3.15) are known we can start building

invariants. If, in addition, we also demand that the Lagrangian be invariant under
global phase rotations

u± −→ eiθu± (3.17)

we are left with just one possibility up to a sign, namely

L ±Weyl = iu†
± (∂t ± σ ·∇) u± = iu†

±σ
μ
±∂μu±. (3.18)

This is the Weyl Lagrangian. In order to get a more clear idea of the physical meaning
of the spinors u± we write the equations of motion

(∂0 ± σ ·∇) u± = 0. (3.19)

Multiplying this equation on the left by (∂0 ∓ σ ·∇) and applying the algebraic
properties of the Pauli matrices, we conclude that u± satisfy the massless Klein-
Gordon equation
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∂μ∂
μu± = 0, (3.20)

whose solutions are

u±(x) = u±(k)e−ik·x , with k0 = |k|. (3.21)

Plugging them back into the equations of motion (3.19) we find

(|k| ∓ k · σ ) u± = 0, (3.22)

implying the following conditions

u+ : σ · k
|k| = 1,

u− : σ · k
|k| = −1.

(3.23)

Since the spin operator is s = 1
2σ , the previous expressions give the helicity of the

states with wave function u±, i.e. the projection of the spin along the momentum of
the particle

λ = s · k
|k| . (3.24)

We conclude that u+ is a Weyl spinor of positive helicityλ = 1
2 ,while u− has negative

helicity λ = − 1
2 . This agrees with our assertion in the previous section that the

representation ( 1
2 , 0) corresponds to a right-handed Weyl fermion (positive helicity)

whereas (0, 1
2 ) is a left-handed Weyl fermion (negative helicity). For example, the

standard model neutrinos are left-handed Weyl spinors and therefore transform in
the representation (0, 1

2 ) of the Lorentz group.
Nevertheless, it is possible that we were too restrictive in constructing the Weyl

Lagrangian (3.18). There we constructed the invariants from the vector bilinears
(3.15) corresponding to the product representations

( 1
2 ,

1
2

) = ( 1
2 , 0

)⊗ (
0, 1

2

)
and

( 1
2 ,

1
2

) = (
0, 1

2

)⊗ ( 1
2 , 0

)
. (3.25)

In particular our insistence in demanding the Lagrangian to be invariant under the
global symmetry u± → eiθu± rules out the scalar term that appears in the product
representations

( 1
2 , 0

)⊗ ( 1
2 , 0

) = (1, 0)⊕ (0, 0),(
0, 1

2

)⊗ (
0, 1

2

) = (0, 1)⊕ (0, 0). (3.26)

The singlet representations corresponds to the antisymmetric combinations
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εabua±ub±, (3.27)

where εab is the antisymmetric symbol ε12 = −ε21 = 1.
At first sight it might seem that the term (3.27) vanishes identically due to the anti-

symmetry of the ε-symbol. However we should keep in mind that the spin-statistics
theorem (more on this later) demands that fields with half-integer spin have to satisfy
the Fermi-Dirac statistics and therefore satisfy anticommutation relations, whereas
fields of integer spin follow the statistic of Bose-Einstein and, as a consequence, quan-
tization replaces Poisson brackets by commutators. This implies that the components
of the Weyl fermions u± are anticommuting Grassmann fields

ua±ub± + ub±ua± = 0. (3.28)

It is important to realize that, strictly speaking, fermions (i.e., objects that satisfy
the Fermi-Dirac statistics) do not exist classically. The reason is that they satisfy
the Pauli exclusion principle and therefore each quantum state can be occupied, at
most, by one fermion. Therefore the naive definition of the classical limit as a limit
of large occupation numbers cannot be applied. Fermion fields do not really make
sense classically.

Since the combination (3.27) does not vanish, we can construct a new Lagrangian

L ±Weyl = iu†
±σ

μ
±∂μu± − m

2

(
εabua±ub± + h.c.

)
(3.29)

This mass term, called of Majorana type, is allowed if we do not worry about breaking
the global U(1) symmetry u± → eiθu±. This is not the case, for example, of charged
chiral fermions, since the Majorana mass violates the conservation of electric charge
or any other gauge U(1) charge. In the standard model, however, there is no such a
problem if we introduce Majorana masses for right-handed neutrinos, since they are
singlets under all standard model gauge groups. Such a term will break, however, the
global U(1) lepton number charge, the operator εabva

Rvb
R changes the lepton number

by two units. We will have more to say about this later.

3.3 Dirac Spinors

We have seen that parity interchanges the representations ( 1
2 , 0) and (0, 1

2 ), i.e. it
changes right-handed with left-handed fermions

P : u± −→ u∓. (3.30)

An obvious way to build a parity invariant theory is to combine a pair or Weyl
fermions u+ and u− of opposite helicity in a single four-component spinor

ψ =
(

u+
u−

)
(3.31)
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transforming in the reducible representation ( 1
2 , 0)⊕ (0, 1

2 ).

Since now we have both u+ and u− simultaneously at our disposal, the equations
of motion for u±, iσμ±∂μu± = 0 can be modified, while keeping them linear,
to introduce a mass term

iσμ+∂μu+ = mu−
iσμ−∂μu− = mu+

}
=⇒ i

(
σ
μ
+ 0

0 σ
μ
−

)
∂μψ = m

(
0 1
1 0

)
ψ. (3.32)

These equations of motion can be derived from the Lagrangian density

LDirac = iψ†
(
σ
μ
+ 0

0 σ
μ
−

)
∂μψ − mψ†

(
0 1
1 0

)
ψ. (3.33)

To simplify the notation it is useful to define the Dirac γ -matrices as

γ μ =
(

0 σ
μ
−

σ
μ
+ 0

)
. (3.34)

and the Dirac conjugate spinor ψ

ψ ≡ ψ†γ 0 = ψ†
(

0 1
1 0

)
. (3.35)

The Lagrangian (3.33) can be written in the more compact form

LDirac = ψ
(
iγ μ∂μ − m

)
ψ, (3.36)

whose equations of motion give the Dirac equation (1.10) with the identifications

γ 0 = β, γ i = iαi . (3.37)

The γ -matrices defined in (3.34) satisfy the Dirac algebra

{γ μ, γ v} = 2ημv. (3.38)

In d dimensions this algebra admits representations of dimension 2

[
d
2

]
. Equation

(3.34) gives the chiral representation of the algebra (3.38). Other equivalent repre-
sentations can be constructed exploiting the invariance of (3.38) under unitary trans-
formations γ μ → Uγ μU †.

A representation of the Lorentz algebra SO(1, d − 1) can be constructed using
the γ -matrices as

J μv = − i

4

[
γμ, γ v] ≡ σμv. (3.39)

By definition, Dirac fermions ψ in d dimensions transform under the Lorentz group
in this representation.
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When d is even the representation (3.39) is reducible. In the case of interest d = 4
this result is easy to prove by defining the chirality matrix

γ5 = −iγ 0γ 1γ 2γ 3 =
(

1 0
0 −1

)
. (3.40)

The matrix γ5 anticommutes with all other γ -matrices and as a consequence

[
γ5, σ

μv] = 0. (3.41)

Using Schur’s lemma (see Appendix B) this implies that the representation of the
Lorentz group provided by σμv is reducible into subspaces spanned by the eigen-
vectors of γ5 with the same eigenvalue. Introducing the projectors P± = 1

2 (1± γ5)

these subspaces correspond to

P+ψ =
(

u+
0

)
, P−ψ =

(
0
u−

)
, (3.42)

which are precisely the Weyl spinors introduced above.
Our next task is to quantize the Dirac Lagrangian. This will be done along the lines

followed for the free real scalar field, starting with a general solution to the Dirac
equation and introducing the corresponding set of creation–annihilation operators.
Therefore we start by looking for a complete basis of solutions to the Dirac equation.
In the case of the scalar field the elements of the basis were labelled by their four-
momentum kμ.Now, however, the field has several components so we have to add an
extra label. Equation (3.23) suggest the following definition of the helicity operator
of a Dirac spinor

λ =
(

1
2σ · k

|k| 0

0 1
2σ · k

|k|

)
. (3.43)

Each element of the basis of functions is labelled by its four-momentum kμ and the
corresponding eigenvalue s of the helicity operator.

For positive energy solutions of the Dirac equation we take

u(k, s)e−ik·x , s = ±1

2
, (3.44)

where uα(k, s) (α = 1, . . . , 4) is a four-component spinor. Substituting in the Dirac
equation we obtain2

(/k − m)u(k, s) = 0. (3.45)

In the same way, for negative energy solutions we have

2 From now on we will frequently use the Feynman slash notation, a/ ≡ γ μaμ.
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v(k, s)eik·x , s = ±1

2
, (3.46)

where vα(k, s) has to satisfy

(/k + m)v(k, s) = 0. (3.47)

Multiplying Eqs. (3.45) and (3.47) on the left respectively by (/k ∓ m) we find that
the momentum is on the mass shell, k2 = m2. Hence, the wave function for both
positive- and negative-energy solutions is labelled by the three-momentum k of the
particle, u(k, s), v(k, s).

Before proceeding any further we consider the case of a massless Dirac fermion.
Using the equation /ku(k, s) = 0 it is not difficult to show that the helicity operator
(3.43) satisfies

λu(k, s) = 1

2
γ5u(k, s), (3.48)

and similarly for v(k, s). This means that when m = 0 helicity (i.e., the projection of
the spin along the direction of motion) and chirality (the eigenvalue of the γ5 matrix)
are equivalent concepts. In this case the helicity of the spinor is a relativistic invariant.
This is no longer true when m 
= 0 because when the particle moves with a speed
smaller than the speed of light the sign of λ can be changed by a boost reversing the
direction of k. Hence, the helicity of a massive Dirac spinor has no invariant meaning
and moreover it is not equivalent to its chirality.

The spinors u(k, s), v(k, s) can be normalized according to

u(k, s)u(k, s) = 2m,

v(k, s)v(k, s) = − 2m. (3.49)

Given this normalization, the following identities can be obtained

u(k, s)γ μu(k, s) = 2kμ,

v(k, s)γ μv(k, s) = 2kμ, (3.50)

as well as the completeness relations

∑
s=± 1

2

uα(k, s)uβ(k, s) = (/k + m)αβ,

∑
s=± 1

2

vα(k, s)vβ(k, s) = (/k − m)αβ, (3.51)

with k0 = Ek =
√

k2 + m2. A general solution to the Dirac equation including
creation and annihilation operators can be written as
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ψ̂α(t, x) =
∑

s=± 1
2

∫
d3k

(2π)3
1

2ωk

[
uα(k, s)b̂(k, s)e−i Ek t+ik·x

+vα(k, s)d̂†(k, s)ei Ekt−ik·x]. (3.52)

Unlike the real scalar field studied in the previous chapter, the Dirac field is not
hermitian. As a consequence, the operators b̂(k, s) and d̂(k, s) are independent and
not related by Hermitian conjugation.

Since we are dealing with half-integer spin fields, the spin-statistics theorem forces
a modification of the canonical quantization prescription (2.57). In the case of the
Dirac field the canonical Poisson brackets are replaced by anticommutators

i{·, ·}PB −→ {·, ·}. (3.53)

Thus we arrive to the following canonical anticommutation relations for ψ̂(t, x)

{ψ̂α(t, x), ψ̂†
β(t, y)} = δ(x − y)δαβ, (3.54)

with the other anticommutators vanishing. From Eq. (3.52) we find that the operators
b̂†(k, s), b̂(k, s) satisfy the algebra3

{b(k, s), b†(k′, s′)} =(2π)3(2Ek)δ(k − k′)δss′,

{b(k, s), b(k′, s′)} ={b†(k, s), b†(k′, s′)} = 0. (3.55)

They respectively create and annihilate a spin- 1
2 particle (for example, an electron)

out of the vacuum with momentum k and helicity s.
In the case of d(k, s), d†(k, s), they satisfy the fermionic algebra

{d(k, s), d†(k′, s′)} = (2π)3(2Ek)δ(k − k′)δss′,

{d(k, s), d(k′, s′)} = {d†(k, s), d†(k′, s′)} = 0. (3.56)

Hence we have a set of creation–annihilation operators for the corresponding antipar-
ticles (for example positrons). This is clear if we notice that d†(k, s) can be seen as
the annihilation operator of a negative energy state of the Dirac equation with wave
function va(k, s). In the Dirac picture this corresponds to the creation of an antipar-
ticle out of the vacuum (see Fig. 1.2). Finally, all other anticommutators between
b(k, s), b†(k, s) and d(k, s), d†(k, s) vanish.

The Hamiltonian operator for the Dirac field is

Ĥ = 1

2

∑
s=± 1

2

∫
d3k

(2π)3

[
b†(k, s)b(k, s)− d(k, s)d†(k, s)

]
. (3.57)

3 To simplify notation, and since there is no risk of confusion, we drop from now on the hats to
indicate operators.
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At this point we realize again the necessity of quantizing the theory using anti-
commutators instead of commutators. Had we used canonical commutation rela-
tions, the second term inside the integral in (3.57) would give the number operator
d†(k, s)d(k, s)with a minus sign in front. As a consequence, the Hamiltonian would
be unbounded from below and we would be facing again the instability of the theory
already noticed in the context of relativistic quantum mechanics. However, using the
anticommutation relations (3.56), the Hamiltonian (3.57) takes the form

Ĥ =
∑

s=± 1
2

∫
d3k

(2π)3
1

2Ek

[
Ekb†(k, s)b(k, s)+ Ekd†(k, s)d(k, s)

]

− 2
∫

d3k Ekδ(0). (3.58)

As with the scalar field, we find a divergent vacuum energy contribution due to the
zero-point energy of an infinite number of harmonic oscillators. Unlike the case of
the scalar field, the vacuum energy here is negative. This is interesting because, as it
will be explaned in Chap. 13, there is a certain type of theories called supersymmetric
where the number of bosonic and fermionic degrees of freedom is the same. For this
kind of theories the contribution of the vacuum energy of the bosonic field exactly
cancels that of the fermions. The divergent contribution in the Hamiltonian (3.58)
can be removed by the normal order prescription

:Ĥ:=
∑

s=± 1
2

∫
d3k

(2π)3
1

2Ek

[
Ekb†(k, s)b(k, s)+ Ekd†(k, s)d(k, s)

]
. (3.59)

Finally, let us mention that using the Dirac equation it is easy to prove the conser-
vation of the four-current

jμ = ψγμψ, ∂μ jμ = 0. (3.60)

As we will explain further in Chap. 7, this current is associated to the invariance of
the Dirac Lagrangian under the global phase shift ψ → eiθψ. In electrodynamics
the associated conserved charge

Q = q
∫

d3x j0 (3.61)

is identified with the electric charge, with q the charge of the particle created by
b†(k, s) acting on the vacuum.

Since we are dealing with a free theory, all correlation functions can be written
in terms of those with two fields. The Feynman propagator is given by

Sαβ(x1, x2) =〈0|T
[
ψα(x1)ψβ(x2)

]
|0〉

=
∫

d4 p

(2π)4

(
i

/p − m + iε

)
αβ

e−i p·(x1−x2), (3.62)
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while the other two-point correlation functions are zero

〈0|T [
ψα(x1)ψβ(x2)

] |0〉 = 〈0|T [
ψα(x1)ψβ(x2)

] |0〉 = 0, (3.63)

as can be seen by direct computation using the field expansion in terms of creation-
annihilation operators. Due to the fermionic character of the Dirac field, the definition
of the time-ordered product includes a number of minus signs associated with the
permutation of the two fields. For the particular case of a Dirac spinor and its conju-
gate we have

T
[
ψα(x)ψβ(y)

]
= θ(x0 − y0)ψα(x)ψβ(y)− θ(y0 − x0)ψβ(y)ψα(x). (3.64)

The rule for higher order point functions is the same as in the bosonic case (“earlier”
fields always to the right) apart from the fact that each term comes now multiplied
by the sign needed to bring the original expression into the time order.

The computation of the vacuum expectation value of the time-ordered product
of a number of ψ and ψ fields can be done using an extension of Wick’s theorem
introduced in Sect. 2.2 for a real scalar field. The main difference is that now the
Wick contractions only occur between a Dirac field ψ(x) and its conjugate ψ(x)

(3.65)

In addition, since the fields anticommute, there are extra signs associated with
the permutations required to bring together in the correct order the fields that are
Wick-contracted. The details can be found in the standard texts (see for example
Ref. [1–15] in Chap. 1).

The Dirac field can also be quantized using the path integral formalism introduced
in Chap. 2. The propagator (3.62) can be written as

Sαβ(x1, x2) =

∫
DψDψψα(x1)ψβ(x2)e

i S
[
ψ,ψ

]
∫

DψDψei S
[
ψ,ψ

] . (3.66)

This expression has, however, a very important difference with its bosonic counterpart
shown in Eq. (2.89). Whereas in both cases all fields inside the path integral are
functions and not operators, here ψ and ψ are anticommuting functions. This fact is
crucial in performing the functional integration. Anticommuting objects have to be
integrated using the so-called Berezin rules
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∫
dθi 1 = 0,

∫
dθiθ j = δi j , (3.67)

where θi are anticommuting variables satisfying θiθ j = −θ jθi . The details of the
computation of path integrals with fermionic fields can be found in Ref. [9–12] of
Chap. 2.





Chapter 4
Theories and Lagrangians II: Introducing
Gauge Fields

Gauge theories play a central role in our current understanding of the fundamental
interactions. The weak, electromagnetic and strong interactions are well described
by gauge theories. We introduce them in this chapter for the first time. Although
we often talk about gauge invariance, or gauge symmetry, these terms are a bit
misleading. The gauge symmetry is more a redundancy in the description of the
physical degrees of freedom than a symmetry, as will be shown later on. The redun-
dancy is of course very useful because it makes Lorentz invariance and locality
explicit, but it is not a symmetry in the same sense as rotations or translations. Gauge
theories have incredible richness and complexity. Many aspects of their dynamics
are still poorly understood. In our presentation we just scratch the surface of a deep
subject.

4.1 Classical Gauge Fields

In classical electrodynamics the basic physical quantities are the electric and
magnetic fields E and B. They can be expressed in terms of the scalar and vector
potentials ϕ and A as

E = −∇ϕ − ∂A
∂t
,

B = ∇ × A. (4.1)

From these equations we see that specifying E and B does not uniquely determine
the potentials, since the former do not change under the gauge transformations

ϕ(t, x)→ ϕ(t, x)+ ∂

∂t
ε(t, x), A(t, x)→ A(t, x)−∇ε(t, x). (4.2)

From a classical point of view the introduction of ϕ and A is seen as a technicality
that helps solving the Maxwell equations, but without physical relevance.
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The equations of electrodynamics can be recast in a manifestly Lorentz invariant
form using the four-vector gauge potential Aμ = (ϕ,A) and the antisymmetric field
strength tensor defined by

Fμv = ∂μAv − ∂v Aμ. (4.3)

The four Maxwell equations

∇ · E = ρ,
∇ · B = 0,

∇ × E = − ∂
∂t

B,

∇ × B = j+ ∂

∂t
E,

(4.4)

are written in the form

∂μFμv = jμ,

εμvση∂v Fση = 0, (4.5)

where the four-current jμ = (ρ, j) contains the charge density and the electric
current. The second set of equations are called the Bianchi identities and are satisfied
by any field strength (4.3). Notice that Fμv, and therefore the Maxwell equations,
are invariant under the gauge transformations (4.2), which in covariant form read

Aμ −→ Aμ + ∂με. (4.6)

Finally, the equations of motion of a particle with mass m and charge q

mẍ = q
(

E+ ẋ × B
)

(4.7)

take the form

m
duμ

dτ
= q Fμvuv, (4.8)

where uμ(τ) is the particle four-velocity as a function of the proper time τ. These
equations of motion, depending only on the field strength Fμv, are also gauge
invariant.

The physical role of the vector potential becomes manifest only in quantum
mechanics. Using the prescription of minimal substitution p → p − qA, the
Schrödinger equation describing a particle with charge q moving in an electromag-
netic field is

i
∂

∂t
Ψ =

[
− 1

2m
(∇ − iqA)2 + qϕ

]
Ψ. (4.9)
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Fig. 4.1 Illustration of an
interference experiment to
show the Aharonov–Bohm
effect. S represents the
solenoid where the magnetic
field is confined

Γ1

Γ
2

Screen

Electron S
source

Due to the explicit dependence on the electromagnetic potentials ϕ and A, this equa-
tion seems to change under the gauge transformations (4.2). This is physically accept-
able only if the ambiguity does not affect the probability density given by |Ψ (t, x)|2.
Therefore, a gauge transformation of the electromagnetic potential should amount
to a change in the (unobservable) global phase of the wave function. This is indeed
what happens: the Schrödinger equation (4.9) is invariant under the gauge transfor-
mations (4.2) provided the phase of the wave function is transformed at the same
time according to

Ψ (t, x) −→ e−iqε(t,x)Ψ (t, x). (4.10)

The Aharonov–Bohm Effect

This interplay between gauge transformations and the phase of the wave function
gives rise to surprising phenomena. A first evidence of the role played by the elec-
tromagnetic potentials at the quantum level was pointed out by Yakir Aharonov
and David Bohm [1]. Let us consider a double slit experiment as shown in Fig. 4.1,
where we have placed a shielded solenoid just behind the first screen. Although the
magnetic field is confined to the interior of the solenoid, the vector potential is nonva-
nishing also outside. The value of A outside the solenoid is locally a pure gauge, i.e.,
∇ × A = 0, however since the region outside the solenoid is not simply connected
the vector potential cannot be gauged to zero everywhere.

The dependence of the interference pattern with the magnetic field inside the
solenoid can be calculated very easily using the path integral formalism introduced
in Sect. 2.4. The probability amplitude for an electron emitted at t = 0 to be detected
at some given position x on the screen at a later time τ is given by the propagator
K (x, x0; τ), where x0 is the point where the electron is emitted. This propagator
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admits a path integral representation, where the integration has to be done taking
into account that there are two classes of paths that are topologically non-equivalent:
those passing through the upper and the lower slits.

The classical action of a nonrelativistic particle of mass m and charge q in the
presence of a vector potencial A is given by

S =
∫

dt

(
1

2
mẋ2 + qẋ · A

)
= 1

2

∫
dtmẋ2 + q

∫
γ

dx · A, (4.11)

where the second term in the last equation is a line integral along the particle trajectory
γ. Using Stokes’ theorem and ∇ × A = 0 we find that the value of this term only
depends on the topological class of γ, but not in the particular curve within each
class. Denoting by K1(x, x0; τ) and K2(x, x0; τ) the propagators of the electron
going through each of the two slits in the absence of a magnetic field, the total
propagator with the magnetic field switched on can be written as

K (x, x0; τ) = e
iq

∫
Γ1

A·dx
K1(x, x0; τ)+ e

iq
∫
Γ2

A·dx
K2(x, x0; τ)

= e
iq

∫
Γ1

A·dx
[

K1(x, x0; τ)+ eiq
∮
Γ A·dx K2(x, x0; τ)

]
. (4.12)

HereΓ1 andΓ2 are two arbitrary curves going through each of the two slits and joining
x0 with x (see Fig. 4.1). Γ is the closed curve surrounding the solenoid defined by
the union of Γ −1

1 and Γ2.

The interference pattern on the screen is determined by the relative phase between
the two terms in (4.12). The presence of the magnetic field confined to the solenoid
introduces an extra term depending on the value of the vector potential outside the
solenoid

U = exp

(
iq

∮
Γ

A · dx
)
. (4.13)

Due again to Stokes’ theorem and ∇×A = 0 the value of the phase does not depend
on the particular curve Γ chosen, so far as it surrounds the solenoid. The conclusion
of this analysis is that the presence of the vector potential becomes observable even if
the electrons do not feel the magnetic field directly. Performing the double-slit exper-
iment when the magnetic field inside the solenoid is switched off we will observe
the usual interference pattern on the second screen. Switching on the magnetic field
a change in the interference pattern will appear due to the phase (4.13). This is the
Aharonov–Bohm effect (see also [2] for an early prediction of the effect).

The first question that comes up is what happens with gauge invariance. Since A
can be changed by a gauge transformation it seems that the resulting interference
patters might depend on the gauge used. In fact the phase factor (4.13) is gauge
invariant: the gauge variation of A is −∇ε that, being a total derivative, gives zero
upon integration over the close contour Γ.

The lesson we have learned is that in the quantum theory there are, apart from
the electric and magnetic fields, other gauge invariant quantities giving observable
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effects. An important difference with respect to E and B is that these gauge invariant
observables are non-local, as can be seen from the definition of the phase U.

Magnetic Monopoles

It is very easy to check that the vacuum Maxwell equations

∇ · E = 0

∇ · B = 0

∇ × E = − ∂
∂t

B

∇ × B = ∂

∂t
E

(4.14)

remain invariant under the transformation

E− iB −→ eiθ (E− iB), θ ∈ [0, 2π ] (4.15)

that for θ = π
2 interchanges the electric and magnetic fields: E → B, B → −E.

This duality symmetry is however broken in the presence of electric sources (ρ, j).
Nevertheless the Maxwell equations can be “completed” by introducing sources for
the magnetic field (ρm, jm) in such a way that the duality (4.15) is restored when
supplemented by the transformation

ρ − iρm −→ eiθ (ρ − iρm), j− ijm −→ eiθ (j− ijm). (4.16)

In covariant language, this modification of the Maxwell equations implies adding
sources on the right-hand side of the Bianchi identities

∂μ F̃μv = jμm , (4.17)

where jμm = (ρm, jm) and

F̃μv = 1

2
εμvσλFσλ (4.18)

is the dual electromagnetic tensor field. This means that, while electric charges act as
sources for Fμv, magnetic charges are sources for F̃μv. The duality transformation
(4.15, 4.16) is written now as

Fμv + i F̃μv −→eiθ
(

Fμv + i F̃μv

)
,

jμ + i jμm −→eiθ
(

jμ + i jμm
)
, (4.19)
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keeping the extended Maxwell equations invariant. For θ = π
2 electric and magnetic

sources get interchanged and the field strength is replaced by its dual.
In 1931 Dirac [3] studied the possibility of finding solutions of the completed

Maxwell equations with a magnetic monopoles of charge g as a source

∇ · B = gδ(x). (4.20)

Away from the position of the monopole ∇ · B = 0 and the magnetic field can still
be derived locally from a vector potential A according to B = ∇ × A. However,
this potential cannot be regular everywhere since otherwise Gauss’ theorem would
imply that the magnetic flux threading a closed surface around the monopole should
vanish, contradicting (4.20).

A solution to Eq. (4.20) in spherical coordinates is given by

Br = 1

4π

g

|x|2 , Bϕ = Bθ = 0, (4.21)

that for x �= 0 can be derived from the vector potential

Aϕ = 1

4π

g

|x| tan
θ

2
, Ar = Aθ = 0. (4.22)

As expected, we find that this vector potential is singular at the half-line θ = π

(see Fig. 4.2). This singular line starting at the position of the monopole is called the
Dirac string and its position changes with a change of gauge but cannot be eliminated
by any gauge transformation. Physically, we can see it as an infinitely thin solenoid
confining a magnetic flux entering into the magnetic monopole from infinity that
equals the outgoing magnetic flux from the monopole.

Since the position of the Dirac string depends on the gauge chosen it seems that
we are facing a physical ambiguity. This would be rather strange since the Maxwell
equations are gauge invariant also in the presence of magnetic sources. The solution
to this apparent riddle lies in the fact that the presence of the Dirac string does not pose
any consistency problem as far as it does not produce any physical effect, i.e., if its
presence turns out to be undetectable. From our discussion of the Aharonov–Bohm
effect we know that the wave function of charged particles picks up a phase (4.13)
when surrounding a region where a magnetic flux is confined (such as the solenoid
in the Aharonov–Bohm experiment). Since the Dirac string is like an infinitely thin
solenoid, it will be unobservable if the phase picked up by the wave function of a
charged particle surrounding it is equal to one. An evaluation of (4.13) in the field
of the monopole shows that

eiqg = 1 =⇒ qg = 2πn with n ∈ Z. (4.23)

Interestingly, we are led to the conclusion that the presence of a single magnetic
monopole somewhere in the universe implies for consistency the quantization of the
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Fig. 4.2 The Dirac
monopole

Dirac string

Γ

g

electric charge in units of 2π/g, where g is the magnetic charge of the monopole.1

This is called the Dirac charge quantization condition.
The idea of the magnetic monopole can be extended to dyons, particles having

both electric and magnetic charge (q, g). The equations of motion for such particles
in an electromagnetic field can be written remembering that magnetic charges couple
to the dual field strength and requiring invariance under duality. This leads to

mẍμ =
(

q Fμv + gF̃μv
)

ẋv, (4.24)

where m is the mass of the dyon and the dot indicates differentiation with respect to
the proper time. Writing the right-hand side of this equation in components in the
nonrelativistic limit, we get the generalization of the Lorentz force acting on a dyon
with charges (q, g)

F = q
(

E+ v × B
)
+ g

(
B− v × E

)
. (4.25)

The invariance under duality is obvious noticing that the parentheses in the right-
hand side of (4.24) can be written as Im[(q− ig)(Fμv− i F̃μv)

∗],which is manifestly
invariant.

The Dirac quantization condition, valid for an electrically charged particle and a
magnetic monopole, can be extended to two dyons with charges (q1, g1) and (q2, g2).

To obtain this new condition one could proceed as in the case of the Dirac monopole

1 The quantization of the electric charge has another consequence, which is that the gauge trans-
formation of the wave function (4.10) is periodic. Using technical jargon one says that the U(1)
gauge group gets compactified (see Appendix B). Although this might seem just a technical point,
it has important physical consequences for the production of monopoles in gauge theories.
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and impose that the corresponding singularities of the gauge potentials are unobserv-
able. Here instead we are going to exploit the invariance of both the extended Maxwell
equations and the equations of motion of the dyons under duality transformations.

These two facts imply that the proper quantization condition for the charge of the
dyons should also be duality invariant and, moreover, reduce to the Dirac condition
for the case (q1, g1) = (q, 0), (q2, g2) = (0, g). Taking into account the transfor-
mation of the electric and magnetic charges it is immediate to see that the following
combination is duality invariant

(
q1 − ig1

)(
q2 − ig2

)∗ = q1q2 + g1g2 + i
(

q1g2 − q2g1

)
. (4.26)

A look at the generalized Lorentz force shows q1g2 − q2g1 is the coupling constant
of the velocity-dependent part of the force between the two dyons. The other duality-
invariant combination, q1q2+ g1g2,gives the strength of the coupling of the velocity-
independent part of this force, i.e., their “Coulomb” interaction. Since the imaginary
part of Eq. (4.26) reduces to the Dirac quantization condition in the appropriate limit,
we arrive at

q1g2 − q2g1 = 2πn, where n ∈ Z, (4.27)

called the Dirac–Schwinger–Zwanziger quantization condition [4, 5].
There are some difficulties in considering quantum theories with fundamental

magnetic monopoles. One of them is that they cannot be handled in perturbation
theory, since the Dirac quantization condition implies that electric and magnetic
coupling constants are inverse of each other and cannot be simultaneously small. This
problem is avoided if monopoles are not fundamental objects but field configurations
with finite size and energy. It was proved by ’t Hooft and Polyakov [6, 7] that many
gauge theories contain such monopoles as solitonic solutions. The ’t Hooft-Polyakov
monopoles have masses that scale with the inverse of the coupling constant, and
therefore they are very heavy when the theory is weakly coupled. Only at large
gauge couplings this objects become light and can be counted among the low-lying
excitations of the system.

Monopoles are believed to have been produced copiously in the very early
Universe. It is a generic prediction of grand unified theories that monopoles occur
when a semisimple gauge group is spontaneously broken leaving a U(1) factor (spon-
taneous symmetry breaking will be explained in Chap. 7). The reason is that this
U(1) is compact in the sense explained in the footnote of page 53, and therefore can
“accommodate” monopole solutions. The fact that these monopoles are not observed
today is believed to be the result of the dilution they underwent during the inflationary
era that presumably followed their production.
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4.2 Quantization of the Electromagnetic Field

We now proceed to the quantization of the electromagnetic field in the absence of
sources ρ = 0, j = 0. In this case the Maxwell equations (4.14) can be derived from
the Lagrangian density

LMaxwell = −1

4
Fμv Fμv = 1

2

(
E2 − B2

)
. (4.28)

Although in general the procedure to quantize the Maxwell Lagrangian is not very
different from the one used for the Klein–Gordon or the Dirac field, here we need to
deal with a new ingredient: gauge invariance. Unlike the cases studied so far, here the
photon field Aμ is not unambiguously defined because the action and the equations
of motion are insensitive to the gauge transformations Aμ → Aμ + ∂με. A first
consequence of this symmetry is that the theory has less physical degrees of freedom
than what would be expected for a vector field.

The way to tackle the problem of gauge invariance is to fix the freedom in choosing
the electromagnetic potential before quantization. This can be done in several ways,
for example by imposing the Lorentz gauge fixing condition

∂μAμ = 0. (4.29)

Notice that this condition does not fix completely the gauge freedom since Eq. (4.29)
is left invariant by gauge transformations satisfying ∂μ∂με = 0. One of the advan-
tages of the Lorentz gauge is that it is covariant and therefore does not pose any
danger to the Lorentz invariance of the quantum theory. Besides, applying it to the
Maxwell equation ∂μFμv = 0 one finds

0 = ∂μ∂μAv − ∂v
(
∂μAμ

) = ∂μ∂μAv. (4.30)

Since Aμ satisfies the massless Klein-Gordon equation the photon, the quantum of
the electromagnetic interaction, has zero mass.

Once gauge invariance is fixed, Aμ(t, x) can be expanded in a complete basis of
plane-wave solutions to Eq. (4.30)

εμ(k, λ)e−i |k|t+ik·x, (4.31)

where εμ(k, λ) are the polarization vectors. In principle there are four independent
polarizations for the photon, labelled by λ. The Lorentz gauge condition (4.29),
however, forces the polarization vectors to be transverse

kμεμ(k, λ) = kμεμ(k, λ)∗ = 0. (4.32)

This condition can be used to eliminate one polarization. We can get rid of another
one by using the on-shell condition k2 = 0 and the residual gauge transformations
mentioned after Eq. (4.29). Finally we are left with just two physical independent
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transverse polarizations λ = ±1. They correspond to right and left circularly polar-
ized photons.

Now, upon quantization, the gauge field operator Âμ(t, x) can be written as the
following expansion

Âμ(t, x) =
∑
λ=±1

∫
d3k

(2π)3
1

2|k|
[
εμ(k, λ)â(k, λ)e−i |k|t+ik·x

+εμ(k, λ)∗â†(k, λ)ei |k|t−ik·x] , (4.33)

where the canonical commutation relations imply that
[
â(k, λ), â†(k′, λ′)

]
= (2π)3(2|k|)δ(k − k′)δλλ′

[
â(k, λ), â(k′, λ′)

] = [
â†(k, λ), â†(k′, λ′)

]
= 0.

(4.34)

Therefore â(k, λ), â†(k, λ) form a set of creation-annihilation operators for photons
with momentum k and helicity λ.

Had we kept the unphysical degrees of freedom removed by the residual gauge
transformations, the spectrum would contain states with negative norm. To decouple
these states with negative probability is one of the main concerns in quantizing
theories with gauge invariance. In these theories there is a redundancy in the way
physical states are represented by rays in the Hilbert space H : a physical state is
represented by infinitely many rays in H . Here we have dealt with this problem by
eliminating this redundancy explicitly, i.e., keeping only those polarizations that are
physical. Other strategies to handle this problem can be found in standard textbooks
(see Ref. [1–15] in Chap. 1). In Sect. 4.6 we will return to the problem of fixing the
gauge redundancy, this time using the path integral formalism.

From the previous discussion the reader might think that we have worked too
hard unnecessarily. If the photon has only two physical degrees of freedom, perhaps
we could describe it using two scalar degrees of freedom, instead of introducing a
redundant four-component gauge field. The obstacle is Lorentz invariance: the only
known way of describing the two photon polarizations in a Lorentz invariant way is
through the gauge field Aμ. The gauge redundancy is the prize we pay for a Lorentz
invariant and local description of massless photons.

4.3 Coupling Gauge Fields to Matter

Once we know how to quantize the electromagnetic field we can consider interacting
theories containing electrically charged particles, for example electrons. To couple
the Dirac Lagrangian to electromagnetism we use the analysis of the Schrödinger
equation for a charged particle presented in pages 48–49. There we learned that the
gauge ambiguity of the electromagnetic potential is compensated by a U(1) phase
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shift in the wave function. The Lagrangian (3.36) is invariant under ψ → e−iqεψ,

with ε a constant. This invariance is broken as soon as one identifies ε with the
position-dependent gauge transformation parameter of the electromagnetic field.

To promote this global U(1) symmetry of the Dirac Lagrangian to a local one
ψ → ψ ′ = e−iqε(x)ψ it is enough to replace ∂μ by a covariant derivative Dμ, also
transforming under a gauge transformation Dμ→ D′μ, and satisfying

D′μψ ′ = D′μ
[
e−iqε(x)ψ

]
= e−iqε(x)Dμψ. (4.35)

Such a covariant derivative can be constructed in terms of the gauge potential Aμ as

Dμ = ∂μ + iq Aμ. (4.36)

The gauge transformation of Aμ absorbs the derivative of the gauge parameter and
Eq. (4.35) is satisfied. The electromagnetic field strength can be written in terms of
the commutator of two covariant derivatives as

[Dμ, Dv] = iq Fμv. (4.37)

This identity will be useful in the construction of nonabelian gauge theories in the
next section.

The Lagrangian of quantum electrodynamics (QED), i.e., a spin- 1
2 field coupled

to electromagnetism,

LQED = −1

4
Fμv Fμv + ψ(i D/− m)ψ, (4.38)

is invariant under the U(1) gauge transformations

ψ −→ e−iqε(x)ψ, Aμ −→ Aμ + ∂με(x). (4.39)

Unlike the theories we encountered so far, QED is an interacting theory. By plugging
(4.36) into the Lagrangian we find that the interaction term between fermions and
photons has the form

L (int)
QED = −H (int)

QED = −q Aμψγ
μψ. (4.40)

This shows that, as anticipated in the previous chapter (see page 43), the electric
current four-vector is given by jμ = qψγμψ. In the following we stick to the
general convention and denote the charge by e. In the case of electrons or muons, for
example, e is negative and equal to the elementary charge.

The quantization of interacting field theories like QED poses new problems that
we did not meet in the case of the free theories. In particular in most cases it is not
possible to solve the theory exactly. When this happens the physical observables
have to be computed in perturbation theory in powers of the coupling constant.
An added problem appears in the computation of quantum corrections to the classical
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result, which is plagued with infinities that should be taken care of. All these issues
will be addressed in Chaps. 6 and 8.

Here we can connect with the comments made at the beginning of the chapter.
The end result of our quantization procedure is to write the gauge field in terms of
the two physical degrees of freedom appearing in (4.33). Out of the four components
of Aμ only two represent physical degrees of freedom. It is clear that if we wrote
the theory (after including interactions) only in terms of the transverse degrees of
freedom the result would be a theory without explicit Lorentz symmetry and also with
non-local interactions. The inclusion of longitudinal- and timelike photons makes
these apparently lost, but fundamental properties, explicit. The basic problem in
the quantization of gauge theories is to make sure that at the quantum level the
additional components continue to be irrelevant. Unfortunately this is not always
possible, in some cases there are quantum anomalies making the theory inconsistent
(see Chap. 9).

4.4 Nonabelian Gauge Theories

QED is the simplest example of a gauge theory coupled to matter based on the abelian
gauge symmetry of local U(1) phase rotations. Gauge theories based on nonabelian
groups can also be constructed. Our knowledge of the strong and weak interactions is
in fact based on the use of the nonabelian generalizations of QED, called Yang–Mills
theories.

Let us consider a gauge group G with hermitian generators T A, A = 1, . . . , dimG
satisfying the Lie algebra2

[
T A, T B

]
= i f ABC T C . (4.41)

We introduce a vector field Aμ ≡ AA
μT A taking values on the Lie algebra g of the

group G. Its gauge transformation is given by

Aμ −→ A′μ = −
1

igYM
U∂μU−1 +U AμU−1, U = eiχ(x), (4.42)

where χ(x) = χ A(x)T A and gYM is the coupling constant. These gauge transfor-
mations are non-linear in the gauge function χ(x). Infinitesimally, the matrix-valued
field Aμ transforms according to

δAμ = 1

gYM
∂μχ − i[Aμ, χ ], (4.43)

which in components reads

2 Some basics facts about Lie groups have been summarized in Appendix B.
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δAA
μ =

1

gYM
∂μχ

A + f ABC AB
μχ

C . (4.44)

As in the abelian case, the coupling of matter to a nonabelian gauge field is done
by introducing a covariant derivative. LetΦ be a field (scalar or spinor) transforming
in a representation R of the gauge group G

Φ −→ Φ ′ = URΦ. (4.45)

The covariant derivative satisfying D′μΦ ′ = UR DμΦ is defined by

DμΦ = ∂μΦ − igYM AμΦ, (4.46)

where Aμ = AA
μT A

R ,with T A
R the generators in the representation R. In the particular

case of the adjoint representation the generators can be written in terms of the structure
constants

(
T A

adj

)B

C
= −i f ABC, (4.47)

and the covariant derivative takes the form

DμΦ = ∂μΦ − igYM
[
Aμ,Φ

]
(adjoint representation). (4.48)

Comparing this expression with (4.43) we find that the infinitesimal transformation
of the gauge field can be expressed as

δAμ = 1

gYM
Dμχ. (4.49)

Our last task is to find the kinetic term for the nonabelian gauge fields. Generalizing
Eq. (4.37), we write

[
Dμ, Dv

] = −igYM Fμv, (4.50)

where Fμv is the nonabelian field strength

Fμv = ∂μAv − ∂v Aμ − igYM
[
Aμ, Av

]
(4.51)

This expression reduces to (4.3) for abelian gauge groups, when the commutator of
the gauge fields vanishes. The field strength tensor takes values in the Lie algebra,
Fμv = F A

μvT A, where

F A
μv = ∂μAA

v − ∂v AA
μ + gYM f ABC AB

μ AC
v . (4.52)

Unlike the case of the Maxwell theory the field strength for nonabelian gauge
fields is not gauge invariant. Using (4.50) and the transformation of the covariant
derivative it is easy to show that it transforms as
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Fμv −→ U FμvU−1. (4.53)

This gives the clue to constructing a gauge invariant Lagrangian for the nonabelian
gauge field Aμ as

L = −1

2
Tr

(
Fμv Fμv

)
= −1

4
F A
μv F Aμv, (4.54)

where the normalization Tr(T AT B) = 1
2δ

AB has been used. A crucial difference
between this and the Lagrangian of electromagnetism is the presence of cubic and
quartic terms in the gauge field Aμ.This means that, unlike the photon, the nonabelian
gauge bosons act themselves as sources of the field. The equations of motion derived
from the Lagrangian (4.54) can be written as

DμFμv = 0, (4.55)

where Dμ is the covariant derivative in the adjoint representation shown in Eq. (4.48).
Just as in the Maxwell theory, the components of the nonabelian field strength

tensor F A
μv in four dimensions can be decomposed into electric and magnetic fields

EA and BA

E A
i = F A

0i , B A
i = −

1

2
εi jk F A

jk . (4.56)

From (4.53) it follows that the nonabelian electric and magnetic fields are gauge
dependent. In terms of them the Lagrangian (4.54) becomes

L = 1

2

(
EA · EA − BA · BA

)
. (4.57)

In QCD EA and BA are respectively known as chromoelectric and chromomagnetic
fields.

With all this information we can write a generic Lagrangian for a nonabelian
gauge field coupled to scalars φ and spinors ψ as

L = −1

2
Tr

(
Fμv Fμv

)
+ iψD/ψ + (Dμφ)

† Dμφ

− ψ
[

M1(φ)+ iγ5 M2(φ)
]
ψ − V (φ), (4.58)

where the covariant derivatives are in the representation of the field involved. The
Lagrangian of the standard model is of this form, with M1(φ) and M2(φ) linear in φ
and V (φ) of quartic order. This particular form of the functions appearing in (4.58)
is related to the good properties of the standad model at high energies.
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4.5 Understanding Gauge Symmetry

In classical mechanics the application of the Hamiltonian formalism starts with the
replacement of generalized velocities by momenta

pi ≡ ∂L

∂q̇i
=⇒ q̇i = q̇i (q, p). (4.59)

Most of the time there is no problem in inverting the relations pi = pi (q, q̇).However
in some systems these relations might not be invertible and result in a number of
constraints of the type

fa(q, p) = 0, a = 1, . . . , N1. (4.60)

These systems are called degenerate or constrained [8, 9].
The presence of constraints of the type (4.60) makes the formulation of the

Hamiltonian formalism more involved. The first problem is related to the ambi-
guity in defining the Hamiltonian, since the addition of any linear combination of
the constraints does not modify its value. Secondly, one has to make sure that the
constraints are consistent with the time evolution in the system. In the language of
Poisson brackets this means that further constraints have to be imposed in the form

{ fa, H}P B ≈ 0. (4.61)

Following [8], we use the symbol ≈ to indicate a “weak” equality holding when the
constraints fa(q, p) = 0 are satisfied. Notice however that since the computation
of the Poisson brackets involves derivatives, the constraints can be used only after
the bracket is computed. In principle, the conditions (4.61) can give rise to a new
set of constraints gb(q, p) = 0, b = 1, . . . , N2. Again these constraints have to be
consistent with time evolution and we have to repeat the procedure. Eventually this
finishes when a set of constraints is found that do not require any further constraint
to be preserved in time.3

Once all the constraints of a degenerate system have been found we consider the
so-called first class constraints φa(q, p) = 0, a = 1, . . . ,M, those whose mutual
Poisson bracket vanishes weakly

{φa, φb}PB = cabcφc ≈ 0. (4.62)

The constraints that do not satisfy this condition, called second class constraints,
can be eliminated by modifying the Poisson bracket [8], so for all practical purposes
we can forget about them. The total Hamiltonian of the theory is defined as the
canonical Hamiltonian plus a linear combination of all first-class constraints with
arbitrary coefficients

3 In principle it is also possible that the procedure finishes because some kind of inconsistent
identity is found. In this case the system itself is inconsistent as it happens with the Lagrangian
L(q, q̇) = q.
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HT = pi q̇i − L +
M∑

a=1

λa(t)φa. (4.63)

The total Hamiltonian and the canonical one coincide on the submanifold of phase
space defined by the first class constraints, where the dynamical evolution of the
system takes place.

What is the relation with gauge invariance? The answer lies in the fact that for a
singular system the first class constraints φa generate gauge transformations. Indeed,
the time evolution generated by the Hamiltonian (4.63) is ambiguous due to the
presence of the arbitrary functions λa(t). Specifying the state of the system by the
values of the canonical variables at some reference time t0, the ambiguity in the time
evolution translates into a redundancy in the description of the state of the system
in terms of the values of the canonical variables at a later time t: the phase space
trajectories related by the infinitesimal transformations

qi −→qi +
M∑

a=1

εa(t){qi , φa}PB,

pi −→pi +
M∑

a=1

εa(t){pi , φa}PB (4.64)

describe one and the same state.
This ambiguity in the description of the system in terms of the generalized coor-

dinates and momenta can be traced back to the equations of motion in Lagrangian
language. Writing them in the form

∂2L

∂q̇i∂q̇ j
q̈ j = − ∂2 L

∂q̇i∂q j
q̇ j + ∂L

∂qi
, (4.65)

we find that in order to determine the accelerations in terms of the positions and
velocities, the matrix ∂2 L

∂q̇i ∂q̇ j
has to be invertible. However, the existence of constraints

(4.60) precisely implies that the determinant of this matrix vanishes and therefore
the time evolution is not uniquely determined in terms of the initial conditions.

Applications to Electrodynamics

After a general discussion we particularize the analysis to the Maxwell Lagrangian

L = −1

4

∫
d3x Fμv Fμv. (4.66)
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The generalized momenta conjugate to Aμ is defined by

πμ = δL

δ(∂0 Aμ)
= Fμ0, (4.67)

hence, π0 = 0 and π i = Ei . The Hamiltonian is given by

H =
∫

d3x
(
πμ∂0 Aμ −L

)
=

∫
d3x

[
1

2

(
E2 + B2

)
+ A0∇ · E

]
, (4.68)

where we have used ∂0A = ∇A0−π = ∇A0−E and integrated by parts the second
term in the last integral.

The Hamiltonian (4.68) shows that A0(x) plays the role of a Lagrange multiplier
implementing Gauss’ law ∇ · E = 0 as a constraint.4 Thus π0 = 0 and ∇ · π = 0
form a set of two first class constraints generating gauge transformations. The ones
generated by π0 can be used to fix the value of A0(x), thus defining a temporal
gauge. This does not completely fix the gauge freedom, since there are the gauge
transformations generated by Gauss’ law. Using the canonical Poisson brackets

{Ai (t, x), E j
(
t, x′

)}PB = δi jδ
(
x − x′

)
(4.69)

we find these to be

δAi (t, x) = {Ai (t, x),
∫

d3x ′ε(t, x′)∇ · E(t, x′)}PB = ∂iε(t, x), (4.70)

while A0(t, x) is left invariant. This is equivalent to a general gauge transformation
generated by a time-independent gauge function ε(x). Thus, for consistency, we take
ε(t, x) in (4.70) to depend only on the spatial coordinates. The constraint ∇ · E = 0
can be implemented by demanding∇ ·A = 0, reducing the three degrees of freedom
of A to the two physical degrees of freedom of the photon.

So much for the classical analysis. In the quantum theory the constraint ∇ ·E = 0
has to be imposed on the physical states |phys〉.This is done by defining the following
unitary operator in the Hilbert space

U (ε) ≡ exp

[
i
∫

d3xε(x)∇ · E
]
. (4.71)

By definition, physical states should not change when a gauge transformations is
performed. This is implemented by requiring the operator U (ε) to act trivially on
them

U (ε)|phys〉 = |phys〉 =⇒ (∇ · E)|phys〉 = 0. (4.72)

4 This constraint can also be obtained from the requirement that π0 = 0 be preserved by the
time evolution, {π0, H}PB = 0. A detailed analysis of Maxwell electrodynamics using the general
formalism for constrained systems can be found in [9].
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In the presence of a charge density ρ, this condition becomes (∇ ·E−ρ)|phys〉 = 0.
The action of the gauge transformations in the quantum theory is very illuminating

in understanding the real role of gauge invariance [10–12]. We have learned that the
presence of a gauge symmetry in a theory reflects a degree of redundancy in the
description of physical states in terms of the degrees of freedom appearing in the
Lagrangian. In classical mechanics, for example, the state of a system is determined
by the value of the canonical coordinates (qi , pi ).We know, however, that this is not
the case for constrained Hamiltonian systems, where the transformations generated
by the first class constraints change the value of qi and pi without actually changing
the physical state. Physical (i.e., measurable) quantities have to be free from such
ambiguity and therefore be represented by gauge invariant objects. The same happens
in classical field theory: in the Maxwell theory for every physical configuration
determined by the gauge invariant quantities E and B there is an infinite number of
possible values of Aμ related by gauge transformations δAμ = ∂με.

In the quantum theory this means that one should identify into a single physical
state all rays in the Hilbert space related by the operator U (ε) with any gauge
function ε(x). In other words, each physical state corresponds to a whole orbit of
states transforming among themselves by gauge transformations.

This explains the necessity of gauge fixing. In order to avoid the redundancy
in the states a further condition should be given selecting one single state on each
orbit. Once again, we connect with the opening comments in this chapter. In the
Hamiltonian quantization we see very clearly described how the gauge symmetry is
more a redundancy than a symmetry. In going to the timelike gauge, i.e., imposing
A0 = 0, we eliminate one of the components of the gauge field. In the initial value
surface we need to impose Gauss’ law (by requiring for example ∇ · A = 0) to
eliminate yet one more degree of freedom, reducing the number of physical degrees
of freedom to two per gauge group generator.

4.6 Gauge Fields and Path Integrals

The redundancy in the Hilbert space is a source of complications when quantizing
gauge theories. This we have seen already in Sect. 4.2: the photon had two unphysical
polarizations removed using the Lorentz gauge fixing condition and the residual
gauge invariance.

In the path integral formalism the problem of gauge invariance reflects in the
necessity of carrying out the integration over gauge fields in a way that avoids over-
counting. This means that two field configurations related by a gauge transformation
should be considered as physically equivalent and included only once. For example,
a naive evaluation of the vacuum-to-vacuum amplitude (partition function)

Z =
∫

D Aμe−
i
2

∫
d4xTr(Fμv Fμv) (4.73)
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would include together with each gauge field configuration Aμ all others obtained
from it by an arbitrary gauge transformation, thus overcounting the result by an
infinite factor equal to the volume of the gauge group.

The correct evaluation of the integral (4.73) requires restricting the integration to
fields not related by gauge transformations. A practical way to do this is to notice
that the computation of observables in quantum field theory generically involves
quotients of path integrals [see Chap. 6 and in particular Eq. (6.35)]. Then it suffices
to cancel the (infinite) volume factor in the numerator and denominator.

To carry out this program we follow ideas due to Faddeev and Popov [13] and
begin by imposing a set of gauge fixing conditions of the form

F A(Aμ) = 0. (4.74)

They can be visualized as a “slice” in the space of all gauge field configurations.
Each Aμ falls into a gauge orbit generated by the gauge transformations acting on it.
Two gauge field configurations are nonequivalent if they lie on different orbits. The
condition (4.74) selects a representative on each orbit and has to satisfy a number of
requirements: it has to be reachable from any Aμ, i.e., each gauge orbit should have
a representative satisfying (4.74), and this representative should be unique. To keep
expressions simple in the following we drop the group theory index in Eq. (4.74) and
denote the gauge conditions collectively by F (Aμ) = 0.

The next step is to split the functional integral (4.73) into an integration over
the orbit representatives and an integral over each gauge orbit. This last integration
results in a common factor equal to the volume of the gauge group. This is done by
introducing the functional ΔFP[Aμ] through the following definition

1 = ΔFP[Aμ]
∫

DUδ
[
F (AU

μ )
]
, (4.75)

where we are integrating over all gauge transformations and by AU
μ we denote the

gauge potential transformed by U. For reasons that will be explained soon,ΔFP[Aμ]
is called the Faddeev–Popov determinant. It is not difficult to show that it is gauge
invariant. Indeed, for any gauge transformation U ′ we have

ΔFP[AU ′
μ ]−1 =

∫
DUδ

[
F

(
AUU ′
μ

) ]

=
∫

DU ′′δ
[
F

(
AU ′′
μ

) ]
= ΔFP[Aμ]−1, (4.76)

where we have made the change of variables U ′′ = UU ′ and used the gauge invari-
ance of the integration measure over the gauge group, DU ′′ = DU.

We insert now the identity (4.75) into the function integral (4.73)

Z =
∫

D AμDUΔFP[Aμ]δ
[
F

(
AU
μ

) ]
e−

i
2

∫
d4xTr(Fμv Fμv). (4.77)
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Doing the change of variables Aμ → AU−1

μ and using the gauge invariance of both
the action and ΔFP[Aμ], we remove all dependence on U from the integrand. If the
integration measure over the gauge fields D Aμ is gauge invariant, this change of
variables does not induce any Jacobian and the integration over the gauge group can
be factored out

Z =
(∫

DU

)∫
D AμΔFP[Aμ]δ

[
F (Aμ)

]
e−

i
2

∫
d4xTr(Fμv Fμv). (4.78)

We can ignore the divergent prefactor and replace (4.73) by the gauge-fixed functional
integral

Z =
∫

D AμΔFP[Aμ]δ
[
F (Aμ)

]
e−

i
2

∫
d4xTr(Fμv Fμv). (4.79)

The delta function restricts the integration to gauge configurations lying on the slice
F (Aμ) = 0, i.e., the integral only includes the contributions of the representatives
of each gauge orbit.

To find an explicit expression for ΔFP[Aμ] we use a functional version of the
delta-function identity (2.10), namely

δ
[
F

(
AU
μ

) ]
=

∣∣∣∣∣det

[
δF (AU

μ )

δU

∣∣∣∣∣
U=U ′

]∣∣∣∣∣
−1

δ(U −U ′), (4.80)

where U ′ is a gauge transformation such that F
(

AU ′
μ

)
= 0 for a given Aμ. Going

back to Eq. (4.75) and integrating over U using the delta function, we find that
ΔFP

[
Aμ

]
can be expressed as the following functional determinant

ΔFP[Aμ] = det

[
δF (AU

μ )

δU

]∣∣∣∣∣
U=1

. (4.81)

In writing this expression we have used that ΔFP[Aμ] = ΔFP[AU ′−1

μ ]. This means
that in the computation of the Faddeev–Popov determinant we have to impose that
the gauge field lies on the gauge slice F (Aμ) = 0.

It should be clear that the value of the path integral (4.79) is not modified by
changing the position of the slice defined by (4.74). That is, the value of Z does not
change if we replace F (Aμ) by F (Aμ) = f (x), where f (x) is an arbitrary Lie
algebra valued function of the coordinates,

Z =
∫

D AμΔFP[Aμ]δ
[
F (Aμ)− f (x)

]
e−

i
2

∫
d4xTr(Fμv Fμv). (4.82)
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Since the previous expression is independent of f (x)we can insert the constant term

∫
D f e−

i
ξ

∫
d4xTr[ f (x)2] = constant, (4.83)

and carry out the integration over f (x) using the delta function. Modulo a global
normalization, this gives

Z =
∫

D AμΔFP[Aμ]ei
∫

d4xTr
[
− 1

2 Fμv Fμv− 1
ξ
F (Aμ)2

]
, (4.84)

where ξ is an arbitrary real parameter. The new term added to the action is called the
gauge fixing term.

We illustrate the previous discussion with two examples. We begin with QED and
impose the Lorentz gauge F (Aμ) = ∂μAμ. Using U (x) = eieε(x) we find

F (AU
μ ) = ∂μAμ + ∂μ∂με =⇒ δF (AU

μ )

δU

∣∣∣∣∣
U=1

= − 1

ie
∂μ∂

μ. (4.85)

Hence ΔFP[Aμ] = |det(− 1
ie ∂μ∂

μ)| is independent of the gauge field. This means
that we do not have to bother computing the determinant because it goes out of the
path integral as an irrelevant global normalization constant. The typical functional
integral for QED can be written as

ZQED =
∫

DψDψD Aμei(SQED+Sgf ), (4.86)

where the action and the gauge-fixing term read

SQED + Sgf =
∫

d4x

[
ψ(i D/− m)ψ − 1

4
Fμv Fμv − 1

2ξ

(
∂μAμ

)2
]
. (4.87)

The conclusion is that the problem of gauge invariance in the path integral quantiza-
tion of QED is handled in a Lorentz-invariant way by adding a gauge fixing term to
the action. The constant ξ is arbitrary and can be chosen to make some expressions
simpler. In Chap. 6 we will learn how to compute observables in QED.

The case of nonabelian Yang–Mills theories is more complicated and here we
only outline the procedure. Using the Lorentz condition F (Aμ) = ∂μAμ and the
gauge transformation δAμ = 1

gYM
Dμχ we find

δF (AU
μ )

δU

∣∣∣∣∣
U=1

= 1

igYM
∂μDμ, (4.88)

where Dμ is the covariant derivative in the adjoint representation, given by (4.48).
Unlike the case of QED, now the Faddeev–Popov determinant depends on the gauge
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field, even after imposing the Lorentz condition ∂μAμ = 0. This has to be taken into
account when carrying out the integration over Aμ. The standard way to proceed
now is to write ΔFP[Aμ] as a path integral over some unphysical fields called the
Faddeev–Popov ghosts. The details can be found in most of the textbooks listed in
Ref. [1–15] of Chap. 1.

The use of Faddeev–Popov ghosts in nonabelian gauge theories can be avoided,
for example, in the axial gauge nμAμ = 0, with nμnμ < 0. In this case

δF (AU
μ )

δU

∣∣∣∣∣
U=1

= 1

igYM
nμDμ. (4.89)

Imposing the gauge condition nμAμ = 0, we find that nμDμ = nμ∂μ andΔFP[Aμ]
is independent of the gauge field. It can be absorbed in the global normalization of
the path integral, and the partition function (4.79) becomes

Z =
∫

D Aμδ[nv Av]e− i
2

∫
d4xTr(Fμv Fμv)

=
∫

D Aμei
∫

d4xTr(− 1
2 Fμv Fμv− 1

ξ
nμnv AμAv). (4.90)

4.7 The Structure of the Gauge Theory Vacuum

The topology of the gauge group plays an important physical role in Yang–Mills
theories. To illustrate the issue, we first look at a toy model: a U(1) gauge theory in
1 + 1 dimensions. Later we will be more general. We will also point out a number
of subtleties involved in the definition of the topology of the gauge field making the
arguments presented more semiclassical rather than nonperturbative.

In the Hamiltonian formalism, gauge transformations g(x) are functions defined
on R with values on the gauge group U(1)

g : R −→ U (1). (4.91)

We assume that g(x) is regular at infinity. In this case we can add to the real line
R the point at infinity and compactify it to the circle S1 (see Fig. 4.3). Once this is
done, the g(x)’s are functions defined on S1 with values on U(1) = S1 that can be
parametrized as

g : S1 −→ U (1), g(x) = eiα(x), (4.92)

with x ∈ [0, 2π ].
Since S1 does have a nontrivial topology, g(x) is divided into topological sectors.

They are labelled by an integer number n ∈ Z and defined by
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Fig. 4.3 Compactification of the real line (a) into the circumference S1 (b) by adding the point at
infinity

α(2π) = α(0)+ 2πn. (4.93)

Geometrically, n is the number of times that the spatial S1 winds around the gauge
group U(1). This winding number can be written equivalently as

∮

S1

g(x)−1dg(x) = 2πn, (4.94)

where the integral is along the spatial S1.

Something similar happens in the case of a SU(2) gauge theory in 3 + 1 dimen-
sions.5 Demanding g(x) ∈ SU (2) to be regular at spatial infinity, |x| → ∞, we
can compactify R

3 into a three-dimensional sphere S3, exactly as we did in 1 + 1
dimensions. The matrices g(x) can be parameterized as

g(x) = a0(x)1+ ia(x) · σ, (4.95)

with σi the Pauli matrices. The conditions g(x)†g(x) = 1, det g = 1 imply (a0)2 +
a2 = 1. Hence SU(2) is a three-dimensional sphere and g(x) defines a map from the
spatial S3 to the S3 defined by the gauge group

g : S3 −→ S3. (4.96)

As in the (1 + 1)-dimensional case, the gauge transformations g(x) are divided into
topological sectors labelled this time by the integer winding number

n = 1

24π2

∫

S3

d3xεi jkTr
[ (

g−1∂i g
) (

g−1∂i g
) (

g−1∂i g
) ]
. (4.97)

In U(1) and SU(2), gauge transformations split into different sectors labelled by
an integer. Since this winding number is a continuous function of the gauge trans-
formation g(x), two transformations with different values of n cannot be smoothly

5 Although we present for simplicity only the case of SU(2), similar arguments apply to any simple
group.
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deformed into each other. The sector with n = 0 corresponds to those transformations
that can be continuously connected with the identity.

Now we will be a bit more formal. Let us consider a gauge theory in 3 + 1 dimen-
sions with gauge group G and let us denote by G the set of all gauge transformations
g(x) approaching the identity at spatial infinity, G = {g : S3 → G}. At the same
time we introduce the subgroup G0 ⊂ G containing all transformations in G that can
be smoothly deformed into the identity. Our theory will have topological sectors if

G /G0 �= 1. (4.98)

The existence of these topological sectors in (3 + 1)-dimensional gauge theories is
controlled by a mathematical object called the third homotopy group of the gauge
group that is denoted by π3(G). For example, it can be proved [14] that π3(S1) = 1,
i.e., the third homotopy group of U(1) is trivial and therefore no topological sectors
appear in (3 + 1)-dimensional electrodynamics. On the other hand, π3(S3) = Z and
as a consequence the topological sectors of the SU(2) gauge theory are labelled by
a single integer, the winding number6 (4.97).

In the case of electromagnetism, we have seen that Gauss’ law annihilates physical
states. For a nonabelian theory the analysis is similar and leads to the condition

U (g0)|phys〉 ≡ exp

[
i
∫

d3xχ A(x)(D · E)A
]
|phys〉 = |phys〉, (4.99)

where g0(x) = eiχ A(x)T A
is in the connected component of the identity G0, and Di is

the covariant derivative in the adjoint representation. The important point here is that
only the elements of G0 can be written as exponentials of the infinitesimal generators.
Since these generators annihilate the physical states, this implies U (g0)|phys〉 =
|phys〉 only when g0(x) ∈ G0.

What happens with gauge transformations in the other topological sectors? If
g ∈ G /G0 there is still a unitary operator U (g) implementing gauge transformations
on the Hilbert space of the theory. However since g is not in the connected component
of the identity, it cannot be written as the exponential of Gauss’ law. Still, gauge
invariance is preserved if U (g) only changes the overall global phase of the physical
states. For example, if g1(x) is a gauge transformation with winding number n = 1

U (g1)|phys〉 = eiθ |phys〉. (4.100)

It is easy to convince oneself that all transformations with winding number n= 1
have the same value of θ modulo 2π. This can be shown by noticing that if g(x)
has n= 1 then g(x)−1 has opposite winding number n= − 1. It is a simple exercise
to prove that the winding number is additive: given two transformations g1, g2 with
winding number 1, g−1

1 g2 has winding number n= 0. This leads to

6 The existence of topological sectors in (1 + 1)-dimensional electrodynamics is a consequence of
the nontrivial character of the first homotopy group of S1, namely π1(S1) = Z.
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|phys〉 = U (g−1
1 g2)|phys〉 = U (g1)

†U (g2)|phys〉
= ei(θ2−θ1)|phys〉, (4.101)

thus θ1 = θ2 mod 2π. Therefore a gauge transformation gn(x)with winding number
n acts on physical states according to

U (gn)|phys〉 = einθ |phys〉, n ∈ Z. (4.102)

To find a physical interpretation of this result, we look for a similar situation in
a more familiar setup, for example the quantum states of electrons in the periodic
potential produced by the ion lattice in a solid. For simplicity, we discuss the one-
dimensional case where the minima of the potential are separated by a distance a.
When the barrier between consecutive degenerate vacua is high enough, we can
neglect tunneling between different vacua and consider the ground states |na〉 of the
potential near the minimum located at x = na (n ∈ Z) as possible vacua of the
theory. These ground states are not invariant under lattice translations

eia P̂ |na〉 = |(n + 1)a〉. (4.103)

It is nevertheless possible to define a new vacuum state

|k〉 =
∑
n∈Z

e−ikna |na〉, (4.104)

which under eia P̂ transforms just by a global phase

eia P̂ |k〉 =
∑
n∈Z

e−ikna |(n + 1)a〉 = eika |k〉. (4.105)

This ground state is labelled by the momentum k and corresponds to the Bloch wave
function.

This is very similar to what we found for nonabelian gauge theories. The vacuum
state labelled by θ plays a role similar to the Bloch wave function for the periodic
potential with the identification of θ with the momentum k. To make this analogy
more precise, let us write the Hamiltonian for nonabelian gauge theories

H = 1

2

∫
d3x

(
π A · π A + BA · BA

)
= 1

2

∫
d3x

(
EA · EA + BA · BA

)
, (4.106)

where we have used the expression of the canonical momenta π i A. Moreover, we
work in the gauge A0 = 0 and assume that the Gauss law constraint is satisfied.
The first term in the integral is the kinetic energy, T = 1

2π
A · π A, and the second

the potential energy, V = 1
2 BA · BA. Since V � 0, the vacua of the theory can be

identified with those gauge field configurations for which V = 0, modulo gauge
transformations. This happens when A(0, x) is a pure gauge. Since gauge transfor-
mations are classified by their winding number, there are infinitely many ground
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states. Indeed, taking a representative gauge transformation gn(x) in the sector with
winding number n, these vacua will be associated with the gauge potentials

A(0, x) = − 1

igYM
gn(x)∇gn(x)−1, (4.107)

modulo topologically trivial gauge transformations. Thus the theory is characterized
by an infinite number of ground states |n〉 labelled by the winding number.

These vacua are not gauge invariant. A gauge transformation with n = 1 changes
the winding number of the vacuum by one unit

U (g1)|n〉 = |n + 1〉. (4.108)

As with Bloch waves, a gauge invariant vacuum can be defined

|θ〉 =
∑
n∈Z

e−inθ |n〉 with θ ∈ R, (4.109)

transforming under a gauge transformation by a global phase

U (g1)|θ〉 = eiθ |θ〉. (4.110)

We have concluded that the nontrivial topology of the gauge group has very
important physical consequences for the quantum theory. In particular, it implies an
ambiguity in the definition of the vacuum. This can also be seen in a Lagrangian
analysis. In constructing the Lagrangian for the nonabelian version of the Maxwell
theory we only considered the term F A

μv FμvA. However this is not the only Lorentz
and gauge invariant term containing just two derivatives. We can write the more
general action

S = −1

2

∫
d4xTr

(
Fμv Fμv

)
− θg2

YM

16π2

∫
d4xTr

(
Fμv F̃μv

)
, (4.111)

where F̃μv is the dual of the field strength defined by

F̃μv = 1

2
εμvσλFσλ. (4.112)

The constant θ is dimensionless in natural units. The extra term in (4.111), propor-
tional to EA · BA, is a total derivative and does not change the equations of motion
or the quantum perturbation theory.

This, however, does not mean that the addition of the second piece in the action
(4.111) does not change the physics. It can be directly checked that

g2
YM

16π2 Tr
(

Fμv F̃μv
)
= ∂μJ μ (4.113)
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Fig. 4.4 Region of
integration to compute the
contribution of the θ-term to
the gauge theory action. The
gauge field A(t, x) tends to
pure gauge configurations
both at early and late times
t →±∞ and at spatial
infinity |x| → ∞ (the side of
the cylinder)

t = ∞

−∞

time

space

t =

with

J μ = g2
YM

16π2 ε
μvσλTr

(
Fvσ Aλ − 2igYM

3
Av Aσ Aλ

)
. (4.114)

Thus, the contribution of the second term in (4.111) can be computed using Gauss’
theorem. To ensure the convergence of the integral we assume that A(t, x) approaches
a pure gauge configuration both at spatial infinity and at late and early times t →±∞.
To be more precise we assume that

A(t →∞, x) −→ − 1

igYM
g(x)∇g(x)−1, (4.115)

while A(t, x) is taken to vanish at t → −∞. This last condition implies no loss of
generality, since it can always be achieved by an appropriate gauge transformation.

In the gauge A0 = 0 it is easy to check that J i → 0 at spatial infinity. Hence,
the integral of the topological term in the action only receives contributions from the
boundaries at t →±∞ (see Fig. 4.4). This yields

g2
YM

16π2

∫
d4xTr

(
Fμv F̃μv

)

= 1

24π2

∫
d3xεi jkTr

[ (
g∂i g

−1
) (

g∂ j g
−1

) (
g∂k g−1

) ]
. (4.116)

Comparing this expression with Eq. (4.97) we obtain

θg2
YM

16π2

∫
d4xTr

(
Fμv F̃μv

)
= θn[g] ≡ θn[AA]. (4.117)

This term distinguishes gauge fields according to topological sectors: two gauge
fields are in the same sector if the corresponding gauge transformations g giving
their asymptotic behavior at late times have the same winding numbers. This is
very important in the quantum theory, because it means that one must sum over all
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topological sectors when performing the functional integration, each one weighted
by a θ -dependent phase. Symbolically,

DAA
μ =

∑
n∈Z

e−iθn[DAA]n (4.118)

where [DAA]n indicates that the integration is performed over gauge fields in the
topological class n[AA] = n. We have reobtained, in the Lagrangian language, the
vacuum degeneracy found above in the canonical formalism.

The presence of the θ -term in the gauge theory action has several important phys-
ical consequences. One of them is that it violates both parity P and the combination
of charge conjugation and parity CP. This will be further studied in Chap. 11.

Subtleties and Technicalities

Before closing this section we would like to mention a number of subtleties in the
arguments presented concerning the structure of the gauge group. We have used the
fact that π3(S3) = Z to characterize the number of components of the gauge group
SU(2). In the argument it is crucial that the spatial topology is S3. If this is not the
case, the treatment should be refined. For instance, in noncompact three-dimensional
Euclidean space the type of gauge transformations described by the elements of
G = {g : S3 → G} are those approaching the identity at infinity fast enough and
in a way that does not depend on angles. An equivalent way to describe them is to
consider those gauge transformations that, outside a compact set surrounding the
origin of coordinates, go to the identity very fast. The classes generated by these
gauge transformations can be characterized by an integer number, but this may not
exhaust the topological characterization of all possible nontrivial transformations.

Working on a three-dimensional box with periodic boundary conditions results in
a spatial topology that is that of a three-dimensional torus T 3, and the topological
structure of the mappings G = {g : T 3 → G} is in general richer than the one
described by the single winding number appearing in S3. In this case we also have
other gauge transformations not included in G0 and associated to the fact that the space
is not simply connected. These additional transformations are physically relevant,
and play an important role in ’t Hooft’s theory of confinement in nonabelian gauge
theories. From this point of view, the topology of the space of gauge transformation
often depends on the type of physical questions asked. Hence, apart from the θ angle,
there may be other angles or quantum number characterizing the physical states
(or the vacuum) of the theory (see for instance [15] and references therein).

To summarize, the implementation of the Gauss’ law constrain and the set of
physical parameter that characterize it depends on the physics and topology of the
problem at hand. In the case of the θ -angle, we can introduce it by either refining
our arguments on the structure of the space of nontrivial gauge transformations, or
simply by arguing that the second term in (4.111) should be included because it is
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local, gauge and Lorentz invariant and with the same canonical dimension as the
kinetic term. Extracting the dependence of physical quantities on the vacuum angle
is in general a highly non-trivial problem that is not fully understood.

4.8 Instantons in Gauge Theories

The existence of multiple vacua in nonabelian gauge theories makes natural to study
the possibility of tunneling between them. As explained in Sect. 2.5, in semiclassical
tunneling this is described by solutions to the Euclidean field equations with finite
action. For nonabelian gauge theories, the analytical continuation to imaginary times
t →−i t, A0 → i A0, leads to the Euclidean action

SE [Aμ] = 1

2

∫
d4xTr

(
Fμv Fμv

)
, (4.119)

where the indices now are lowered and raised using δμv. Since we are interested in
solutions to the Euclidean field equations with finite action, the gauge field Aμ(t, x)
has to approach a pure gauge configuration both at spatial infinity |x| → ∞ as well
as at “early” and “late” Euclidean times, t →±∞.

In the semiclassical evaluation of the path integral, the contribution of each saddle
point comes weighted by the exponential factor exp{−SE [Aμ]}, so the leading contri-
bution is the one with the lowest value of the Euclidean action. To identify the domi-
nant field configurations we use the following inequality valid in Euclidean space

0 � Tr
[ (

Fμv ∓ F̃μv
) (

Fμv ∓ F̃μv) ]
= 2Tr

(
Fμv Fμv)∓ 2Tr

(
Fμv F̃μv) . (4.120)

The combination of the inequalities for the two signs leads to the bound

SE [Aμ] � 1

2

∣∣∣∣
∫

d4xTr
(

Fμv F̃μv
)∣∣∣∣ . (4.121)

The right-hand side of this expression we already encountered in its Minkowskian
version in Eq. (4.113). In the present setup, it is defined in four-dimensional Euclidean
space and, being a total derivative, it can be written as an integral over the three-
dimensional sphere at infinity, |x | ≡ √

xμxμ → ∞. Notice that this term is
independent of the metric and therefore it does not change when continued to
Euclidean space, unlike the Yang–Mills action that picks up an imaginary unit in
front, S[Aμ] → i SE [Aμ].

Since the gauge field approaches a pure gauge when |x | → ∞

Aμ(x)
|x |→∞−→ − 1

igYM
g∂μg−1, (4.122)

the integral in (4.121) is given in terms of the instanton charge Q defined by
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Q = 1

24π2

∫

S3∞

dσμε
μvσλTr

(
g∂vg−1g∂σ g−1g∂λg−1

)
, (4.123)

where the integration is performed over the three-dimensional sphere at infinity.
In terms of it, the action bound reads

1

2

∫
d4xTr

(
Fμv Fμv

)
� 8π2

g2
YM

|Q|. (4.124)

A look at (4.120) shows that the previous inequality is saturated if an only if the
Euclidean gauge field is either selfdual or anti-selfdual, namely if its field strength
tensor satisfies

Fμv = ±F̃μv. (4.125)

Euclidean solutions satisfying these conditions are called respectively instantons
(+ sign) and anti-instantons (− sign). These are the configurations dominating the
Euclidean amplitudes in the semiclassical limit within each topological sector. It is
important to notice that any (anti-)selfdual gauge field is automatically a solution of
the Euclidean field equations: the (anti)-selfduality condition reduces the equations
of motion DμFμv = 0 to the Bianchi identities,

εμvσλDv Fσλ = 0, (4.126)

that are identically satisfied by any field strength tensor (the reader is invited to prove
it as an exercise). Finally, it is easy to see that instantons and anti-instantons have
positive and negative topological charges respectively.

We study the solutions to the selfduality equation with instanton charge Q = 1.
To keep things simple, we consider the case of a SU(2) gauge theory. In fact this
does not mean a big loss of generality: the instanton solutions for other gauge groups
can be constructed in terms of their SU(2) factors. The calculation of the instanton
solution is rather long and its details can be found, for example, in [16]. The result
for the gauge potential in a generic gauge is

Aa
μ(x) =

2

gYM

ηa
μv

(
xv − xv

0

)
(x − x0)

2 + ρ2
, (4.127)

where a = 1, 2, 3 is the SU(2) index and ηa
μv are the ’t Hooft symbols introduced in

Chap. 3 (see page 35). The field strength

Fa
μv(x) =

4

gYM

ηa
μvρ

2

[(x − x0)2 + ρ2]2 (4.128)

is selfdual and the Euclidean action saturates the bound (4.121) with unit instanton
charge
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SE [Aμ] = 8π2

g2
YM

. (4.129)

The solution (4.127) depends on a number of arbitrary parameters: the coordinates
of its center xμ0 and the size ρ. These are part of the so-called collective coordinates
of the instanton. They are generated by applying to a given solution the invariances
of the Euclidean action, in our case translations and dilatations

Aa
μ(x) −→ Aa

μ(x + ξ), Aa
μ(x) −→ λAa

μ(λx) (4.130)

respectively. In addition to (xμ0 , ρ) the general instanton solution have three addi-
tional collective coordinates associated with its orientation in SU(2) space, making a
total of eight collective coordinates. This number might seem smaller than expected,
since the Euclidean gauge action is invariant under the full conformal group that
includes the Euclidean group (rotations and translations), dilatations and special
conformal transformations. The reason why rotations and special conformal trans-
formations do not generate collective coordinates is that the two can be combined
with translations, dilatations and SU(2) rotations to leave the instanton solutions
invariant up to a gauge transformation. As a result only 8 of the total 18 generators
[15 of the Euclidean group plus 3 of SU(2)] give rise to collective coordinates.

Finite action classical solutions to the Euclidean field equations of motion repre-
sent tunneling between different vacua of the theory (see Sect. 2.5). Next we want to
show how the instanton solutions (4.127) describe indeed the semiclassical tunneling
between gauge field configurations with topological numbers differing by one unit
(the topological charge of the instanton). In order to make the connection with the
analysis of the gauge theory vacua presented in the previous section, we have to
change from the generic gauge used in writing (4.127) to the gauge Aa

0 = 0. This is
accomplished by a gauge transformation U (t, x) satisfying

U (t, x)−1∂0U (t, x) = −igYM A0(t, x), (4.131)

such that in this new gauge

A′0(t, x) = 0

A′(t, x) = − 1

igYM
U∇U−1 +UA(t, x)U−1.

(4.132)

The general solution to the differential equation (4.131) depends on an arbitrary
function of x. This is fixed by demanding that the spatial components of the instanton
in the new gauge, A′(t, x), tend to zero at early Euclidean times, t → −∞. With
this condition, the gauge transformation U (t, x) = exp(iχa T a) is determined to be

χa(t, x) = 2
(
xa − xa

0

)
√
(x − x0)2 + ρ2

[
π

2
+ arctan

(
t − t0√

(x − x0)2 + ρ2

)]
. (4.133)
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Since the spatial components of the instanton solution (4.127) vanish as t → ±∞,
the Euclidean gauge field (4.132) approaches a pure gauge configuration both at early
and late Euclidean times. Therefore it can be interpreted as interpolating between
two vacua of the SU(2) gauge theory. As t →−∞ the gauge field is identically zero,
whereas when t →∞ the instanton solution approach the vacuum configuration

A′i (t, x) −→ − 1

igYM
g(x)∂i g(x)−1 (4.134)

with

g(x) ≡ lim
t→+∞U (t, x) = exp

[
2π i(xa − xa

0 )√
(x − x0)2 + ρ2

T a

]
. (4.135)

This, unlike the A(t, x) = 0 vacuum in the asymptotic Euclidean “past”, is a gauge
configuration with nonvanishing topological number, namely [cf. equation (4.116)]

n[A′] = 1

24π2

∫
d3xεi jkTr

[ (
g∂i g

−1
) (

g∂i g−1
) (

g∂i g−1
) ]
= 1. (4.136)

The final conclusion of our analysis is that the instanton solution (4.127) describes
the tunneling from a gauge theory vacuum with vanishing winding number to a
nontrivial vacuum with winding number equal to one, the difference being equal
to the topological charge of the instanton. A similar analysis can be repeated for
anti-instanton solutions, obtained from (4.127) by replacing the ’t Hooft symbols by
their duals ηa

μv [see Eq. (3.11)]. They have instanton charge Q = −1 and interpolate
between gauge theory vacua with winding numbers that differ by this amount.

(Anti-)Instanton contributions to physical quantities are weighted by

exp

(
− 8π2

g2
YM

|Q|
)
. (4.137)

This factor is nonanalytic around gYM = 0, showing that the effect of tunneling
between different gauge theory vacua is truly nonperturbative. We see that at weak
coupling instanton effects are exponentially suppressed and therefore overshadowed
by any perturbative contribution to the same process, that necessarily scales with
a positive power of gYM. This is the reason why instantons are mostly relevant in
physical situations where perturbative terms are known to be zero.
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Chapter 5
Theories and Lagrangians III:
The Standard Model

The previous two chapters were devoted to introducing the basic ingredients neces-
sary in building up a physical description of elementary particles: the fermion matter
fields and the gauge fields responsible for the interactions. The time has come to
combine these elements into a description of the physics of elementary particles.
The result will be the standard model.

In the next sections we are going to summarize the basic features of the standard
model, also called the Glashow–Weinberg–Salam theory [1–3]. Our presentation
here, however, will leave one important problem open: how particle masses in the
standard model can be made compatible with gauge invariance. The missing ingre-
dient to solve this problem, spontaneous symmetry breaking, will have to wait until
Chap. 7. The presentation will remain mostly qualitative. The details of the construc-
tion of the standard model and a full study of its consequences for the phenomenology
of elementary particles can be found in many textbooks (for example [4–8]).

5.1 Fundamental Interactions

Most of the phenomena we witness in our daily life can be explained in terms of
two fundamental forces: gravity and electromagnetism. They are the only relevant
interactions in a very wide range of phenomena that goes from the dynamics of
galaxies to atomic and solid state physics.

These two interactions, however, do not suffice to give an account of all subnuclear
physics. Gravity is indeed too weak to be of any relevance at the atomic level. The
laws of electromagnetism, on the other hand, offer no explanation as to how a large
number of positively charged protons can be confined in nuclei with a size of the
order of 10−15 m. QED does not provide either any mechanism that could explain
nuclear processes such as beta decay. These phenomena require invoking two nuclear
interactions: a “strong” one responsible for binding protons and neutrons together in
the atomic nuclei, and a “weak” one that, without producing bound states, accounts
for nuclear disintegrations.
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To understand how the relevant interaction can be identified in subnuclear
processes we need to recall some basic ideas from quantum mechanics. Take a
system in a quantum state of energy E, |ψE 〉. Let us assume that this state decays as
a consequence of the interaction Hamiltonian Hint. Then, the lifetime τ of the state
is equal to the inverse of its width Γ that, in turn, can be computed using Fermi’s
golden rule

Γ = 2π
∑

f

ρ f (E)|〈 f |Hint|ψE 〉|2. (5.1)

Here the sum is over final states and ρ f (E) is the density of such states with energy E.
The key point is that, generically, the overlap 〈 f |Hint|ψE 〉 is proportional to a power
of the coupling constant (i.e., the charge) of the interaction involved in the process.
Thus, the bottom line is that the lifetime of a quantum state is, roughly speaking,
inversely proportional to the strength of the interaction responsible for its decay.

In high energy physics, this provides a good guiding principle to identify the inter-
action behind a decay process: the hierarchy in the strength of the three interactions
should be reflected in a hierarchy of the characteristic times of the processes they
mediate. This is indeed what happens. Strong interaction decays are characterized
by very short lifetimes of the order

τstrong ∼ 10−23 s. (5.2)

Next in the hierarchy come electromagnetic processes, for which

τem ∼ 10−16 s. (5.3)

Finally, the weak interaction is behind processes with typical times substantially
longer than the ones above

τweak ∼ 10−8 − 10−6 s, (5.4)

with some decays, such as the neutron β-decay, reaching characteristic times of the
order of minutes.

Electromagnetic processes are described quantum mechanically using quantum
electrodynamics (see Chap. 4). As for the strong and weak interactions, before
entering into the details of their quantum field theory description we need to learn
some basic facts about their phenomenology.

Strong Interaction

Let us begin with the strong interaction. The class of subatomic particles that feel the
strong force, collectively denoted as hadrons, are classified in two types depending
on their spin: baryons with half-integer spin (e.g. the proton and the neutron) and
mesons with integer spin (e.g. the pions).
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Approximate symmetries are a very useful tool in the study of physical processes
mediated by the strong interaction. The best-known example is the isospin symmetry
familiar from nuclear physics. Indeed, strong interactions do not seem to distinguish
very much between protons and neutrons although both the weak and electromagnetic
interactions do. This is shown by the similar energy levels of the so-called mirror
nuclei, those related by replacing one or more protons by neutrons such as 11B and
11C. The slight differences in the spectrum of these nuclei can be explained by the
small mass split between the proton and the neutron and by their different values for
the electric charge.

That the strong interaction alone cannot tell apart neutrons from protons is codified
in mathematical terms in a global SU(2)I isospin symmetry that rotates these two
particles into one another. Protons and neutrons form a doublet with isospin I = 1

2
and third components I3(p) = 1

2 and I3(n) = − 1
2 . The scheme is extended to other

particles, such as the three pions π0, π± , that form an isospin triple (I = 1) where
I3(π

±) = ±1, I3(π
0) = 0.

All this notwithstanding, isospin remains only an approximate symmetry of the
strong force even after switching off both the electromagnetic and the weak interac-
tions. This follows from the small but nonvanishing difference between the masses
of the particles within an isospin multiplet. Isospin is nevertheless useful because the
mass splitting is much smaller than the particle masses themselves and the symmetry
breaking effects are small.

Besides isospin, the strong interaction preserves other quantum numbers, such
as strangeness S. Adding this quantum number to isospin it is possible to extend
SU(2)I to the flavor SU(3) f global symmetry. Strongly interacting particles are then
classified in irreducible representations of this group: singlets, octets and decuplets
but, interestingly, not triplets [the fundamental and antifundamental representations
of SU(3) f ]. To illustrate this we see that the isodoublet formed by the proton and the
neutron is embedded into a SU(3) f octet that also includes an isotriplet (�±, �0)

with S = −1 and the isodoublet (	−, 	0) with S = −2. We can get an idea of the
accuracy of this approximate symmetry by noticing that

m(p, n) ≈ 930 MeV, m(�) ≈ 1190 MeV, m(	) ≈ 1320 MeV. (5.5)

The mass split between the states with different strangeness in the octet is about
30% of the average mass, much larger than the 0.1–0.7% mass split within each
isospin multiplet. Similarly, the addition of the lowest-lying strange mesons to the
pion isotriplet results in the SU(3) f octet and singlet shown in Fig. 5.1. Very soon
we will learn how these approximate symmetries reflect the inner structure of the
hadrons.

An important relation is the Gell-Mann–Nishijima formula giving the electric
charge of a strong-interacting particle in terms of its third isospin component and
strangeness

Q = I3 + B + S

2
, (5.6)
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Fig. 5.1 The lowest-lying
pseudoscalar mesons. The
masses of the particles are
indicated in parenthesis
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where B is the baryon number, that takes the values B = +1 for baryons, B = −1
for antibaryons and B = 0 for mesons. The combination Y = 1

2 (B + S) defines the
strong hypercharge that is conserved in strong interaction processes.

Weak Interaction

After gravity, the weak interaction is the most universal force in Nature since every
known matter particle takes part in it. This includes all hadrons as well as a number of
nonhadronic particles called leptons. Although the weak interactions do not produce
bound states, it is behind very important physical processes such as neutron beta
decay

n −→ p + e− + ve, (5.7)

responsible for the radioactive disintegration of nuclei.
Neutron beta decay is an example of a process mediated by a so-called weak

charged current: the hadronic (n, p) and leptonic (e−, ve) pairs contain particles
whose electric charges differ in one unit. Another example of this kind of processes
is provided by muon decay

μ− −→ e− + ve + vμ. (5.8)

Here the two pairs formed by the leptons of the same flavor, (e−, ve) and (μ−, vμ), are
composed of particles of different charge. Weak processes can also proceed through
weak neutral currents in which the hadrons or the same-flavor leptons do not change
their electric charge. One example is electron-neutrino scattering
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e− + vμ −→ e− + vμ, (5.9)

where the particles in each of the two same-flavor lepton pairs have the same electric
charge.

One of the most distinctive features of the weak interaction is that it violates
what once were cherished discrete symmetries. In the dominant decay channel of the
negatively-charged pion into a muon and a muonic neutrino

π− −→ vμ + μ−, (5.10)

it is experimentally observed that the muon is always emitted with positive helicity
(i.e., it is right-handed). Since parity reverses the helicity of the particle, this result
indicates that parity is violated by the weak interaction. Moreover, this violation is
maximal because all muons emitted in the π− decay are right-handed. This shows
that any field-theoretical description of the weak interaction must necessarily be
chiral, that is, the weak interaction coupling of the fermions should depend on their
helicities. This feature singles out weak interaction among the fundamental forces in
that it is the only one that distinguishes left from right. Why this is the case remains
a mystery.

Charge conjugation, denoted by C, is a discrete operation that interchanges parti-
cles with their antiparticles. The properties of this discrete symmetry will be studied
in detail in Chap. 11. Here we only need to know that the decay of the positively-
charged pion is obtained by charge-conjugating (5.10)

π+ −→ vμ + μ+. (5.11)

An important property of the operation C is that it changes particles by antiparticles
but does not modify the helicity of the fermions. This means that if charge conjugation
is a symmetry of the weak interaction, the decay of theπ+ has to proceed by emission
of a right-handed antimuon. Experimentally, however, it is observed that the antimuon
emitted by the decaying pion is always left-handed! This shows that weak interactions
not only violate parity but also charge conjugation and that this violation is also
maximal.

This is not the end of the story. Not only P and C are violated by the weak
interaction, but also their combination CP. How this happens is however more subtle
(see Sect. 11.5).

5.2 Leptons and Quarks

One of the glaring features of the host of particles produced in high energy collisions
is that there is only a small number of them that do not feel the strong nuclear force.
The list is made of the following six leptons

e− electron qe = −1
μ− muon qμ = −1
τ− tau qτ = −1

∣∣∣∣∣∣
ve electron neutrino qve = 0
vμ muon neutrino qvμ = 0
vτ tau neutrino qvτ = 0
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and their corresponding antiparticles. The rest of the over one hundred particles and
resonances listed in the Review of Particle Physics [9], partake in physical processes
mediated by the strong interaction.

Unlike the case of the leptons, the large number of hadronic particles strongly hints
to them being composites of more fundamental objects. This idea is supported by
the experimental evidence showing that hadrons are “extended” and have an internal
structure. This is best seen in deep inelastic scattering where a hadron (typically
a proton) is made to collide with a lepton (an electron, muon or neutrino). These
processes are called inelastic because the hadron, as the result of the collision, is
smashed into a bunch of hadrons. For example,

e− + p −→ e− + hadrons.

The incoming particles interact either electromagnetically or through the weak inter-
action. In either case the interchanged quanta probe the hadron with a resolution given
by the inverse of the transferred momenta. The data obtained in these experiments
is consistent with the interaction of the probe quanta with pointlike objects inside
the hadron. In Sect. 5.3 we will see how the study of these processes provides plenty
of useful information about the physical properties of the strong interaction. For the
time being it suffices to know that they show that hadrons are made of pointlike
objects.

In fact, the spectrum of hadrons can be reproduced by assuming that they are
composed of particles with spin 1

2 and fractional charge, called quarks. By simple
addition of angular momentum we realize that the distinction between mesons and
baryons comes out naturally. The first are bound states of a quark and an antiquark,
whereas the second are composed of three quarks. All known hadrons can thus be
explained as bound states of six different quarks. The quark types, called flavors, are
conventionally denoted by the following names

u up qu = 2
3

c charm qc = 2
3

t top qt = 2
3

∣∣∣∣∣∣∣∣∣∣

d down qc = − 1
3

s strange qs = − 1
3

b bottom qt = − 1
3

As a matter of fact, the top quark is too short-lived to give rise to bound states.
Nevertheless it can be produced in the high energy collisions of protons, where its
existence was verified in 1995 through the observation of its decay channels. One of
the most remarkable properties of quarks is that, unlike leptons, they have fractional
electric charge. Notice that, however, the charge of the bound state of a quark and an
antiquark or of three quarks always results in a state with integer charge.

Many features of the hadronic spectrum can be predicted using the nonrela-
tivistic quark model, where the quarks are taken to be nonrelativistic particles. In
this model, the hadron wave function is constructed in terms of the wave functions of
the constituent quarks. Thus, some quantum numbers of the hadrons can be obtained
by doing “spectroscopy”, in a similar fashion as it is done in atomic physics.
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To see how this works we consider as an example the lightest hadrons composed
only by the u and d quarks. We begin with the mesons for which we have four inde-
pendent states in flavor space: |uu〉, |ud〉, |du〉 and |dd〉. They have to be identified
with the four lowest lying mesons, the pions π±, π0 and the η meson. To identify
who is who in this case, we begin by looking at the electric charge. This allow us to
identify the flavor wave function of the charged pions as

|π+〉 = |ud〉, |π−〉 = |du〉. (5.12)

The wave function of the two neutral mesons π0 and η, on the other hand, should
be orthogonal combinations of the chargeless states |uu〉 and |dd〉. To identify them
we need to invoke another quantum number that distinguishes betweeen the two
particles. This is isospin. The neutral pion belongs, together with π±, to a isospin
triplet with I3(π

0) = 0, whereas the η is an isospin singlet.
We have to assign then isospin quantum numbers of the u and d quarks. They are

grouped together into an isodoublet transforming under isospin in the fundamental
representation of SU(2), that is, I3(u) = 1

2 and I3(d) = − 1
2 . With this choice

we see that the flavor wave functions shown in (5.12) have the required isospin,
I3(π

±) = ±1.As for the third member of the I = 1 triplet, we have to decompose the
product of two fundamental representations of SU(2) into irreducible representations.
Using the rules familiar from the angular momentum algebra in quantum mechanics,
we find the wave function of the neutral pion to be

|π0〉 = 1√
2

(|uu〉 − |dd〉) . (5.13)

Since the pions have zero spin, the total (flavor + spin) wave function is the tensor
product of (5.12) and (5.13) with the spin wave function

|s = 0〉 = 1√
2
(| ↑↓〉 − | ↓↑〉) . (5.14)

Having studied the mesons we proceed to the baryons, starting with the proton
and the neutron. By just looking at the electric charge of these particles we see that
their quark composition has to be uud and udd respectively. However, the obvious
choice for the proton and neutron wave functions, |uud〉 and |udd〉, are not good
candidates. The reason is that these states are eigenstate of the third component of
the isospin I3 but not of the total isospin I 2. Indeed, for the case of the proton the
states with well defined total isospin are1

|uud〉S = 1√
6
(|uud〉 + |udu〉 − 2|duu〉) ,

|uud〉A = 1√
2
(|uud〉 − |udu〉) . (5.15)

1 Here we have to remember that the isospin operators acting on the Hilbert space of three particles
have the form Ii = I (1)i ⊗ 1⊗ 1+ 1⊗ I (2)i ⊗ 1+ 1⊗ 1⊗ I (3)i , where I (a)i is the isospin operator
acting on the Hilbert space of the a-th particle.
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Both states have I = 1
2 , I3 = 1

2 .The subscripts indicate that the states are symmetric
and antisymmetric with respect to the interchange of the two last states. The proton
is in fact a linear combination of these two states. To find the precise one we need to
take into account that the total wave function, including the spin degrees of freedom,
has to be antisymmetric under the interchange of any two quarks. Taking this into
account we have

|p↑〉 = 1√
2
(|uud〉S ⊗ |⇑〉A + |uud〉A ⊗ |⇑〉S) ,

|p↓〉 = 1√
2
(|uud〉S ⊗ |⇓〉A + |uud〉A ⊗ |⇓〉S) . (5.16)

The spin states |⇑〉A,S, |⇓〉A,S are eigenstates of the total spin (with s = 1
2 ) and its

third component (sz = ± 1
2 ), the subscripts indicating again that the wave functions

are symmetric and antisymmetric in the last two states. For example, for the spin-up
states we have

|⇑〉S = 1√
6
(| ↑↑↓〉 + | ↑↓↑〉 − 2| ↑↑↓〉) ,

|⇑〉A = 1√
2
(| ↑↓↑〉 − | ↓↑↑〉) . (5.17)

A similar analysis can be carried out for the neutron, whose flavor wave function is
written in terms of the states |ddu〉S,A which have I = 1

2 , I3 = − 1
2 .

Protons and neutrons are not the only hadrons made out of u and d quarks. By
simple counting we see that there are 23 = 8 possible baryon states. Keeping in mind
that quarks transform in the fundamental representation of the SU(2)I isospin group,
these states are classified by the irreducible representations contained in the product
representation

2⊗ 2⊗ 2 = 4⊕ 2S ⊕ 2A. (5.18)

The subscript in the last two terms indicates that these irreducible representations
act on the spaces spanned by {|uud〉S, |ddu〉S} and {|uud〉A, |ddu〉A} respectively.
The states transforming under the 4 are identified with the four Δ resonances:
Δ++ (uuu), Δ+ (uud), Δ0 (udd) andΔ− (ddd). They form an isoquadruplet with
I = 3

2 . Notice that although Δ+ and Δ0 have the same quark composition as the
proton and the neutron respectively, they differ in the spin, which is S = 3

2 for the
delta resonances. Their wave functions in flavor and spin spaces can be obtained
along the lines showed above for the proton and the neutron.

The hadron spectroscopy described so far can be extended to include hadrons
with nonvanishing strangeness. In the context of the quark model these are particles
which contain a net number of s quarks. This quark has strangeness S = −1 and is an
isospin singlet. The SU(2)I isospin group is extended to flavor SU(3) f , where the
three quarks u, d and s form a triplet that transforms in the fundamental repre-
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sentation 3, with antiquarks transforming in the complex conjugate representation 3.
With this we can explain the hadron classification discussed in Sect. 5.1: the group
theory identity

3⊗ 3 = 8⊕ 1 (5.19)

means that the lightest mesons (including those with nonvahinish strangeness) come
in octets and singlets, whereas baryons are classified in decuplets, octets and singlets
according to

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1. (5.20)

The quark model gives a rationale for the existence of the approximate flavor
symmetries of the strong interaction. The nine pseudoscalar mesons shown in Fig. 5.1
are the states on the right-hand side of the decomposition (5.19). The group theory
analysis shows that the quark composition of the kaons is

|K+〉 = |us〉, |K 0〉 = |ds〉. (5.21)

In addition to the kaons, the multiplet also contains two more particles, η and η′,
with I = 0 and S = 0. The identification of the flavor wave function of these states
requires a bit of extra work.

On purely group theoretical grounds, there are two possible ways to construct a
state with vanishing isospin out of a quark and an antiquark triplet, namely

|η1〉 = 1√
3

(|uu〉 + |dd〉 + |ss〉) ,
|η8〉 = 1√

6

(|uu〉 + |dd〉 − 2|ss〉) . (5.22)

With the subscript on the left-hand side we have indicated that the states come respec-
tively from the singlet and the octet of SU(3) f . However, the identification of (5.22)
with observed particles has to be done with care. Were SU(3) f an exact symmetry
of the strong interactions, |η1〉 and |η8〉 would be eigenstates of the Hamiltonian of
the strong force. But we know that SU(3) f is only an approximate symmetry and
therefore time evolution mixes these two states. In fact, there are two particles, η and
η′, with the correct quantum numbers that are a mixture of the states (5.22)

|η〉 = cos θP |η8〉 − sin θP |η1〉,
|η′〉 = sin θP |η8〉 + cos θP |η1〉. (5.23)

The pseudoscalar mixing angle θP is experimentally found to be θP � −17◦.
We have encountered a general phenomenon called mixing. This happens when-

ever the propagation eigenstates (i.e., states with a well-defined mass) do not coincide
with other quantum number eigenstates (in this case the flavor quantum number),
and it is at the origin of many interesting phenomena in particle physics.
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Looking back at the lowest lying mesons shown in Fig. 5.1, we immediately notice
the rather small mass difference between the three pions. In the context of the quark
model this experimental fact can be interpreted as indicating that the masses of the u
and d quarks should be very similar. Using the same argument, the mass difference
between pions and kaons hints to a larger mass for the strange quark, ms > mu � md .

This conclusion, however, has to be taken with a grain of salt: as quarks are confined
inside the hadrons talking about their masses is a very delicate issue that we will
elaborate upon in Chap. 10 (see Sect. 10.2).

5.3 Quantum Chromodynamics

The failure to detect isolated quarks indicates that some physical mechanism should
be responsible for their confinement inside hadrons. This property of the quark inter-
action contrasts very much with the picture of the quark–quark interaction that
emerges from the deep inelastic scattering experiments already discussed in the
previous section. One of the surprising conclusions following from the study of
these collisions is that the data extracted is compatible with the quarks inside the
hadrons behaving as nearly free particles. More precisely, the results can be repro-
duced assuming that while the lepton interacts with the nucleon constituents, to a
very good approximation these constituents can be considered as not interacting with
each other.

This means that a successful theory of the strong interaction should account for
these two curious features of the quark interaction force: it should grow at large
distances in order to prevent quarks from being “ionized” out of the hadrons, while
at the same time it should be negligible when the quarks are within a distance well
below the nucleon radius, i.e., approximately 10−15 m.

The very implementation of the quark model leads to the realization that quarks
have an extra quantum number beyond flavor and spin. This is most easily seen in
the case of the Δ++. As we discussed above, this resonance is made out of three u
quarks and has total spin s = 3

2 . Then, its wave function with sz = 3
2 has to be

|Δ++; sz = 3
2 〉 = |uuu〉 ⊗ | ↑↑↑〉 ≡ |u↑, u↑, u↑〉. (5.24)

As it stands, the wave function is symmetric under the interchange of any of the
identical three quarks. This is indeed a problem, the quarks are fermions and therefore
their total wave function has to be completely antisymmetric. One way to avoid the
problem is if each quark has an extra index taking three values, ui with i = 1, 2, 3.
Then, the wave function

|Δ++; sz = 3
2 〉 =

1√
3!εi jk |ui↑, u j↑, uk↑〉. (5.25)

is antisymmetric under the interchange of any of the constituent quarks, as required by
their fermionic statistics. This new quantum number is called color. The conclusion
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we have reached is that each quark flavor comes in tree different states labeled by
this new index.

The color quantum number is the key to the formulation of a theory of strong
interaction able to account for the phenomenology. This theory is called Quantum
Chromodynamics (QCD) and is a nonabelian gauge theory based on the gauge group
SU(3). This group acts on the color index of the quark spinor field as

Q f
i −→ U (g)i j Q f

j , with g ∈ SU(3), (5.26)

where f = 1, . . . , 6 runs over the six quark flavors and U(g) is an element of the
fundamental representation of the gauge group. The Lagrangian of the theory can be
constructed using what we learned in Sect. 4.4

LQCD = −1

4
Fa
μv Faμv +

6∑
f=1

Q
f (

i D/− m f
)

Q f . (5.27)

To keep the notation simple we have omitted the color indices. The nonabelian gauge
field strength Fa

μv (with a = 1, . . . , 8) and the covariant derivative Dμ are given in
terms of the SU(3) gauge field Aa

μ by (4.52) and (4.46) respectively. In the latter case
the generators T a

R are the Gell–Mann matrices listed in Eq. (B.16).
The QCD Lagrangian (5.27) leads to a theory where the interactions between

quarks have the features required to explain both quark confinement and the deep
inelastic scattering experiments. Unfortunately, at this point we cannot be more
explicit. We still have to learn how to quantize an interacting field theory such as QCD.
The most we can say now is that quantum effects result in an effective force between
quarks that grows at large distances, whereas it tends to zero at short distances. The
clarification of this statement will have to wait until Chap. 8.

From the point of view of the quark model it seems rather arbitrary that hadrons
result form bound states of either a quark and an antiquark or of three quarks. Why
not, say, having hadrons made of two quarks? QCD offers an explanation of this fact.
What happens is that hadrons are colorless objects, i.e., they transform as singlets
under SU(3). Then, since quarks (resp. antiquarks) transform under the fundamental
3c (resp. antifundamental 3c) of SU(3), it is impossible to produce a colorless object
out of two quarks

3c ⊗ 3c = 6c ⊕ 3c. (5.28)

Here, to avoid confusion with the notation of previous sections, we have introduced
a subscript to indicate that we are referring to irreducible representations of color
SU(3). On the other hand, using the identities

3c ⊗ 3c = 8c ⊕ 1c,

3c ⊗ 3c ⊗ 3c = 10c ⊕ 8c ⊕ 8c ⊕ 1c,
(5.29)

we find that there is no problem in constructing colorless mesons and baryons. One
example is the Δ++ wave function shown in equation (5.25). Notice that on purely
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group theoretical grounds there are ways other than (5.29) of producing color singlets.
For example, the product of four fundamental and one antifundamental representa-
tions of SU(3) contains several singlets. These exotic baryons, however, have not
been observed experimentally to date.

QCD includes, besides the six quarks, eight gauge fields mediating the strong
interaction, one for each generator of SU(3). These intermediate vector bosons are
the gluons. It is rather counterintuitive that a short-ranged force such as the strong
interaction is mediated by massless particles. However, we have to recall that the
strong nuclear force that we referred to in Sect. 5.1 is a force between colorless
hadrons. The nuclear force between nucleons emerges as a residual interaction very
much in the same fashion as the van der Waals force does in molecular physics
between electrically neutral atoms, where the Coulomb force produces a residual
potential falling off as r−6. The problem is that in the case of QCD the complexity of
the theory makes it very difficult to give a concrete form to this general idea. In spite of
recent progresses [10], there is still no precise understanding of how nuclear effective
potentials emerge from the gluon-mediated QCD interaction between quarks.

The approximate symmetries of the strong interaction are (approximate) global
symmetries of the QCD Lagrangian. Focusing on the two lightest quark flavors, u
and d, the fermionic part of this Lagrangian can be written as

L = (u, d)

(
i D/− mu+md

2 0
0 i D/− mu+md

2

) (
u
d

)

− mu − md

2
(u, d)

(
1 0
0 −1

) (
u
d

)
. (5.30)

In the limit when mu � md , the second term can be ignored and the Lagrangian is
approximately invariant under the global SU(2)I isospin transformations

(
u
d

)
−→ M

(
u
d

)
, (5.31)

where M is a SU(2) matrix. Acting on the flavor wave function of the nucleons and
the pions this gives the usual isospin transformation. In a similar fashion, SU(3) f can
be seen to emerge from the approximate global symmetry of the QCD Lagrangian
in the limit in which the mass differences between the masses of the u, d and s are
neglected. As in (5.31), these transformation acts linearly on the quark triplet.

5.4 The Electroweak Theory

At low energies weak processes such as those described in Sect. 5.1 can be phenom-
enologically described by interaction terms of the form

Lint = G F√
2

Jμ(x)Jμ(x)
†. (5.32)
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The dimensionful coupling constant G F , called the Fermi constant, has the value

GF = 1.166× 10−5 GeV−2. (5.33)

The current in the Lagrangian (5.32) is split into hadronic and leptonic contributions,
Jμ(x) = J (h)μ (x)+ J (�)μ (x). As hadrons are composite objects, the hadronic current
has to be expressed in terms of form factors. The leptonic current, on the other hand,
is written in terms of the lepton fields as

J (�)μ = ve(x)γμ(1− γ5)e(x)+ · · · (5.34)

The dots stand for other fields. Currents like (5.34) are known as charged currents
because the two fields forming it have electric charges that differ by one unit. We
also have contributions to the Lagrangian coming from neutral currents made of
like-charge leptons. It is important that all the terms appearing in the lepton current
have the so-called V–A form including the chirality-sensitive factor 1− γ5. This is
imposed by the fact that weak interactions maximally violate parity.

The interaction Lagrangian (5.32) describes weak interaction processes very
successfully at low energies. However, for various reasons the theory runs into trouble
when the energy gets close to the characteristic energy scale 1/

√
G F .

A way to deal with these problems is to give up the “contact” interaction (5.32) in
favor of an intermediate boson, in analogy with QED or QCD. The only problem is
that the intermediate boson now has to be massive if we want to recover the effective
current–current interaction at low energies. This we can illustrate with a simple toy
model of a massive abelian gauge field coupled to a real current Jμ

Lint = −1

4
Fμv Fμv + m2

2
AμAμ + g JμAμ, (5.35)

with g a dimensionless coupling constant. At energies below the mass m, the kinetic
term of the gauge field is subleading with respect to the mass term. Solving the
equations of motion for Aμ in this limit, and substituting the result in (5.35), we
arrive at the low energy “contact” interaction

Lint = g2

2m2 Jμ Jμ. (5.36)

Extrapolation of this result to the weak interaction leads to the conclusion that both
charged and neutral weak currents are mediated by massive gauge bosons.2

The construction of a theory of weak interactions based on the interchange of
vector bosons leads in fact to the unification of the weak and electromagnetic inter-
action based on a gauge theory with gauge group SU(2) × U(1)Y . There are four
generators: two charged and one neutral bosons, responsible respectively for charged

2 At the end of this chapter we will see that this is itself not free of problems. How these are
overcome will be explained in Chap. 10.
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and neutral weak currents, and the photon. As group generators we use {T±, T 3,Y }.
The first three are the ladder generators (B.10) of the SU(2) factor, called the weak
isospin. In addition, the so-called weak hypercharge is the generator of the U(1)Y
factor where the subscript is intended to avoid confusion with the electromagnetic
U(1) gauge group. It is important to keep in mind that, despite their similar names,
the weak isospin and hypercharge are radically different from the strong interac-
tion namesakes introduced in Sect. 5.1. This notwithstanding, the value of the weak
hypercharge of the different fields will be fixed in such a way that the analog of the
Gell-Mann–Nishijima relation is satisfied

Q = T 3 + Y. (5.37)

Once the gauge group is chosen, we exhibit the vector bosons of the theory. For
this we introduce the Lie algebra valued gauge fields

Wμ = W+μ T− +W−μ T+ +W 3
μT 3, Bμ = BμY. (5.38)

Using the Gell-Mann–Nishijima formula (5.37) and the commutation relations of
the SU(2) algebra shown in Eq. (B.10), we have

[Q, T±] = ±T±, [Q, T 3] = [Q,Y ] = 0. (5.39)

This means that the gauge fields W±μ are electrically charged, while W 3
μ and Bμ are

neutral fields.
We still have to identify the electromagnetic U(1) factor in the gauge group. Since

the photon has no electric charge, the Maxwell gauge field Aμ must be a combination
of the two neutral gauge bosons, W 3

μ and Bμ.We define a new pair of neutral gauge
fields (Aμ, Zμ) by

Aμ = Bμ cos θw +W 3
μ sin θw,

Zμ = −Bμ sin θw +W 3
μ cos θw,

(5.40)

where the transformation is parametrized by an angle θw called the weak mixing
angle. The form of the linear combination is not arbitrary: it is the most general one
guaranteeing that the new gauge fields Aμ and Zμ have canonical kinetic terms in the
action. The field Aμ is now identified with the electromagnetic potential. In short,
what we have done is to parametrize our ignorance of how QED is embedded in the
electroweak gauge theory by introducing the weak mixing angle. Its value will have
to be determined experimentally. The fact that it is nonzero indicates that the weak
and electromagnetic interactions are mixed.

This concludes our study of gauge bosons. Next we fix the representation of the
matter fields, i.e. how matter fields transform under the gauge group. Here the exper-
iment is our guiding principle. For example, we know that charged weak currents
couple left-handed leptons to their corresponding left-handed neutrinos. Since these
interactions are mediated by the charged gauge fields W±μ = W±μ T∓, we are led to
include both fields in a SU(2) doublet
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Table 5.1 Transformation properties of the lepton fields under the electroweak gauge group SU(2)×
U(1)Y

Leptons
i (generation) 1 2 3 T 3 Y

Li
( ve

e−
)

L

( vμ
μ−

)
L

( vτ
τ−

)
L

⎛
⎜⎝

1

2
−1

2

⎞
⎟⎠ −1

2

�i
R e−R μ−R τ−R 0 −1

In the last two columns on the right the values of the weak isospin and the hypercharge are shown
for the different fields

(
ve

e−
)

L
,

(
vμ
μ−

)
L
,

(
vτ
τ−

)
L
. (5.41)

In addition, we also know that the right-handed component of the electron does not
take part in interactions mediated by weak charged currents. This indicates that they
should be taken to be singlets under the SU(2) factor.

The Gell-Mann–Nishijima formula can be used now to fix the weak hypercharge
of the leptons, i.e. their transformations under the U(1)Y factor of the gauge group.
Using that the left-handed isodoublets (5.41) transform in the fundamental (s = 1

2 )

representation of SU(2) where T 3 = 1
2σ3, we have

Y (v�) = −1

2
, Y (�) = −1

2
, (5.42)

where � denotes e−, μ− or τ−. For right-handed leptons, being singlets under SU(2),
we have T 3 = 0 and therefore

Y (�R) = −1. (5.43)

We summarize the results in Table 5.1. We have introduced the compact notation Li

and �i to denote respectively the left-handed isodoublets and right-handed singlets.3

In all this discussion we have ignored the possibility of having a right-handed
component for the neutrino. Being a SU(2) singlet and having zero charge, this
particle would have also vanishing hypercharge. Thus, such a particle would be a
singlet under all gauge groups of the standard model. This is called a sterile neutrino.
It would only interact gravitationally or via some yet unknown interaction making
their detection extremely difficult.

In the case of quarks we proceed along similar lines. We look first at the charged
weak current that couples protons with neutrons. Taking into account the quark
content of these particles, we see how this current in fact couples the u and d quark,

3 It should be stressed that the quantum numbers appearing in Tables 5.1 and 5.2 summarize a
great deal of experimental data resulting from decades of work.
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Table 5.2 Transformation properties of the quarks in the electroweak sector of the standard model

Quarks
i (generation) 1 2 3 T 3 Y

Qi
( u

d

)
L

( c
s

)
L

( t
b

)
L

⎛
⎜⎝

1

2
−1

2

⎞
⎟⎠ 1

6

Ui
R u R cR tR 0

2

3

Di
R dR sR bR 0 −1

3

suggesting that they form an isodoublet. This structure is repeated for the three quark
generations4 (

u
d

)
L
,

(
c
s

)
L
,

(
t
b

)
L
. (5.44)

As with leptons, the right-handed quark components are singlet under SU(2). The
hypercharges of the different quarks are shown in Table 5.2, where the notation
Qi , Ui

L and Di
L is respectively introduced to denote the left-handed doublets and

right-handed SU(2) singlets.
The next task is to determine the couplings of the different matter fields (leptons

and quarks) to the intermediate vector bosons. From Eq. (4.46), the covariant deriva-
tive acting on the matter fields in a representation R of the gauge field is of the form

Dμ = ∂μ − igWμ − ig′Bμ
= ∂μ − igW+μ T−R − igW−μ T+R − igW 3

μT 3
R − ig′BμYR, (5.45)

It is important to notice that we have introduced two distinct coupling constants g and
g′ associated with the two factors of the gauge group, SU(2) and U(1)Y . The reason
is that gauge transformations do not mix the gauge field Wμ with Bμ and therefore
gauge invariance does not require the coupling constants to be related. Applying
Eq. (5.40), we express Dμ in terms of the gauge fields Aμ and Zμ

Dμ = ∂μ − igW+μ T−R − igW−μ T+R − i Aμ(g sin θwT 3
R + g′ cos θwYR)

− i Zμ(gT 3
R cos θw − g′YR sin θw).

(5.46)

We have identified Aμ with the electromagnetic gauge field. Thus, the third term
in the covariant derivative gives the coupling of the matter field to electromagnetism

4 A word of warning is in order here. Although denoted by the same letter, the fields in the quark
doublets are not necessarily the same ones that appear as the hadron constituents in the quark
model. The two are related by a linear combination. This for the time being cryptic remark will find
clarification in Chap. 10 (see page 197).
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and, as a consequence, it should be of the form−ieQ Aμ,with Q the charge operator.
With this in mind and using once more the Gell-Mann–Nishijima relation (5.37) we
conclude that the electric charge e is related to the coupling constants g and g′ by

e = g sin θw = g′ cos θw. (5.47)

This equation gives the physical interpretation of the weak mixing angle. It measures
the ratio between the two independent coupling constants in the electroweak sector
of the standard model

tan θw = g′

g
. (5.48)

Precise calculations with the standard model require writing a Lagrangian from
where to start a quantization of the theory. A first part contains the dynamics of gauge
fields and can be constructed using what we learned in Chap. 4 about nonabelian
gauge fields

Lgauge =− 1

2
W+μvW−μv − 1

4
Zμv Zμv − 1

4
Fμv Fμv + ig

2
cos θwW+μ W−v Zμv

+ ie

2
W+μ W−v Fμv − g2

2

[
(W+μ W+μ)(W−μ W−μ)− (W+μ W−μ)2

]
(5.49)

where we have introduced the notation

W±μv = ∂μW±v − ∂vW±μ ∓ ie
(
W±μ Av −W±v Aμ

)∓ ig cos θw
(
W±μ Zv −W±v Zμ

)
Zμv = ∂μZv − ∂v Zμ,

(5.50)
while Fμv is the familiar field strength of the Maxwell field Aμ. The gauge part of
the Lagrangian is a bit cumbersome because we have chosen to write it in terms
of the fields Aμ and Zμ. The SU(2) × U(1)Y gauge symmetry is not obvious
in this expression, but it has the advantage of making the invariance under the
gauge transformations of electromagnetism manifest. We have also eliminated the
coupling constant g′ in favor of g and the weak mixing angle θw. Moreover, when-
ever the combination g sin θw appeared we further used (5.47) and wrote the electric
charge e.

For the matter fields we can write the following gauge invariant Lagrangian

Lmatter =
3∑

i=1

(
iL

j
D/L j + i�

j
R D/ � j

R

+ iQ
j
D/Q j + iU

j
R D/U j

R + i D
j
R D/ D j

R

)
. (5.51)

The covariant derivatives appearing in this Lagrangian can be written explicitly from
(5.46) taking into account the representation for the different matter fields.
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A glimpse to the Lagrangians Lgauge and Lmatter and to the covariant derivative
(5.46) shows the coupling between the standard model particles. As right-handed
fields are singlets under SU(2), the W± boson only couples to the left-handed
doublets. Using the expression of the T± generators in the fundamental representa-
tion of SU(2), we find that the terms in the standard model Lagrangian coupling the
W± boson to the leptons take the form

gW+μ v�γ
μ�L , gW−μ �Lγ

μv�. (5.52)

Notice that the strength of these couplings is given by g.
From the covariant derivative (5.46), we see that the Z0 couples to a combination

of the two generators of the Cartan subalgebra of SU(2)×U(1)Y , namely T 3 and Y.
Since they can be simultaneously diagonalized, this gauge boson couples to fermions
of the same kind. In the case of the leptons the couplings are

g

2 cos θw
Zμv�γ

μv�,
g

cos θw

(
−1

2
+ sin2 θw

)
Zμ�Lγ

μ�L , (5.53)

and

g sin2 θw

cos θw
Zμ�Rγ

μ�R . (5.54)

Unlike the W±, the Z0 boson couples to the right-handed components through the
hypercharge.

The analysis can be repeated for quarks. The result is that once again right-handed
quarks only couple to the Z0,while the W± couple the upper and lower components
of the left-handed doublets. Both left- and right-handed quarks, being charged, couple
also to the electromagnetic field Aμ.The derivation of the form of these terms as well
as the corresponding couplings is left as an exercise. Finally, the couplings between
the gauge bosons can be read from the gauge Lagrangian (5.49).

5.5 Closing Remarks: Particle Masses in the Standard Model

The alert reader surely has noticed that in our discussion of the electroweak theory
we have been conspicuously silent about particle masses. That particles such as the
electron or the muon have nonvanishing masses is a well known experimental fact.
Moreover, we have seen that phenomena such as beta decay cannot be explained by
the model unless a mass is assumed for the intermediate vector bosons.

At the time when the standard model was developed in the 1960s, QED was the
archetype of a successful quantum field theory: physical processes could be accu-
rately computed at arbitrary high energies in terms of a small number of experimen-
tally fixed parameters. From this point of view, there were fundamental obstacles to
giving masses to the fields in the electroweak theory described in the previous section.
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Adding explicit mass terms for fermions and gauge bosons to the Lagrangian breaks
gauge invariance: in the case of the fermions a Dirac mass term mixes fields trans-
forming in different representations of SU(2) × U(1)Y , whereas a term Tr(AμAμ)
is obviously not invariant under the gauge transformation of the vector field (4.42).

Giving up gauge invariance means destroying the possibility of building a theory
of electroweak interactions valid to all energies. In more precise terms, gauge invari-
ance is crucial for the renormalizability of the theory, a property whose physical
relevance will be discussed in Chap. 8. Moreover, gauge invariance restricts the ways
the standard model fields couple among themselves.

Note that the conflict between fermion masses and gauge invariance does not
appear in the pure QCD sector. The reason is that the action of SU(3) is vector-
like, i.e., the same for left- and right-handed quarks. Therefore a Dirac mass term is
gauge invariant, and it can be included in the Lagrangian (5.27) without endangering
desirable properties of the theory.

There is nevertheless a way of constructing massive intermediate gauge bosons
and fermions in a manner compatible with SU(2) × U(1)Y gauge invariance. It
consists of generating the mass terms at low energies rather than putting them by hand
in the Lagrangian, so gauge invariance is not broken, just hidden. This is achieved
through the implementation of the Brout-Englert-Higgs mechanism to be presented
in Chap. 7.

To conclude we must say that, as a matter of fact, there is nothing fundamentally
wrong with adding explicit mass terms to the standard model Lagrangian, so long
as we are only interested in describing the physics at energies below the mass scales
appearing in the Lagrangian. We will elaborate on this statement in Chaps. 10 and
12, once we learn more about the quantum properties of interacting field theories.
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Chapter 6
Towards Computational Rules:
Feynman Diagrams

As the basic tool to describe the physics of elementary particles, the final aim of
quantum field theory is the calculation of observables. Most of the information we
have about the physics of subatomic particles comes from scattering experiments.
Typically, these experiments consist of arranging two or more particles to collide
with a certain energy and to setup an array of detectors, sufficiently far away from
the region where the collision takes place, that register the outgoing products of the
collision and their momenta (together with other relevant quantum numbers).

Next we discuss how these cross sections can be computed from quantum mechan-
ical amplitudes and how these amplitudes themselves can be evaluated in perturbative
quantum field theory. We keep our discussion rather heuristic and avoid technical
details that can be found in standard texts (see Ref. [1–15] of Chap. 1). The techniques
described will be illustrated with the calculation of the cross section for Compton
scattering at low energies and its application to the study of the polarization of the
cosmic microwave background radiation. Exceptionally, and in order to better show
the computational power of the diagrammatic tools in quantum field theory, these
calculations will be presented in some detail.

6.1 Cross Sections and S-Matrix Amplitudes

In order to fix ideas, we consider the simplest case of a collision experiment where two
particles collide to produce again two particles in the final state. The aim of such an
experiments is a direct measurement of the number of particles per unit time d N

dt (θ, ϕ)

registered by the detector within a solid angle dΩ in the direction specified by the
polar angles θ, ϕ (see Fig. 6.1). On general grounds, we know that this quantity has
to be proportional to the flux of incoming particles1 fin. The proportionality constant
defines the differential cross section

1 This is defined as the number of particles that enter the interaction region per unit time and per
unit area perpendicular to the direction of the beam.

L. Álvarez-Gaumé and M. Á. Vázquez-Mozo, An Invitation to Quantum Field Theory, 101
Lecture Notes in Physics 839, DOI: 10.1007/978-3-642-23728-7_6,
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Fig. 6.1 Schematic setup of
a two-to-two-particles
scattering event in the center
of mass reference frame

detector

Ω(θ,ϕ)d

detector

Interaction
region

d N

dt
(θ, ϕ) = fin

dσ

dΩ
(θ, ϕ). (6.1)

In natural units fin has dimensions of (length)−3, so the differential cross section has
dimensions of (length)2. It depends, apart from the direction (θ, ϕ), on the parameters
of the collision (energy, impact parameter, etc.) as well as on the masses and spins
of the incoming and outgoing particles.

The differential cross section measures the angular distribution of the products of
the collision. It is also physically interesting to quantify how effective the interaction
between the particles is in order to produce a nontrivial dispersion. This is measured
by the total cross section, which is obtained by integrating the differential cross
section over all directions

σ =
1∫
−1

d(cos θ)

2π∫
0

dϕ
dσ

dΩ
(θ, ϕ). (6.2)

To gain some physical intuition on the meaning of the total cross section, we can
think of the classical scattering of a point particle off a sphere of radius R. The
particle undergoes a collision only when the impact parameter is smaller than the
radius of the sphere and a calculation of the total cross section yields σ = πR2. This
is precisely the cross area that the sphere presents to incoming particles.

The starting point for the calculation of cross sections is the probability ampli-
tude for the corresponding process. In a scattering experiment, one prepares a system
with a given number of particles with definite momenta p1, . . . ,pn. In the Heisen-
berg picture this is described by a time independent state labelled by the incoming
momenta of the particles (to keep things simple we consider spinless particles) that
we denote by

|p1, . . . , pn; in〉. (6.3)
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As a result of the scattering, a number k of particles with momenta p′1, . . . ,p′k are
detected. Thus, the system is now in the “out” Heisenberg picture state

|p′1, . . . , p′k; out〉 (6.4)

labelled by the momenta of the particles detected at late times. The probability
amplitude of detecting k particles in the final state with momenta p′1, . . . ,p′k in
the collision of n particles with initial momenta p1, . . . ,pn defines the S-matrix
amplitude

S(in→ out) = 〈p′1, . . . , p′k; out|p1, . . . , pn; in〉. (6.5)

It is very important to keep in mind that both (6.3) and (6.4) are time-independent
states in the Hilbert space of a very complicated interacting theory. However, since
both at early and late times the incoming and outgoing particles are far apart from
each other, the “in” and “out” states can be thought as two states |p1, . . . , pn〉 and
|p′1, . . . , p′k〉 in the Fock space of the corresponding free theory. Then, the overlaps

(6.5) can be written in terms of the matrix elements of an S-matrix operator Ŝ acting
on the free Fock space

〈p′1, . . . , p′k; out|p1, . . . , pn; in〉 = 〈p′1, . . . , p′k |Ŝ|p1, . . . , pn〉. (6.6)

The operator Ŝ is unitary, Ŝ† = Ŝ−1, Lorentz invariant and its matrix elements are
analytic in the external momenta.

In a scattering experiment there is the possibility that the particles do not interact
at all and the system is left in the same initial state. It is useful to factor out this
possibility from the S-matrix elements between initial and final states by writing

Ŝ = 1+ i T̂ , (6.7)

where 1 represents the identity operator. In this way, all nontrivial interactions
are encoded in the matrix elements of the T-operator, 〈p′i , . . . , p′k |i T̂ |p1, . . . , pn〉.
Furthermore, in these matrix elements it is convenient to factor out a delta function
implementing momentum conservation to define the invariant scattering amplitude,
iMi→ f

〈 f |Ŝ|i〉 = 〈 f |i〉 + (2π)4δ(4)
(∑

final

p′i −
∑
initial

p j

)
iMi→ f . (6.8)

Using the Lorentz invariance of the S-matrix it is not difficult to show that iMi→ f
is a relativistic invariant as well (hence its name). Our next task is to show how
observable quantities such as decay rates or cross sections can be obtained from the
knowledge of this invariant amplitude. Then we will turn to the problem of computing
the amplitude itself in quantum field theory.

In studying a scattering problem in the infinite volume limit we would have to
consider localized wave packets for the asymptotic in and out states. Although this
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can be done, it is rather cumbersome. This is the reason why we are going to employ
a common trick consisting in working with plane waves for the in and out states,
while putting the system at the same time in a space-time box of finite but large
volume VT. We will see how at the end of the calculation all dependence on the size
of the box drops out and the limit V →∞, T →∞ can be taken safely.

The probability amplitude for the process is |〈 f |Ŝ|i〉|2 which, for nontrivial tran-
sitions, is given by the modulus squared of the second term on the right-hand side
of Eq. (6.8). The presence of the momentum conservation delta function makes the
computation problematic. This is precisely where working at finite volume comes
handy. The idea is to write one of the delta functions in terms of its Fourier transform

∣∣∣∣∣(2π)4δ(4)
(∑

final

p′i −
∑
initial

p j

)∣∣∣∣∣
2

= (2π)4δ(4)
(∑

final

p′i −
∑
initial

p j

)

×
∫

d4x exp

[
i

(∑
final

p′i −
∑
initial

p j

)
· x

]
.

(6.9)
The remaining delta function then sets the argument of the exponential to zero and
we have∣∣∣∣∣(2π)4δ(4)

(∑
final

p′i −
∑

initial

p j

)∣∣∣∣∣
2

= V T (2π)4δ(4)
(∑

final

p′i −
∑
initial

p j

)
. (6.10)

With this result we can compute the non-diagonal probability amplitude |〈 f |Ŝ|i〉|2.
Dividing by T, the transition probability per unit time is given by

wi→ f = V (2π)4δ(4)
(∑

final

p′i −
∑
initial

p j

)
|iMi→ f |2. (6.11)

In both scattering and decay processes, the final states have a continuous energy
spectrum. To compute the probability for the particles in the final state to have
momenta in a volume element d3 p′1 · · · d3 p′k around (p′1, . . . ,p′k), we should
multiply (6.11) by the number of states contained in it. Let us assume we have
one particle in the volume V (or in other words, that the state is normalized to one).
The number of available states within a momentum space volume element d3 p can
be directly written as

V d3 p

(2π�)3
, (6.12)

where we have momentarily restored the powers of � so the reader can clearly identify
the density of states in phase space.

In the calculation of the S-matrix elements at infinite volume, the one-particle
states |p〉 satisfy the relativistic normalization (2.20). By putting the system in a
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box of large volume V, the states become normalizable with 〈p|p〉 = 2EpV . Thus,
if we insist in using (6.12) for the final density of states of each outgoing particle
we should not compute the S-matrix element between the relativistically normalized
states |p〉 but rather between the properly normalized ones (2EpV )−1/2|p〉. Thus,
since the probability amplitude involves the modulus squared of the amplitude, to
find the correct expression for the number of states we should correct Eq. (6.12) by
the normalization factor of the final states

V d3 p

(2π�)3

1

2EpV
= d3 p

(2π�)3

1

2Ep
. (6.13)

We see how the volume cancels out and the infinite volume limit can be taken safely.
Moreover, the resulting expression is relativistically invariant. Doing this for every
particle in the final state of the scattering/decay process leads to the so-called phase
space factor

dΦk =
k∏

i=1

d3 p′i
(2π)3

1

2E ′i
, (6.14)

where E ′i =
√

m2
i + p′i 2 and we have restored natural units.

After this preliminary discussion we can compute the particle decay rate where
we have a single particle in the initial state with momentum p. As explained above,
the proper normalization of the initial state introduces an extra factor of (2EpV )−1 in
the square of the S-matrix element leading to (6.11). This has the effect of removing
the remaining volume dependence, and we obtain the decay width

dΓ = 1

2Ep
(2π)4δ(4)

⎛
⎝p −

k∑
j=1

p′j

⎞
⎠ |Mi→ f |2dΦk . (6.15)

To calculate the total rate for this particular decay channel we should integrate over
all final momenta. In doing that it is important to bear in mind that one has to divide
the expression by a factor

∏
a na!, where na is the number of identical particles of

type a. This is crucial to avoid overcounting the number of final states.
Here we notice that the factor of E−1

p in front of (6.15) has a simple physical
meaning. Its suppression effect for large |p| accounts for the relativistic effect of
time dilation due to the motion of the decaying particle. In the rest frame this is equal
to the rest mass m. The calculation of the total decay width for a particle requires not
only to integrate over final momenta but also to sum over all possible decay channels,
namely

Γtotal =
∑

channels

Γi , (6.16)

where Γi is the width of the ith decay channel. The lifetime of the particle is given
by the inverse of the total width Γtotal.
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We study now the calculation of the differential and total cross sections in the
scattering of two particles with an arbitrary number of particles in the final state. The
differential cross section for this problem is given by the number of particles scattered
within an infinitesimal solid angle along the final momenta p′1, . . . ,p′k divided by the
flux of incoming particles fin, thus generalizing Eq. (6.1). In terms of the probability
density per unit time computed in Eq. (6.11), this gives

dσ = 1

4E1 E2V 2

wi→ f

fin
dΦk (6.17)

To get this expression we have multiplied by (2E1V )−1(2E2V )−1 to take care of
the normalization of the incoming states as discussed previously.

We need to compute the incoming flux fin. The number of particles approaching
the target (say particle 2) in a time dt across a surface dS orthogonal to the beam is
given by n|v1 − v2|dtd S, with n the number density of projectiles (in this case the
particle 1). Since in the calculation of the S-matrix amplitude we have normalized
our states such that there is one particle per unit volume, we have that n = V−1 and
the incoming flux is fin = |v1− v2|/V . Plugging this result into (6.17), we see how
the powers of the volume cancel out and the differential cross section in the infinite
volume limit reads

dσ = |Mi→ f |2
4E1 E2|v1 − v2| (2π)

4δ(4)

⎛
⎝p1 + p2 −

n∑
j=1

p′j

⎞
⎠ dΦk , (6.18)

where dΦk is the phase space factor for the k particles in the final state. To calculate
the total cross section we have to integrate over all final momenta and include the
necessary symmetry factors if identical particles are produced as the result of the
collision.

An inspection of Eq. (6.18) shows that the only piece depending on the observer’s
frame is the denominator F ≡ 4E1 E2|v1 − v2|. The presence of this term implies
that the measurement of the differential and total cross sections of the same collision
in various reference frames takes different values. This is an important point that we
discuss now in some detail.

We consider first a collinear reference frame in which the momenta of the two
colliding particles lie along the same direction, p1 ‖ p2. This class of frames include
two cases of particular interest: the laboratory frame, where one of the particles is at
rest (for example p2 = 0), and the center of mass frame where the center of mass is
at rest, p2 = −p1.

It is not difficult to check that in the collinear case the combination E1 E2|v1−v2|
is invariant under boosts along the direction of the two incoming momenta. This
means that the value of the differential and total cross section is the same in all
collinear frames. Moreover, we can write

Fcoll = 4E1 E2|v1 − v2| = 4E1 E2

∣∣∣∣ p1

E1
− p2

E2

∣∣∣∣
= 4|E2p1 − E1p2| = 4 (E2|p1| + E1|p2|) ,

(6.19)
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where in writing the last identity we have used that in the collinear frames the two
particles are approaching each other from opposite directions. It can be written in a
Lorentz invariant form

Fcoll = 4
√
(p1 · p2)2 − m2

1m2
2. (6.20)

Then, the differential cross section measured in a collinear frame is given by

dσcoll = |Mi→ f |2
4
√
(p1 · p2)2 − m2

1m2
2

(2π)4δ(4)

⎛
⎝p1 + p2 −

n∑
j=1

p′j

⎞
⎠ dΦk . (6.21)

The corresponding total cross section is obtained by integrating over all momenta in
the final state, namely

σcoll = 1

4
√
(p1 · p2)2 − m2

1m2
2

∫ ⎡
⎢⎣∏

final
states

d3 p′i
(2π)3

1

2E ′i

⎤
⎥⎦

× |Mi→ f |2(2π)4δ(4)
⎛
⎜⎝p1 + p2 −

∑
final
states

p′i

⎞
⎟⎠ . (6.22)

We will make use of this expression in Sect. 6.4 when studying Compton scattering.
Due to their invariance under Lorentz transformations, Eqs. (6.21) and (6.22)

allow the computation in an arbitrary frame of the cross section measured by the
collinear observer. For example, in a general frame where the two particles collide
with velocities v1 and v2 the collinear cross section is obtained by using the following
expression for Fcoll

Fcoll = 4E1 E2

√
(v1 − v2)2 − (v1 × v2)2. (6.23)

In various physical setups, most notably in astrophysics, one needs to compute the
cross sections measured by a generic observer with respect to whom the momenta
of the colliding particles form an arbitrary angle. This requires the evaluation of the
denominator in Eq. (6.18) in a generic “oblique” frame,

Fobl = 4E1 E2|v1 − v2| = 4|E2p1 − E1p2|. (6.24)

To relate Fobl to the corresponding factor for the collinear observer, Fcoll, we split the
incoming momenta into their components parallel and perpendicular to the center of
mass momentum Pcm = p1 + p2,

pi‖ =
(

pi · Pcm

P2
cm

)
Pcm, pi⊥ = pi − pi‖, (6.25)
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with i = 1, 2. It is not difficult to show that p1⊥ = −p2⊥ ≡ p⊥. Applying now this
decomposition to Eq. (6.24) we arrive at

Fobl = 4
√
(E2p1‖ − E1p2‖)2 + (E1 + E2)2p2⊥. (6.26)

To go from the oblique frame to the center of mass frame, we only have to perform
a boost with velocity

V = 1

E1 + E2
Pcm. (6.27)

This boost only transforms the parallel components of the momenta, pi‖. It is possible
to show that the combination E2p1‖ − E1p2‖ appearing under the square root in Eq.
(6.26) is left invariant by the boost. Hence, it can be computed either in the oblique
or the center of mass frame and consequently we can write

F2
obl = F2

coll + 16

[
(E1 + E2)

2 − (Ecm
1 + Ecm

2 )2
]

p2⊥, (6.28)

where we have used superscripts to indicate the quantities that are referred to the
center of mass frame. Finally, we notice that the second term inside the square
brackets is just the Lorentz invariant quantity (p1+ p2)

2. Evaluating it in the oblique
frame we arrive at the final expression

F2
obl = F2

coll + 16p2⊥P2
cm. (6.29)

We have seen that in a collision experiment all collinear observers measure the
same value of the cross section.2 This is not the case, however, for the cross section
measured by another observer boosted with respect to the collinear ones along a
direction forming a non-zero angle with the beams. In this oblique frame, both
Pcm and p⊥ are different from zero and from Eq. (6.29) the cross section is suppressed
by a larger value in the denominator. This can be understood heuristically by thinking
that, as the result of this transverse boost, the area of the sections normal to the beams
are Lorentz contracted.

We have learned how particle cross sections are given in terms of the invariant
amplitude for the corresponding processes, which in turn are related to the S-matrix
amplitudes. Generically, an exact computation of these amplitudes in quantum field
theory is not feasible. Nevertheless, in many physical situations it can be argued that
interactions are weak enough to allow for a perturbative evaluation. In the remainder
of this chapter we will describe how S-matrix elements can be computed in pertur-
bation theory using Feynman diagrams and rules. These are very convenient book-
keeping techniques allowing both to track all contributions to a process at a given
order in perturbation theory and to compute them.

2 This is a particular case of Eq. (6.29) where p⊥ = 0 for all collinear observers.
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6.2 From Green’s Functions to Scattering Amplitudes

The basic quantities to be computed in quantum field theory are the vacuum expec-
tation values of products of the operators of the theory. Particularly useful are time-
ordered Green’s functions of a number of local operators Oi (x)

〈Ω|T
[
O1(x1) . . .On(xn)

]
|Ω〉, (6.30)

where |Ω〉 is the ground state of the theory and the time ordered product has been
defined in Eq. (2.63).

The interest of these correlation functions lies in the fact that they can be related
to S-matrix amplitudes through the so-called reduction formula. The idea consists
of replacing a particle of momentum p in the in- or out-state by the insertion of a
certain quantum field φ(x) interpolating between the vacuum and the one-particle
states with the normalization

〈Ω|φ(t, x)|p〉 = ϕ(p)e−i Ept+ip·x, (6.31)

where ϕ(p) is the one-particle wave function, carrying the corresponding indices
and quantum numbers: for example, ϕ = 1 for a scalar field while ϕ = εμ(p, λ)
for the electromagnetic field.3 This expression fixes the global normalization of the
field, while the coordinate dependence is completely determined by the translational
invariance of the vacuum state |Ω〉 [see Eq. (2.36)].

To keep our discussion as simple as possible, we will not derive the reduction
formula, or even write it down in full detail. Suffice it to say that the reduction
formula states that any S-matrix amplitude

〈p′1, . . . , p′k; out|p1, . . . , pn; in〉 (6.32)

can be written in terms of the Fourier transform of a time-ordered correlation function

∫
d4x1 . . . d

4xk

∫
d4 y1 . . . d

4 yn〈Ω|T
[
φ(x1)

† . . . φ(xk)
†φ(y1) . . . φ(yn)

]
|Ω〉

× eip1
′·x1+···+i pk

′·xk e−i p1·y1−···−i pn ·yn , (6.33)

where φ(x) is a field that “creates” the particles out of the vacuum. Since the
momenta of the particles in the asymptotic states are on-shell, the expression (6.33)
has to be evaluated in the limit p2

i , p′2j → m2, where it diverges. In the reduc-
tion formula connecting (6.32) with (6.33) these poles are cancelled by factors of

3 The field φ(x) appearing in Eq. (6.31) is the so-called “renormalized” field, and it is not canon-
ically normalized. It is related to the canonically normalized “bare” field φ0(x) by an overall
numerical factor, φ0(x) =

√
Zφφ(x), where Zφ = 1 in the case of a free field. The difference

between bare and renormalized fields will become clear in Chap. 8 (see Sect. 8.3).
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p2
i − m2 and p′2j − m2. The technical details and the form taken by the reduction

formula for various quantum field theories can be found in the textbooks listed in
Ref. [1–15] of Chap. 1.

The “interpolating field” used to write the scattering amplitude in terms of Green’s
functions is not uniquely determined. Any local field satisfying the normalization
Eq. (6.31) can be used for this purpose. The scattering amplitudes calculated from a
quantum field theory are invariant under local field redefinitions. For example, for a
massive field φ(x) we could use in Eq. (6.33) instead of φ(x) the local field

φ′(x) = − 1

m2
�φ(x) (6.34)

that also interpolates between the one-particle states and the vacuum with the correct
normalization (6.31).

6.3 Feynman Rules

The reduction formula transforms the problem of computing S-matrix elements to
the evaluation of time-ordered correlation functions. These quantities are easy to
compute exactly for free fields. For an interacting theory, generically we can only
evaluate them perturbatively. Using path integrals, the vacuum expectation value of
the time-ordered product of a number of operators can be written as

〈Ω|T
[
O1(x1) . . .On(xn)

]
|Ω〉 =

∫
DφDφ†O1(x1) . . .On(xn)ei S[φ,φ†]∫

DφDφ†ei S[φ,φ†] . (6.35)

For a theory with interactions, neither the path integral in the numerator or in the
denominator are Gaussian and cannot be computed exactly. In spite of this, Eq. (6.35)
is still very useful to implement a perturbative calculation. The action S[φ, φ†] can
be split into the free (quadratic) and the interaction parts

S[φ, φ†] = S0[φ, φ†] + Sint[φ, φ†]. (6.36)

All dependence on the coupling constants of the theory comes from the second piece.
Expanding exp(i Sint) in power series of the coupling, we find that each term in the
series expansion of the integrals in Eq. (6.35) has the following structure

∫
DφDφ†[ . . . ]ei S0[φ,φ†], (6.37)

where “[. . .]” denotes certain monomial of fields.
The crucial point is that the integration measure DφDφ† exp(i S0) only involves

the free action, so the path integrals (6.37) are Gaussian and therefore can be
computed exactly. The same conclusion can be reached using the operator formalism.
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In this case the correlation function (6.30) can be expressed in terms of correlation
functions of operators in the interaction picture φI (x). The advantage of using this
picture is that the field operators satisfy the free equations of motion

i φ̇I = [φI , H0] (6.38)

and therefore can be expanded in creation–annihilation operators. Time-ordered
correlation functions are then computed using Wick’s theorem.

The previous discussion outlines the strategy to calculate S-matrix amplitudes in
perturbation theory: using the reduction formula they are expressed in terms of time-
ordered correlation functions that in turn are calculated in terms of a series expansion
in the coupling constants. The most convenient way to carry out this program is by
using Feynman diagrams and rules. They provide a very economical way not only to
keep track of each term in the expansion but also to compute their contributions. In
what follows we will refrain from giving a detailed derivation of the Feynman rules.
Instead we will present them using heuristic arguments.

For the sake of concreteness we focus on the case of QED first. We use the action
(4.87) with the gauge fixing term included (see Sect. 4.6). Expanding the covariant
derivative and setting ξ = 1 (called the Feynman gauge) we have

S =
∫

d4x

[
−1

4
Fμv Fμv + ψ(i/∂ − m)ψ − 1

2
(∂μAμ)2 − eψγμψ Aμ

]
. (6.39)

We begin with the quadratic part. Integrating by parts we have

S0 =
∫

d4x

[
1

2
Aμ(η

μv∂σ ∂
σ )Av + ψβ(i/∂ − m)βαψα

]
. (6.40)

The action contains two types of propagating particles, photons and fermions, repre-
sented by wavy and straight lines respectively:

Aμ Aν ψα ψβ

The arrow in the fermion line does not represent the direction of the momentum
but the flux of (negative) charge. This distinguishes particles form antiparticles: if
the fermion propagates from left to right (i.e. in the direction of the charge flux) it
represents a particle, whereas when it does from right to left it corresponds to an
antiparticle. Photons are not charged and therefore wavy lines have no orientation.

Next we turn to the cubic part of the action containing a photon field, a spinor and
its conjugate

Sint = −e
∫

d4xψβγ
μ
βαψαAμ. (6.41)

In a Feynman diagram this interaction is represented by the vertex:
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To compute an S-matrix amplitude to a given order in e, one should draw all possible
diagrams with as many vertices as the order in perturbation theory, and the number
and type of external legs dictated by the in and out states of the amplitude. It is
very important to keep in mind that in joining the fermion lines among the different
building blocks of the diagram one has to respect their orientation. This reflects the
conservation of the electric charge. In addition, one should only consider diagrams
that are topologically non-equivalent, i.e. that cannot be smoothly deformed into one
another while keeping the external legs fixed.4

To show practically how Feynman diagrams are drawn, we consider Bhabha scat-
tering: elastic electron–positron scattering

e+ + e− −→ e+ + e−.

Our problem is to compute the S-matrix amplitude to leading order in the electric
charge. Since the QED vertex contains a photon line and our process does not have
photons in the initial or the final states, drawing a Feynman diagram requires at least
two vertices. In fact, the leading contribution is of order e2 and comes from the
following two diagrams

Incoming and outgoing particles appear respectively on the left and the right of
these diagrams. The identification of electrons and positrons is done by comparing
the direction of the charge flux with the direction of propagation. For electrons the
flux of charge goes in the direction of propagation, whereas for positrons they go in

4 From the point of view of the operator formalism, the requirement of considering only diagrams
that are topologically nonequivalent comes from the fact that each diagram represents a certain
Wick contraction in the correlation function of interaction–picture operators.
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opposite directions. These are the only two diagrams that can be drawn to this order
in perturbation theory.

It should be noticed that the two diagrams contribute with opposite signs. The
reason is that the second diagram can be obtained from the first one by interchanging
the incoming positron external line attached to the vertex on the left with that of
the outgoing electron coming from the vertex on the right. This permutation of two
fermions introduces the minus sign.

We have learned how to draw Feynman diagrams in QED. Now it is time to
compute the contribution of each one to the amplitude using the Feynman rules. The
idea is simple: each of the diagram’s building blocks (vertices as well as external and
internal lines) comes associated with a term. Putting all of them together according
to certain rules results in the contribution of the corresponding diagram to the ampli-
tude. In the case of QED in the Feynman gauge (ξ = 1), we have the following
correspondence for vertices and internal propagators:

In addition, each vertex carries a factor (2π)4δ(4)(p1 + p2 + p3) implementing
momentum conservation, where we take the convention that all momenta are entering
the vertex. The Feynman rules for other values of the gauge fixing parameter ξ only
differ from the ones above by an extra term in the photon propagator. In addition,
one has to perform an integration over the momenta running in internal lines with
the measure

∫
d4 p

(2π)4
, (6.42)

and introduce a factor of −1 for each fermion loop in the diagram.5

5 The contribution of each diagram comes also multiplied by a symmetry factor that takes into
account in how many ways a given Wick contraction can be done. In QED, however, these factors
are equal to one for many diagrams.
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A number of integrations over the internal momenta can be eliminated using the
delta functions from the vertices. The result is a global delta function implementing
the total momentum conservation in the diagram [cf. Eq. (6.8)]. In fact, there is a
whole class of diagrams for which all integrations can be eliminated in this way.
These are the so-called tree level diagrams containing no closed loops. As a general
rule, there will be as many remaining integrations as the number of independent
loops in the diagram.

Generically, finding the contribution of a Feynman diagram with � independent
loops involves the calculation of integrals of the form

I (p1, . . . , pn) =
∫

d4q1

(2π)4
. . .

d4q�
(2π)4

f (q1, . . . , q�; p1, . . . , pn), (6.43)

where f (q1, . . . , q�; p1, . . . , pn) is a rational function of its arguments and
p1, . . . , pn are the external momenta. In many cases these integrals are divergent.
When the divergence is associated with the limit of small loop momenta it is called
an infrared divergence. They usually cancel once all diagrams contributing to a given
order in perturbation theory are added together. The second type of divergences that
one expects in the integrals (6.43) comes from the region of large loop momenta.
These are called ultraviolet divergences. They cannot be cancelled by adding the
contribution of different diagram and have to be dealt with using the procedure of
renormalization. We will discuss this problem in some detail in Chaps. 8 and 12.

This is not the end of the story. In the calculation of S-matrix amplitudes the
contribution of the Feynman diagram contains factors associated with the external
legs. These are the wave functions and/or polarization tensor of the corresponding
asymptotic states containing all the information about the spin and polarization of
the incoming and outgoing particles. In the case of QED these factors are:

Incoming fermion: α uα p, s( )

Incoming antifermion: α vα p, s( )

Outgoing fermion: α uα p, s( )

Outgoing antifermion: α vα p, s( )
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Incoming photon: μ εμ p( )

Outgoing photon: μ εμ p( )∗

Here uα(p, s), vα(p, s) are the positive and negative energy solutions of the Dirac
equation introduced in Chap. 3, whereas εμ(p, λ) is the polarization tensor of the
photon with polarization λ. Here we have assumed that the momenta for incoming
(resp. outgoing) particles are entering (resp. leaving) the diagram, and all external
momenta are on-shell, p2

i = m2
i .

The use of Feynman diagrams is not restricted to quantum field theory, they can
also be found in condensed matter physics and statistical mechanics. Their calculation
is not an easy task. The number of diagrams contributing to a process grows very
fast with the order of perturbation theory and the integrals arising in calculating loop
diagrams soon get very complicated.

Feynman rules can be constructed for any interacting quantum field theory with
scalar, vector or spinor fields. For the nonabelian gauge theories introduced in Chap. 4
these are:
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μ , A

σ ,C

ν , B

λ , D

ig2 f ABE f CDE ημσ ηνλ ημλ ηνσ

permutations

As in the case of QED, each vertex includes a delta function implementing momentum
conservation.

It is not our aim here to give a full and detailed description of the Feynman
rules for nonabelian gauge theories. We only point out that, unlike the case of QED,
here the gauge fields interact among themselves. These three and four gauge field
vertices are a consequence of the cubic and quartic terms in the Lagrangian (4.54).
The self-interactions of the nonabelian gauge field theories have crucial dynamical
consequences and its at the very heart of their physical successes.

6.4 An Example: Compton Scattering at Low Energies

We illustrate now the use of Feynman diagrams in the calculation of observables
in physical processes by studying an example with important physical applications.
This is the calculation of the cross section for the dispersion of photons by free
electrons: Compton scattering

γ (k, ε)+ e−(p, s) −→ γ (k′, ε′)+ e−(p′, s′). (6.44)

Inside the parenthesis we have indicated the momenta for the different particles,
as well as the polarizations and spins of the incoming and outgoing photons and
electrons respectively. We study this scattering in the nonrelativistic limit for the
electrons.

The first step in our calculation is to identify all the diagrams contributing to (6.44)
at leading order. Since the vertex of QED contains two fermion and one photon leg
it is immediate to realize that any diagram contributing to this process must contain
at least two vertices, so the leading contribution is of order e2. A first diagram that
can be drawn is:



6.4 An Example: Compton Scattering at Low Energies 117

There is however a second possibility given by the following diagram:

These two diagrams are topologically nonequivalent, since deforming one into the
other requires changing the label of the external legs. In addition, unlike the example
of the Bhabha scattering studied in the previous section, both diagrams contribute
with the same sign. This is because they are related by interchanging the incoming
with the outgoing photon. Since photons are bosons, no minus sign comes from this
permutation.

Using the Feynman rules of QED we find the contribution of the two diagrams
to be

(6.45)

where me is the electron mass and we have factored out (2π)4 times the delta function
implementing momentum conservation. As explained in Sect. 6.3, all incoming and
outgoing particles are on-shell,

p2 = m2
e = p′2 and k2 = 0 = k′2. (6.46)

Our calculation involves only tree-level diagrams, so there is no integration left
over internal momenta. To get an explicit result we begin by simplifying the numer-
ators. The following simple identity turns out to be very useful

/a/b = −/b/a + 2(a · b)1. (6.47)

In addition, we are interested in Compton scattering at low energy when electrons
are nonrelativistic particles. This is known in the literature as Thomson scattering.
To be more precise, we take all spatial momenta much smaller than the electron mass

|p|, |k|, |p′|, |k′| � me. (6.48)
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In this approximation, the amplitude for Compton scattering simplifies substantially.
Let us begin with the first term in Eq. (6.45). Applying the identity (6.47) we obtain

(/p + /k + me)/ε(k)u(p, s) =− /ε(k)(/p − me)u(p, s)+ /k/ε(k)u(p, s)

+ 2p · ε(k)u(p, s).
(6.49)

The first term on the right-hand side of this equation vanishes using Eq. (3.45).
Moreover, in the approximation (6.48) we find that the electrons’ four-momenta can
be written pμ, p′μ ≈ (me, 0) and therefore

p · ε(k) = 0. (6.50)

This follows from the absence of the temporal photon polarization, ε0(k) = 0. Thus,
we conclude that at low energies

(/p + /k + me)/ε(k)u(p, s) = /k/ε(k)u(p, s) (6.51)

and similarly for the second term in Eq. (6.45)

(/p − /k′ + me)/ε
′(k′)∗u(p, s) = −/k′/ε′(k′)∗u(p, s). (6.52)

Next, we turn to the denominators in (6.45). Using the mass-shell condition we
find

(p + k)2 − m2
e = p2 + k2 + 2p · k − m2

e = 2p · k
= 2ωp|k| − 2p · k (6.53)

and

(p − k ′)2 − m2
e = p2 + k′2 + 2p · k′ − m2

e = −2p · k′
= −2ωp|k′| + 2p · k′. (6.54)

Working again in the low energy approximation (6.48), these two expressions
simplify to

(p + k)2 − m2
e ≈ 2me|k|, (p − k′)2 − m2

e ≈ −2me|k′|. (6.55)

Collecting all results we obtain

(6.56)

Using the identity (6.47) a number of times, as well as the transversality condition
of the polarization vectors (4.32), we end up with a simpler expression
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(6.57)

With a little extra effort one can show that the second term on the right-hand side
of this equation vanishes. First we notice that in the low energy limit |k| ≈ |k′|. If,
in addition, we use the conservation of momentum k − k ′ = p′ − p and the identity
(3.45) we can write

u(p′, s′)/ε(k)/ε′(k′)∗
(
/k

|k| −
/k′

|k′|
)

u(p, s) ≈ 1

|k|u(p
′, s′)/ε(k)/ε′(k′)∗( /p′−me)u(p, s).

(6.58)

Next we use the identity (6.47) to take the term (/p′−me) to the right. Finally, keeping
in mind that in the low energy limit the electron four-momenta are orthogonal to the
photon polarization vectors [see Eq. (6.50)], we conclude that

u(p′, s′)/ε(k)/ε′(k′)∗( /p′ − me)u(p, s) = u(p′, s′)( /p′ − me)/ε(k)/ε′(k′)∗u(p, s) = 0
(6.59)

where the last identity follows from the equation satisfied by the conjugate positive–
energy spinor, u(p′, s′)( /p′ − me) = 0.

After all these lengthy manipulations we have finally arrived at the expression of
the invariant amplitude for the Compton scattering at low energies

iMi→ f = e2

me

[
ε(k) · ε′(k′)∗] u(p′, s′) /k|k|u(p, s). (6.60)

To calculate the cross section we need to compute |Mi→ f |2, as shown in Eq. (6.18).
For many physical applications, however, one is interested in the dispersion of
photons with a given polarization by electrons that are not polarized, i.e. whose
spins are randomly distributed. To describe this physical setup we have to average
over initial electron polarization (since we do not know them) and sum over all
possible final electron polarization (because our detector is blind to this quantum
number),

|iMi→ f |2 = 1

2

(
e2

me|k|
)2 ∣∣ε(k) · ε′(k′)∗∣∣2 ∑

s=± 1
2

∑
s′=± 1

2

∣∣u(p′, s′)/ku(p, s)
∣∣2 .
(6.61)

The factor of 1
2 comes from averaging over the two possible polarizations of the

incoming electrons. The sums in this expression can be calculated without much
difficulty. Expanding the absolute value
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∑
s=± 1

2

∑
s′=± 1

2

∣∣u(p′, s′)/ku(p, s)
∣∣2 = ∑

s=± 1
2

∑
s′=± 1

2

[
u(p, s)†/k†u(p′, s′)†

] [
u(p′, s′)/ku(p, s)

]
,

(6.62)
and using that γ μ† = γ 0γ μγ 0 one finds, after some manipulations,

∑
s=± 1

2

∑
s′=± 1

2

∣∣u(p′, s ′)/ku(p, s)
∣∣2 =

⎡
⎢⎣ ∑

s=± 1
2

uα(p, s)uβ(p, s)

⎤
⎥⎦ (/k)βσ

⎡
⎢⎣ ∑

s′=± 1
2

uσ (p′, s′)uρ(p′, s′)

⎤
⎥⎦ (/k)ρα

= Tr
[
(/p + me)/k(/p

′ + me)/k
]
, (6.63)

where the final result has been obtained using the completeness relations (3.51). The
final evaluation of the trace can be done using the relation (6.47) to commute /p′ and
/k. Using k2 = 0 and that we are working in the low energy limit, we have6

Tr
[
(/p + me)/k(/p

′ + me)/k
] = 2(p · k)(p′ · k)Tr1 ≈ 8m2

e |k|2. (6.64)

With this we arrive at the following value for the invariant amplitude for the Compton
scattering at low energies

|iMi→ f |2 = 4e4
∣∣ε(k) · ε′(k′)∗∣∣2 . (6.65)

We have reached the end of our calculation. Plugging |iMi→ f |2 into (6.22) and
dropping the integration over the direction of the outgoing particles we find the
differential cross section for the scattering of a photon by an electron at rest

dσ

dΩ
= 1

64π2m2
e
|iMi→ f |2 =

(
e2

4πme

)2 ∣∣ε(k) · ε′(k′)∗∣∣2 . (6.66)

The prefactor of the last expression is precisely the square of the classical electron
radius rcl. In fact, the result can be rewritten as

dσ

dΩ
= 3

8π
σT

∣∣ε(k) · ε′(k′)∗∣∣2 , (6.67)

where σT is the total Thomson cross section

σT = e4

6πm2
e
= 8π

3
r2

cl, (6.68)

obtained from integrating (6.66) over angles.
One of the most important physical consequences of Eq. (6.67) is that a net

polarization is produced in the scattering of unpolarized radiation off nonrelativistic
charges. To see this, we take the Thomson differential cross section and average over

6 We use also the fact that the trace of the product of an odd number of Dirac matrices is always
zero.
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Fig. 6.2 This figure
illustrate Eq. (6.70). The
“vertical” component of the
unpolarized radiation
arriving from the x direction
is suppressed in the photons
scattered along the z axis.
This results in a linear
polarization of the scattered
radiation

k

e−

k

k

z

x

y

the polarization of the incoming photon. Denoting by ε(k, a), with a = 1, 2, a basis
for the photon polarizations, this average gives

1

2

∑
a=1,2

∣∣ε(k, a) · ε′(k′)∗∣∣2 =
⎡
⎣1

2

∑
a=1,2

εi (k, a)ε j (k, a)∗
⎤
⎦ ε j (k′)εi (k′)∗. (6.69)

The sum inside the brackets can be computed using the normalization of the polar-
ization vectors, |ε(k, n)|2 = 1, and the transversality condition k · ε(k, n) = 0

1

2

∑
a=1,2

∣∣ε(k, a) · ε′(k′)∗∣∣2 = 1

2

(
δi j − ki k j

|k|2
)
ε′j (k′)ε′i (k′)∗

= 1

2

[
1− |k̂ · ε′(k′)|2

]
, (6.70)

where k̂ = k
|k| is the unit vector in the direction of the incoming photon.

From the last equation we conclude that Thomson scattering suppresses all polar-
izations parallel to the direction of the incoming photon. At the same time, the
differential cross section reaches its maximum values when the polarization of the
scattered photon lies in the plane normal to k̂. This is represented in Fig. 6.2, where
nonpolarized radiation coming from the x direction is scattered by a nonrelativistic
electron. According to Eq. (6.70) the vertical polarization is fully suppressed in the
radiation scattered along the z direction, thus producing linear polarization.

6.5 Polarization of the Cosmic Microwave
Background Radiation

The differential cross section of Thomson scattering we have derived is relevant in
many areas of physics, but its importance is paramount in the study of the cosmolog-
ical microwave background radiation (CMB). Here we are going to review briefly
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Fig. 6.3 In these figures the larger density of unpolarized photons arriving from different directions
is represented through two parallel lines indicating the polarization. The left panel shows the scat-
tering of isotropic radiation by a free electron and how this does not produce any net polarization
in the scattered photons. On the right panel, on the other hand, the anisotropy in the intensity of
the radiation has a quadrupole component, being larger along the x direction. The result is a net
polarization in the photons scattered along the z axis

how polarization emerges in the cosmic radiation and discuss why its detection could
serve as a window to the physics of the very early universe. Our presentation will
be rather sketchy. A thorough analysis of this problem can be found in many places,
such as [1, 2].

Just before recombination the universe is filled with a plasma of electrons inter-
acting with photons via Compton scattering. This plasma has a temperature of the
order of T ≈ 1 keV and therefore electrons are nonrelativistic (T � me ∼ 0.5 MeV),
so the approximations leading to the Thomson differential cross section apply. At the
last scattering surface there is no way to know the polarization state of the photons
in the plasma before they are scattered by electrons to produce the CMB radiation
that we detect today. Therefore we have to average over incoming polarizations as
shown at the end of the previous section.

The relation between the polarization of the CMB and the anisotropies in the
density of photons at last scattering can be understood with the help of Fig. 6.2. We
consider the polarization of photons traveling along the z direction resulting from
the scattering of photons traveling along the x and y axis. Since Thomson scattering
suppresses all polarizations in the direction of the incoming photons we find that the
two polarizations in the scattered radiation come from the “horizontal” polarizations
of the incoming photons. If the number of photons coming from the x and y directions
are the same no net polarization is produced. This is shown in the left panel of Fig. 6.3.
It is an instructive exercise to check that no polarization is produced either in the
presence of a dipolar anisotropy.

When the anisotropy has a quadrupole component, on the other hand, the situation
changes. Then the intensity of the unpolarized radiation approaching from the x and
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y directions is different and so is the relative intensity of the two polarizations in the
scattered radiation along the z axis. The outgoing radiation is then polarized.

The previous heuristic arguments show that the presence of a net polarization in
the CMB is the smoking gun of quadrupole anisotropies in the photon distribution
at the last scattering surface. There are several possible physical causes for such an
anisotropy. One of them, however, is specially glaring. Gravitational waves propa-
gating through the plasma induce changes in its density with precisely the quadrupole
component necessary to produce the polarization in the CMB radiation.

Now we make this discussion more precise. The polarization of radiation can be
described using three Stokes parameters: Q measures the excess of horizontal versus
vertical, U of diagonal versus antidiagonal and V of left versus right polarization.
CMB experiments allow the measurements of these parameters for the background
radiation arriving from a direction in the sky specified by a unit vector n̂.

To compute the parameter Q(n̂)we consider the polarizations along the directions
defined by the unit vectors ê↔ = −êϕ and ê� = −êθ , normal to the plane defined by n̂
(see left panel in Fig. 6.4). We denote by f (k̂, n̂) the distribution function of photons
in the plasma with momentum along the unit vector k̂ at the last scattering surface
in the sky direction n̂. This distribution function does not depend on the polarization
of the photons because the incoming radiation is taken to be unpolarized. Using the
expression of the Thomson cross section (6.67), the Stokes parameter Q(n̂) can be
written as

Q(n̂) ∼
∑

a=1,2

∫
dΩ(k̂) f (k̂, n̂)

[
|ε(k, a) · ê↔|2 − |ε(k, a) · ê�|2

]
, (6.71)

where we integrate over the directions of the incoming photons and have omitted a
global normalization constant. To write this expression we have taken the intensity
of scattered radiation to be proportional to the Thomson differential cross section
averaged over polarizations. The result is integrated over the direction of the incoming
photons weighted by the distribution function. The sum over polarizations can be
explicitly done using the result derived in Eq. (6.69) to give

Q(n̂) ∼ −1

2

∫
dΩ(k̂) f (k̂, n̂)

[
(k̂ · ê↔)2 − (k̂ · ê�)2

]
. (6.72)

In order to evaluate the parameter U (n̂) we need to consider the polarizations
along the unit vectors defined by (see right panel in Fig. 6.4)

ê ↔ = −
1√
2
(êϕ + êθ ), ê↔ = − 1√

2
(êϕ − êθ ). (6.73)

This parameter is then given by the difference in intensity of the scattered radiation
with these polarizations, namely
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Fig. 6.4 Polarization states used to define the Stokes parameter Q(n̂) and U (n̂) for a photon
scattered by a nonrelativistic electron and arriving from the direction n̂. The notation used in the
unit vectors ê ↔ and ê↔ reflects the point of view of an observer located at the origin looking in

the direction defined by n̂

U (n) ∼
∑

a=1,2

∫
dΩ(k̂) f (k̂,n)

[
|ε(k, a) · ê ↔|

2 − |ε(k, a) · ê↔ |2
]

= −1

2

∫
dΩ(k̂) f (k̂, n̂)

[
(k̂ · ê ↔)

2 − (k̂ · ê↔ )2
]
, (6.74)

where in the second line we have carried out the sum over incoming polarizations.
A look at Fig. 6.4 shows that Q(n̂) and U (n̂) can be transformed into one another,
up to a sign, by a rotation of π4 along the line of sight n̂.

Finally, the Stokes parameter V (û) measures the net circular polarization of the
CMB photons arriving from the last scattering surface

V (n̂) ∼
∑

a=1,2

∫
dΩ(k̂) f (k̂,n)

[
|ε(k, a) · ê+|2 − |ε(k, a) · ê−|2

]

=
∫

dΩ(k̂) f (k̂,n)
[
|k̂ · ê+|2 − |k̂ · ê−|2

]
= 0, (6.75)

where ê± = − 1√
2
(êϕ±i êθ ) and the last identity follows immediately from ê∗± = ê∓.

This result reflects the fact that Thomson scattering does not distinguish between left
and right polarizations.

The measurement of Q(n̂) and U (n̂) provides important information about the
distribution function of photons at decoupling f (k̂, n̂), as we will see shortly. In
order to carry out the integration over k̂ in Eqs. (6.72) and (6.74) we use the system
of coordinates defined by the three unit vectors ê�, ê↔ and n̂, as shown in Fig. 6.5.
After a bit of algebra we arrive at

Q(n̂)± iU (n̂) ∼ −
∫

dΩ(θ ′, ϕ′) f (θ ′, ϕ′; n̂) sin2 θ ′e±2iϕ′, (6.76)
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Fig. 6.5 A photon with
momentum k is scattered by
a nonrelativistic electron
located at the origin. The
frame vectors n̂, ê↔ and ê�
are the ones shown in the left
panel of Fig. 6.4 n̂

e

e
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where the dependence on the unit vector k̂ is indicated by its polar coordinates
(ϕ′, θ ′).

There is something very interesting about this expression. The functional depen-
dence on k̂ of the term multiplying f (k̂, n̂) is that of the spherical harmonics

Y±2
2 (θ ′, ϕ′) = 3

√
5

96π
sin2 θ ′e±2iϕ′ . (6.77)

Thus, the only way to make the integral (6.76) nonzero is that the distribution function
f (k̂, n̂) contains a quadrupole anisotropy. In other words, what we have concluded is
that the measurement of the polarization of the CMB gives direct information about
the quadrupole component of the distribution function of photons at decoupling!

The distinction between Q(n̂) and U (n̂) is rather arbitrary, since one parameter
can be transformed into the other by an appropriate rotation along n̂. In fact, under
such a rotation of angle φ the complex combinations of the two Stokes parameters
in Eq. (6.76) transform as

Q(n̂)± iU (n̂) −→ e∓2iφ [Q(n̂)± iU (n̂)
]
. (6.78)

Now, Q(n̂)± iU (n̂) defines two complex functions on the two–dimensional sphere
whose points are labelled by the unit vector n̂. Eq. (6.78) defines a local SO(2)
rotations in the sphere under which Q(n̂)± iU (n̂) transform as quantities with spin
±2.Were they scalars, we could expand them using the ordinary spherical harmonics
Y m
� (n̂).Due however to their nontrivial transformation properties, the expansion has

to be made in terms of a basis of eigenfunctions of the Laplace operators on the sphere
S2 with the appropriate transformations under SO(2) local rotations. The sought for
basis of functions are generalizations of the standard spherical harmonics called the
spin–weighted spherical harmonics of spin ±2, denoted by ±2Y m

� (n̂). Here we will
not elaborate on their properties (see [2] for details). For us it is enough to know that
they can be used to write the expansion
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Q(n̂)± iU (n̂) = −
∞∑
�=0

�∑
m=−�

(E�m ± i B�m)±2 Y m
� (n̂). (6.79)

The coefficients E�m and B�m define the E- and B-mode of the CMB polarization .
As with the temperature fluctuations, the CMB polarization can be handled as

random variables whose probability distributions are characterized, among other
quantities, by the correlation functions

〈E∗�m E�′m′ 〉 = C E E
� δ��′δmm′, 〈B∗�m B�′m′ 〉 = C B B

� δ��′δmm′ . (6.80)

C E E
� and C B B

� can be computed from different theoretical models of the early
universe and compared with the direct measurements of the CMB polarization.
Although the E-mode has been measured by WMAP, the detection of the B-mode
remains one of the big observational challenges in CMB physics. This is an important
issue: among other possible sources, a nonvanishing B-mode would be produced by
primordial gravitational waves, a generic prediction of inflation.
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Chapter 7
Symmetries I: Continuous Symmetries

The concept of symmetry is paramount in modern Physics. In this chapter we are
going to deal with the implementation of symmetries in quantum field theory. After
reviewing the relation between continuous symmetries and conservations laws, we
study how symmetries are realized quantum mechanically and in which way different
realizations reflect in the spectrum of the theory. Our aim is to describe the concept
of spontaneous symmetry breaking, which is crucial to our current understanding of
how particle masses emerge in the standard model. A number of subtleties in how
and when spontaneous symmetry breaking can occur are described towards the end
of the chapter. The focus of the present chapter centers on continuous symmetries.
The physics of discrete symmetries will be taken up in Chap. 11.

7.1 Noether’s Theorem

In classical mechanics and classical field theory there is a basic result relating symme-
tries and conserved charges. This is called Noether’s theorem and states that for each
continuous symmetry of the system there is a conserved current. In its simplest
version in classical mechanics it is easy to prove. Let us consider a system whose
action S[qi ] is invariant under a transformation qi (t) → q ′i (t, ε) labelled by a
continuous parameter ε. This means that, without using the equations of motion,
the Lagrangian changes at most by a total time derivative

L(q ′, q̇ ′) = L(q, q̇)+ d

dt
f (q, ε), (7.1)

where f (q, ε) is a function of the coordinates. If ε � 1 we can consider an infin-
itesimal variation of the coordinates δεqi (t) and the transformation (7.1) of the
Lagrangian implies
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d

dt
f (q, δε) = δεL(qi , q̇i ) = ∂L

∂qi
δεqi + ∂L

∂q̇i
δεq̇i

=
[
∂L

∂qi
− d

dt

∂L

∂ q̇i

]
δεqi + d

dt

(
∂L

∂ q̇i
δεqi

)
, (7.2)

When δεqi is applied on a solution to the equations of motion, the term inside the
square brackets vanishes and we conclude that there is a conserved quantity

Q̇ = 0 with Q ≡ ∂L

∂q̇i
δεqi − f (q, δε). (7.3)

Notice that in this derivation it is crucial that the symmetry depends on a continuous
parameter since otherwise the infinitesimal variation of the Lagrangian in Eq. (7.2)
does not make sense.

In classical field theory a similar result holds. Let us consider for simplicity a
theory of a single field φ(x).We say that the variation δεφ depending on a continuous
parameter ε is a symmetry of the theory if, again without using the equations of
motion, the Lagrangian density changes by

δεL = ∂μKμ. (7.4)

If this happens, the action remains invariant and so do the equations of motion.
Working out now the variation of L under δεφ we find

δεL = ∂L

∂(∂μφ)
∂μδεφ + ∂L

∂φ
δεφ

= ∂μ
(

∂L

∂(∂μφ)
δεφ

)
+

[
∂L

∂φ
− ∂μ

(
∂L

∂(∂μφ)

)]
δεφ

= ∂μKμ. (7.5)

If φ(x) is a solution to the equations of motion, the last term in the second line
disappears, and we find a conserved current

∂μ Jμ = 0 with Jμ = ∂L

∂(∂μφ)
δεφ − Kμ. (7.6)

A conserved current implies the existence of a charge

Q ≡
∫

d3x J 0(t, x) (7.7)

which is conserved

d Q

dt
=

∫
d3x∂0 J 0(t, x) = −

∫
d3x∂i J i (t, x) = 0, (7.8)
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provided the fields vanish at infinity fast enough. Moreover, the conserved charge
Q is a Lorentz scalar. After canonical quantization Q is promoted to an operator
generating the symmetry on the fields

δφ = i[φ, Q]. (7.9)

As an example of how Noether’s theorem works, we consider a scalar field
φ(x) with Lagrangian density L . Being φ(x) a scalar, its transformation under
the Poincaré group x → x ′ is φ′(x ′) = φ(x). Performing in particular a space-time
translation xμ

′ = xμ + aμ we have

φ′(x)− φ(x) = −aμ∂μφ + O(a2) =⇒ δφ = −aμ∂μφ. (7.10)

That the theory is invariant under the Poincaré group means that the Lagrangian
density is also a scalar quantity. Thus, it should also transform under translations as

δL = −aμ∂μL . (7.11)

Noether’s theorem implies then the existence of a conserved current. Applying the
previous results we conclude that this is given by

Jμ = − ∂L

∂(∂μφ)
av∂vφ + aμL ≡ −avT μv, (7.12)

where we introduced the energy-momentum tensor

T μv = ∂L

∂(∂μφ)
∂vφ − ημvL . (7.13)

We have found that associated with the invariance of the theory with respect
to space-time translations there are four conserved currents defined by Tμv with
v = 0, . . . , 3, each one associated with the translation along a space-time direction.
These four currents form a rank-two tensor under Lorentz transformations satisfying

∂μTμv = 0. (7.14)

The associated conserved charges are given by

Pv =
∫

d3xT 0v (7.15)

and correspond to the total energy-momentum content of the field configuration.
Therefore the energy density of the field is given by T 00 while T 0i is the momentum
density. In the quantum theory Pμ are the generators of space-time translations.

Another example of a symmetry related with a physically relevant conserved
charge is the global phase invariance of the Dirac Lagrangian (3.36), ψ → eiθψ.
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For small θ this corresponds to the variations δθψ = iθψ , δθψ = −iθψ and using
Noether’s theorem we obtain the conserved current

jμ = ψγμψ, ∂μ jμ = 0. (7.16)

The associated charge is

Q =
∫

d3xψγ 0ψ =
∫

d3xψ†ψ. (7.17)

In physics there are several instances of global U(1) symmetries acting as phase
shifts on spinors. This is the case, for example, of the baryon and lepton number
symmetries in the standard model. A more familiar case is the U(1) local symmetry
associated with electromagnetism. Although this is a local symmetry, θ → qε(x),
the Lagrangian is invariant also under global transformations with ε(x) constant
and there is a conserved current jμ = qψγμψ. In Eq. (4.40) we learned how
spinors in QED are coupled to the photon field precisely through this current. Its
time component is the electric charge density ρ, while the spatial components make
the current density vector j.

The previous analysis can be extended also to nonabelian unitary global symme-
tries acting on N species of fermions as

ψi −→ Ui jψ j , (7.18)

where Ui j is a N × N unitary matrix, U†U = UU† = 1. This transformation leaves
invariant the Lagrangian

L = iψ j /∂ψ j − mψ jψ j , (7.19)

where we sum over repeated indices. If we write the matrix U in terms of the N 2

hermitian group generators T A of U(N) as

U = exp
(

iαAT A
)
, (T A)† = T A, (7.20)

the conserved currents are found to be

jμA = ψ i T
A

i j γ
μψ j , ∂μ jμ = 0. (7.21)

with N 2 conserved charges

Q A =
∫

d3xψ†
i T A

i j ψ j (7.22)

The group U(N) of N × N unitary matrices admits the decomposition U(N) =
U (1)× SU(N ). The U(1) factor corresponds to the element U = eiα0

1 multiplying
all spinor fields by the same phase. The corresponding charge
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Q0 =
∫

d3xψ†
i ψi (7.23)

measures, in the quantum theory, the number of fermions minus the number of
antifermions. It commutes with the other N2−1 charges associated with the nontrivial
SU(N) part of the global symmetry group.

As an example of these internal unitary symmetries, we mention the approximate
flavor symmetries in hadron physics. Ignoring charge and mass differences, the QCD
Lagrangian is invariant under the following unitary symmetry acting on the quarks
u and d (

u
d

)
−→ M

(
u
d

)
, (7.24)

where M ∈ U(2) = U(1)B × SU(2). The U(1)B factor corresponds to the baryon
number, whose conserved charge assigns ± 1

3 to quarks and antiquarks respectively.
On the other hand, the SU(2) part mixes the u and d quarks. Since the proton is a
bound state of two quarks u and one quark d, while the neutron is made out of one
quark u and two quarks d, this symmetry reduces at low energies to the well-known
isospin transformations of nuclear physics mixing protons and neutrons.

7.2 Quantum Mechanical Realizations of Symmetries

In a quantum theory physical symmetries are maps in the Hilbert space of the theory
preserving the probability amplitudes. In more precise terms, a symmetry is a one-
to-one transformation that, acting on two arbitrary states |α〉, |β〉 ∈H

|α〉 −→ |α′〉, |β〉 −→ |β ′〉, (7.25)

satisfies

|〈α|β〉| = |〈α′|β ′〉|. (7.26)

Wigner’s theorem states that these transformations are implemented by operators
that are either unitary or antiunitary. Unitary operators are well-known objects from
any quantum mechanics course. They are linear operators U satisfying1

〈U α|U β〉 = 〈α|β〉, (7.27)

for any two states in the Hilbert space. In addition, the transformation of an operator
O under U is

O −→ O ′ = U OU −1, (7.28)

from where it follows that 〈α|O|β〉 = 〈α′|O ′|β ′〉.

1 Here we use the notation |U α〉 ≡ U |α〉 and 〈U α| ≡ 〈α|U †.
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Antiunitary operators, on the other hand, have the property

〈U α|U β〉 = 〈α|β〉∗ (7.29)

and are antilinear, i.e.

U (a|α〉 + b|β〉) = a∗|U α〉 + b∗|U β〉, a, b ∈ C. (7.30)

To find the transformation of operator matrix elements under an antiunitary transfor-
mation we compute

〈α|O|β〉 = 〈O†α|β〉 = 〈U β|U O†α〉. (7.31)

Writing now |U O†α〉 = U O†|α〉 and inserting the identity we arrive at the final
result

〈α|O|β〉 = 〈β ′|U O†U −1|α′〉. (7.32)

Continuous symmetries are implemented only by unitary operators. This is
because they are continuously connected with the identity, which is a unitary oper-
ator. Discrete symmetries, on the other hand, can be implemented by either unitary
or antiunitary operators. An example of the latter is time reversal, that we will study
in detail in Chap. 11.

In the previous section we have seen that in canonical quantization the conserved
charges Qa associated with a continuous symmetry by Noether’s theorem are opera-
tors generating the infinitesimal transformations of the quantum fields. The conserva-
tion of the classical charges {Qa, H}PB = 0 implies that the operators Qa commute
with the Hamiltonian

[Qa, H ] = 0. (7.33)

The symmetry group generated by the operators Qa is implemented in the Hilbert
space of the theory by a set of unitary operators U (α), where αa (with a =
1, . . . , dim g) labels the transformation.2 That the group is generated by the conserved
charges means that in a neighborhood of the identity, the operators U (α) can be
written as

U (α) = eiαa Qa
. (7.34)

A symmetry group can be realized in the quantum theory in two different ways,
depending on how its elements act on the ground state of the theory. Implementing
it in one way or the other has important consequences for the spectrum of the theory,
as we now learn.

2 A quick survey of group theory can be found in Appendix B.
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Wigner–Weyl Realization

In this case the ground state of the theory |0〉 is invariant under all the elements of
the symmetry group U (α)|0〉 = |0〉. Equation (7.34) implies that the vacuum is
annihilated by them

Qa|0〉 = 0. (7.35)

The field operators of the quantum theory have to transform according to some
irreducible representation of the symmetry group. It is easy to see that the finite form
of the infinitesimal transformation (7.9) is given by

U (α)φiU (α)−1 = Ui j (α)φ j , (7.36)

where the matrices Ui j (α) form the group representation in which the field φi trans-
forms. If we consider now the quantum state associated with the operator φi

|i〉 = φi |0〉 (7.37)

we find that, due to the invariance of the vacuum (7.35), the states |i〉 have to transform
in the same representation as φi

U (α)|i〉 = U (α)φiU (α)−1U (α)|0〉 = Ui j (α)φ j |0〉 = Ui j (α)| j〉. (7.38)

Therefore the spectrum of the theory is classified in multiplets of the symmetry group.
Any two states within a multiplet can be “rotated” into one another by a symmetry

transformation. Now, since [H,U (α)] = 0 the conclusion is that all states in the
same multiplet have the same energy. If we consider one-particle states, then going
to the rest frame we see how all states in the same multiplet have exactly the same
mass.

Nambu–Goldstone Realization

In our previous discussion we have seen how the invariance of the ground state of a
theory under a symmetry group has as a consequence that the spectrum splits into
multiplets transforming under irreducible representations of the symmetry group.
This shows in degeneracies in the mass spectrum.

The condition (7.35) is not mandatory and can be relaxed by considering theories
where the vacuum state is not preserved by the symmetry

eiαa Qa |0〉 �= |0〉 =⇒ Qa |0〉 �= 0. (7.39)

The symmetry is said to be spontaneously broken by the vacuum.
To illustrate the consequences of (7.39) we consider the example of a number of

scalar fields ϕi (i = 1, . . . , N ) whose dynamics is governed by the Lagrangian
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L = 1

2
∂μϕ

i∂μϕi − V (ϕi ), (7.40)

where we assume that V(x) is bounded from below and depends on the fields through
the combination ϕiϕi . The theory is invariant under the transformations

δϕi = εa(T a)ijϕ
j , (7.41)

with T a , a = 1, . . . , 1
2 N (N − 1) the generators of the group SO(N).

To analyze the structure of vacua in this theory we construct its Hamiltonian

H [π i , ϕi ] =
∫

d3x

[
1

2
π iπ i + 1

2
∇ϕi · ∇ϕi + V (ϕi )

]
(7.42)

and look for the minimum of the potential energy functional, given by

V [ϕi ] =
∫

d3x

[
1

2
∇ϕi · ∇ϕi + V (ϕi )

]
. (7.43)

We want the vacuum to preserve translational invariance, so we will be looking for
field configurations satisfying ∇ϕ = 0. This means that the vacua of the potential
V [ϕi ] coincides with those of V (ϕi ). The corresponding values of the scalar fields
ϕi we denote by3

〈ϕi 〉 : V (〈ϕi 〉) = 0,
∂V

∂ϕi

∣∣∣∣
ϕi=〈ϕi 〉

= 0. (7.44)

Let us divide now the generators T a of SO(N) into two groups: the first set consists
of Hα (α = 1, . . . , h) satisfying

(Hα)ij 〈ϕ j 〉 = 0. (7.45)

Thus, the vacuum configuration 〈ϕi 〉 is left invariant by the group transformations
generated by Hα. For this reason they are called unbroken generators. Notice that
the commutator of two unbroken generators also annihilates the vacuum expectation
value, [Hα, Hβ ]i j 〈ϕ j 〉 = 0. They form a subalgebra of the algebra of the generators
of SO(N). The subgroup they generate preserves the vacuum and hence it is realized à
la Wigner–Weyl. This means in particular that the spectrum is classified in multiplets
with respect to this unbroken subgroup.

The remaining generators we denote by K A, with A = 1, . . . , 1
2 N (N − 1)− h,

and by definition they satisfy

(K A)ij 〈ϕ j 〉 �= 0. (7.46)

These are called the broken generators. They generate group transformations that
do not preserve the vacuum expectation value of the field. Next we prove a very

3 For simplicity we consider that the minima of V(x) occur at V = 0.
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important result concerning these broken generators known as Goldstone’s theorem:
for each generator broken by the vacuum there is a massless excitation in the theory.

The mass matrix of the field excitations around the vacuum 〈ϕi 〉 is determined by
the quadratic part of the potential. Since we have assumed that V (〈ϕi 〉) = 0 and we
are expanding around a minimum, the leading term in the expansion of the potential
around the vacuum expectation values is given by

V (ϕiϕi ) = ∂2V

∂ϕi∂ϕ j

∣∣∣∣
ϕ=〈ϕ〉

(ϕi − 〈ϕi 〉)(ϕ j − 〈ϕ j 〉)+ O
[
(ϕ − 〈ϕ〉)3

]
(7.47)

and the mass matrix is

M2
i j ≡

∂2V

∂ϕi∂ϕ j

∣∣∣∣
ϕ=〈ϕ〉

. (7.48)

In order to avoid a cumbersome notation, we do not indicate explicitly the dependence
of the mass matrix on 〈ϕi 〉.

To extract information about the possible zero modes of M2
i j , we write down

the conditions that follow from the invariance of the potential V (ϕi ) under the field
transformations δϕi = εa(T a)ijϕ

j . At first order in εa

δV (ϕ) = εa ∂V

∂ϕi
(T a)ijϕ

j = 0. (7.49)

Differentiating this expression with respect to ϕk we arrive at

∂2V

∂ϕi∂ϕk
(T a)ijϕ

j + ∂V

∂ϕi
(T a)ik = 0. (7.50)

We evaluate this expression in the vacuum ϕi = 〈ϕi 〉. The derivative in the second
term cancels while the second derivative in the first one gives the mass matrix. Hence
we have found

M2
ik(T

a)ij 〈ϕ j 〉 = 0. (7.51)

Now we can write this expression for both broken and unbroken generators. For the
unbroken ones, since (Hα)ij 〈ϕ j 〉 = 0, we find a trivial identity 0 = 0. Things are
more interesting for the broken generators, for which we have

M2
ik(K

A)ij 〈ϕ j 〉 = 0. (7.52)

Since (K A)ij 〈ϕ j 〉 �= 0 this equation implies that the mass matrix has as many zero
modes as broken generators. Therefore we have proven Goldstone’s theorem: associ-
ated with each broken symmetry there is a massless mode in the theory. These modes
are known in the literature as Nambu–Goldstone modes. Here we have presented a
classical proof of the theorem. In the quantum theory the proof follows the same
lines as the one presented here but one has to consider the effective action containing
the effects of the quantum corrections to the classical Lagrangian.
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7.3 Some Applications of Goldstone’s Theorem

To illustrate Goldstone’s theorem we consider a three-component real scalar field
Φ = (ϕ1, ϕ2, ϕ3) with the SO(3)-invariant “mexican hat” potential

V (Φ) = λ

4

(
Φ2 − a2

)2
. (7.53)

The vacua of the theory are the field configurations satisfying the condition 〈Φ〉2= a2.

In field space this equation describes a two-dimensional sphere and each vacuum
is represented by a point in that sphere. It is easy to visualize geometrically how
choosing one of these vacua results in symmetry breaking: while the whole sphere is
invariant under the global SO(3) symmetry, each vacuum (i.e. each point) is preserved
only by the SO(2) rotations around the axis of the sphere that passes through that
point. Hence, the vacuum expectation value of the scalar field breaks the symmetry
according to

〈Φ〉 : SO(3) −→ SO(2). (7.54)

The symmetry group SO(3) has three generators while the symmetry of the
vacuum SO(2) has only one. This means that the vacuum breaks two generators
and using the Goldstone theorem we conclude that the system should have two
massless Nambu–Goldstone bosons. These are easy to identify heuristically because
they correspond to excitations along the surface of the sphere 〈Φ〉2 = a2. That they
are indeed massless follows from the fact that the potential (7.53) is flat along the
directions of these excitations.

Once a minimum of the potential has been chosen, we can proceed to quantize
the excitations around it. Since the vacuum only leaves invariant a SO(2) subgroup
of the original SO(3) global symmetry group, it seems that in expanding around
a particular vacuum expectation value of the scalar field we have lost part of the
symmetry of the Lagrangian. This is however not the case. The full quantum theory
is indeed symmetric under the whole SO(3). This is reflected in the fact that the
physical properties of the theory do not depend on the particular point of the sphere
〈Φ〉2 = a2 that we have chosen for our vacuum. In fact, different vacua are related
by the full SO(3) symmetry and therefore should give the same physics.

A very important point to keep in mind is that once the system described by the
theory chooses a vacuum determined by a value of 〈Φ〉, all other possible vacua
of the theory are inaccessible in the infinite volume limit. This means that any two
vacuum states |01〉, |02〉 corresponding to different vacuum expectation values of the
scalar field are orthogonal 〈01|02〉 = 0 and, moreover, cannot be connected by any
local observable O(x), 〈01|O(x)|02〉 = 0. Heuristically, this can be understood by
thinking that in the infinite volume limit switching from one vacuum into another
requires changing the vacuum expectation value of the field everywhere in space at
the same time, something that cannot be done by any local operator of the theory.
Notice that this is radically different from our expectations based on the quantum
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mechanics of a system with a finite number of degrees of freedom where symmetries
do not break spontaneously, i.e. the ground state is always symmetrical.

Let us make these arguments a bit more explicit since they are very important
in understanding how symmetry breaking works. Consider a relatively simple system:
a set of spin- 1

2 magnets, the Heisenberg ferromagnet model, with nearest neigh-
bors interactions. Space is replaced by a lattice with spacing a and lattice vectors
x = (n1a, n2a, n3a). At each lattice site x there is a spin- 1

2 degree of freedom

s =
(

1

2
σ1,

1

2
σ2,

1

2
σ3

)
, (7.55)

with σi the Pauli matrices. The Heisenberg Hamiltonian is defined by

H = −J
∑
〈x,x′〉

s(x) · s(x′) with J > 0, (7.56)

where the symbol 〈x, x′〉 indicates that we are summing over nearest neighbors on
the lattice.

At each lattice site we have a two-dimensional Hilbert space whose basis we can
take to be the two s3(x) eigenstates {|x;↑〉, |x;↓〉}. The state corresponding to the
spin at the site x being aligned along the direction r̂

r̂ · s(x)|x; r̂〉 = 1

2
|x; r̂〉, (7.57)

can be written in this basis as

|x; r̂〉 = cos

(
θ

2

)
|x;↑〉 + eiφ sin

(
θ

2

)
|x;↓〉, (7.58)

where θ and φ are the polar an azimuthal angle associated with the unit vector r̂.
Using rotational invariance it is an easy exercise to show that

〈x; r̂|x; r̂′〉 = cos
(α

2

)
, (7.59)

where α is the angle between the unit vectors r̂ and r̂′, i.e. r̂ · r̂′ = cosα.
We can construct now the ground states of the Hamiltonian (7.56). They corre-

spond to states where all spins in the ferromagnet are aligned along the same direction,
that we indicate by the unit vector r̂. Thus we write

|r̂〉 =
⊗

x

|x; r̂〉, (7.60)

From this result we conclude that the overlap between two ground states characterized
by unit vectors r̂ and r̂′ is given by

〈r̂|r̂〉 =
[
cos

(α
2

)]N
(7.61)
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where N = V a−3 is the number of lattice sites, with V the spatial volume.
It is clear that unless the directions r̂, r̂′ are parallel, the scalar product vanishes

in the infinite volume limit. Hence we can build disconnected Hilbert spaces for
each different direction r̂. If the spatial volume is finite, the scalar product is non-
vanishing and the ground states associated to different directions will mix, so that
the lowest ground state will preserve the symmetry. It is only in the limit V →∞,
when the states are orthogonal, that we obtain spontaneous symmetry breaking. It is
clear that if the volume is finite but large, the mixing of the different ground states
is very highly suppressed, so that for many practical purposes we can approximate
this finite volume theory by the theory with Goldstone bosons.

A similar argument can be carried out in field theory. The simplest theory with a
Nambu–Goldstone boson is a free real massless scalar with Lagrangian

L = 1

2
∂μϕ∂

μϕ. (7.62)

It is invariant under shifts of the field by a real constant, ϕ(x) → ϕ(x) + α, with
α ∈ R. This symmetry has an associated Noether current given by jμ = ∂μϕ,whose
conservation can be checked by applying the equations of motion. The vacuum of the
theory is not invariant under the symmetry. Indeed, when we quantize the theory by
expanding about some particular constant value of the field ϕ(x) = ϕ0 the symmetry
is broken, and the massless particle created by ϕ(x) is the associated Goldstone
boson.

In fact, at low energies all Nambu–Goldstone bosons are well represented by
this approximation. Consider for instance a scalar doublet Φ = (ϕ1, ϕ2) with a
“Mexican hat” potential of the type (7.53). The vacuum breaks the global SO(2)
symmetry completely. We parametrize the fields ϕ1(x) and ϕ2(x) in terms of a single
complex scalar field

ζ(x) = 1√
2

[ϕ1(x)+ iϕ2(x)] ≡ 1√
2

[a + h(x)] eiθ(x). (7.63)

The field θ(x) is the Nambu–Goldstone boson. Using this parametrization, the action
can be written as

L = 1

2
∂μΦ · ∂μΦ − λ

4

(
Φ2 − a2

)2

= ∂μζ ∗∂μζ − λ
(
|ζ |2 − a2

2

)2

= a2

2
∂μθ∂

μθ + · · · , (7.64)

where the dots stand for the other terms involving the field h(x) and its couplings to
the Nambu–Goldstone boson θ(x). If we do not excite the h(x) field, the Lagrangian
for θ(x) is at leading order of the form (7.62). This shows that, although we consider
a simplified example, the analysis can be extended to more general situations.

We wish to study the quantization of (7.62) in a spatial box of side L and periodic
boundary conditions. A complete set of properly normalized plane waves solutions
to the field equation ∂μ∂μϕ(x) = 0 is provided by
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ϕk(t, x) = 1√
V

e−i |k|t+ik·x, k = 2π

L
n (7.65)

where n = (n1, n2, n3), with ni ∈ Z, and V = L3. Their completeness relation
reads

δ(x1 − x2) =
∑

k

ϕk(t, x1)ϕk(t, x2)
∗ = 1

V
+ 1

V

∑
k �=0

eik·(x1−x2), (7.66)

where we have extracted explicitly the zero mode k = 0.
There is a very important difference between the quantization of this massless

scalar field in a spatial box and the one we carried out in Chap. 2 for a free scalar
field in R

3. This difference lies in the treatment of the zero mode that in finite volume
is a normalizable state that has to be quantized independently. In our case the most
general position-independent solution to the equation of motion compatible with the
periodic boundary conditions is linear in time. Taking this into account, we write the
following mode expansion

ϕ(t, x) = ϕ0 + π0t +
∑
k �=0

1√
2V |k|

[
α(k)e−i |k|t+ik·x + α†(k)ei |k|t−ik·x]. (7.67)

Imposing the canonical equal-time commutation relations

[ϕ(t, x1), ϕ̇(t, x2)] = iδ(x1 − x2) = i

V
+ i

V

∑
k �=0

eik·(x1−x2) (7.68)

yields the standard canonical commutation relations for creation-annihilation oper-
ators α(k), α†(k), as well as the commutation relations for ϕ0 and π0

[ϕ0, π0] = i

V
. (7.69)

After a little work, we find a simple form for the normal-ordered Hamiltonian

:H:= V

2
π2

0 +
∑
k �=0

|k|α†(k)α(k). (7.70)

Since we are interested in states where ϕ(x) acquires an expectation value, we
follow by analogy the treatment of coherent states in elementary quantum mechanics.
Let us introduce the operators a and a† associated to the zero modes

a = 1√
2

(
ϕ0 + iV

1
3π0

)
, a† = 1√

2

(
ϕ0 − iV

1
3π0

)
, (7.71)

that satisfy

[a, a†] = V−
2
3 . (7.72)
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The conserved charge associated with the Noether current jμ = ∂μϕ has the simple
form

Q =
∫

d3x∂0ϕ = Vπ0 = V
2
3

i
√

2

(
a − a†

)
. (7.73)

This charge generates constants shifts in the value of the field, namely

e−iξQϕ(x)eiξQ = ϕ(x)+ ξ, (7.74)

for any real ξ.
We consider a ground state |0〉 defined by a|0〉 = 0, α(k)|0〉 = 0, for all k �= 0.

It can be immediately shown that the field (7.67) has zero expectation value in this
vacuum, 〈0|ϕ(x)|0〉 = 0. For every real ξ we define the state

|ξ 〉 ∼ eiξQ |0〉 = e
− 1√

2
ξV

2
3 (a†−a)|0〉. (7.75)

Using the properties of the creation-annihilation operators a, a† we can compute the
overlap

〈0|ξ 〉 = e−
1
4 ξ

2V
2
3 〈0|0〉. (7.76)

This vanishes exponentially as V →∞, as we found for the Heisenberg Hamiltonian.
This shows once again that, strictly speaking, Goldstone bosons only appear in the
infinite volume limit.

To be fair we must say that we have been a bit sloppy with the argument. In
the cases considered so far, the field ϕ(x) is itself an angle. Hence we should also
impose the condition that in field space ϕ(x) ∼ ϕ(x) + 2π , that means that the π0
is not actually a momentum but an angular momentum variable. This complicates
the argument technically, but does not change the conclusion: the overlap 〈0|ξ 〉 still
vanishes exponentially in the infinite volume limit.

We close this discussion with a further comment. The argument presented works
in space-times of dimension higher than two. In two-dimensions, space is a line and
a number of specific subtleties appear. The conclusion is that in two-dimensions
there are no Goldstone bosons. The quantum fluctuations always restore the original
symmetry. This theorem appeared first in statistical mechanics, where it is known as
the Mermin–Wagner theorem [1, 2]. Its field-theoretical version (Coleman theorem)
was proved in [3].

A typical example of a Goldstone boson in high energy physics are the pions,
associated with the spontaneous breaking of the global chiral isospin SU(2)L ×
SU(2)R symmetry and that we will study in some detail in Chap. 9. This symmetry
acts independently in the left- and right-handed u and d quark spinors as

(
uL ,R

dL ,R

)
−→ ML ,R

(
uL ,R

dL ,R

)
, ML ,R ∈ SU(2)L ,R (7.77)
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Since quarks are confined at low energies, this symmetry is expected to be sponta-
neously broken by a nonvanishing vacuum expectation value of quark bilinears of
the type 〈u RuL〉 �= 0.

This breaking of the global SU(2)L × SU(2)R symmetry to the diagonal SU(2)
acting in the same way on the two chiralities has three Nambu–Goldstone modes
which are identified with the pions (see Sect. 9.3). This identification, however,
might seem a bit puzzling at first sight, because pions are massive contrary to what
is expected of a Goldstone boson. The solution to this apparent riddle is that the
SU(2)L × SU(2)R would be an exact global symmetry of the QCD Lagrangian only
in the limit when the masses of the quarks are zero mu,md → 0. As these quarks
have nonzero masses, the chiral symmetry is only approximate and as a consequence
the corresponding Goldstone bosons are not strictly massless. That is why pions have
masses, although they are the lightest particles among the hadrons.

The phenomenon of spontaneous symmetry breaking is not confined to high
energy physics, but appears also frequently in condensed matter physics [4]. For
example, when a solid crystallizes from a liquid the translational invariance that is
present in the liquid phase is broken to a discrete group of translations that represent
the crystal lattice. This symmetry breaking has associated Goldstone bosons that are
identified with acoustic phonons, which are the quantum excitation modes of the
vibrational degrees of freedom of the lattice.

7.4 The Brout–Englert–Higgs Mechanism

Gauge symmetry seems to prevent a vector field from having a mass. This is obvious
once we realize that a term in the Lagrangian like m2 AμAμ is incompatible with
gauge invariance.

Certain physical situations, however, seem to require massive vector fields. This
became evident during the 1960s in the study of weak interactions. The Glashow
model gave a common description of both the electromagnetic and weak forces
based on a gauge theory with group SU(2)×U(1)Y .However, in order to reproduce
Fermi’s four-fermion theory of the β-decay, it was necessary that three of the vector
fields involved were massive. Also in condensed matter physics massive vector fields
are required to describe certain systems, most notably in superconductivity.

The way out to this situation was found independently by Brout and Englert [5]
and by Higgs [6, 7] using the concept of spontaneous symmetry breaking discussed
above4: if the consistency of the quantum theory requires gauge invariance, this can
also be realized à la Nambu–Goldstone. When this happens the full gauge symmetry
is not explicitly present in the effective action constructed around the particular
vacuum chosen for the theory. This makes possible the existence of mass terms for
gauge fields without jeopardizing the consistency of the full theory, which is still
invariant under the whole gauge group.

4 In condensed matter the idea had been previously considered by Anderson [8].
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To illustrate the Brout–Englert–Higgs mechanism we study the simplest example,
the Abelian Higgs model: a U(1) gauge field coupled to a self-interacting charged
complex scalar field ϕ with Lagrangian

L = −1

4
Fμv Fμv + (Dμϕ)†(Dμϕ)− λ

4

(
ϕ†ϕ − v2

2

)2

, (7.78)

where the covariant derivative is given in Eq. (4.36). This theory is invariant under
the gauge transformations

ϕ −→ eiα(x)ϕ, Aμ −→ Aμ + ∂μα(x). (7.79)

The minimum of the potential is defined by the equation |ϕ| = v√
2
. Thus, there is a

continuum of different vacua labelled by the phase of the scalar field. None of these
vacua, however, is invariant under the gauge symmetry

〈ϕ〉 = v√
2

eiϑ0 −→ v√
2

eiϑ0+iα(x) (7.80)

and therefore the symmetry is spontaneously broken.
Let us study now the theory around one of these vacua, for example 〈ϕ〉 = v√

2
,

by writing the field ϕ in terms of the excitations around this particular vacuum

ϕ(x) = 1√
2

[v + σ(x)] eiϑ(x). (7.81)

The whole Lagrangian is still gauge invariant under (7.79), independently of which
vacuum we have chosen. This means that we are at liberty of performing a gauge
transformation with parameter α(x) = −ϑ(x) in order to get rid of the phase in Eq.
(7.81). Substituting then ϕ(x) = 1√

2
[v + σ(x)] in Eq. (7.78) we find

L =− 1

4
Fμv Fμv + 1

2
e2v2 AμAμ + 1

2
∂μσ∂

μσ − 1

4
λv2σ 2

− 1√
2
λvσ 3 − λ

4
σ 4 + 1√

2
e2vAμAμσ + e2 AμAμσ 2. (7.82)

We ask now about the excitation of the theory around the vacuum 〈ϕ〉 = v/
√

2.
There is a real scalar fieldσ(x)with mass squared 1

2λv2.What makes the construction
interesting is that the gauge field Aμ has acquired a mass given by

m2
γ = e2v2. (7.83)

What is really remarkable about this way of giving a mass to the photon is that at no
point we have given up gauge invariance. The symmetry is only hidden. Therefore in
quantizing the theory we can still enjoy all the advantages of having a gauge theory,
while at the same time we have managed to generate a mass for the gauge field.
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It might look surprising that in the Lagrangian (7.82) we did not find any massless
mode. Since the vacuum chosen by the scalar field breaks the single generator of U(1),
we would have expected from Goldstone’s theorem to have one massless particle. To
understand the fate of the missing Goldstone boson we have to revisit the calculation
leading to the Lagrangian (7.82). Were we dealing with a global U(1) theory, the
Goldstone boson would correspond to excitations of the scalar field along the valley of
the potential associated with the phase ϑ(x). In writing the Lagrangian we managed
to get rid of ϑ(x) using a gauge transformation. With this we shifted the Goldstone
mode into the gauge field Aμ. In fact, by identifying the gauge parameter with the
Goldstone excitation we have completely fixed the gauge and the Lagrangian (7.82)
does not have any residual gauge symmetry.

A massive vector field has three polarizations: two transverse ones k·ε(k,±1) = 0
with helicities λ = ±1 plus a longitudinal one εL(k) ∼ k. In gauging away the mass-
less Goldstone boson ϑ(x) we have transformed it into the longitudinal polarization
of the massive vector field. In the literature this is usually expressed by saying that
the Goldstone mode is “eaten up” by the longitudinal component of the gauge field.
One should not forget that, in spite of the fact that the Lagrangian (7.82) looks quite
different from the one we started with, we have not lost any degrees of freedom.
We started with two polarizations of the photon plus the two degrees of freedom
associated with the real and imaginary components of the complex scalar field ϕ(x).
After symmetry breaking we ended up with the three polarizations for the massive
vector field, plus the degree of freedom represented by the real scalar field σ(x).

We can understand the Brout–Englert–Higgs mechanism in the light of our general
discussion of gauge symmetry in Chap. 4 (see Sect. 4.7). Remember that there we had
considered the set G of all gauge transformations g(x) ∈ G approaching the identity
at infinity and the subset G0 ⊂ G formed by those contractible to the identity. These
latter are the ones generated by Gauss’ law, [(D · E)A − ρA]|phys〉 = 0 where ρa

represents the matter contribution.
The set of all gauge transformations also contains elements g(x) approaching any

other element of G as |x| → ∞. This differs from G by a copy of the gauge group G at
infinity. This is identified as the group of global transformations associated with the
existence of conserved charges via Noether’s theorem. When the gauge symmetry is
spontaneously broken, the invariance of the theory under G is nevertheless preserved,
while the invariance under global transformations (i.e. the copy of G at infinity) is
broken. Notice that this in no way poses a threat to the consistency of the theory
since properties like the decoupling of unphysical states are guaranteed by the fact
that Gauss’ law is satisfied quantum mechanically. This follows from the invariance
under G0.

In Chap. 10 we will explain why the Abelian Higgs model discussed here can
be regarded as a toy model of the Brout–Englert–Higgs mechanism responsible for
giving masses to the W± and Z0 gauge bosons in the standard model. In condensed
matter physics the symmetry breaking described by the nonrelativistic version of the
Abelian Higgs model can be used to characterize the onset of a superconducting phase
in the Ginzburg–Landau and BCS (Bardeen–Cooper–Schrieffer) theories, where the
complex scalar fieldΦ is associated with the Cooper pairs. In this case the parameter
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v2 depends on the temperature. Above the critical temperature Tc, v2(T ) > 0 and
there is only a symmetric vacuum 〈Φ〉 = 0. When T < Tc then v2(T ) < 0 and
symmetry breaking takes place. The onset of a nonzero mass for the photon (7.83)
below the critical temperature explains the Meissner effect: the magnetic fields cannot
penetrate inside superconductors beyond a distance of order 1/mγ (see for example
[9] for a review on the subject).
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Chapter 8
Renormalization

The computation of quantum corrections to observables in quantum field theory
requires making sense of expressions that are formally divergent. In this chapter we
are going to show how this is done systematically. The renormalization program
has nevertheless a much more profound meaning than just taming infinities. Using
concepts borrowed from statistical mechanics we are going to see how the notion
of renormalization is linked to the way physics looks like at different scales. These
ideas will be further developed in Chap. 12.

8.1 Removing Infinities

From its very early stages, quantum field theory was faced with infinities. They
emerged in the calculation of important physical quantities, such as the corrections
to the charge of the electron due to the interactions with the radiation field. The way
these divergences where handled in the 1940s, starting with Kramers, was physically
very much in the spirit of the quantum theory emphasis in observable quantities: the
measured magnitude of a physical quantity, such as the electron mass, results from
adding the quantum corrections to its unobservable “bare” value. The fact that both of
these quantities are divergent is not a problem physically, since only their finite sum
is observable. To make things mathematically consistent, the handling of infinities
requires the introduction of some regularization procedure cutting off the divergent
integrals at some momentum scaleΛ.The physical value of an observable Ophysical is
then given by

Ophysical = lim
Λ→∞ [O(Λ)bare +ΔO(Λ)�] , (8.1)

where ΔO(Λ)� represents the regularized quantum corrections.
To make this qualitative discussion more precise we compute the corrections

to the electric charge in QED. We consider the process of annihilation of an
electron-positron pair to create a muon–antimuon pair e−e+ → μ+μ−. To lowest
order in the electric charge e the only diagram contributing is

L. Álvarez-Gaumé and M. Á. Vázquez-Mozo, An Invitation to Quantum Field Theory, 145
Lecture Notes in Physics 839, DOI: 10.1007/978-3-642-23728-7_8,
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(8.2)

The corrections to order e4 require the calculation of seven more diagrams

(8.3)

In order to compute the renormalization of the charge we consider the first
diagram. We begin by factoring out the propagators associated with the external
photon legs

(8.4)
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where in between brackets we have the amputated diagram whose contribution
defines the photon polarization tensor

(8.5)
Physically, this diagram includes the correction to the propagator due to the polar-
ization of the vacuum, i.e. the creation of virtual electron-positron pairs by the prop-
agating photon. The momentum q is the total momentum of the electron-positron
pair in the intermediate channel. Notice that the one-loop diagram (8.5) is the Fourier
transform of the vacuum expectation value of the time-ordered product of two U(1)
gauge currents, namely

Πμv(q) =
∫

d4xeiq·x 〈0|T [ jμ(x) j v(0)]|0〉. (8.6)

It is instructive to look at the one loop correction to the photon propagator from the
point of view of perturbation theory in nonrelativistic quantum mechanics. In each
vertex the interaction consists of the annihilation (resp. creation) of a photon and the
creation (resp. annihilation) of an electron-positron pair. This can be implemented
by the interaction Hamiltonian

Hint = e
∫

d3xψγμψ Aμ. (8.7)

All fields inside the integral can be expressed in terms of the corresponding creation-
annihilation operators for photons, electrons and positrons. In quantum mechanics,
the change in the wave function to first order in the perturbation Hint is given by

|γ, in〉 = |γ, in 〉0 +
∑

n

〈n|Hint|γ, in 〉0
Ein − En

|n〉 (8.8)

and similarly for |γ, out〉, where we have denoted symbolically by |n〉 all the
possible states of the electron-positron pair. Since these states are orthogonal to
|γ, in 〉0, |γ, out 〉0, we find to order e2

〈γ, in |γ ′, out〉 = 0〈γ, in |γ ′, out 〉0
+

∑
n

0〈γ, in |Hint|n〉〈n|Hint|γ ′, out〉0
(Ein − En)(Eout − En)

+ O(e4). (8.9)
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Hence, we see that the diagram of Eq. (8.4) really corresponds to the order-e2 correc-
tion to the photon propagator 〈γ, in |γ ′, out 〉

(8.10)

Once we understand the physical meaning of the Feynman diagram to be computed
we proceed to its evaluation. In principle there is no problem in computing the integral
in Eq. (8.5) for nonzero values of the electron mass. However since here we are going
to be mostly interested in how the divergence of the integral results in an energy
scale dependent renormalization of the electric charge, we will set me = 0. This
is something safe to do, since in the case of this diagram we are not inducing new
infrared divergences in taking the electron as massless.

To compute the vacuum polarization tensor we are going to exploit what we can
expect from gauge symmetry or current conservation. If we contract the external
legs of the diagram (8.5) with the polarization tensors of the incoming and outgoing
photon εμ(q) and ε′v(q), the result must be gauge invariant. That is, the amplitude
cannot change under the replacement εμ(q)→ εμ(q)+λqμ, ε′μ(q)→ ε′μ(q)+λ′qμ,
for arbitrary λ and λ′. The consequence is that

qμΠ
μv(q) = 0 = qvΠ

μv(q). (8.11)

This implies the following tensor structure for the polarization tensor

Πμv(q) =
(

q2ημv − qμqv

)
Π(q2). (8.12)

Manipulating (8.5) with techniques to be learned in Chap. 12 [using (12.37) and
shifting the integration variable], we obtain

Π(q) = 8e2

1∫
0

dx
∫

d4k

(2π)4
x(1− x)

[k2 − m2 + x(1− x)q2 + iε]2 . (8.13)

From the representation (8.6) of the polarization tensor we see that the gauge invari-
ance conditions (8.11) implement current conservation.

A more intuitive way to obtain this same result is to think of the diagram in (8.5) as
the Fourier transform of the time-ordered correlation function of two gauge currents
(8.6). Naively, the conservation of each current implies condition (8.11), and thus the
form (8.12) of the polarization tensor. Notice that here we said “naively” because for
this to be true we should have a way to compute the correlation function that either
preserves gauge invariance (i.e., current conservation) or, if it breaks it, the damage
can be fixed without much difficulty.
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By looking at the powers of k in the numerator and denominator of the integrand
of (8.5) we would conclude that the integral is quadratically divergent. It can be seen,
however, that the quadratic divergence does cancel leaving behind only a logarithmic
one.1 In order to handle this divergent integral we have to figure out some procedure
to render it finite. This can be done in several ways, but here we choose to cut the
integrals off at a high energy scaleΛ, where new physics might be at work, |p| < Λ.

This gives the result

Π(q2) � e2

12π2 log

(
q2

Λ2

)
+ finite terms . (8.14)

As a matter of fact, we have cheated a little bit in this analysis. Regularizing the
integral (8.5) using a momentum cutoff does not lead to an expression of the form
(8.12). In addition to this piece there is another one proportional toΛ2ημv that spoils
gauge invariance. Here we are not very concerned about this term because it can be
regarded as an artifact of the chosen regularization. Indeed, in the case of QED there
are other regularization methods that preserve gauge invariance, such as dimensional
regularization that we will introduce in Chap. 12. In any case the term proportional
toΛ2 could be dealt with by adding an appropriate local counterterm (see Sect. 8.3).
Therefore in the following we will pretend that the offending term is absent.

If we want to make sense out of Eq. (8.14), we have to go back to the physical
question that led us to compute Eq. (8.4). Our primary motivation was to find the
corrections to the annihilation of two electrons into two muons. Including the virtual
photon propagation correction, we obtain

(8.15)

The reader is invited to check that the contribution of the terms proportional to qμqv

in (8.12) cancel after using the wave equation for the spinor wave functions. Now let
us imagine that in the scattering e−e+ → μ−μ+ we have a center of mass energy
μ. From the previous result we can identify the effective charge of the particles at
this energy scale e(μ) as

1 The change from a quadratically to a logarithmically divergent integral is a consequence of the
tensor structure (8.12) of the polarization tensor, and therefore a consequence of gauge invariance.
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(8.16)

This charge, e(μ), is the physically measurable quantity in our experiment. Now we
can make sense of the formally divergent result (8.15) by assuming that the charge
appearing in the classical Lagrangian of QED is just a “bare” value that depends on
the scale Λ at which we cut off the theory, e ≡ e0(Λ). In order to reconcile (8.15)
with the physical results (8.16), we must assume that the dependence of the bare
(unobservable) charge e0(Λ) on the cutoff Λ is determined by the identity

e(μ)2 = e0(Λ)
2
[

1+ e0(Λ)
2

12π2 log

(
μ2

Λ2

)]
. (8.17)

If we still insist in removing the cutoff, Λ → ∞, we have to send the bare charge
to zero, e0(Λ) → 0, in such a way that the effective coupling has the finite value
given by the experiment at the energy scale μ. All observable quantities should be
expressed in perturbation theory as a power series in the physical coupling e(μ)2

and not in terms of the unphysical bare coupling e0(Λ).

8.2 The Beta-Function and Asymptotic Freedom

We can look at the previous discussion, and in particular Eq. (8.17), from a different
point of view. In order to remove the ambiguities associated with infinities we have
introduced a dependence of the coupling constant on the energy scale at which a
process takes place. From the expression of the physical coupling in terms of the
bare charge (8.17) we can eliminate the cutoff Λ, whose value after all should not
affect the value of physical quantities. Taking into account that we are working in
perturbation theory in e(μ)2, we can express the bare charge e0(Λ)

2 in terms of
e(μ)2 as

e0(Λ)
2 = e(μ)2

[
1+ e(μ)2

12π2 log

(
μ2

Λ2

)]
+ O[e(μ)6]. (8.18)

This expression allows us to eliminate all dependence in the cutoff in the expression
of the effective charge at a scale μ by replacing e0(Λ) in Eq. (8.17) by the one
computed using (8.18) at a given reference energy scale μ0

e(μ)2 = e(μ0)
2

[
1+ e(μ0)

2

12π2 log

(
μ2

μ2
0

)]
. (8.19)
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From this equation we can compute, at this order in perturbation theory, the
effective value of the coupling constant at an energy μ, once we know its value
at some reference energy scale μ0. In the case of the electron charge we can
use as a reference Thompson’s scattering at energies of the order of the electron
mass me � 0.5 MeV, where the value of the electron charge is given by the well
known value

α(me) = e(me)
2

4π
� 1

137
. (8.20)

With this, we can compute e(μ)2 at any other energy scale by applying Eq. (8.19).
In computing the electromagnetic coupling constant at any other scale we must take
into account the fact that other charged particles can run in the loop in Eq. (8.15).
Suppose, for example, that we want to calculate the fine structure constant at the
mass of the Z0-boson μ = m Z � 92 GeV. Then, we should include in Eq. (8.19)
the effect of other standard model fermions with masses below m Z . Thus

e(m Z )
2 = e(me)

2

[
1+ e(me)

2

12π2

(∑
i

q2
i

)
log

(
m2

Z

m2
e

)]
, (8.21)

where qi is the charge in units of the electron charge of the ith fermionic species
running in the loop, and we sum over all fermions with masses below the mass
of the Z0 boson. This expression shows how the electromagnetic coupling grows
with energy. To compare with the experimental value of e(m Z )

2 it is not enough to
include the effect of fermionic fields, since also the W± bosons can run in the loop
(mW < m Z ). Taking this into account, as well as threshold effects, the value of the
electron charge at the scale m Z is found to be [1]

α(m Z ) = e(m Z )
2

4π
� 1

128.9
. (8.22)

This growth of the effective fine structure constant with energy can be understood
heuristically by remembering that the effect of the polarization of the vacuum shown
in the diagram of Eq. (8.4) amounts to the creation of virtual electron-positron pairs
around the location of the charge. These virtual pairs behave as dipoles that, as in
a dielectric medium, tend to screen this charge and to decrease its value at long
distances (i.e. lower energies).

The variation of the coupling constant with energy is usually given in quantum
field theory in terms of the beta function defined by

β(g) = μ dg

dμ
. (8.23)

In the case of QED the beta function can be computed from Eq. (8.19) with the result
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β(e)QED = e3

12π2 . (8.24)

The fact that the coefficient of the leading term in the beta-function is positive gives us
the overall behavior of the coupling as we change the scale. Equation (8.24) means
that, if we start at an energy where the electric coupling is small enough for our
perturbative treatment to be valid, the effective charge grows with the energy scale.
This growth of the effective coupling constant with energy means that QED is infrared
safe, since the perturbative approximation gives better and better results as we go to
lower energies. In fact, since the electron is the lightest electrically charged particle
and has a finite nonvanishing mass, the running of the fine structure constant stops at
the scale me in the well-known value 1

137 .Would other charged fermions with masses
below me be present in Nature, the effective value of the fine structure constant would
run further to lower values at energies below the electron mass.

When we increase the energy scale, e(μ)2 grows until at some scale the coupling
is of order one and the perturbative approximation breaks down. In QED this is
known as the problem of the Landau pole but in fact it does not pose any serious
threat to the reliability of QED perturbation theory: a calculation including the effect
of all standard model fermions shows that the energy scale at which the theory would
become strongly coupled is ΛLandau � 1034 GeV [2]. However, we expect QED to
be unified with other interactions below that scale, and even if this is not the case
we will enter the uncharted territory of quantum gravity at energies of the order
of 1019 GeV.

So much for QED. The next question that one may ask at this stage is whether it is
possible to find quantum field theories with a behavior opposite to that of QED, i.e.
such that they become weakly coupled at high energies. This is not a purely academic
question. In the late 1960s a series of deep inelastic scattering experiments carried out
at SLAC showed that the quarks behave essentially as free particles inside hadrons.
The apparent problem was that no theory was known at the time that would become
free at very short distances: the QED behavior was encountered in all the theories
that were analyzed. This posed a very serious problem for quantum field theory as
a way to describe subnuclear physics, since it seemed that its predictive power was
restricted to electrodynamics but failed when applied to the strong interactions.

This critical time for quantum field theory turned out to be its finest hour. In 1973
David Gross and Frank Wilczek [3] and David Politzer [4] showed that nonabelian
gauge theories display the required behavior. For the QCD Lagrangian in Eq. (9.38)
the beta function is given by 2

β(g) = − g3

16π2

(
11

3
Nc − 2

3
N f

)
. (8.25)

In particular, for real QCD (Nc = 3, and N f equal the number of active flavors) we
have that β(g) < 0. This means that for a weakly coupled theory at an energy scale
μ0 the coupling constant decreases as energy increases μ → ∞. This explain the

2 This result has an interesting history. See, for example, [5].
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apparent freedom of quarks inside hadrons: when the quarks are very close together
their effective color charge tends to zero. This phenomenon is called asymptotic
freedom.

Asymptotically free theories display a behavior opposite to QED. At high ener-
gies their coupling constant approaches zero, whereas at low energies they become
strongly coupled (infrared slavery). This features are at the heart of the success of
QCD as a theory of the strong interactions, since this is exactly the type of behavior
found in quarks: they are quasi-free particles inside the hadrons but the interaction
potential between them increases at large distances.

Although asymptotically free theories can be handled in the ultraviolet, they have
remarkable properties in the infrared. In the case of QCD they are responsible for
color confinement and chiral symmetry breaking (9.52).

In general, the ultraviolet and infrared properties of a theory are controlled by
the fixed points of the beta function, i.e. those values of the coupling constant g for
which it vanishes

β(g∗) = 0. (8.26)

Using perturbation theory we have seen that for both QED and QCD a fixed point
occurs at zero coupling, g∗ = 0. However, our analysis also showed that the two
theories present radically different behavior at high and low energies. From the point
of view of the beta function, the difference lies in the energy regime at which the
coupling constant approaches its critical value. This is in fact governed by the sign
of the beta function around the critical coupling.

If the beta function is negative close to the fixed point (the case of QCD) the
coupling tends to its critical value, g∗ = 0, as the energy is increased. This means
that the critical point is ultraviolet stable, i.e. it is an attractor as we evolve towards
higher energies. If, on the contrary, the beta function is positive (as it happens in
QED) the coupling constant approaches the critical value as the energy decreases.
This is the case of an infrared stable fixed point.

This analysis that we have motivated with the examples of QED and QCD is
completely general and can be carried out for any quantum field theory. In Fig. 8.1
we have represented the beta function for a hypothetical theory with three fixed points
located at couplings g∗1 , g∗2 and g∗3 . The arrows in the line below the plot represent
the evolution of the coupling constant as the energy increases. We learn that g∗1 = 0
and g∗3 are ultraviolet stable fixed points, while g∗2 is infrared stable.

In order to understand the high and low energy behavior of a quantum field theory
it is crucial to know the structure of the beta functions associated with its couplings.
This can be a very difficult task, since perturbation theory only allows the study of the
theory around “trivial" fixed points, i.e. those that occur at zero coupling like the case
of g∗1 in Fig. 8.1. Any “nontrivial” fixed point occurring in a theory (like g∗2 and g∗3)
cannot be captured in perturbation theory and requires a full nonperturbative analysis.

The lesson to be learned from this discussion is that dealing with the ultravi-
olet divergences in a quantum field theory has as a consequence the introduction
of an energy dependence in the measured value of the coupling constants of the
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Fig. 8.1 Beta function for a
hypothetical theory with
three fixed points
g∗1 , g∗2 and g∗3 . A
perturbative analysis would
capture only the regions
shown in the boxes
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theory. This happens even in the case of theories without dimensionful couplings.
These theories are scale invariant at the classical level because the action does not
contain dimensionful parameters. In this case the running of the coupling constants
can be seen as resulting from a quantum breaking of classical scale invariance:
different energy scales in the theory are distinguished by different values of the
coupling constants. We say that classical scale invariance is an anomalous symmetry
(see Chap. 9). A heuristic way to understand how the conformal anomaly comes
about is to notice that the regularization of an otherwise scale invariant field theory
requires the introduction of an energy scale (e.g. a cutoff). In general, the classical
invariance cannot be restored after renormalization.

Scale invariance is not completely lost in quantum field theory, however. It is
recovered at the fixed points of the beta function where, by definition, the coupling
does not run. We consider a scale invariant classical field theory whose field φ(x)
transform under coordinate rescalings as

xμ −→ x ′μ = λxμ, φ(x) −→ φ′(x) = λ−Δφ(λ−1x), (8.27)

where Δ is called the canonical scaling dimension of the field. An example of such
a theory is a massless φ4 theory in four dimensions

L = 1

2
∂μφ∂

μφ − g

4!φ
4, (8.28)

where the scalar field has canonical scaling dimension Δ = 1. The Lagrangian
density transforms as

L −→ λ−4L [φ] (8.29)
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and the classical action remains invariant 3 under (8.27).
If scale invariance is preserved by quantization, the Green’s functions transform

as

〈Ω|T [φ′(x1) . . . φ
′(xn)]|Ω〉 = λ−nΔ〈Ω|T [φ(λ−1x1) . . . φ(λ

−1xn)]|Ω〉. (8.30)

This is what happens in a free theory, whereas in an interacting theory the running
of the coupling constant destroys classical scale invariance at the quantum level. In
spite of this, at the fixed points of the beta function the Green’s functions transform
again according to Eq. (8.30) where Δ is replaced by

Δanom = Δ+ γ ∗. (8.31)

Thus, the canonical scaling dimension of the fields are corrected by γ ∗, called
the anomalous dimension. A more detailed discussion of this issue is postponed
to Chap. 12.

The previous discussion exhibits some of the high-energy properties of asymp-
totically free theories like QCD. In the critical theory, the fields have anomalous
dimensions different from those in the free theory. These carry the dynamical infor-
mation about the high-energy behavior.

8.3 A Look at the Systematics of Renormalization

The renormalization program presented in Sect. 8.1 proceeds in two steps. First, the
divergences appearing in the calculation of loop diagrams are tamed by introducing a
regulatorΛ setting an energy scale above which the theory is modified.4 The second
step consists of absorbing the divergences appearing as Λ→∞ in the perturbative
calculation of S-matrix amplitudes (or Green’s functions) in the parameters of the
Lagrangian.

In the particular case of QED this implies a dependence on the regulator of the
bare electron charge and mass e0(Λ) and m0(Λ) and also of the global normalization
factor of the fields. That is, the “bare” fields ψ0(x) and A0μ(x) appearing in the
Lagrangian get a dependence on Λ of the form

ψ0(x,Λ) =
√

Zψ(Λ)ψ(x), A0μ(x,Λ) =
√

Z A(Λ)Aμ(x), (8.32)

whereψ(x) and Aμ(x) are called the renormalized fields and are regulator indepen-
dent. The dependence onΛ of all bare quantities has to be chosen in such a way that

3 In a d-dimensional theory the canonical scaling dimensions of the fields coincide with its engi-
neering dimension:Δ = d−2

2 for bosonic fields andΔ = d−1
2 for fermionic ones. For a Lagrangian

with no dimensionful parameters classical scale invariance follows then from dimensional analysis.
4 In the following we denote by Λ any regulator, not necessarily the momentum cutoff used
in Sect. 8.1 By convention we consider that the removal of the regulator corresponds to the limit
Λ→∞.
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the time-ordered Green’s functions for the renormalized fields, as computed from
the renormalized Lagrangian density

Lren = Zψ(Λ)ψ
[
iγ μ∂μ − m0(Λ)

]
ψ − 1

4
Z A(Λ)Fμv Fμv

− e0(Λ)Zψ(Λ)
√

Z A(Λ)Aμψψ, (8.33)

remain finite when Λ → ∞. The dependence of Zψ, Z A, e0 and m0 on the
regulator has to be corrected at each order in perturbation theory.

Since the bare parameters are unphysical we need to identify their physical coun-
terparts that would be measurable in experiments. This we did in Sect. 8.1 by a
proper physical interpretation of the sum of two diagrams in Eq. (8.15). We can be
more general and instead of considering the one-loop diagram to compute the photon
self-energy we can add all one-particle-irreducible (1PI) diagrams with two ampu-
tated photon external legs. This class of diagrams is defined as those that cannot be
split into two disconnected pieces by slicing a single internal line. For example, all
diagrams in (8.2) and (8.3) are reducible whereas the one on the left-hand side of
Eq. (8.4) is 1PI. We consider the sum

(8.34)
where the functionΠ(q2) receives contributions to all orders in perturbation theory.
The tensor structure of the previous sum of diagrams is imposed by gauge invariance,
as explained in page 148.

What makes the quantity Π(q2) interesting is that the full photon propagator

Gμv(q
2) =

∫
d4xeiq·x 〈Ω|T [

Aμ(x)Av(0)
] |Ω〉 (8.35)

can be written in terms of it. The diagrammatic expansion of Gμv(q2) has the form

(8.36)

Using the simple identity
(
δμα −

qμqα
q2

)(
δαv −

qαqv

q2

)
= δμv −

qμqv

q2 (8.37)

it is not difficult to show that (8.36) reduces to a geometric series whose sum is
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Gμv(q
2) = −i

q2[1−Π(q2)]
(
ημv − qμqv

q2

)
− i

qμqv

q4 . (8.38)

Using the Lagrangian (8.33) we compute the full propagator Gμv(q2,Λ)0 of the
bare gauge field

Gμv(q
2,Λ)0 = −iημv

q2[1−Π0(q2,Λ)] (8.39)

Here we have removed the terms in the full propagator proportional to qμqv since
they vanish once contracted with the fermion lines. The divergence of Π0(q2,Λ)

can be absorbed in the normalization factor of the bare field. To see this we notice
that

Gμv(q
2,Λ)0 = Z A(Λ)Gμv(q

2), (8.40)

where the Green’s function on the right-hand side is that of the renormalized photon
field and therefore remains finite as Λ → ∞. We choose Z A(Λ) satisfying the
condition

lim
Λ→∞ Z A(Λ)[1−Π0(q

2,Λ)] <∞. (8.41)

This does not determine uniquely Z A(Λ).To fix the ambiguity we impose a renormal-
ization condition. For example, we demand that the renormalized Green’s function
Gμv(q2) behaves close to the pole in the same way as the free photon propagator

Gμv(q
2) ∼ −iημv

q2 as q2 → 0. (8.42)

This fixes the wave function renormalization to be

Z A(Λ) = 1

1−Π0(0,Λ)
. (8.43)

We should bear in mind that the denominator on the right-hand side of this expression
does not vanish. This follows from the condition that the photon remains massless to
all orders in perturbation theory. Hence, (8.39) should have a single pole at q2 = 0,
and we get the condition Π0(0,Λ) �= 1.

The calculation of other physical parameters can be done along similar lines.
In the case of the electron mass we start by summing the contributions of all 1PI
corrections that defines the fermion self-energy �ab(/p)

(8.44)
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Similarly to the photon case, the whole perturbative expansion of the full fermion
propagator Sab(p) can be formally obtained by iterating the insertion of self-energy
blobs in the fermion line

Sab p 1PI 1PI 1PI . . .

.
(8.45)

The resulting geometric series yields

S(/p) = i

/p − m

∞∑
n=0

[
1

/p − m
�(/p)

]n

= i

/p − m −�(/p) . (8.46)

In a free fermion theory the mass of the particle can be identified as the pole in
the propagator

S(/p) = i

/p − m
. (8.47)

We extend this definition of the physical fermion mass to QED. Working with the
Lagrangian (8.33) the complete propagator for the bare fermion field reads

S0(/p,Λ) = i

/p − m0(Λ)−�0(/p,Λ)
. (8.48)

The physical mass is identified with the value /p = m at which the denominator of
the full propagator vanishes

m = m0(Λ)+�0(/p,Λ)
∣∣∣
/p=m

. (8.49)

This gives the dependence of the bare mass on the regulator Λ.
With this we do not get rid of all infinities since the fermion self-energy can have

a divergent piece linear in the momentum p. To deal with this problem we write the
following expansion around the physical fermion mass m

�0(/p,Λ) = �0(m,Λ)+ (/p − m)�′0(m,Λ)+ (/p − m)2�̃0(/p,Λ), (8.50)

where

�′0(m,Λ) =
d

d/p
�0(/p,Λ)

∣∣∣∣
/p=m

. (8.51)

Plugging this in the full propagator (8.48) and taking into account the definition
(8.49) we have
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S0(/p,Λ) = i

(/p − m)[1−�′0(m,Λ)− (/p − m)�̃(/p,Λ)] . (8.52)

The divergence of �′0(m,Λ) as Λ→∞ can now be absorbed in the normalization
of the bare field. Indeed, the bare propagator is written in terms of the renormalized
one as

S0(/p,Λ) = Zψ(Λ)S(/p), (8.53)

where Zψ(Λ) is chosen to satisfy

lim
Λ→∞ Zψ(Λ)

[
1−�′0(m,Λ)− (/p − m)�̃(/p,Λ)

]
<∞. (8.54)

To fix the freedom in choosing the field normalization we use a renormalization
condition similar to the one for the photon propagator and demand that the renor-
malized fermion propagator satisfies

S(/p) ∼ i

/p − m
when /p→ m. (8.55)

With this we find

Zψ(Λ) = 1

1−�′0(m,Λ)
. (8.56)

We still have to express the bare charge e0(Λ) in terms of renormalized parameters.
This requires to know how the fermion-photon interaction is corrected by quantum
effects. These corrections are contained in the 1PI diagrams with one photon and
two fermion lines

(8.57)

We compute these diagrams in the regularized theory with the Lagrangian (8.33)

Γ μ(p, p′;Λ)0 = −ie0(Λ)

[
γ μ +Λμ0 (/p, /p′;Λ)

]
, (8.58)



160 8 Renormalization

where the function −ie(Λ)Λμ0 (/p, /p
′;Λ) contains the contributions of all 1PI loop

diagrams in Eq. (8.57)
To define the renormalized charge e we point out that at tree level the electric

charge is read from the vertex −ieγμ. We use this as a guiding principle and define
the renormalized coupling in terms of the renormalized 1PI vertex function using
the renormalization condition

lim
/p,/p′→m

Γ μ(p, p′) = −ieγ μ. (8.59)

We only need to express Γ μ(p, p′) in terms of the bare function Γ μ(p, p′;Λ)0
computed in (8.58). Were we dealing with the complete Green’s function

Gμ
ab(/p, /p

′;Λ)0(2π)4δ(4)(p + p′ + q)

=
∫

d4x1d4x2d4x3eip·x1+i p′·x2+iq·x3〈Ω|T [ψ0a(x1)ψ0b(x2)A
μ
0 (x3)]|Ω〉,

(8.60)
we would only need to multiply by the corresponding field renormalizations

Gμ(/p, /p′;Λ)0 =
√

Z A(Λ)Zψ(Λ)G
μ(/p, /p′), (8.61)

as dictated by (8.32). This Green’s function can be expressed in terms of the exact
propagators and the 1PI vertex (8.57) as shown in the following “skeleton” diagram

(8.62)

It is now clear that in order to write the 1PI bare vertex function in terms of the
renormalized one we have to divide Eq. (8.61) by the factor [Z A(Λ)Zψ(Λ)2]−1

associated with the external propagators. The final result is then

Γ μ(p, p′;Λ)0 = Zψ(Λ)
−1 Z A(Λ)

− 1
2Γ μ(p, p′). (8.63)

Using the Lorentz transformation properties of the function Λμ(/p, /p′;Λ)0, it is
possible to show that when evaluated at the point /p = /p′ = m we haveΛμ0 (m,m;Λ) =
γ μΛ0(m,m;Λ). Thus, defining

Z1(Λ) = 1

1+Λ0(m,m;Λ) (8.64)

we find the renormalized coupling to be

e = e0(Λ)
Zψ(Λ)

√
Z A(Λ)

Z1(Λ)
. (8.65)
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The form of the renormalized coupling we have found can in fact be simplified due
to the following identity

�′0(m,Λ) = −Λ0(m,m;Λ) =⇒ Z1(Λ) = Zψ(Λ), (8.66)

valid to all orders in QED whenever the theory is regularized in a way preserving
gauge invariance (see Ref. [1–15] in Chap. 1). Taking this into account, Eq. (8.65)
gives

e2 = e0(Λ)
2 Z A(Λ) = e0(Λ)

2

1−Π0(0,Λ)
. (8.67)

Physically, the renormalized charge e is identified with the physical coupling at low
transferred momentum, as can be seen from the diagram describing the interaction
of an electron and a muon by the interchange of a full photon propagator

(8.68)

In fact, the identity (8.66) guarantees that the charge renormalization is universal and
independent of the fermion species.

All divergences in QED can be handled order by order in the bare coupling using
the renormalization procedure that we just overviewed. Using the relation between the
bare and renormalized quantities derived previously, it is possible to express every
physical quantity, such as S-matrix amplitudes or the effective charge at different
energy scales, solely in terms of the renormalized parameters e and m.

A very practical way of implementing the renormalization program systematically
to all orders is to use renormalized perturbation theory. This means that instead of
using the bare couplings as expansion parameters we use the renormalized ones that
are cutoff independent. In the case of QED the starting point is the action written in
terms of the renormalized fields, mass and charge

L = ψ
(

iγμ∂μ − m
)
ψ − 1

4
Fμv Fμv − eAμψγ

μψ. (8.69)

The divergences appearing in the computation of loop diagrams from this action
are dealt with in the following way: for each divergent 1PI diagram we add a coun-
terterm to the action such that the new vertex induced by this counterterm cancels
the divergence.

This can be done systematically to each order of the perturbative expansion in
powers of the renormalized couplings. By construction, after adding the counterterms
to (8.69) the Green’s functions calculated using the renormalized Lagrangian

Lren = L +Lct (8.70)
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are finite in the limit where the cutoff is removed,Λ→∞.For QED, the counterterm
Lagrangian has the form

Lct = i A(Λ)ψγμ∂μψ − m B(Λ)ψψ − 1

4
C(Λ)Fμv Fμv − eD(Λ)Aμψψ. (8.71)

Adding this to (8.69) and comparing with the form of the renormalized Lagrangian
given in (8.33) we find the bare mass, charge and field renormalizations in terms of
the counterterm couplings

m0(Λ) = m
1+ B(Λ)

1+ A(Λ)
,

e0(Λ) = e
1+ D(Λ)

[1+ A(Λ)]√1+ C(Λ)
(8.72)

Zψ(Λ) = 1+ A(Λ),

Z A(Λ) = 1+ C(Λ).

In general, the renormalized parameters m and e do not have to correspond to physical
values of the mass and the electric charge. They are finite parameters determined
by the renormalization conditions in terms of which all physical (i.e., observable)
quantities are expressed. All these issues will become clear in Chap. 12, where we
will study the one-loop renormalization of an interacting scalar field theory in some
detail using the techniques of renormalized perturbation theory.

QED, and in general Yang-Mills theories, belong to a class of quantum field
theories called renormalizable. This means that the operators appearing in the renor-
malized Lagrangian are exactly the same ones as those of the classical action. In other
words, the counterterms needed to cancel the divergences in the Green’s functions
have the same structure as the operators already present in the original Lagrangian
[cf. Eqs. (8.69) and (8.71)]. This is not necessarily the case for other theories where
the elimination of the divergences at higher orders in perturbation theory requires the
introduction of new operators to absorb them in their couplings. When the number of
new couplings grows with the order of perturbation theory we say that the quantum
field theory is nonrenormalizable. Until the 1970s it was believed that nonrenor-
malizability would render a theory inconsistent. Nowadays, however, we know that
nonrenormalizable theories are perfectly consistent and can be used to compute
observables at energies below the natural scale of the theory. We will have more to
say about effective field theories in Sect. 8.5 and in Chap. 12.

8.4 Renormalization in Statistical Mechanics

In spite of its successes, the renormalization procedure presented above could still
be seen as some kind of prescription or recipe to get rid of the divergences in an
ordered way. This discomfort about renormalization was expressed in occasions by



8.4 Renormalization in Statistical Mechanics 163

Fig. 8.2 Systems of spins in
a two-dimensional square
lattice

comparing it with “sweeping the infinities under the rug”. After the work of Ken
Wilson [6–8], the process of renormalization is now understood in a very profound
way as a procedure to incorporate the effects of physics at high energies by modifying
the value of the parameters that appear in the Lagrangian.

Wilson’s ideas are both simple and profound and consist of thinking about
quantum field theory as the analog of a thermodynamical description of a statistical
system. To be more precise, let us consider an Ising spin system in a two-dimensional
square lattice as the one depicted in Fig. 8.2. In terms of the spin variables si = ± 1

2 ,
where i labels the lattice site, the Hamiltonian of the system is given by

H = −J
∑
〈i, j〉

si s j , (8.73)

where 〈i, j〉 indicates that the sum extends over nearest neighbors and J is the coupling
constant between neighboring spins (no interaction with an external magnetic field
is considered). The starting point to study the statistical mechanics of this system is
the partition function defined as

Z =
∑
{si }

e−βH , (8.74)

where the sum is over all possible configurations of the spins and β = 1
T is the

inverse temperature. For J > 0 the Ising model presents spontaneous magnetization
below a critical temperature Tc, in any dimension higher than one. Away from this
temperature correlations between spins decay exponentially at large distances

〈si s j 〉 ∼ e−
|xi j |
ξ , (8.75)

with |xi j | the distance between the spins located in the ith and jth sites of the lattice.
This expression serves as a definition of the correlation length ξ setting the char-
acteristic length scale at which spins can influence each other by their interaction
through their nearest neighbors.

Suppose now that we are interested in a macroscopic description of this spin
system. We can capture the relevant physics by integrating out the physics at short
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Fig. 8.3 Decimation of the
spin lattice. Each block in
the upper lattice is replaced
by an effective spin
computed according to the
rule (8.77). Notice also that
the size of the lattice spacing
is doubled in the process

scales. A way in which this can be done was proposed by Leo Kadanoff [9] and
consists of dividing our spin system in spin-blocks like the ones showed in Fig. 8.3.
Now, we can construct another spin system where each spin-block of the original
lattice is replaced by an effective spin calculated according to some rule from the
spins contained in each block Ba

{si : i ∈ Ba} −→ s(1)a . (8.76)

For example we can define the effective spin associated with the block Ba by taking
the majority rule with an additional prescription in case of a draw

s(1)a =
1

2
sign

⎛
⎝∑

i∈Ba

si

⎞
⎠ , (8.77)

where we have used the sign function, sign (x) ≡ x
|x | , with the additional definition

sign (0) = 1. This procedure is called decimation and leads to a new spin system
with a double lattice space.

The idea now is to rewrite the partition function (8.74) only in terms of the new
effective spins s(1)a . We start by splitting the sum over spin configurations into two
nested sums, one over the spin blocks and the other over the spins within each block

Z =
∑
{s}

e−βH [si ] =
∑
{s(1)}

∑
{s∈Ba}

δ

⎡
⎣s(1)a − sign

⎛
⎝∑

i∈Ba

si

⎞
⎠

⎤
⎦ e−βH [si ]. (8.78)
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The interesting point is that the sum over spins inside each block can be written as the
exponential of a new effective Hamiltonian depending only on the effective spins,
H (1)[s(1)a ]

∑
{s∈Ba}

δ

⎡
⎣s(1)a − sign

⎛
⎝∑

i∈Ba

si

⎞
⎠

⎤
⎦ e−βH [si ] = e−βH (1)[s(1)a ]. (8.79)

The new Hamiltonian is of course more complicated

H (1) = −J (1)
∑
〈i, j〉

s(1)i s(1)j + · · · (8.80)

where the dots stand for other interaction terms between the effective block spins.
The new terms appear because in the process of integrating out short distance physics
we induce interactions between the new effective degrees of freedom. For example,
the interaction between the spin block variables s(1)i will not in general be restricted to
nearest neighbors in the new lattice. The important point is that we have managed to
rewrite the partition function solely in terms of this new (renormalized) spin variables
s(1) interacting through a new Hamiltonian H (1)

Z =
∑
{s(1)}

e−βH (1)[s(1)a ]. (8.81)

We can think about the space of all possible Hamiltonians for our statistical system
including all kinds of possible couplings between the individual spins compatible
with the symmetries of the system. If we denote by R the decimation operation, it
defines a map in the space of Hamiltonians

R : H → H (1). (8.82)

At the same time the operation R replaces a lattice with spacing a by another one
with double spacing 2a. As a consequence, the correlation length in the new lattice
measured in units of the lattice spacing is divided by two, R : ξ → ξ

2 .

Now we can iterate the operation R an indefinite number of times. Eventually we
might reach a Hamiltonian H� that is not further modified by the operation R

H
R−→ H (1) R−→ H (2) R−→ . . .

R−→ H�. (8.83)

The fixed point Hamiltonian H� is scale invariant because it does not change as
R is performed. As a consequence of this invariance, the correlation length of the
system at the fixed point does not change under R. This fact is compatible with the
transformation ξ → ξ

2 only if ξ = 0 or ξ = ∞. Here we will focus in the case of
nontrivial fixed points with infinite correlation length.

The space of Hamiltonians can be parametrized by specifying the values of the
coupling constants associated with all possible interaction terms between individual
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spins of the lattice. If we denote by Oa[si ] these (possibly infinite) interaction terms,
the most general Hamiltonian for the spin system under study can be written as

H [si ] =
∞∑

a=1

λaOa[si ], (8.84)

where λa ∈ R are the coupling constants for the corresponding operators. These
constants can be thought of as coordinates in the space of all Hamiltonians. Therefore
the operation R defines a transformation in the set of coupling constants

R : λa −→ λ(1)a . (8.85)

For example, in our case we started with a Hamiltonian in which only one of the
coupling constants is different from zero (sayλ1 = −J ). As a result of the decimation
λ1 ≡ −J → −J (1) while some of the originally vanishing coupling constants will
take nonzero values. Of course, for the fixed point Hamiltonian the coupling constants
do not change under the scale transformation R.

Physically, the transformation R integrates out short distance physics. The conse-
quence for physics at long distances is that we have to replace our Hamiltonian by a
new one with different values for the coupling constants. That is, our ignorance of
the details of the physics going on at short distances result in a renormalization of the
coupling constants of the Hamiltonian describing the long range physical processes.
It is important to stress that although R is sometimes called a renormalization group
transformation in fact this is a misnomer. Transformations between Hamiltonians
defined by R do not form a group: since these transformations proceed by inte-
grating out degrees of freedom at short scales they cannot be inverted.

In statistical mechanics fixed points under renormalization group transformations
with ξ = ∞ are associated with phase transitions. From our previous discussion we
can conclude that the space of Hamiltonians is divided into regions corresponding to
the basins of attraction of the different fixed points. We can ask ourselves now about
the stability of those fixed points. Suppose we have a statistical system described by a
fixed-point Hamiltonian H� and we perturb it by changing the coupling constant asso-
ciated with an interaction term O. This is equivalent to replace H� by the perturbed
Hamiltonian

H = H� + δλO, (8.86)

where δλ is a perturbation of the coupling constant corresponding to O (we can also
consider perturbations in more than one coupling constant). Thinking of the λa’s
as coordinates in the space of all Hamiltonians this corresponds to moving slightly
away from the position of the fixed point.

The question to decide now is in which direction the renormalization group flow
will take the perturbed system. Working to first order in δλ there are three possibilities:

• The renormalization group flow takes the system back to the fixed point. In this
case the corresponding interaction O is called irrelevant.
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Fig. 8.4 Example of a
renormalization group flow

λ

λ
2

1

F

O

• R takes the system away from the fixed point. If this is what happens the interaction
is called relevant.

• It is possible that the perturbation does not take the system away from the fixed
point at first order in δλ. In this case the interaction is said to be marginal and it is
necessary to go to higher orders in δλ in order to decide whether the system moves
to or away the fixed point, or whether we have a family of fixed points.

We can picture the action of the renormalization group transformation as a flow
in the space of coupling constants. In Fig.8.4 we have depicted an example of such a
flow in the case of a system with two coupling constants λ1 and λ2. In this example
we find two fixed points, one at the origin O and another at F for a finite value of
the couplings. The arrows indicate the direction in which the renormalization group
flow acts. The free theory at λ1 = λ2 = 0 is a stable fix point since any perturbation
δλ1, δλ2 > 0 makes the theory flow back to the free theory at long distances. On
the other hand, the fixed point F is stable with respect to certain perturbations (along
the line with incoming arrows) whereas for any other perturbations the system flows
either to the free theory at the origin or to a theory with infinite values for the
couplings.

8.5 The Renormalization Group in Quantum Field Theory

In the renormalization program in quantum field theory a key role is played by the
renormalization conditions. It is through them that the renormalized parameters are
related to the bare ones. In the case of QED that we have analyzed in Sect. 8.3, we have
used what is called on-shell renormalization in which the renormalized parameters
are defined by evaluating the corresponding Green’s functions for on-shell values of
the external momenta.

In carrying out the renormalization of QED, we could have defined the renormal-
ized charge and mass at any other value of the momentum (physical or unphysical)
p2 = μ2. This is called a change in the renormalization scheme. It would have lead
to different values of the renormalized parameters and Green’s functions, although
all physical quantities would be independent of the chosen renormalization scheme.
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The dependence of the renormalized Green’s functions on the renormalization
schemeμ is given by the renormalization group equation, or Callan–Symanzik equa-
tion, that we study next. To make things as simple as possible, we consider a theory of
a single field φ(x) and ignore all possible indices (they are mostly irrelevant for the
problem). Doing perturbative quantization with a regulatorΛwe work with the renor-
malized Lagrangian written in terms of the bare mass and coupling constants m0(Λ)

and g0(Λ), as well as the bare fields φ0(x) appearing in the classical Lagrangian

φ0(x) =
√

Zφ(Λ)φ(x), (8.87)

where φ(x) is the renormalized field.
Using Feynman diagrams we can compute the bare Green’s functions

Gn(p1, . . . , pn;Λ)0(2π)4δ(4)(p1 + · · · + pn)

=
∫

d4x1 . . . d
4xneip1·x1+···+i pn ·xn 〈Ω|T [φ0(x1) . . . φ0(xn)]|Ω〉 (8.88)

order by order in perturbation theory in the bare coupling constant g0(Λ). The renor-
malized Green’s function G(p1, . . . , pn), on the other hand, is regulator independent.
It only depends on the renormalized quantities and the energy scale μ at which the
renormalization conditions are implemented. From the relation (8.87) between the
bare and renormalized fields we find the following identity

G(p1, . . . , pn;Λ)0 = Zφ(Λ)
n
2 G(p1, . . . , pn;μ). (8.89)

In the following we focus on the 1PI Green’s functions Γn(p1, . . . , pn), obtained
by summing the all 1PI diagrams contributing to the corresponding amplitude. Any
other Green’s function can be computed in terms of them (see the example of QED
studied in Sect. 8.3). The relation between the bare and renormalized 1PI functions
can be obtained from (8.89) taking into account that in passing from the Green’s
functions to the 1PI functions we have to remove the contribution from the external
propagators, each one contributing a factor of Zφ(Λ). This leads to

Γn(p1, . . . , pn;Λ)0 = Zφ(Λ)
− n

2Γn(p1, . . . , pn;μ). (8.90)

The function on the left-hand side of this equation depends on the regulator Λ both
explicitly and through the bare parameters m0(Λ) and g0(Λ). The renormalized
function, on the other hand, does not depend on Λ but only on the renormalized
parameters m and g as well as on the energy scale μ.

We can find now how Γn(p1, . . . , pn;μ) changes when we change the scale μ.
Keeping fixed the bare mass m0(Λ) and coupling constant g0(Λ) while varying
μ results in a change both in the renormalized parameters m and g and of the field
renormalization Zφ(Λ).Remembering that the left-hand side of (8.90) is independent
of μ

μ
d

dμ

[
Zφ(Λ)

− n
2Γn(p1, . . . , pn;μ)

]
= 0, (8.91)
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and using the μ-dependence of m, g and Zφ we arrive at the Callan–Symanzik
equation

[
μ
∂

∂μ
+ β(g) ∂

∂g
+ γm(g)

∂

∂m
− nγ (g)

]
Γn(p1, . . . , pn;μ) = 0, (8.92)

where we have defined the functions

β(g) = μ ∂g

∂μ
,

γm(g) = μ∂m

∂μ
, (8.93)

γ (g) = 1

2
μ
∂

∂μ
log Zφ.

Two of this functions already appeared in Sect. 8.2: the beta function β(g) , that
governs the evolution of the coupling with the energy, and the anomalous dimension
γ (g).

The application to quantum field theory of the idea of the renormalization group
in statistical mechanics introduced in Sect. 8.4 leads to a profound understanding
of what renormalizing a quantum field theory means in physical terms. Consider a
theory with a number of fields φa defined by a Lagrangian

L [φa] = L0[φa] +
∑

i

giOi [φa], (8.94)

where L0[φa] is the kinetic part and the gi ’s are the coupling constants associated
with the operators Oi [φa]. In order to make sense of the quantum theory we introduce
a momentum cutoffΛ. In principle, we include all operators Oi compatible with the
symmetries of the theory.

In Sect. 8.2 we learned how in the cases of QED and QCD the value of the coupling
constants changed with the scale from their values at the scaleΛ.We can understand
this behavior along the lines of the analysis presented for the Ising model. If we would
like to compute the effective dynamics of the theory at an energy scale μ < Λ, we
only have to integrate out all physical modes with energies between the cutoff Λ
and the scale of interest μ. This is analogous to what we did in the Ising model by
replacing the original spins by the block spins. In the case of field theory the effective
action S[φa, μ] at scale μ can be written in the language of functional integration as

ei S[φ′a ,μ] =
∫

μ<p<Λ

∏
a

Dφaei S[φa ,Λ]. (8.95)

Here S[φa,Λ] is the action at the cutoff scale
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S[φa,Λ] =
∫

d4x

{
L0[φa] +

∑
i

gi (Λ)Oi [φa]
}

(8.96)

and the functional integral in Eq. (8.95) is carried out only over the field modes with
momenta in the range μ < p < Λ. The action resulting from integrating out the
physics at the intermediate scales between Λ and μ depends not on the original
field variable φa but on some renormalized field φ′a . At the same time, the couplings
gi (μ) differ from their values at the cutoff scale gi (Λ). This is analogous to what
we learned in the Ising model: by integrating out short distance physics we ended
up with a new Hamiltonian depending on renormalized effective spin variables and
with renormalized values for the coupling constants. Therefore the resulting effective
action at scale μ can be written as

S[φ′a, μ] =
∫

d4x

{
L0[φ′a] +

∑
i

gi (μ)Oi [φ′a]
}
. (8.97)

This Wilsonian interpretation of renormalization sheds light to what in Sect. 8.1 might
have looked just a smart way to get rid of the infinities. The running of the coupling
constant with the energy scale can be understood instead as a way of incorporating
into an effective action at scale μ the effects of field excitations at higher energies
E > μ.

As in statistical mechanics, there are also quantum field theories that are fixed
points of the renormalization group flow, i.e. whose coupling constants do not change
with the scale. We have encountered them already in Sect. 8.2 when studying the
properties of the beta function. The most trivial example of such theories are massless
free quantum field theories, but there are also examples of scale invariant, four-
dimensional interacting quantum field theories. We can ask the question of what
happens when a scale invariant theory is perturbed with some operator. In general,
the perturbed theory is not scale invariant anymore but we may wonder whether the
perturbed theory flows at low energies towards or away the fixed point theory.

In quantum field theory this can be decided by looking at the canonical dimension
DO of the operator O[φa] used to perturb the theory at the fixed point. In four
dimensions the three possibilities are:

• DO > 4: irrelevant perturbation. The running of the coupling constants takes the
theory back to the fixed point.

• DO < 4: relevant perturbation. At low energies the theory flows away from the
scale-invariant theory.

• DO = 4: marginal deformation. The direction of the flow cannot be decided only
on dimensional grounds.

As an example, let us consider first a massless fermion theory perturbed by a
four-fermion interaction term

L = iψ/∂ψ − 1

M2 (ψψ)
2. (8.98)
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This is indeed a perturbation by an irrelevant operator, since in four-dimensions
Dψ = 3

2 . Interactions generated by the extra term are suppressed at low energies
since typically their effects are weighted by the dimensionless factor E2/M2, where
E is the energy scale of the process. This means that as we try to capture the relevant
physics at lower and lower energies, the effect of the perturbation is weaker and
weaker rendering in the infrared limit E → 0 again a free theory. Hence, the irrelevant
perturbation in (8.98) makes the theory flow back to the fixed point.

On the other hand, relevant operators dominate the physics at low energies. This
is the case, for example, of a mass term. As we lower the energy the mass becomes
more important, and once the energy goes below the mass of the field its dynamics
is completely dominated by the mass term. This is, for example, how Fermi’s theory
of weak interactions emerges from the standard model at energies below the mass of
the W± boson

At energies below mW = 80.4 GeV the dynamics of the W+ boson is dominated
by its mass term and therefore becomes nonpropagating, giving rise to the effective
four-fermion Fermi theory.

To summarize our discussion so far, we found that while relevant operators domi-
nate the dynamics in the infrared, taking the theory away from the fixed point, irrel-
evant perturbations become suppressed in the same limit. Finally, we consider the
effect of marginal operators. As an example we take the interaction term in massless
QED, O = ψγμψ Aμ. Taking into an account that in d = 4 the dimension of the
electromagnetic potential is [Aμ] = 1, the operator O is a marginal perturbation. In
order to decide whether the fixed point theory

L0 = −1

4
Fμv Fμv + iψ/∂ψ (8.99)

is restored at low energies or not we need to study the perturbed theory in more detail.
This we have done in Sect. 8.1 where we learned that the effective coupling in QED
decreases at low energies. Then we conclude that the perturbed theory flows towards
the fixed point in the infrared.
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As an example of a marginal operator with the opposite behavior, we write the
Lagrangian for a SU(Nc) gauge theory, L = − 1

4 F A
μv F A μv, as

L = − 1

4

(
∂μAA

v − ∂v AA
μ

) (
∂μAAv − ∂v AAμ

)
− 4g f ABC AA

μ AB
v ∂

μACv

+ g2 f ABC f ADE AB
μ AC

v ADμAEv ≡ L0 + Og, (8.100)

i.e. a marginal perturbation of the free theory described by L0, which is obviously
a fixed point under renormalization group transformations. Unlike QED, the full
theory is asymptotically free, so the coupling constant grows at low energies. This
implies that the operator Og becomes more and more important in the infrared, and
the theory flows away the fixed point in this limit.

It is very important to notice here that in the Wilsonian view the cutoff is not
necessarily regarded as just some artifact to remove infinities but it has a physical
origin. For example in the case of Fermi’s theory of β-decay there is a natural
cutoff Λ = mW where the theory has to be replaced by a better behaved theory
at high energies. In the case of the standard model itself the cutoff can be taken at
the Planck scale Λ � 1019 GeV or the grand unification scale Λ � 1016 GeV,
where new degrees of freedom are expected to become relevant. The cutoff serves
the purpose of cloaking the range of energies where new physics has to be taken into
account.

Since in the Wilsonian approach the quantum theory is always defined with
a physical cutoff, there is no fundamental difference between renormalizable and
nonrenormalizable theories. A renormalizable field theory, like the standard model,
can generate nonrenormalizable operators at low energies such as the effective four-
fermion interaction of Fermi’s theory. They are not sources of any trouble if we are
interested in the physics at scales much below the cutoff, E � Λ, since their contri-
bution to the amplitudes is suppressed by powers of E/Λ. A more detailed analysis
of effective field theories will be presented in Chap. 12.

References

1. Eidelman, S. et al.: Review of particle physics. Phys. Lett. B 592, 1 (2004). http://pdg.lbl.gov
2. Yndurain, F.J.: Landau Poles, Violations of Unitarity and a Bound on the Top Quark Mass. In:

Akhoury, R., de Wit, B., van Nieuwenhuizen, P., Veltman, H. (eds.) Gauge Theories—Past and
Future. World Scientific, Singapore (1992)

3. Gross D, J., Wilczek, F.: Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. 30,
1343 (1973)

4. Politzer H, D.: Reliable perturbative results for strong interations?. Phys. Rev. Lett. 30, 1346
(1973)

5. Hoddeson, L., Brown, L., Riordan, M., Dresden, M. (eds.) The Rise of the Standard Model.
Particle Physics in the 1960s and 1970s. Cambridge University Press, New York (1997)

6. Wilson K, G.: Renormalization group and critical phenomena 1. Renormalization group and the
Kadanoff scaling picture. Phys. Rev. B 4, 3174 (1971)



8.5 The Renormalization Group in Quantum Field Theory 173

7. Wilson K, G.: Renormalization group and critical phenomena 2. Phase space cell analysis of
critical behavior. Phys. Rev. B 4, 3184 (1971)

8. Wilson K, G.: The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583
(1983)

9. Kadanoff, LP.: Scaling Laws for Ising Models Near Tc . Physics 2, 263 (1966)





Chapter 9
Anomalies

So far we did not worry about how the classical symmetries of a theory are carried
over to the quantum theory. We have implicitly assumed that classical symmetries
are preserved in the process of quantization.

This is not necessarily the case. As we have seen in the previous chapter, quantizing
an interacting field theory is a very involved process requiring regularization and
renormalization. Sometimes, it does not matter how hard we try, there is no way for
a classical symmetry to survive quantization. When this happens one says that the
theory has an anomaly (for a review see [1]). It is important to avoid the misconception
that anomalies appear due to a bad choice of the way a theory is regularized in the
process of quantization. When we talk about anomalies we mean a classical symmetry
that cannot be realized in the quantum theory, no matter how smart we are in choosing
the regularization procedure.

In Chap. 8 we have already encountered an example of an anomaly: the quantum
breaking of classical scale invariance reflected in the running of the coupling
constants with the energy. In the following we focus on other examples of anomalies,
this time associated with the global and local symmetries of the classical theory.

9.1 A Toy Model for the Axial Anomaly

Probably the best known examples of anomalies appear when we consider axial
symmetries. In a theory of two Weyl spinors u±

L = iψ∂/ψ = iu†
+σ

μ
+∂μu+ + iu†

−σ
μ
−∂μu− with ψ =

(
u+
u−

)
(9.1)

the Lagrangian is invariant under two types of global U(1) transformations. In the first
one both chiralities transform with the same phase, this is a vector transformation:

U(1)V : u± −→ eiαu±, (9.2)
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whereas in the second, the axial U(1), the signs of the phases are different for the
two chiralities

U(1)A : u± −→ e±iαu±. (9.3)

Using Noether’s theorem, there are two conserved currents, a vector current

JμV = ψγμψ = u†
+σ

μ
+u+ + u†

−σ
μ
−u− =⇒ ∂μ JμV = 0 (9.4)

and an axial vector current

JμA = ψγμγ5ψ = u†
+σ

μ
+u+ − u†

−σ
μ
−u− =⇒ ∂μ JμA = 0. (9.5)

The theory described by the Lagrangian (9.1) can be coupled to the
electromagnetic field. The resulting classical theory is still invariant under the vector
and axial U(1) symmetries (9.2) and (9.3). Surprisingly, upon quantization it turns out
that the conservation of the axial vector current (9.5) is spoiled by quantum effects

∂μ JμA ∼ � E · B. (9.6)

To understand more clearly how this result comes about, we study first a simple
model in two dimensions that captures the relevant physics involved in the four-
dimensional case [2]. We work in a two-dimensional Minkowski space with coor-
dinates (x0, x1) ≡ (t, x) and where the spatial direction is compactified to a circle
S1 with length L. In this setup we consider a fermion coupled to a classical electro-
magnetic field. Notice that in our two-dimensional world the field strength Fμv has
only one independent component that corresponds to the electric field, F01 ≡ −E
(in two dimensions there are no magnetic fields!).

To write the Lagrangian for the spinor field we need to find a representation of
the algebra of γ -matrices

{γ μ, γ v} = 2ημv with η =
(

1 0
0 −1

)
. (9.7)

In two dimensions the dimension of the representation of the γ -matrices is 2. In fact,
remembering the anticommutation relation of the Pauli matrices {σi , σ j } = 2δi j is
not very difficult to come up with the following representation

γ 0 ≡ σ1 =
(

0 1
1 0

)
, γ 1 ≡ iσ2 =

(
0 1
−1 0

)
. (9.8)

This is a chiral representation since the matrix γ5 is diagonal1

γ5 ≡ −γ 0γ 1 =
(

1 0
0 −1

)
. (9.9)

1 In any even number of dimensions γ5 is defined to satisfy the conditions (γ5)
2 = 1

and {γ5, γ
μ} = 0.
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Writing a two-component Dirac spinor ψ as

ψ =
(

u+
u−

)
(9.10)

and defining as usual the projectors P± = 1
2 (1 ± γ5), we find that the components

u± of ψ are respectively right- and left-handed Weyl spinors in two dimensions.
Once we have a representation of the γ -matrices we can write the Dirac equation.

Expressed in terms of the components u± of the Dirac spinor, we have

(∂0 − ∂1)u+ = 0, (∂0 + ∂1)u− = 0. (9.11)

The general solution of these equations can be immediately written as

u+ = u+(x0 + x1), u− = u−(x0 − x1). (9.12)

Hence u± are two wave packets moving along the spatial dimension respectively
to the left (u+) and to the right (u−). Notice that according to our convention the
left-moving u+ is a right-handed spinor (positive helicity) whereas the right-moving
u− is a left-handed spinor (negative helicity).

If we insist in interpreting (9.11) as the wave equation for two-dimensional Weyl
spinors, we find the following properly normalized wave functions for free particles
with well defined energy-momentum pμ = (E, p)

v(E)± (x0 ± x1) = 1√
L

e−i E(x0±x1) with p = ∓E . (9.13)

As it is always the case with a relativistic wave equation, we have found both positive
and negative energy solutions. For v(E)+ , since E = −p, we see that the solutions
with positive energy are those with negative momentum p < 0,whereas the negative
energy solutions are plane waves with p > 0. For the left-handed spinor u− the
situation is reversed. Besides, since the spatial direction is compact with length L the
momentum p is quantized according to

p = 2πn

L
, n ∈ Z. (9.14)

The spectrum of the theory is represented in Fig. 9.1.
Knowing the spectrum of the theory the next step is to obtain the vacuum.

As with the Dirac equation in four dimensions, we identify the ground state of
the theory with the one where all states with E � 0 are filled (see Fig. 9.2.). Exciting
a particle in the Dirac sea produces a positive energy fermion plus a hole that is
interpreted as an antiparticle. This gives us the key on how to quantize the theory.
In the expansion of the operator u± in terms of the modes (9.13) we associate positive
energy states with annihilation operators, whereas the states with negative energy are
associated with creation operators for the corresponding antiparticle
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+ −

p p

E E

v v

Fig. 9.1 Spectrum of the massless two-dimensional Dirac field. We denote by v± the states with
dispersion relation E = ∓p

p

E E

p

0,+ 0,−

Fig. 9.2 The two branches in the vacuum of the theory. The solid points represent the filled negative
energy states

u±(x) =
∑
E>0

[
a±(E)v(E)± (x)+ b†

±(E)v
(E)
± (x)∗

]
. (9.15)

The operator a±(E) annihilates a particle with positive energy E and momentum
∓E , and b†

±(E) creates out of the vacuum an antiparticle with positive energy E
and spatial momentum ∓E . In the Dirac sea picture the operator b±(E)† is orig-
inally an annihilation operator for a state of the sea with negative energy −E .
As in four dimensions, the problem of the negative energy states is solved by inter-
preting annihilation operators for negative energy states as creation operators for
the corresponding antiparticle with positive energy (and vice versa). The operators
appearing in the expansion of u± in Eq. (9.15) satisfy the usual fermionic algebra

{aλ(E), a†
λ′(E

′)} = {bλ(E), b†
λ′(E

′)} = δE,E ′δλλ′, (9.16)

where we have introduced the label λ, λ′ = ±. In addition, aλ(E), a†
λ(E) anticom-

mute with bλ′(E ′), b†
λ′(E

′).
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The Lagrangian of the theory

L = iu†
+(∂0 + ∂1)u+ + iu†

−(∂0 − ∂1)u− (9.17)

is invariant under both the U(1)V transformations shown in Eq. (9.2), and U(1)A of
Eq. (9.3). The corresponding Noether currents are

JμV =
(

u†
+u+ + u†

−u−
−u†
+u+ + u†

−u−

)
, JμA =

(
u†
+u+ − u†

−u−
−u†
+u+ − u†

−u−

)
. (9.18)

The associated conserved charges are given by

QV ≡
L∫

0

dx1 J 0
V =

L∫
0

dx1
(

u†
+u+ + u†

−u−
)
, (9.19)

for the vector current, and

QA ≡
L∫

0

dx1 J 0
A =

L∫
0

dx1
(

u†
+u+ − u†

−u−
)

(9.20)

for the vector axial one. Using the orthonormality relations for the modes v(E)± (x)

L∫
0

dx1v(E)± (x)∗v(E
′)

± (x) = δE,E ′, (9.21)

the conserved charges can be explicitly computed as

QV =
∑
E>0

[
a†
+(E)a+(E)− b†

+(E)b+(E)+ a†
−(E)a−(E)− b†

−(E)b−(E)
]
,

QA =
∑
E>0

[
a†
+(E)a+(E)− b†

+(E)b+(E)− a†
−(E)a−(E)+ b†

−(E)b−(E)
]
.

(9.22)
From these expressions we see how QV counts the net fermion number, i.e. the

number of particles minus antiparticles, independently of their helicity. The axial
charge QA, on the other hand, counts the net number of positive minus negative
helicity states. In the case of the vector current we have subtracted a formally diver-
gent vacuum contribution to the charge (the “charge of the Dirac sea”).

In the free theory there is of course no problem with the conservation of either
QV or QA, since the occupation numbers do not change. What we want to study
is the effect of coupling the theory to the electric field E . We work in the gauge
A 0 = 0. Instead of solving the problem exactly we are going to use the following
trick: we simulate the electric field by adiabatically varying in a long time τ0 the
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Fig. 9.3 Effect of the
electric field on the vacuum
shown in Fig. 9.2. Some of
the occupied negative energy
states in the brach v+
acquires positive energy,
while the same number of
empty positive energy states
in the branch v− shift to
negative energy and become
holes in the Dirac sea

p

E

vector potential A 1 from zero value to E τ0. From our discussion in Chap. 4 (see
Sect. 4.1) we know that the effect of the electromagnetic coupling in the theory is a
shift in the momentum according to

p −→ p − eA 1, (9.23)

where e is the charge of the fermions. Since we assumed that the vector potential
varies adiabatically, we can take it to be approximately constant at each time.

We have to understand the effect on the vacuum depicted in Fig. 9.2 of switching
on the vector potential. Increasing adiabatically A 1 results, according to Eq. (9.23),
in decreasing the momentum of the state. What happens to the energy depends on
whether we consider states with dispersion relation E = −p (the branch v+) or
E = p (the branch v−).

The result is that the two branches move as shown in Fig. 9.3. Thus, some of
the negative energy states of the v+ branch acquire positive energy while the same
number of the empty positive energy states of the other branch v− become empty
negative energy states. Physically, this means that the external electric field E creates
a number of particle-antiparticle pairs out of the vacuum.

We have to count the number of such pairs created by the electric field after a time
τ0. This is given by

N = L

2π
eE τ0. (9.24)

To get this expression we have divided the shift of the spectrum eE τ0 by the separation
between energy levels given by 2π

L [cf. Eq. (9.14)]. The value of the charges at the
time τ0 are

QV(τ0) = (N − 0)+ (0− N ) = 0,

QA(τ0) = (N − 0)− (0− N ) = 2N . (9.25)

We conclude that the coupling to the electric field produces a violation in the conser-
vation of the axial charge per unit time given by



9.1 A Toy Model for the Axial Anomaly 181

Q̇A = e

π
E L . (9.26)

This result translates into a nonconservation of the axial vector current

∂μ JμA =
e�

π
E , (9.27)

where we have restored � to make clear that we are dealing with a quantum effect.
In addition, the fact that ΔQV = 0 guarantees that the vector current remains
conserved also quantum mechanically, ∂μ JμV = 0.

9.2 The Triangle Diagram

We have just studied a two-dimensional example of the Adler-Bell-Jackiw axial
anomaly [3, 4]. We have presented a heuristic analysis consisting of studying the
coupling of a two-dimensional massless fermion to an external classical electric
field to compute the violation in the conservation of the axial vector current due to
quantum effects.

This suggests an alternative, more sophisticated way to compute the axial anomaly.
Gauge invariance requires that the fermion couples to the external gauge field through
the vector current JμV via a term in the Lagrangian

L = iψ∂/ψ + eJμV Aμ, (9.28)

where Aμ(x) represents the classical external gauge field. To decide whether the
axial vector current is conserved quantum mechanically we compute the vacuum
expectation value

〈
∂μ JμA (x)

〉
A , (9.29)

where the subscript indicates the expectation value is computed in the vacuum of the
theory coupled to the external field. This quantity can be evaluated in powers of Aμ

using either the operator formalism or functional integrals. The first nonvanishing
term is

〈
∂μ JμA (x)

〉
A = ie

∫
d2 y∂μCμv(y)Av(x − y), (9.30)

where

(9.31)
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In this correlation function the state |0〉 represents the Fock space vacuum of the free
fermion theory. It can be evaluated using Wick’s theorem. The Feynman diagram
summarizes the Wick contractions required to compute the time-ordered correlation
function of the two currents

(9.32)

We have concluded that the axial anomaly is controlled by the quantity ∂μCμv(x).
In computing the anomaly we have to impose the conservation of the vector current.
This is crucial, since the gauge invariance of the theory depends upon it.2 Doing this,
one arrives at the result

〈∂μ JμA 〉A = −
e�

2π
εvσFvσ , (9.33)

with ε01 = −ε10 = 1 and Fμv is the field strength of the external gauge field. It is
immediate to check that the diagramatic calculation renders the same result (9.27)
obtained in the previous section using a more heuristic argumentation.

The calculation of the axial anomaly can be also carried out in four dimensions
along the same lines. Again, we have to compute the vacuum expectation value of the
axial vector current coupled to an external classical gauge field Aμ. Now, however,
the first nonvanishing contribution comes from the term quadratic in the external
gauge field, namely

〈∂μ Jμ〉A = −e2

2

∫
d4 y1d4 y2∂

(x)
μ Cμvσ (x, y)Av(x− y1+ y2)Aσ (x− y2), (9.34)

where now

Cμvσ (x, y) = 〈
0|T [

JμA (x)J
v
V(y)J

σ
V (0)

] |0〉
. (9.35)

This correlation function can be computed diagrammatically as

(9.36)

2 In fact there is a tension between the conservation of the vector an axial vector currents. The
calculation of the diagram shown in Eq. (9.31) can be carried out imposing the conservation of
the axial vector current, which results in an anomaly for the vector current. Since this would be
disastrous for the consistency of the theory, we choose the other alternative.
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This is the celebrated triangle diagram. The subscript indicates that, in fact, Cμvσ

is given by two triangle diagrams with the two photon external legs interchanged.
This is the result of Bose symmetry and can be explicitly checked by performing the
Wick contractions in the correlation function (9.35).

The evaluation of the integral in the right-hand side of (9.34) is complicated by
the presence of divergences that have to be regularized. As in the two-dimensional
case, the conservation of the vector currents has to be imposed. The calculation gives
the following anomaly for the axial vector current [3, 4]

〈∂μ JμA 〉A = −
e2

16π2 ε
μvσλFμvFσλ. (9.37)

This result has very important consequences in the physics of strong interactions as
we will see in the next section.

We have paid attention to the axial anomaly in two and four dimensions. Chiral
fermions exists in all even-dimensional space-times and, as a matter of fact, the axial
vector current has an anomaly in all even-dimensional space-times. More precisely,
if the dimension of the space-time is d = 2k,with k = 1, 2, . . . , the anomaly is given
by a one-loop diagram with one axial current and k vector currents, i.e. a (k+1)-gon.
For example, in 10 dimensions the axial anomaly comes from the following hexagon
diagram

As in the four-dimensional case, Bose symmetry and the conservation of all vector
currents has to be imposed.

9.3 Chiral Symmetry in QCD

Our knowledge of the physics of strong interactions is based on the theory of Quantum
Chromodynamics (QCD) introduced in Sect. 5.3 (see also [5–7] for reviews). Here
we will consider a slightly more general version with an arbitrary number of colors
and flavors: a nonabelian gauge theory with gauge group SU(Nc) coupled to a number
N f of quarks. These are spin- 1

2 particles Q f
i labelled by the color and flavor quantum

numbers i = 1, . . . , Nc and f = 1, . . . , N f . The interaction between them is medi-
ated by the N 2

c − 1 gauge bosons, the gluons AA
μ, with A = 1, . . . , N 2

c − 1. Let us
recall that in the real world Nc = 3 and N f = 6, corresponding to the six quarks:
up (u), down (d), charm (c), strange (s), top (t) and bottom (b).
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For reasons that will be clear later we work in the limit of vanishing quark masses3

m f → 0. In this case the QCD Lagrangian is given by

LQCD = −1

4
F A
μv F Aμv +

N f∑
f=1

(
i Q

f
L D/ Q f

L + i Q
f
R D/ Q f

R

)
, (9.38)

where the subscripts L and R indicate respectively left and right-handed spinors,

Q f
L ,R ≡

1

2
(1± γ5)Q

f , (9.39)

and the field strength F A
μv and covariant derivative Dμ are respectively defined in

Eqs. (4.52) and (4.46). Apart from the gauge symmetry, this Lagrangian is also
invariant under a global U(N f )L× U(N f ) R acting on the flavor indices and defined
by

U(N f )L :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q f
L→

N f∑
f ′=1

(UL) f f ′Q
f ′
L

Q f
R→ Q f

R

U(N f )R :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q f
L→ Q f

L

Qr
R→

N f∑
f ′=1

(UR) f f ′Q
f ′
R

(9.40)

with UL ,UR ∈ U(N f ). Since U(N) = U(1)× SU(N), this global symmetry group
can be written as SU(N f )L × SU(N f )R × U(1)L × U(1)R . The abelian subgroup
U(1)L × U(1)R can be now decomposed into their vector U(1)B and axial U(1)A
subgroups defined by the transformations

U(1)B :
⎧⎨
⎩

Q f
L→ eiαQ f

L

Q f
R→ eiαQ f

R

U(1)A :
⎧⎨
⎩

Q f
L→ eiαQ f

L

Q f
R→ e−iαQ f

R

According to Noether’s theorem, associated with these two abelian symmetries we
have two conserved currents:

JμV =
N f∑
f=1

Q
f
γ μQ f , JμA =

N f∑
f=1

Q
f
γ μγ5 Q f . (9.41)

The conserved charge associated with the vector current JμV is the baryon number
counting the number of quarks minus the number of antiquarks.

The nonabelian part of the global symmetry, group SU(N f )L× SU(N f )R can also
be decomposed into its vector and axial factors, SU(N f )V × SU(N f )A, defined by
the following transformations of the quarks fields

3 In the real world this makes sense only for the up and down, and perhaps the strange quarks.



9.3 Chiral Symmetry in QCD 185

SU(N f )V :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q f
L→

N f∑
f ′=1

U f f ′Q
f ′
L

Q f
R→

N f∑
f ′=1

U f f ′Q
f ′
R

SU(N f )A :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q f
L→

N f∑
f ′=1

U f f ′Q
f ′
L

Q f
R→

N f∑
f ′=1

U−1
f f ′Q

f ′
R

(9.42)

where U is a SU(N f ) matrix. Again, the application of Noether’s theorem shows the
existence of the following nonabelian conserved charges

J Iμ
V ≡

N f∑
f, f ′=1

Q
f
γ μ(T I ) f f ′Q

f ′,

J Iμ
A ≡

N f∑
f, f ′=1

Q
f
γ μγ5(T

I ) f f ′Q
f ′ . (9.43)

To summarize, we have shown that the initial flavor chiral symmetry of the QCD
Lagrangian (9.38) can be decomposed according to

U(N f )L × U(N f )R = SU(N f )V × SU(N f )A × U(1)B × U(1)A. (9.44)

Up to now we have worked with the classical Lagrangian. The question to address
next is which part of the classical global symmetry is preserved in the quantum
theory.

As argued in Sect. 9.1, the conservation of the axial vector currents JμA and J Aμ
A

can in principle be spoiled by an anomaly. In the case of the abelian axial current JμA
the relevant quantity to compute is the correlation function

(9.45)

Here j Aμ
gauge is the nonabelian conserved current coupling to the gluon field

j Aμ
gauge ≡

N f∑
f=1

Q
f
γ μτ A Q f , (9.46)

where, to avoid confusion with the generators of the global symmetry, we have
denoted by τ A the generators of the gauge group SU(Nc). The anomaly can
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be read now from ∂
(x)
μ Cμvσ (x, x ′). If we impose Bose symmetry with respect to the

interchange of the two outgoing gluons and the conservation of the vector currents,
we find that the axial abelian global current has an anomaly given by4

∂μ JμA = −
g2 N f

32π2 ε
μvσλF A

μv F A
σλ. (9.47)

In the case of the nonabelian axial global symmetry SU(N f )A the calculation of
the anomaly is made as above. The result, however, is quite different since in this case
we conclude that the nonabelian axial vector current J Aμ

A is not anomalous. This can
be easily seen by noticing that associated with the axial vector current vertex we have
a generator T I of SU(N f ), whereas for the two gluon vertices we have the generators
τ A of the gauge group SU(Nc.) Therefore, the triangle diagram is proportional to the
group-theory factor

(9.48)

vanishing because the generators of SU(N f ) are traceless.
From here we could be tempted to conclude that the nonabelian axial symmetry

SU(N f )A is nonanomalous. However this is not the whole story, since quarks are
charged particles that also couple to photons. Thus there is a second potential source
of an anomaly coming from the the one-loop triangle diagram coupling J Iμ

A to two
photons

(9.49)

where jμem is the electromagnetic current

jμem =
N f∑
f=1

q f Q
f
γ μQ f , (9.50)

4 The normalization of the generators T I of the global SU(N f ) is given by Tr(T I T J ) = 1
2 δ

I J .
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with q f the electric charge of the f-th quark flavor. A calculation of the diagram in
(9.49) shows the existence of the Adler-Bell-Jackiw anomaly given by

∂μ J Iμ
A = −

Nc

16π2

⎡
⎣

N f∑
f=1

(T I ) f f q2
f

⎤
⎦ εμvσλFμv Fσλ, (9.51)

where Fμv is the field strength of the electromagnetic field coupling to the quarks.
The only chance for the anomaly to cancel is that the factor between brackets in this
equation be identically zero.

Before proceeding let us summarize the results found so far. Due to the presence
of anomalies the axial part of the global chiral symmetry, SU(N f )A and U(1)A,
are not realized quantum mechanically in general. We found that U(1)A is always
affected by an anomaly. However, the right-hand side of the anomaly equation (9.47)
is a total derivative, so the anomalous character of JμA does not explain the absence
of U(1)A multiplets in the hadron spectrum, since a new current can be constructed
which is conserved. In addition, the nonexistence of candidates for an associated
Nambu-Goldstone boson with the right quantum numbers indicates that U(1)A is not
spontaneously broken either, so it has to be explicitly broken somehow. This is the
so-called U(1)-problem solved by ’t Hooft [8], who showed how the contribution
from instantons describing quantum transitions between vacua with topologically
nontrivial gauge field configurations results in an explicit breaking of this symmetry.

Due to the dynamics of the SU(Nc) gauge theory, the axial nonabelian symmetry
is spontaneously broken due to the presence at low energies of a vacuum expectation
value for the fermion bilinear Q f Q f

〈0|Q f
Q f |0〉 = 0 (no summation in f !). (9.52)

This nonvanishing vacuum expectation value for the quark bilinear breaks chiral
invariance spontaneously to the vector subgroup SU(N f )V, so the only subgroup of
the original global symmetry that is realized in the full theory at low energy is

U(N f )L × U(N f )R −→ SU(N f )V × U(1)B . (9.53)

Associated with this breaking, Nambu–Goldstone bosons should appear with the
quantum numbers of the broken nonabelian currents. For example, in the case of QCD
the Nambu–Goldstone bosons associated with the spontaneous symmetry breaking
induced by the vacuum expectation values 〈uu〉, 〈dd〉 and 〈(ud − du)〉 have been
identified as the pions π0, π±. These bosons are not exactly massless due to the
nonvanishing mass of the u and d quarks. Since the global chiral symmetry is already
slightly broken by mass terms in the Lagrangian, the associated Goldstone bosons
also have masses although they are very light compared to the masses of other
hadrons.

In order to have a better physical understanding of the role of anomalies in the
physics of the strong interactions we particularize our analysis to the case of real
QCD. Since the u and d quarks are much lighter than the other four flavors, QCD at
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low energies can be well described by including only these two flavors and ignoring
heavier quarks. In this approximation, from our previous discussion we know that
the low energy global symmetry of the theory is SU(2)V× U(1)B, where now the
vector group SU(2)V is the well-known isospin symmetry. The axial U(1)A current
is anomalous due to Eq. (9.47) with N f = 2. In the case of the nonabelian axial
symmetry SU(2)A, taking into account that qu = 2

3 e and qd = − 1
3 e and that the

three generators of SU(2) can be written in terms of the Pauli matrices as T K = 1
2σK

we find
∑

f=u,d

(T 1) f f q2
f =

∑
f=u,d

(T 2) f f q2
f = 0,

∑
f=u,d

(T 3) f f q2
f =

e2

6
. (9.54)

Therefore J 3μ
A is anomalous.

The anomaly in the axial vector current J 3μ
A has an important physical conse-

quence. As we learned in Chap. 5 the flavor wave function of the neutral pion π0 is
given by

|π0〉 = 1√
2

(|ūu〉 − |d̄d〉) . (9.55)

The isospin quantum numbers of |π0〉 are those of J 3μ
A . In fact, the correspondence

goes even further. The divergence of the axial vector current ∂μ J 3μ
A has precisely the

same quantum numbers as the pion. This means that, properly normalized, it can be
identified as the operator creating a pion π0 out of the vacuum

|π0〉 ∼ ∂μ J 3μ
A |0〉. (9.56)

This leads to the physical interpretation of the triangle diagram (9.49) with J3μ
A as

the one loop contribution to the decay of a neutral pion into two photons

π0 −→ 2γ. (9.57)

This is an interesting piece of physics. In 1967 Sutherland and Veltman [9, 10]
presented a calculation, using current algebra techniques, according to which the
decay of the pion into two photons should be suppressed. This however contradicted
the experimental evidence showing the existence of such a decay. The way out to
this paradox, as pointed out in [3, 4], is the axial anomaly. What happens is that the
current algebra analysis overlooks the ambiguities associated with the regularization
of divergences in quantum field theory. A QED evaluation of the triangle diagram
leads to a divergent integral that has to be regularized. It is in this process that the
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Adler-Bell-Jackiw axial anomaly appears resulting in a nonvanishing value for the
π0 → 2γ amplitude.5

9.4 Gauge Anomalies

The existence of anomalies associated with global currents does not necessarily mean
difficulties for the theory. On the contrary, as we saw in the case of the axial anomaly,
its existence provides a solution of the Sutherland–Veltman paradox and an expla-
nation of the electromagnetic decay of the pion. The situation is very different when
we deal with local symmetries. A quantum mechanical violation of gauge symmetry
leads to many problems, from lack of renormalizability to nondecoupling of nega-
tive norm states. This is because the presence of an anomaly in the theory implies
that the Gauss’ law constraint D · EA = ρA cannot be consistently implemented
in the quantum theory. As a consequence, states that classically were eliminated by
the gauge symmetry become propagating in the quantum theory, thus spoiling the
consistency of the theory.

Anomalies in a gauge symmetry can be expected only in chiral theories where left
and right-handed fermions transform in different representations of the gauge group.
Physically, the most interesting example of such theories is the electroweak sector of
the standard model where, for example, left handed fermions transform as doublets
under SU(2) whereas right-handed fermions are singlets. On the other hand, QCD
is free of gauge anomalies since both left- and right-handed quarks transform in the
fundamental representation of SU(3).

We consider the Lagrangian

L = −1

4
F Aμv F A

μv + i
N+∑
i=1

ψ
i
+D/ (+)ψ i+ + i

N−∑
j=1

ψ
j
−D/ (−)ψ j

−, (9.58)

where the chiral fermions ψ i± transform according to the representations τ A
i,± of the

gauge group G (A = 1, . . . , dimG). The covariant derivatives Dμ
(±) are, as usual,

defined by

D(±)
μ ψ i± = ∂μψ i± − igYM AA

μτ
A±ψ i±. (9.59)

The anomaly is determined by the parity-violating part of the triangle diagram with
three external gauge bosons, summed over all chiral fermion species running in the
loop. All three vertices in the diagram include a projector P+ or P− and the parity-
violating terms are identified as those containing a single γ5. Splitting the gauge
current into its vector and axial vector part, we conclude that the gauge anomaly
comes from the triangle diagram with one axial and two vector gauge currents

5 An early computation of the triangle diagram for the electromagnetic decay of the pion was
made by Steinberger in [11].
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(9.60)

where j Aμ
V and j Aμ

A are given by

j Aμ
V =

N+∑
i=1

ψ
i
+τ A+γ μψ i+ +

N−∑
j=1

ψ
j
−τ A−γ μψ

j
−,

j Aμ
A =

N+∑
i=1

ψ
i
+τ A+γ μψ i+ −

N−∑
i=1

ψ
j
−τ A−γ μψ

j
−. (9.61)

Luckily, we do not have to compute the whole diagram in order to find an anomaly
cancellation condition. It is enough if we calculate the overall group theoretical factor.
In the case of the diagram in Eq. (9.60) for each fermion species running in the loop
this factor is equal to

Tr
[
τ A

i,±{τ B
i,±, τC

i,±}
]
, (9.62)

where the sign± corresponds respectively to the generators of the representations of
the gauge group for the left and right-handed fermions. Hence, the anomaly cancel-
lation condition reads

N+∑
i=1

Tr
[
τ A

i,+{τ B
i,+, τC

i,+}
]
−

N−∑
j=1

Tr
[
τ A

j,−{τ B
j,−, τC

j,−}
]
= 0. (9.63)

Knowing this we can proceed to check the anomaly cancellation in the standard
model SU(3)×SU(2)×U(1)Y .Left handed fermions (both leptons and quarks) trans-
form as doublets with respect to the SU(2) factor whereas the right-handed compo-
nents are singlets. The charge with respect to the U(1)Y part, the weak hypercharge
Y, is determined by the Gell-Mann–Nishijima formula

Q = T3 + Y, (9.64)

where Q is the electric charge of the corresponding particle and T3 is the eigenvalue
with respect to the third generator of the SU(2) group in the corresponding represen-
tation: T3 = 1

2σ3 for the doublets and T3 = 0 for the singlets. For the first family of
quarks (u, d) and leptons (e, ve) we have the following field content

quarks:

(
ui

di

)
L , 1

6

ui
R, 2

3
di

R,− 1
3

leptons:

(
ve

e

)
L ,− 1

2

eR,−1 (9.65)
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where i = 1, 2, 3 labels the color quantum number and the subscript indicates the
value of the weak hypercharge Y. Denoting the representations of SU(3)× SU(2)
× U(1)Y by (nc, nw)Y , with nc and nw the representations of SU(3) and SU(2)
respectively and Y the hypercharge, the matter content of the standard model consists
of a three family replication of the representations

left-handed fermions: (3, 2)L
1
6
(1, 2)L

− 1
2

right-handed fermions: (3, 1)R
2
3
(3, 1)R

− 1
3
(1, 1)R−1. (9.66)

In computing the triangle diagram we have 10 possibilities depending on which
factor of the gauge group SU(3)× SU(2)× U(1)Y appears in each vertex:

SU(3)3 SU(2)3 U(1)3

SU(3)2 SU(2) SU(2)2 U(1)

SU(3)2 U(1) SU(2) U(1)2

SU(3) SU(2)2

SU(3) SU(2) U(1)

SU(3) U(1)2

It is easy to verify that some of them do not give rise to anomalies. For example, the
anomaly for the SU(3)3 case cancels because left and right-handed quarks transform
in the same representation. In the case of SU(2)3 the cancellation happens term by
term using the Pauli matrices identity σ jσk = δ jk + iε jk�σ� leading to

Tr
[
σi {σ j , σk}

] = 2 (Trσi ) δ jk = 0. (9.67)

The hardest condition comes from the three U(1)’s. In this case the absence of
anomalies within a single family is guaranteed by the nontrivial identity

∑
left

Y 3+ −
∑
right

Y 3− = 3× 2×
(

1

6

)3

+ 2×
(
−1

2

)3

− 3×
(

2

3

)3

− 3×
(
−1

3

)3

− (−1)3 =
(
−3

4

)
+

(
3

4

)
= 0. (9.68)

It is remarkable that the anomaly exactly cancels between leptons and quarks. Notice
that this result holds even if a right-handed sterile neutrino is added since such a
particle is a singlet under the whole standard model gauge group and therefore does
not contribute to the triangle diagram. We see how the matter content of the standard
model conspires to yield a consistent quantum field theory.
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In all our discussion of anomalies we only considered the computation of one-
loop diagrams. It might happen that higher loop orders impose additional condi-
tions. Fortunately this is not so: the Adler–Bardeen theorem [12] guarantees that the
axial anomaly only receives contributions from one loop diagrams. Therefore, once
anomalies are canceled (if possible) at one loop we know that there will be no new
conditions coming from higher-loop diagrams in perturbation theory.

The Adler–Bardeen theorem, however, only applies in perturbation theory. It is
nonetheless possible that nonperturbative effects can result in the quantum violation
of a gauge symmetry. This is precisely the case pointed out by Witten [13] with
respect to the SU(2) gauge symmetry of the standard model. In this case the problem
lies in the nontrivial topology of the gauge group SU(2). The invariance of the theory
with respect to non-trivial gauge transformations requires the number of fermion
doublets to be even. It is again remarkable that the family structure of the standard
model makes this anomaly cancel

3×
(

u
d

)
L
+ 1×

(
ve
e

)
L
= 4 SU(2)-doublets, (9.69)

where the factor of 3 comes from the number of colors.
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Chapter 10
The Origin of Mass

The time has come to finally address a central problem left pending in the discussion
of the standard model carried out in Chap. 5: how particle masses can be gener-
ated preserving gauge invariance. We apply the Brout–Englert–Higgs mechanism
introduced in Chap. 7 to solve the problem of mass in the electroweak theory.

We will see, however, that this is not the end of the story. The masses generated
by spontaneous symmetry breaking in the standard model cannot account for the
mass of protons and neutrons, and therefore for most of the mass we see around us,
including our own. We will see that its origin is a purely quantum mechanical effect
in QCD.

10.1 The Masses in the Standard Model

We are finally ready to give a solution to the double problem that we left unsolved in
Chap. 5. First, the chiral nature of the electroweak interaction forbade writing mass
terms for the quark and lepton fields, while we know for sure that electrons, muons and
other particles are massive. Secondly, the phenomenology of weak decays indicated
that this interaction should be mediated by massive gauge bosons, something that at
face value is impossible to reconcile with gauge invariance.

Chapter 7 has provided the crucial hint on how this problem can be cured: by
breaking the SU(2)×U(1)Y gauge symmetry spontaneously to the electromagnetic
U(1) one could give mass to three of the gauge bosons mediating the electroweak
interaction leaving a massless photon behind. To do so we have to introduce a new
field, the Higgs field, transforming under the electroweak gauge group and whose
vacuum expectation value breaks it properly. Since we are not interested in breaking
Lorentz invariance, the field has to be a scalar.

To find the transformation of the Higgs field under the gauge group we take into
account that, in acquiring its vacuum expectation value, it should also give mass to
the matter fields. To see how this can be done we go back for a moment to the Abelian
Higgs model discussed in Chap. 7 [see Eq. (7.78)]. We add a massless fermion ψ

L. Álvarez-Gaumé and M. Á. Vázquez-Mozo, An Invitation to Quantum Field Theory, 193
Lecture Notes in Physics 839, DOI: 10.1007/978-3-642-23728-7_10,
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and couple it to the complex scalar field ϕ(x) introducing the Yukawa coupling term

LYukawa = −cϕψψ, (10.1)

where c is a real constant. Upon symmetry breaking, this term in the Lagrangian
takes the form

LYukawa = − cv√
2
ψψ − c√

2
σψψ. (10.2)

The first term gives a Dirac mass mψ = 1√
2

cv to the fermionψ(x),while the second

one couples it to the scalar field σ(x).
This shows the way to solve the problem of giving mass to fermions coupling to

gauge fields in a chiral way without breaking gauge invariance. In Chap. 5 we learned
that in the standard model the left-handed fermions transform as doublets under the
SU(2) factor of the gauge group, whereas the right-handed components are singlets.
Then, the gauge invariance of the Yukawa couplings indicates that the Higgs field
has to be a SU(2) doublet

H =
(

H+
H 0

)
, (10.3)

where H+ and H0 are complex scalar fields. Taking this into account we add to the
standard model Lagrangian the piece

L (�)
Yukawa = −

3∑
i, j=1

(
C (�)

i j L
i
H� j

R + C(�)
j i
∗�i

RH†L j
)
, (10.4)

invariant under SU(2) gauge transformations. Here C(�)
i j are dimensionless coupling

constants and we have used the notation introduced in Table 5.1. The Yukawa
couplings have been constructed in such a way that neutrinos do not get Dirac masses.

The masses of the quarks are generated by Yukawa couplings similar to the ones
already written for the leptons. One important difference, however, lies in the fact that
now we want to give mass to the two components of the left-handed SU(2) doublets.
To achieve this we need to couple the fermions not only to the Higgs doublet H but
also to its “charge conjugate”

H̃ ≡ iσ2H∗ =
(

H0∗
−H+∗

)
. (10.5)

From the identity

(iσ2)e
−ia· σ∗2 = eia· σ2 (iσ2), (10.6)

it follows that the conjugated Higgs field H̃ also transforms as a SU(2) doublet. Then,
the Dirac masses of the quark fields can be obtained from the following Yukawa
couplings
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L
(q)

Yukawa =−
3∑

i, j=1

(
C (q)

i j Q
i
HD j

R + C (q)
j i
∗Di

RH†Q j
)

−
3∑

i, j=1

(
C̃ (q)

i j Q
i
H̃U j

R + C̃ (q)
j i
∗U i

RH̃†Q j
)
. (10.7)

The notation also follows Table 5.2.
We have constructed an interaction term between the Higgs field and the fermions

demanding invariance under SU(2) gauge transformations. It is easy to see that
the Yukawa couplings (10.4) and (10.7) are invariant also under the U(1)Y gauge
symmetry factor provided the Higgs field is assigned the weak hypercharge
Y (H) = 1

2 . The Gell–Mann–Nishijima formula then implies that

Q(H+) = 1, Q(H0) = 0, (10.8)

thus justifying our notation.
To implement symmetry breaking we have to add the following term to the stan-

dard model Lagrangian

LHiggs = (DμH)† DμH− V (H,H†), (10.9)

where Dμ is the corresponding SU(2)× U(1)Y covariant derivative (see Sect. 5.4).
The potential has to be wisely chosen in such a way that spontaneous symmetry
breaking takes place and solves our problems with the particle masses in a satisfactory
way. In fact, gauge invariance and the condition that the theory is renormalizable (see
Chap. 8) imply that the Higgs potential should be of the form

V (H,H†) = λ

4

(
H†H− v2

2

)2

. (10.10)

The system exhibits spontaneous symmetry breaking if v2 > 0. Then, the theory has
a degenerate family of vacua defined by H†H = 1

2 v2.

The only surviving gauge symmetry in the electroweak sector at low energies
is the U(1) invariance of QED. This means that this symmetry is realized à la
Wigner–Weyl and therefore the vacuum has zero electric charge. Taking into account
Eq. (10.8) this means that we are forced to take1

〈H〉 =
(

0
1√
2

v

)
. (10.11)

Since Y (H) = 1
2 this vacuum expectation value breaks not only SU(2) but also U(1)Y .

It however preserves the electromagnetic U(1) and therefore implements correctly
the symmetry breaking pattern, SU(2)× U(1)Y → U(1).

1 It can be shown that, by appropriate gauge transformations, any other vacuum expectation value
can always be brought to this form.
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Following the example of the Abelian Higgs model, the fluctuations around this
vacuum can be parametrized as [cf. Eq. (7.81)]

H(x) = 1√
2

eia(x)· σ2
(

0
v + h(x)

)
. (10.12)

There are four different fields associated with these fluctuations, here denoted by a(x)
and h(x).The factor eia(x)· σ2 represents the action of the three broken generators,2 and
can be eliminated by a SU(2) gauge transformation. This removes the three would-be
Nambu–Goldstone bosons a(x) that are transmuted into the longitudinal components
of the massive gauge bosons W+, W− and Z0. The remaining propagating degree
of freedom h(x) is the neutral scalar whose elementary excitation is known as the
Higgs boson. Inserting

H(x) = 1√
2

(
0

v + h(x)

)
(10.13)

in V (H,H†) and expanding the result in powers of the field h(x), the mass of the
Higgs particle is found to be

mH = v

√
λ

2
. (10.14)

The dimensionless coupling λ governs the self-interaction of the Higgs bosons.
Substituting Eq. (10.13) in the Yukawa couplings (10.4), we find, at low energies,

the following lepton mass terms

L (�)
mass = −(eL , μL , τ L)M

(�)

⎛
⎝ eR

μR

τR

⎞
⎠+ h.c. (10.15)

We notice that no mass term for the neutrinos is generated through the Brout–Englert–
Higgs mechanism, so neutrino masses have to be explained in some other way. On
the other hand, for the quarks we find

L (q)
mass = −(d L , sL , bL)M

(q)

⎛
⎝ dR

sR

bR

⎞
⎠− (uL , cL , t L)M̃

(q)

⎛
⎝ uR

cR

tR

⎞
⎠+ h.c. (10.16)

and the mass matrices are given by

2 It might seem strange that, apparently, we have included only the action of the SU(2) generators
on the vacuum. As a matter of fact, this is not the case. What happens is that the electromagnetic
U(1) remains unbroken and therefore Qvac = 0.Then, using the Gell–Mann–Nishijima relation, the
action of the weak hypercharge generator Y on the vacuum can be written in terms of the generators
of SU(2) as Y = −2T3 = −σ3.
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M (�,q)
i j = 1√

2
vC(�,q)

i j , M̃ (q)
i j =

1√
2

vC̃(q)
i j , (10.17)

with C(�,q)
i j and C̃ (q)

i j the strength of the Yukawa couplings defining general complex
3× 3 matrices. We notice as well that the mass scale of all charged fermion is set by
the Higgs vacuum expectation value v.

So far we have written the standard model Lagrangian in terms of fields with well
defined transformations under the gauge group (this we call flavor eigenstates). Now,
however, there is no a priori reason for the mass matrices in (10.15) and (10.16) to
be diagonal. This means that the corresponding propagators are not diagonal and
therefore the different flavor eigenstates mix with each other as they propagate.
In order to quantize the theory, however, it is more convenient to work with fields
whose propagators, at low energies, are diagonal and therefore have well-defined
masses. These fields are constructed by noticing that a general complex matrix can
always be diagonalized by a biunitary transformation. More precisely, this means
that there are unitary matrices V (�,q)

L ,R , Ṽ (q)
L ,R such that

V (�)
L

† M (�)V (�)
R =

⎛
⎝ me 0 0

0 mμ 0
0 0 mτ

⎞
⎠ (10.18)

for the leptons, whereas for the quarks we have

V (q)
L

† M (q)V (q)
R =

⎛
⎝ md 0 0

0 ms 0
0 0 mb

⎞
⎠ , Ṽ (q)

L
† M̃ (q)Ṽ (q)

R =
⎛
⎝ mu 0 0

0 mc 0
0 0 mt

⎞
⎠.

(10.19)
In view of this, we define the mass eigenstate quark fields as3

⎛
⎝ u′L ,R

c′L ,R
t ′L ,R

⎞
⎠ = Ṽ (q)

L ,R
†

⎛
⎝ uL ,R

cL ,R

tL ,R

⎞
⎠ ,

⎛
⎝ d ′L ,R

s ′L ,R
b′L ,R

⎞
⎠ = V (q)

L ,R
†

⎛
⎝ dL ,R

sL ,R

bL ,R

⎞
⎠, (10.20)

and similarly for the charged lepton fields, this time using the matrices V (�)
L ,R . By

construction, the propagators are diagonal when expressed in terms of the new fields.
The couplings with the gauge fields, on the other hand, can get a dependence on the
unitary matrices involved in the diagonalization of the mass matrices. To see how
this dependence comes about we look, for example, at the quark charged current
coupling to the W+ bosons

jμ+ = (uL , cL , t L )γ
μ

⎛
⎝ dL

sL

bL

⎞
⎠ = (u ′L , c′L , t ′L)γ μṼ (q)

L
†V (q)

L

⎛
⎝ d ′L

s′L
b′L

⎞
⎠ (10.21)

3 Our notation at this point differs from the usual one in the literature in that we use primed fields
to indicate the mass eigenstates. The reason to use this notation is to avoid cluttering the equations
with primes both in this chapter and in Chap. 5.
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A similar calculation for the neutral quark current shows that it does not depend
on the unitary matrices relating flavor to mass eigenstates. This means that at tree
level there are no flavor changing neutral currents (FCNC), as a consequence of the
quantum numbers of the three families. This is the tree-level version of the Glashow–
Iliopoulos–Maiani (GIM) mechanism that works for complete families.

We have shown that the couplings of the quarks to the W± bosons mix the different
mass eigenstates. This mixing is given by the 3× 3 matrix

V ≡ Ṽ (q)
L

†V (q)
L , (10.22)

called the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix. It is imme-
diate to check that this matrix is unitary and therefore in general complex. In
Chap. 11 we will see that this has important physical consequences.

We analyze next the leptonic sector. The charged lepton-neutrino current is

jμ+ = (veL , vμL , vτ L)γ
μ

⎛
⎝ eL
μL

τL

⎞
⎠ = (ve,L , vμ,L , vτ,L)γ

μV (�)
L

⎛
⎝ e′L
μ′L
τ ′L

⎞
⎠ . (10.23)

Were the neutrino massless, the matrix VL
(�) could be reabsorbed in a redefinition of

the neutrino fields without making the propagator nondiagonal. We know, however,
that the neutrinos are massive and the only question is whether their mass terms
are of Dirac, Majorana or a mixture of both. In either case one has to redefine the
neutrino fields to diagonalize their mass matrix and this results in the introduction
of a second CKM matrix in the leptonic sector.

Higgs Couplings

Having learned how fermion masses are generated, we would like to know how these
states couple to the Higgs field itself. This is important because these couplings
determine both how the Higgs particle can be produced in a scattering experi-
ment and also what its decay signatures are. Looking at the terms linear in h(x)
in (10.4), we find that the Higgs boson couples to the charged mass eigenstates
f = (e′, μ′, τ ′, u′, d ′, c′, s′, t ′, b′) according to the vertices

where m f is the mass of the charged fermion. Thus, the Higgs-fermion couplings
are suppressed by the ratio between the fermion masses and the vacuum expectation
value of the Higgs field.
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The masses of the gauge fields W± and Z0 and their couplings to the Higgs are
obtained by expanding H(x) around the vacuum in the covariant derivative terms in
Eq. (10.9). For the masses one finds

mW = 1

2
gv, m Z = gv

2 cos θw
, (10.24)

with g the electroweak coupling constant and θw the weak mixing angle (see
Chap. 5). As for the coupling of the vector bosons to the Higgs field, the terms
linear in h(x) give rise to the following interaction vertices

In addition, the theory contains also vertices that couple two vector bosons to two
Higgs fields, as well as self-interaction vertices with three and four Higgs bosons.
They can be found, for example, in Ref. [4–8] of Chap. 5.

The implementation of symmetry breaking has resulted in the introduction of a
new energy scale, the Higgs vacuum expectation value v, and a number of dimension-
less couplings: the Higgs self-interaction λ, and the Yukawa couplings for leptons
and quarks, C (�)

i j , C (q)
i j and C̃ (q)

i j . In fact, the Higgs vacuum expectation value ν is
related to the Fermi coupling constant G F introduced in Chap. 5. Using the relation
between v and the mass of the W boson (10.24) we find

G F = 1√
2v2

. (10.25)

Since G F can be measured, for example, from muon decay we learn that the Higgs
vacuum expectation value is

v ≈ 246 GeV. (10.26)

Once the value of the only energy scale v is determined, one can use the relations
(10.17) to fix the Yukawa couplings for quarks and leptons from measurement of
the mass matrices for the different matter fields. With this, however, we still get no
information about the value of the Higgs self-coupling constant λ, or equivalently,
the Higgs boson mass m H . This is the last standard model parameter that remains to
be measured and the Higgs boson the last particle of the model to be detected.

What makes the Higgs field so elusive? First, our ignorance of the value of the
Higgs mass makes its detection difficult because it is not possible to know a priori
“where” to look for it. Depending on the value of m H different channels have to
be considered for the production of this particle. A second aspect is that the Higgs
boson couples to other standard model particles with a strength proportional to their
masses. Thus, its coupling to light fermions is very small and to produce Higgs
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particles one must begin by producing heavy fermions, W±, or Z0 vector bosons in
large quantities. The situation is complicated by the fact that many decay channels
of the Higgs boson produce signals that are quite common also in other standard
model processes not involving Higgs particles (or, in technical jargon, they have
“large backgrounds”).

This however does not mean that we do not know anything about the Higgs
mass. The Higgs particle enters in the calculation of higher order corrections to stan-
dard model processes and bounds to m H can be found by comparing these calcu-
lations with the precision measurements carried out at the Large Electron Positron
(LEP) collider, running at CERN between the years 1989 and 2000. Additional
bounds for m H can also be found from consistency requirements. For example, if
the Higgs boson is too light the quantum corrections to the Higgs coupling constant
λ could make it negative, thus rendering the theory unstable. On the other side, a
too-heavy Higgs boson would have unpleasant effects on the good behavior of the
theory at high energies. Combining these with other pieces of information a likely
range for the Higgs mass can be obtained depending on the energy scale Λ up to
which we consider the standard models to describe the physics correctly [1]. Taking,
for example, Λ∼ 1 TeV one finds

50 GeV � m H � 800 GeV, (10.27)

while if Λ∼ 1016 GeV the range narrows to

130 GeV � m H � 180 GeV. (10.28)

Searches for Higgs boson are currently underway at both the Tevatron at Fermilab
and the LHC at CERN. Particularly promising channels are the decay of the Higgs
into two photons or into two Z0, that in turn decay into a couple of lepton–antilepton
pairs:

The first process would give a distinctive signature for a Higgs with mass
m H � 150 GeV,whereas the second would be important in the regime mH � 2m Z .

Remarks on Symmetry Breaking in the Standard Model

The Higgs sector of the standard model cannot be regarded as a mere attachment to it,
as just a smart “trick” intended to circumvent the conflict between masses and gauge
invariance. There are more fundamental reasons to think that the Higgs particle, or
something very similar, should be there. It is an experimental fact that the W± and
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Z0 bosons are massive and therefore have longitudinal components that have been
detected.

If we only worry about giving masses to the vector bosons and fermions, it is
clear that freezing the field h(x) in Eq. (10.12) suffices. For all practical purposes
the theory we obtain has massive W± and Z0 bosons and massive fermions, but no
elementary Higgs scalar. So long as we work at low enough energies, this may be a
reasonably good phenomenological description.

This naive Higgsless standard model has problems: scattering amplitudes involving
the longitudinal components of the gauge bosons behaves badly as the energy
approaches the scale v∼mW,Z/g. The amplitudes grow so fast with the energy
as to be incompatible with something as basic as the conservation of probability.
This problem is automatically solved by including a neutral scalar field in the theory
that couples to the massive gauge bosons and fermions in precisely the same way as
the Higgs particle does. But this is not the only possibility.

We illustrate this point in more detail using the example of a SU(2) massive gauge
field coupled to a pair of chiral doublets ΨL , ΨR transforming as

ΨL(x) −→ g(x)ΨL(x), ΨR(x) −→ ΨR(x), (10.29)

where g(x) belongs to the fundamental representation of SU(2). The Lagrangian

L =− 1

2
Tr

(
Fμv Fμv)+ M2Tr

(
AμAμ

)+ iΨ L D/ΨL + iΨ R D/ΨR

− m
(
Ψ LΨR + Ψ RΨL

)
(10.30)

is not gauge invariant due to the presence of mass terms for the gauge and fermion
fields. Gauge invariance can be “restored” using a trick originally due to Stückelberg
[3] (see [4] for a review). We introduce a scalar field U (x), called the Stückelberg
field, taking values in the gauge group and transforming under SU(2) as U (x) →
g(x)U (x). The Lagrangian

L =− 1

2
Tr

(
Fμv Fμv)− M2

g2
YM

Tr
[
(U† DμU )(U † DμU )

]

+ iΨ L D/ΨL + iΨ R D/ΨR − m
(
Ψ LUΨR + Ψ RU †ΨL

)
(10.31)

is gauge invariant. Using this gauge freedom we can set U (x) = 1 and recover the
original Lagrangian (10.30). In this picture the breaking of gauge invariance in the
massive theory can be seen as resulting from gauge fixing. In the process, the field
U (x) becomes the longitudinal component of the massive vector field.

Replacing (10.30) by (10.31) does not solve our ultraviolet problems. The theory
is still ill-defined at energies of order M/gYM and should be completed by specifying
the dynamics of U (x) at high energies. Here we are faced with various alternatives.
One of them is the Brout–Englert–Higgs mechanism presented: a gauge invariant
potential implementing symmetry breaking is added
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V (U †U ) = λ

4

(
M

gYM

)4 [
1

2
Tr(U †U )− 1

]2

, (10.32)

and the field U (x) is linearized around the vacuum

U (x) = U0(x)
[
1+ gYM

M
h(x)

]
, (10.33)

where U0(x) ∈ SU(2) and h(x) is the Higgs field of mass m2
H = 2λM2/g2

YM. At
energies below m H the Higgs field is frozen, U (x) � U0(x), and the Stückelberg
Lagrangian (10.31) provides a reliable phenomenological description.

This linear realization is the simplest, and historically the first one used. Many
other scenarios have been proposed as alternative ultraviolet cures of the mass gener-
ation mechanism. Among them, technicolor, where U (x) is a bound state (analogous
to the pion) of a set of strongly coupled new fermions. There is a large collection
of alternatives to the standard Higgs mechanism (for a clear exposition see [4]),
however they all share the same mechanism of giving masses to the vector bosons
by absorbing the relevant Nambu–Goldstone bosons. This is reasonable, the masses
of the W± and Z0 bosons are infrared properties of the theory and their origin is not
necessarily related to the high energy fate of the “Higgs”-mode.

This discussion should help clarifying the statement contained in the closing
paragraph of Sect. 5.5. The Lagrangian (10.30) can be used to describe the physics
of a nonabelian massive gauge field chirally coupled to massive fermions, as long
as we restrict our attention to energies below the mass scales of the problem. In this
regime, the absence of gauge invariance is no big deal. As the reader has repeatedly
been reminded along the book, gauge invariance is not a real symmetry but rather a
redundancy. The point of Stückelberg’s trick is to “fake” this redundancy, allowing
to write a formally gauge invariant Lagrangian.

The situation is different if we aim at constructing a theory whose predictions
can be trusted to arbitrary high energies, in the spirit of good old QED.4 In this case
gauge invariance is a crucial ingredient for consistency. The Brout–Englert–Higgs
mechanism provides a renormalizable, gauge invariant ultraviolet completion of the
massive low energy theory. Historically, this explains the enormous effect the proof
of renormalizability of spontaneously broken gauge theories by ’t Hooft and Veltman
[5–8] had on the acceptance of the Glashow–Weinberg–Salam theory.

10.2 Quark Masses

The previous presentation might have led to the mistaken conclusion that the Brout-
Englert-Higgs mechanism settles once and for all the problem of accounting for the
masses of the subatomic particles. The only task left is the experimental measurement

4 Let us forget for the moment about the presence of the Landau pole.
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of the quark and lepton masses that in turn determine the value of the Yukawa
couplings C (�,q)

i j .

This idea works indeed for the leptons. Since they exist as asymptotic states,
their masses can be unambiguously determined, and with them the corresponding
parameters in the Lagrangian. The complication comes with the quarks. As they
cannot be pulled out of the hadrons their masses cannot be measured directly.

One definition of the quark masses is provided by the nonrelativistic quark model.
Here the hadrons are considered to be the bound states of a quark–antiquark pair
(mesons) or three quarks (baryons). The mass of the hadron can be written in terms
of the masses of its constituents plus the corresponding binding energy

Mmeson = mq + mq +ΔEqq

Mbaryon = mq1 + mq2 + mq3 +ΔEqqq . (10.34)

As quarks are considered to be nonrelativistic in the bound state, the binding energy
is subleading with respect to the quark masses,ΔEmq . In fact, it can be modelled
as

ΔEqq = 4a

mq mq
sq · sq , ΔEqqq = 4a′

3∑
i< j

1

mqi mq j

sqi · sq j , (10.35)

where a, a′ are undetermined numerical constants and sq is the quark spin operator.
Their products are numbers that depend on the total spin S of the system. This is easy
to see in the case of the quark–antiquark bound state, where

sq · sq = 1

2

[
S(S + 1)− 3

2

]
, (10.36)

with S = 0, 1 the spin of the corresponding meson.
At first sight the ansatz (10.35) for the binding energy might look surprising.

It has the form of the hyperfine splitting of the hydrogen atom that we know is
a small perturbation to the energy levels determined by the Coulomb interaction.
This, however, is not the case for the quark bound states. In the hydrogen atom the
smallness of the hyperfine splitting is due to the fact that the corresponding term in
the Hamitonian comes suppressed by a factor me

m p
� 0.0004. In the case of the quark

system the factor in front of this term is of order one and therefore its contribution
is expected to be of the same order as the quark-quark potential. Due to this we can
parametrize our ignorance about the latter in terms of the numerical parameters a
and a′.

Using (10.35) the spectrum of hadrons can be fit to get mq , a and a′. The masses
thus obtained are the so-called constituent quark masses. They make up a large
fraction of the mass of the hadron. For example, in the case of the u and d quarks
their constituent masses have the values

mu � md � 310 MeV, (10.37)

about 1
3 of the proton mass.
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Despite the success of the nonrelativistic quark model in accounting for certain
properties of hadrons such as their masses and magnetic moments, the constituent
masses of the quarks cannot be identified with the mass parameter appearing in
the standard model Lagrangian in its broken phase. For historical reasons these
parameters are called the current-algebra quark masses.

In fact, there is experimental evidence showing that there is much more stuff inside
hadrons than the nonrelativistic quark model picture shows. The most compelling
comes from the deep inelastic scattering of leptons off protons already described
in Chap. 5. In these experiments it is possible to measure the distribution function
of the proton momentum among the constituents of the hadron, collectively called
partons. The remarkable thing is that about 50% of the total momentum is carried
by constituents that do not participate in the electroweak interactions! These have to
be identified with virtual gluons responsible for the interaction between the quarks.
The remaining proton momentum is shared between the quarks responsible for the
quantum numbers such as charge, spin and isospin of the hadron (called the valence
quarks), and virtual quark–antiquark pairs (sea quarks).

With this picture of the hadron interior in mind, constituent quarks can be seen
as effective “quasiparticles” resulting from the dressing of the valence quarks by the
QCD interaction. This heuristic idea, that would explain the success of the nonrela-
tivistic quark model, is unfortunately too hard to make quantitative due to computa-
tional difficulties.

10.3 ΛQCD and the Hadron Masses

The techniques described in Chap. 8 can be used to calculate the beta function in
perturbation theory. The running coupling constant can then be formally written in
terms of a single dimensionful integration constant as

Λ = μ exp

⎡
⎢⎣−

g(μ)∫
dx

β(x)

⎤
⎥⎦. (10.38)

We observe that, whenever the beta function is nonvanishing, quantum correc-
tions generate a characteristic energy scale. This happens even when the classical
Lagrangian contains no dimensionful parameters, a phenomenon called dimensional
transmutation. It is important to keep in mind that the dynamically generated scale
Λ is an integration constant and therefore has to be fixed experimentally. This is
related to the fact that quantum field theory only determines the rate of change of
the coupling constants with the energy through the renormalization group functions
(8.93). Fixing the numerical values of the couplings requires measurements at a
reference scale.

In the case of QCD, using the value of the one-loop beta function (8.25) particu-
larized to the case of three colors (Nc = 3)
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β(g) = − g3

48π2 (33− N f ), (10.39)

we find the QCD energy scale to be

ΛQCD = μe
− 24π
(33−N f )

1
g(μ)2 . (10.40)

The strong coupling constant can be written in terms of it as

g(μ)2 = 24π2

(33− N f ) log
(

μ
ΛQCD

) . (10.41)

The physical meaning of ΛQCD becomes clear: it sets the energy scale at which the
theory becomes strongly coupled. Notice that the divergence of the coupling constant
at μ = ΛQCD following from the one loop computation cannot be taken literally.
When the coupling constant grows the perturbative approximation used to compute
the beta function (10.39) breaks down.

In the context of the physics of hadrons,ΛQCD determines the characteristic size of
a hadron. Indeed, the theory becomes strongly coupled when the hadron constituents
are at distances larger than Λ−1

QCD, setting thus the length scale inside which quarks
are confined.

One of the big problems in QCD is to calculate the mass of particles such as the
proton and the neutron in terms of the mass parameters of the quarks. The reason why
this problem is difficult lies in the fact that the valence quarks u and d have masses
that are much smaller than the natural scale of the theory, ΛQCD. To see this we
estimate the kinetic energy of these quarks using Heisenberg’s uncertainty principle.
Since they are confined inside a hadron of typical size Λ−1

QCD, the uncertainty in
their momenta can be estimated to beΔp∼ΛQCD.Moreover, using isotropy we can
assume that the average momentum of the quarks is equal to zero, 〈p〉 = 0. Then,
(Δp)2 = 〈p2〉 and we finally conclude that

〈p2〉 ∼ Λ2
QCD. (10.42)

So far we have not made any hypothesis as to the mass of the quarks. Let us
now assume that we are dealing with light quarks. They are defined as those whose
masses satisfy mqΛQCD. This is the case of the u and d quarks that make up most
of the matter that we see around us. In this case, Eq. (10.42) can be recast as

〈p2〉 � m2
q (q = u, d). (10.43)

This means that light quarks inside hadrons are relativistic. What is more important,
Eq. (10.42) implies that the typical energy of these quarks if of order ΛQCD and
therefore we are in regime where QCD is strongly coupled.

There are two conclusions to be extracted from this discussion. The first is that
we have found the reason behind the technical problems in calculating the masses
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of hadrons such as protons or neutrons from first principles: we would have to deal
with a theory in a regime where perturbation theory does not work. Hence, we have
to resort to numerical approaches such as lattice field theory.

The second lesson we learn is that the Brout–Englert–Higgs mechanism actually
contributes very little to explaining the mass we see around us. In fact, most of
the mass of an atom comes from the nucleus (from about 99.95% for hydrogen to
99.9997% for uranium) that is made of protons and neutrons. What we have argued is
that the quark mass parameters mq generated by electroweak spontaneous symmetry
breaking contribute very little to the mass of these hadrons: most of the mass of
protons and neutrons, and therefore of the world we see, come from ΛQCD.

That all difficulties in computing hadron masses come from having light quarks
can be seen in a toy model due to Howard Georgi [9]. He imagines a world essentially
identical to our own but with a single crucial difference: the masses of the u and d
quarks satisfy

mu � md � 1

3
mproton � ΛQCD. (10.44)

Therefore 〈p2〉m2
q and the quarks can be treated nonrelativistically. Thus, the

typical energy of the processes inside the proton is mq , and the condition (10.44)
implies that the theory at this scale is weakly coupled. Tuning mq/ΛQCD we can
even make

αs(mq) ≡ g(mq)
2

4π
� 1

137
. (10.45)

This sets ΛQCD∼ 10−42mq .

Given all this, it should be possible to study the bound state of the three quarks in
the proton using the techniques of atomic physics. Since the theory is in a coupling
regime where perturbation theory can be used, the static potential between the quarks
is obtained from the diagram where the two quarks interchange a gluon. In fact we
do not even have to compute the diagram. It suffices to compare the corresponding
processes in QCD and QED

where qi , q j are the charges of the corresponding quarks. A look at the Feynman rules
for nonabelian Yang–Mills theories listed in Chap. 6 shows that the only difference
between the contribution of the two previous diagrams comes from the presence of
the SU(3) generators in the vertices of the former. This means that the first diagram
is obtained from the second by the replacement
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αqi q j −→ αs(mq)

8∑
n=1

τ n
iiτ

n
j j , (10.46)

where τ n = 1
2λn,with λn the Gell–Mann matrices shown in Eq. (B.16). Making this

replacement in the Coulomb potential, we find the chromostatic potential between
two quarks in the proton to be

Vqq(r) = CF
αs(mq)

r
, (10.47)

where CF is the color factor on the right-hand side of (10.46).
How different is Georgi’s toy world from our own? In fact, we are not so far off.

Because the quarks are nonrelativistic, the binding energy can be estimated from a
formula analog to the one for the ground state energy of the hydrogen atom

ΔE ∼αs(mq)
2mq � 16 keV. (10.48)

ThereforeΔEmq and the mass of the proton is essentially the sum of the masses
of the quarks. This means that we can fine tune mq to have mproton = 938 MeV while
preserving (10.44). As for the proton size, it is set by the corresponding Bohr radius

Rproton∼ 1

mqαs(mq)
� 90 fm. (10.49)

Although almost two orders of magnitude above the real proton radius, it is still
about 500 times smaller than the radius of the hydrogen atom. Thus we can expect
the electronic structure of the atoms not to be radically changed. Notice that now
the size of the hadron is dictated by perturbative effects, as opposed to real hadrons
where the relevant physics is nonperturbative and their size is determined by the
length scale Λ−1

QCD.

The main advantage of this toy model is that in it, unlike in the real world, QCD
computations are “easy”. In particular, the length scale at which confinement takes
place is macroscopic. With ΛQCD∼ 10−42mq and mq ∼ 300 MeV we find that

Λ−1
QCD∼ 103Mpc (10.50)

and free quarks could be observed! In fact, in this imaginary world the constituent
masses are the physical quark masses and the nonrelativistic quark model is the
correct QCD description of hadrons.

With this example we wanted to make an important point: confinement itself is
not at the bottom of the difficulties with QCD, but the fact that quarks are much
lighter than the energy scale at which confinement occurs. This is illustrated also in
“real” QCD with heavy quarks, those whose mass is much larger than ΛQCD. This
is the case of the b, c and t quarks, although the short lifetime of the latter prevents it
from forming hadrons. Then the strong coupling constant is small at the quark mass
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scale and the bound state of heavy quarks is amenable to QCD perturbation theory.
Moreover, applying (10.42) we have

〈p2〉m2
q (heavy quarks), (10.51)

and therefore heavy quarks inside hadrons are nonrelativistic.
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Chapter 11
Symmetries II: Discrete Symmetries

This is probably the most technical chapter of this book. Discrete symmetries play a
fundamental role in modern particle physics and cosmology. We have delayed their
study until now to be able to develop all the tools required to explore some or their
fascinating consequences. Specifically, we present an outline of the derivation of the
CPT theorem from first principles and some of the consequences of the proof, in
particular, the connection between spin and statistics.

11.1 Discrete Symmetries in Classical Mechanics
and Field Theory

In relativistic mechanics, the basic equations describing the dynamics of a system of
N charged particles coupled to the electromagnetic field are the Maxwell equations
supplemented by the Lorentz force

∂μFμv = j v,

εμvσλ ∂v Fσλ = 0,

mk
d2xμk
dτ 2 = Fμv(xk) jv(xk),

(11.1)

where k = 1, . . . , N and the current is given by

jμ(x) =
N∑

k=1

qk

∫
dτ

dxμk
dτ

δ(4)
[
xμ − xμk (τ )

]
. (11.2)

Besides their Lorentz covariance, these equations are preserved by three discrete
symmetries: parity (P), charge conjugation (C) and time reversal (T). Parity acts by
reversing the sign of the spatial coordinates

P : (x0, x) −→ (x0,−x). (11.3)
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Physically, this transformation corresponds to mirror reflection combined with a
rotation of π around an axis normal to the plane of the mirror. The corresponding
transformation of the electromagnetic field is then

P :
{

A0(x0, x) −→ A0(x0,−x)
A(x0, x) −→ −A(x0,−x)

. (11.4)

Charge conjugation acts by reversing the signs of all charges

C : qa −→ −qa, (11.5)

and the electromagnetic potential

C : Aμ(x) −→ −Aμ(x). (11.6)

Finally, the effect of time reversal is to reverse the sign of the time coordinate

T : (x0, x) −→ (−x0, x), (11.7)

while acting on the electromagnetic field potential as

T :
{

A0(x0, x) −→ A0(−x0, x)
A(x0, x) −→ −A(−x0, x)

. (11.8)

This transformation implies that the electric field is invariant while the magnetic
field changes sign, as it is heuristically expected: the magnetic field is generated by
moving charges whose momenta are reversed by T. This changes the sign of the
magnetic field and leaves the electric field unmodified.

Discrete symmetries can be implemented in classical field theory as well. Let us
take the simplest example of a complex scalar field φ(x) coupled to a U(1) gauge
field with action

S =
∫

d4x

[
(Dμφ)

∗Dμφ − 1

4
Fμv Fμv

]
, (11.9)

where Dμ = ∂μ+ ieAμ is the covariant derivative (cf. Sect. 4.3). From of the gauge
field under the discrete symmetries found above, we have to find out how the scalar
field transforms under P, C and T in such a way that the action, and hence the
field equations, remains invariant. Since the Maxwell action is invariant under these
transformations, we only have to take care of the first term in (11.9).

Let us begin with parity. From (11.4) we find the action to be invariant
provided

P : φ(x0, x) −→ ηPφ(x
0,−x). (11.10)

Here we allow for a complex phase ηP . For a real field this phase reduces to a global
sign, ηP = ±1. Charge conjugation, on the other hand, reverses the sign of the
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gauge field and therefore maps Dμ to D∗μ. To compensate this and leave the action
invariant, charge conjugation has to interchange the scalar field with its complex
conjugate according to

C : φ(x) −→ ηCφ(x)
∗. (11.11)

Again a phase ηC has been introduced. It is important to notice that in classical field
theory charge conjugation only acts on the fields and not on the parameters of the
Lagrangian, in particular e. This contrasts with what we saw in mechanics where
C reverses the sign of the particle electric charges. Finally, for time reversal the
transformation of the covariant derivative

T : ∂μ + ieAμ(t, x) −→ −
[
∂μ − ieAμ(−t, x)

]
(11.12)

suggests that T has to interchange the scalar field with its complex conjugate

T : φ(t, x) −→ ηTφ(−t, x)∗, (11.13)

where |ηT | = 1.
The nonabelian gauge action is invariant under parity with the same transforma-

tion of the gauge field as in the abelian case (11.4). For charge conjugation and time
reversal, on the other hand, the invariance of the action requires that the transforma-
tion also affects the gauge indices of the Lie algebra valued gauge field potential.
This can be seen by noticing that transforming Aμ(t, x) as in (11.6) and (11.7) results
in a change of the relative sign between the derivative and commutator terms in the
nonabelian field strength (4.51). This is compensated by a transposition of the gauge
indices in such a way that, under charge conjugation,

C : Aμ(x) −→ −Aμ(x)
T . (11.14)

This results in Fμv(x) → −Fμv(x)T that leaves the action invariant. Similarly, for
time reversal we have

T :
{

A0(x0, x) −→ A0(−x0, x)T

A(x0, x) −→ −A(−x0, x)T
. (11.15)

The nonabelian electric and magnetic fields E = Ea T a and B = Ba T a transform
with the same signs as their abelian counterparts plus a transposition in the gauge
indices.

Discrete symmetries become more interesting when applied to spinor fields. In
this case the transformation has to act on the spinor indices as well. Thus, the trans-
formation of a Dirac spinor under P, C and T has the form

ψα(x) −→ Γαβψβ(x
′) or ψα(x) −→ Γαβψβ(x

′)∗ (11.16)

where x ′μ = (x0,−x) for P, x ′μ = xμ for C and x ′μ = (−x0, x) for T. Viewing
these as active transformations on the fields, we require that the transformed spinors
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satisfy the Dirac equation with respect to the coordinates xμ. Thus, the complex
matrix Γαβ has to be chosen such that

(
iγ μ∂μ − m

)
ψ(x) = 0 −→

⎧⎨
⎩

(
iγ μ∂μ − m

)
Γ ψ(x ′) = 0(

iγ μ∂μ − m
)
Γ ψ(x ′)∗ = 0

. (11.17)

Let us begin with parity. The invariance of the Dirac equation means that Γ has
to commute with γ 0 and anticommute with γ i . This leads to

P : ψ(x0, x) −→ ηPγ
0ψ(x0,−x), (11.18)

including an arbitrary phase. It can be immediately checked that this transformation
keeps the Dirac action unchanged.

As in the case of the complex scalar field, the transformation of the Dirac spinor
under charge conjugation involves the complex conjugate spinor,1 ψ(x)→ Γ ψ(x)∗.
The transformed spinor satisfies the Dirac equation provided

Γ −1γ μΓ = −γ μ∗. (11.19)

The form of the matrix Γ depends on the representation of the Dirac algebra. For the
one shown in Eq. (A.7) we can take Γ = −iγ 2 and the transformation of the spinor
is then

C : ψ(x) −→ ηC (−iγ 2)ψ(x)∗, (11.20)

with |ηC | = 1. Applying this transformation to the Dirac Lagrangian we find

LDirac = ψ
(

i∂/− m
)
ψ

C−→∓LDirac + total derivative. (11.21)

The signs ∓ correspond respectively to the case where the spinors are commutating
and anticommuting fields. It comes about because of the matrix identity (AB)T =
±BT AT , where the sign depends on whether the entries of the matrix A commute
(+) or anticommute (−) with those of the matrix B. At the classical level it does not
matter whether the spinors are taken to commute or anticommute, since a global sign
in the action does not change the equations of motion. The relevance of this sign for
the quantum theory will be discussed in the next section.

The transformation of the Dirac spinor under T also involves the complex conju-
gate field, ψ(x)→ Γ ψ(x)∗, with

Γ −1γ 0Γ = γ 0∗, Γ −1γ iΓ = −γ i∗. (11.22)

In the Dirac algebra representation (A.7) the matrixΓ = −γ 1γ 3 satisfies the required
property and therefore we have

1 Had we tried ψ(x)→ Γ ψ(x) we would find, using Schur’s lemma, that the Dirac equation is
preserved only if Γ is proportional to the identity, so the transformation is trivial.
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T : ψ(t, x) −→ ηT (−γ 1γ 3)ψ(−t, x)∗, (11.23)

with ηT a phase. The Dirac Lagrangian, on the other hand, transforms as

ψ(x)
(

i∂/− m
)
ψ(x)

T−→±ψ(x ′)
(

i∂/′ − m
)
ψ(x ′)+ total derivative, (11.24)

where x ′μ = (−x0, x) and the signs ± corresponds respectively to commuting and
anticommuting spinor fields. Integrating we find that the action remains invariant up
to a global sign, SDirac→±SDirac.

In short we have shown that if ψ(t, x) is a solution of the Dirac equation so are
the transformed fields

ψ P(x0, x) = ηPγ
0ψ(x0,−x),

ψC (x0, x) = ηC (−iγ 2)ψ(x0, x)∗,
ψT (x0, x) = ηT (−γ 1γ 3)ψ(−x0, x)∗.

(11.25)

This remains true also when they are coupled to the electromagnetic field, provided
it is also transformed according to (11.4), (11.6) or (11.8). The phases ηP , ηC and
ηT cannot be determined a priori.

Finally, the question remains whether the transformed fields (11.25) do transform
as spinors under Lorentz transformations. To see that they do, we only have to realize
that the following three sets of matrices

γ μ† = γ 0γ μγ 0,

−γ μ∗ = (−iγ 2)γ μ(−iγ 2)−1,

γ μT = (−γ 1γ 3)γ μ(−γ 1γ 3)−1

(11.26)

are three representations of the Dirac algebra. Then, using (3.39), one can construct
the corresponding representations of the generators of SO(1,3) in which ψ P(x),
ψC (x) and ψT (x) transform.

11.2 Parity and Charge Conjugation in Quantum Field Theory

We turn now to the implementation of discrete symmetries in quantum field theory,
dealing first with parity and charge conjugation. The case of time reversal involves
some important subtleties and will be deferred to the next section.

Wigner’s theorem establishes that symmetries in the quantum theory are realized
by unitary or antiunitary operators acting on the Hilbert space. Here we explore the
case of Dirac fermions. Other types of fields can be treated in a similar fashion. In
the case of parity and charge conjugation, the transformed field operatorsψ P (x) and
ψC (x) are related to ψ(x) by a similarity transformation by unitary operators P
and C
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Pψ(x0, x)P−1 = ηPγ
0ψ(x0,−x),

Cψ(x0, x)C−1 = ηC (−iγ 2)ψ(x0, x)∗.
(11.27)

In the second identity the complex conjugation is understood to act as hermitian
conjugation on the creation-annihilation operators.2

From these relations we can derive the transformations of the creation-annihilation
operators of particles and antiparticles. We use the expansion of the Dirac field in
terms of them given in Eq. (3.52). At this point we have to take into account that all
c-numbers (i.e., parameters and wave functions) pass through the unitary operators,
which only act on the creation-annihilation operators of particles and antiparticles,
b(k, s) and d(k, s). The γ -matrices on the right-hand side of (11.27), however, act
on the indices of the wave functions uα(k, s) and vα(k, s).

We begin with parity. It is not difficult to check that

γ 0u(k, s) = u(−k, s), γ 0v(k, s) = −v(−k, s). (11.28)

This leads to the following transformation of the annihilation operators

Pb(k, s)P−1 = ηPb(−k, s)

Pd(k, s)P−1 = −η∗P d(−k, s).
(11.29)

The corresponding transformation of the creation operators is derived taking the
adjoint and using the unitarity of P. From this we infer that the parity operator
act on the single particle and antiparticle states by reversing the sign of the spatial
momentum and multiplying the state by ηP (particles) or −η∗P (antiparticles). This
phase is called the intrinsic parity of the state. It appears in the transformation of the
one-particle and -antiparticle states

P|k, s〉 = ηP | − k, s; 0〉, P|0;k, s〉 = −η∗P |0;−k, s〉. (11.30)

This is an elementary but important result: the intrinsic parity of spin- 1
2 particles and

antiparticles are opposite.
We proceed next to study the action of charge conjugation on the creation-

annihilation operators of the Dirac field. The relevant identity to be used here is

u(k, s) = −iγ 2v(k, s)∗, v(k, s) = −iγ 2u(k, s)∗. (11.31)

We find

C b(k, s)C−1 = ηC d(k, s),

C d(k, s)C −1 = η∗Cb(k, s),
(11.32)

2 Alternatively, the right-hand side of this expression can be written as iγ 0γ 2ψ(x)T .
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so charge conjugation interchanges particles with antiparticles. At the level of the
single particle states this means

C |k, s; 0〉 = η∗C |0;k, s〉, C |0;k, s〉 = ηC |k, s; 0〉. (11.33)

The example of the Dirac fermion serves as a template to derive the transforma-
tions of other fields under parity and charge conjugation. We only briefly mention the
case of the electromagnetic field. In particular, the transformations of the classical
electromagnetic potential fixes the phases ηP and ηC . Since photon physical states
have transverse polarizations, the single photon state transform under parity as

P|k, λ〉 = −| − k,−λ〉, (11.34)

with λ = ±1 the helicity of the state. Thus the intrinsic parity of the photon
is ηP =− 1. Moreover, since Aμ(x) is a Hermitian field the photon is its own
antiparticle

C |k, λ〉 = −|k, λ〉. (11.35)

11.3 Majorana Spinors

In the light of the discussion of the previous section we have to entertain the possibility
of a Fermi field being self-conjugate under C. These are called Majorana spinors and
by definition satisfy ψC (x) = ψ(x), i.e.

ψ(x) = ηC (iγ
0γ 2)ψ(x)T . (11.36)

Using the chiral decomposition of ψ(x) shown in (3.31) this Lorentz covariant
constraint can be written as

(
u+
u−

)
= ηC

(
iσ 2u∗−
−iσ 2u∗+

)
. (11.37)

This equation is solved by

ψ = 1√
2

(
u+

−iηCσ
2u∗+

)
. (11.38)

The Majorana spinor depends on a single complex two-component function. It has
the same number of degrees of freedom as a Weyl spinor, since both of them are
related by the identity

ψ(x) = 1√
2

[
ψ+(x)+ ψC+ (x)

]
with ψ+ =

(
u+
0

)
. (11.39)
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The constraint (11.36) can be seen as a Lorentz covariant way to impose a reality
condition on the spinor. In fact, it is possible to find a representation of the Dirac
algebra where all γ -matrices are purely imaginary and where the Majorana condition
simply reads ψ(x) = ψ(x)∗.

Imposing (11.36) on the expansion (3.52) of the field ψ(x) leads to the iden-
tification of the creation and annihilation operators of particles and antiparticles,
b(k, s) = ηC d(k, s). Majorana fermions are therefore their own antiparticles. It is
instructive to write the Dirac Lagrangian for a Majorana spinor

LDirac ≡ ψ(i∂/− m)ψ

= i

2
u†
+σ

μ
+
←→
∂μu+ − m

2

[
η∗CuT+(iσ 2)u+ + h.c.

] (11.40)

Taking into account that iσ 2
ab = εab, we see that we have recovered the Majorana

mass term constructed in Eq. (3.27) on purely group theoretical grounds. In terms of
the Weyl spinor ψ+ of Eq. (11.39) the Majorana mass term can be written as

ΔL = −m

2

(
ψ+ψC+ + ψC+ψ+

)
. (11.41)

The current jμ = ψγμψ can also be computed with the result

ψγμψ = 1

2

(
u†
+σ

μ
+u+ + uT+σ

μ
+T u∗+

)
= 0, (11.42)

where we have to use the anticommuting character of u+. The vanishing of the
current indicates that a Majorana fermion has zero electric charge, as corresponds to
a particle that is its own antiparticle. In fact we can see that the condition (11.36) is
not preserved by a U(1) phase rotation of ψ(x).

11.4 Time Reversal

The implementation of time reversal in the quantum theory requires some additional
considerations. In the previous section we have seen how parity and charge conjuga-
tion are implemented by unitary operators acting on the Hilbert space. We will see
now that such a choice for the time reversal symmetry leads to inconsistencies.

We come back momentarily to classical mechanics. Time reversal changes the
sign of the canonical momenta while preserving that of the coordinates. If this is a
symmetry of the Hamiltonian, applying T to the initial conditions T : (q0,p0) →
(q0,−p0) has to be equivalent to evolving the system time t from (q0,p0), applying
time reversal and evolving again a time t. This is coded in the following “commutative
diagram”
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(11.43)

In the quantum theory this diagram gives the action of the operator T that implements
time reversal on the evolution operator, namely

e−i t H T e−i t H = T , (11.44)

where H is the Hamiltonian of the theory. Infinitesimally this implies that iH anti-
commutes with time reversal,

{i H,T } = 0. (11.45)

According to Wigner’s theorem we are now faced with a double choice: T being
a symmetry it has to be either a unitary or an antiunitary operator. In the first case
we find that

HT +T H = 0 (T unitary). (11.46)

If T is antiunitary, on the other hand, complex numbers are conjugated in passing
through the time reversal operator. This implies

HT −T H = 0 (T antiunitary). (11.47)

In fact, taking T unitary is a source of trouble. From (11.46) we conclude that if
|ψE 〉 is a Hamiltonian eigenstate with eigenvalue E, then T |ψE 〉 is an eigenstate
as well with eigenvalue −E . Since the original spectrum is unbounded from above,
the transformed theory does not have a ground state (i.e., the spectrum is unbounded
below). If the time reversal operator T is antiunitary we see that both |ψE 〉 and
T |ψE 〉 have the same eigenvalue and the spectrum is invariant. The antiunitarity of
T is also necessary for the invariance of the canonical commutation relations under
time reversal.

Any antiunitary operator can be written, in a basis-dependent way, as the product
U K of a unitary operator U and a second operator K that acts by complex conju-
gation on the numerical coefficients. With the help of this decomposition we can
easily show that the square of an antiunitary operator is unitary. Indeed, using that
K 2 = 1 we find that

(U K )2 = U U ∗ (11.48)

which is a unitary operator.
Let us briefly study the consequences of time reversal invariance in nonrelativistic

quantum mechanics. From the transformation of the angular momentum operator
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T JT −1 = −J (11.49)

we conclude that in the Hilbert space of spin- 1
2 particles the time reversal operator

can be written as3

T = iσ2K = e
iπ
2 σ2K . (11.50)

Hence, T is equivalent to a rotation of π and a complex conjugation. For its square
we have T 2 = σ2σ2

∗ = −1. This is expected, since from (11.50) we learn that T 2

is a rotation of 2π that multiplies the spin wave function by −1. The result can be
easily generalized to a system of N spin- 1

2 particles to give

T 2 = (−1)N . (11.51)

An important result in this context is Kramers theorem. It states that in a theory
with an odd number of spin- 1

2 particles and invariant under time reversal the spectrum
presents a double degeneracy. The proof is very simple. We have seen that if |ψE 〉
is an energy eigenstate so is T |ψE 〉 and, moreover, with the same eigenvalue. To
show the double degeneracy of the spectrum we only have to prove that these two
states are linearly independent. Assuming that they are not, i.e., T |ψE 〉 = λ|ψE 〉
for some complex λ 
= 0 we find

(−1)N |ψE 〉 = T 2|ψE 〉 = λ∗T |ψE 〉 = |λ|2|ψE 〉. (11.52)

Now, if N is odd this leads to a contradiction and, as a consequence, in this case
|ψE 〉 and T |ψE 〉 are linearly independent. Kramers’ degeneracy also appears in the
presence of an external electric field, but it is lifted by a magnetic field because it
breaks time reversal (remember that the transformation T preserves the electric field
and changes the sign of the magnetic field).

We move next to the implementation of time reversal in quantum field theory. As
an example we work out the case of Dirac fields in some detail, other fields being
treated in a similar fashion. The transformation of the field operator is

T ψ(x0, x)T −1 = ηT (−γ 1γ 3)ψ(−x0, x). (11.53)

When considering free fields we have to bear in mind that T not only acts on the
creation-annihilation operators but also complex conjugates the one-particle wave
functions. As for parity and charge conjugation, we will need some identities for the
one-particle wave functions, in this case

u(−k,−s) = −(−1)
1
2−sγ 1γ 3u(k, s)∗,

v(−k,−s) = (−1)
1
2−sγ 1γ 3v(k, s)∗.

(11.54)

3 For the sake of simplicity we ignore other degrees of freedom. Their inclusion does not change
the result.
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Using them we arrive at the following transformation for the annihilation operators
of particles and antiparticles

T b(k, s)T −1 = (−1)
1
2−sηT b(−k,−s),

T d(k, s)T −1 = −(−1)
1
2−sη∗T d(−k,−s).

(11.55)

We see how, up to a global phase factor, time reversal changes the signs of both
the momentum and the third components of spin. Using hermitian conjugation the
corresponding identities for creation operators are obtained. From them it is straight-
forward to prove that

T 2 = (−1)F , (11.56)

with F the fermion number operator that counts the number of spin- 1
2 particles plus

antiparticles in the state.
In the discussion carried out in the last two sections we have focussed entirely

on the operator formalism. It is worthwhile to comment briefly on discrete symme-
tries in the path integral formalism. Correlation functions are expressed as functional
integrals over classical field configuration, with the proviso that fermionic fields are
taken to be anticommutative objects. For parity and charge conjugation we have
shown that the Dirac action is invariant under the replacement of all fields by their
transformed ones (remember that in the case of charge conjugation the anticommu-
tativity of the Dirac fields is crucial for this result), so the invariance of the quantum
theory is guaranteed. For time reversal, on the other hand, we found that when the
Dirac fields are anticommutative the action changes sign. This might seem to pose
a problem for the invariance of the quantum theory. It is not so, however, since the
change of sign in the action only results in a global phase after path integration.
This is irrelevant for the computation of the correlation functions, and the theory is
invariant under T.

11.5 CP Symmetry and CP Violation

Having introduced parity, charge conjugation and time reversal we pass to study now
the discrete transformation obtained by combining the first two, called CP. Its action
on the quantum fields is easy to obtain from previous results. In the case of a complex
scalar field φ(x) we have

(C P)φ(x0, x)(C P)−1 = ηC Pφ(x
0,−x)†, (11.57)

where ηC P is a phase. At the level of the creation-annihilation operators the trans-
formation interchanges particles with antiparticles, while changing the sign of the
momentum at the same time. In the case of the Dirac field the result is
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(C P)b(k, s)(C P)−1 = ηC P d(−k, s),

(C P)d(k, s)(C P)−1 = −η∗C P b(−k, s).
(11.58)

Since CP reverses the sign of the momentum without messing with the spin indices
it changes the helicity of the fermions.

In Chap. 5 we have learned that the electro-weak sector of the standard model
is chiral, i.e., left- and right-handed fermions couple to the W± and Z0 bosons in
different ways. A consequence of this is that both parity and charge conjugation
are maximally violated. This feature is most glaring in the case of the neutrinos.
The transformation of the left-handed neutrino under P and C gives respectively a
right-handed neutrino and a left-handed antineutrino, neither particle being observed
in Nature. This is, however, not the case under C P, that transforms a left-handed
neutrino into a right-handed antineutrino, a particle that is known to exist.

This led to the expectation that CP might be a good symmetry of all fundamental
forces. This however is not the case. The evidence for CP violation came from the
study of the system formed by the neutral kaon K 0 and its antiparticle K 0. These
particles we have already encountered in Chap. 5 (see page 89) as part of the octet
of pseudoscalar mesons. Choosing the phase ηC P = 1, the CP transformation of the
kaon states at rest is given by

C P|K 0〉 = |K 0〉, C P|K 0〉 = |K 0〉. (11.59)

The two neutral kaons are only distinguished by their strangeness quantum number,
S = 1 for K 0 and S = −1 for K 0. Since strangeness is not conserved by weak
interactions, the two states can mix with each other. In fact, both decay weakly into
two and three pions

K 0, K
0 −→

{
π+ + π−
π0 + π0 , K 0, K

0 −→
{
π+ + π− + π0

π0 + π0 + π0 . (11.60)

In all channels the final state is a CP eigenstate. In the case of the two pions its
eigenvalue is CP = 1, whereas for the three pion decay the final state has CP = −1.

Instead of |K 0〉 and |K 0〉 it is convenient to consider the CP (and C) eigenstates

|K 0
S〉 =

1√
2

(
|K 0〉 + |K 0〉

)
, CP = 1,

|K 0
L〉 =

1√
2

(
|K 0〉 − |K 0〉

)
, CP = −1.

(11.61)

Were CP a preserved symmetry of the weak interactions, the decays K 0
S → 3π

and K 0
L → 2π should be forbidden. In 1964, however, experiments showed that

the second decay takes place. This was the first evidence that CP is violated in the
standard model.

Complex couplings in the action are a potential source of CP violation in a quantum
field theory. To see this let us consider a theory where the interaction Hamiltonian
has the form



11.5 CP Symmetry and CP Violation 221

Hint =
∫

d3x

[∑
i

giOi (x)+
∑

i

g∗i Oi (x)
†

]
, (11.62)

where gi are the couplings and Oi (x) a series of operators. The CP transformation
interchanges them with their Hermitian conjugates and inverts the sign of the spatial
coordinates. The transformed Hamiltonian is then

(C P)Hint(C P)−1 =
∫

d3x

[∑
i

giOi (x)
† +

∑
i

g∗i Oi (x)

]
. (11.63)

Hence, the invariance of the theory requires the couplings to be real gi = g∗i . This
notwithstanding, a theory with complex couplings can still be CP-invariant. If it
contains complex fields there is the possibility that the phases of the couplings can
be absorbed in a redefinition of the global (irrelevant) phases of the fields.

Let us see how this applies to the standard model. In Chap. 10 (see page 198)
we learned that the electroweak Lagrangian contains complex couplings due to the
presence of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This is a unitary three-
by-three matrix depending on nine real parameters and can be parametrized in terms
of three real “mixing angles” and six complex phases. Given this state of affairs, CP
violation could still be avoided provided all six complex phases could be absorbed in
the arbitrary phases of the quark fields. Since there are six quark species it might look
like all six phases of the CKM matrix could be eliminated this way. This is not the
case because the standard model Lagrangian has a U(1) global symmetry that acts
as a phase rotation of all the quark fields by the same phase. This means that there
are only five independent phases we can play with. The consequence is that there is
a complex phase in the CKM matrix which cannot be eliminated and therefore CP
symmetry is violated.

CP violation here is a direct consequence of the existence of three quark families.
Indeed, in a world with only two families the quark mixing matrix would be a two-
by-two unitary matrix depending on one mixing angle and three complex phases
(four real parameters in total). Since the number of quarks would be four, all three
phases can be removed and we are left with a real matrix depending on one mixing
angle, the Cabibbo angle. In this case there would be no room for CP violation in
the electroweak sector.

The previous analysis has to be repeated in the leptonic sector of the standard
model. If the neutrino masses are of the Dirac type then repeating the same arguments
as above we conclude that the leptonic CKM matrix has a complex phase that cannot
be eliminated by a phase redefinition of the lepton fields. For Majorana neutrinos the
situation is very different since the Majorana condition (11.36) is incompatible with
a phase redefinition of the field. This means that the complex couplings in the weak
lepton-neutrino current can only be absorbed by changing the phase of the three
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charged leptons. As a result only three of the six complex phases of the leptonic
CKM matrix can be disposed of.4

Another source of CP violation in the standard model comes from the strong
interaction sector. As explained in Chap. 4 (see page 72) there is the possibility of
adding to the QCD action the term

Sθ = −θg2
YM

32π2

∫
d4x F A

μv F̃μvA = −θg2
YM

16π2

∫
d4xEA · BA. (11.64)

Looking at the transformations of the chromoelectric and chromomagnetic fields
under P and C derived in Sect. 11.1, we find the action of the CP transformation to be
EA(x0, x)→ EA(x0,−x) and BA(x0, x)→−BA(x0,−x). This implies that (11.64)
changes sign. This has very important consequences since Sθ adds to the QCD action
constructed from (5.27), which indeed preserves CP. We have found that

SQCD + Sθ
CP−→ SQCD − Sθ . (11.65)

Hence, if θ 
= 0 CP is also violated by the strong interaction.
One of the consequences of the presence of the term (11.64) in the QCD action

is that it generates a nonvanishing electric dipole moment for the neutron [1, 2]. The
fact that this is not observed experimentally can be used to impose a very strong
bound on the value of the θ -parameter,

|θ | < 10−9. (11.66)

From a theoretical point of view it is still to be fully understood why θ either vanishes
or has a very small value. This is called the strong CP problem.

11.6 The CPT Theorem

The CPT transformation, the combination of parity, charge conjugation and time
reversal, acts on the quantum fields by replacing them by their Hermitian conjugates
while, at the same time, reversing the sign of the space-time coordinates. Since the
three discrete symmetries commute with each other, there is no ambiguity in the
definition of this transformation. It inherits from T the property of being imple-
mented by an antiunitary operator that we denote byΘ ≡ C PT . For example, for
a complex scalar field we have

Θφ(x)Θ−1 = φ(−x)†, (11.67)

4 We should bear in mind that the Majorana neutrino break the global U(1) phase symmetry of the
Lagrangian and therefore all three arbitrary phases of the charged leptons are independent. Notice
also that in this case there is CP violation even with only two families, since having two charged
leptons only allows for the elimination of two of the three phases of the mixing matrix.
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and for a Dirac spinor

Θψ(x)Θ−1 = −iγ5ψ(−x)∗. (11.68)

In the latter equation we have to bear in mind that the complex conjugation symbol
acts as Hermitian conjugation on the creation-annihilation operators. As in Eq.
(11.27) we refrained from using the dagger symbol to avoid giving the wrong impres-
sion that the CPT operation transposes the spin indices.

Acting on the single particle states the CPT operator interchanges particles with
antiparticles and reverses the sign of the helicity. The precise form of the transfor-
mation can be found using that the field (resp. its Hermitian conjugate) interpolates
between the vacuum and the one-particle (resp. one-antiparticle) state. In the case of
a Dirac spinor, for example,

〈Ω|ψα(t, x)|p, s; 0〉 = uα(p, s)e−i Ept+ip·x,
〈Ω|ψα(t, x)†|0;p, s〉 = vα(p, s)∗e−i Ept+ip·x.

(11.69)

Applying Eq. (7.32) to the CPT operator and using (11.68) we find the following
expression for the CPT-transformed one-particle states

〈Ω|ψα(t, x)†|p, s; 0〉Θ = i(−1)
1
2+svα(p,−s)∗e−i Ept+ip·x,

〈Ω|ψα(t, x)|0;p, s〉Θ = −i(−1)
1
2+suα(p,−s)e−i Ept+ip·x.

(11.70)

In deriving this expression we have combined the wave function identities (11.28),
(11.31) and (11.54). Comparing now (11.69) with (11.70) we finally arrive at the
CPT transformation of the single particle states

Θ|p, s; 0〉 = i(−1)
1
2+s |0;p,−s〉,

Θ|0;p, s〉 = −i(−1)
1
2+s |p,−s; 0〉.

(11.71)

The analysis for other types of fields can be carried out along the same lines.
The CPT operator satisfies a number of other interesting properties. It squares to

the fermion number,Θ2 = (−1)F . Since it involves time reversal it is rather intuitive
that Θ has to transform “in” into “out” states and vice versa, namely

Θ|α; in〉 = |Θα; out〉, (11.72)

where by Θα we indicate the CPT-transformed state. Using the antiunitarity of Θ
we arrive at the following transformation of the S-matrix elements

〈α; out|β; in〉 = 〈Θβ; out|Θα; in〉. (11.73)

Now, taking into account that S|α; in〉 = |α; out〉, we find the following identity for
the S-matrix
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ΘS = S−1Θ. (11.74)

CPT invariance has a very special status in quantum field theory. Unlike the three
individual discrete symmetries, the invariance of a theory under the combination
of them is related to very fundamental physical principles. A special role is also
played by the spin-statistic connection implying that particles with integer (resp.
half-integer) spin follow the Bose-Einstein (resp. Fermi-Dirac) statistics.

Our aim here is to study the so-called CPT theorem: any local quantum field theory
that is Poincaré invariant is also invariant under the combination of P, C and T (in
any order). This result was first proved by Lüders and Pauli [3, 4]. Here, however,
we will sketch a very elegant and general proof due to Jost [5] (see also [6, 7] for
details). This is based on an axiomatic formulation of quantum field theory whose
postulates are a kind of sophisticated generalization of the properties we listed in
Chap. 2 for a free scalar field (see page 16):

• The states of a quantum field theory form a Hilbert space that carries a unitary
representation of the Poincaré group including space-time translations and proper,
orthochronous Lorentz transformations L

↑
+, whose double cover is5 SL(2,C). In

this Hilbert space there is a distinguished state |Ω〉, the vacuum, invariant under
the Poincaré group

U (A, a)|Ω〉 = |Ω〉. (11.75)

Here A denotes an SL(2,C) transformation and aμ is a four-vector associated with
a space-time translation. Finally, the states in the Hilbert space have non-negative
mass squared and positive energy. In technical terms this means that the spectrum
of the momentum operator Pμ is the forward cone pμ pμ = m2 ≥ 0, p0 ≥ 0.

• For the benefit of the mathematically-inclined, let us mention that the naive
quantum fields Φ(x) we have dealt with so far are rather singular objects, and
so are their products at the same space-time point. To be rigorous one should
smear the field operators by test functions

Φ( f ) =
∫

d4x f (x)Φ(x), (11.76)

where f(x) and its derivatives are taken to decrease faster than any power when
xμ → ∞. What this means is that fields are operator-valued distributions in
Minkowski space-time.

• The quantum fields must have well-defined transformations under the Poincaré
group,

U (A, a)Φ(x)U (A, a)−1 = M(A−1)Φ
(
Λ(A)x + a

)
. (11.77)

The field Φ(x) has a number of undotted and dotted indices that we have omitted
to keep the expression simple. It is on these indices that M(A−1) acts. From the

5 See Appendix B (Sect. B.4).
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discussion in Sect. B.4 [see Eq. (B.41)] it follows that M(A−1) is a monomial in
A−1 and (A−1)∗.

• Fields defined on causally-disconnected regions of space-time cannot interfere with
one another. This is expressed by the statement that, depending on their bosonic
or fermionic character,[

Φi ( f ),Φ j (g)
] = 0 or {Φi ( f ),Φ j (g)} = 0 (11.78)

whenever the support of the test functions f(x) and g(x) lie in regions of space
time that are space-like separated (cf. Fig. 1.4 and the associated discussion). This
property is called in the literature microcausality or local commutativity

We now formulate the CPT theorem using these axioms: it states that there is a
antiunitary operatorΘ uniquely defined by the following transformation of a general
quantum field with a number (n,m) of undotted and dotted indices [cf. Eqs. (11.67)
and (11.68)]

ΘΦa1...anḃ1...ḃm
(x)Θ−1 = (−1)m(−i)FΦ

†
ȧ1...ȧnb1...bm

(−x), (11.79)

where F = 0 for bosons and F = 1 for fermions, and the fact that it preserves the
vacuum, Θ|Ω〉 = |Ω〉. Notice that the indices appearing on the right-hand side of
Eq. (11.79) are those of the Hermitian conjugated field Φ†. We have to remember
that Hermitian conjugation transforms dotted into undotted indices and vice versa.

The Proof

To prove6 the CPT theorem we are going to work with Wightman correlation func-
tions, defined as the vacuum expectation value of the product of a number of quantum
fields

Wn(x1, . . . , xn) = 〈Ω|Φ(x1) . . . Φ(xn)|Ω〉. (11.80)

For simplicity, here and in the following we consider a single type of field and
omit the indices. We also ignore the fact that these functions have to be understood
as distributions acting on some test functions. It can be shown that any quantum
field theory can be reconstructed from the knowledge of its Wightman functions.
Notice that the time-ordered correlation functions used in Chap. 6 to compute S-
matrix amplitudes can be written as a linear combination of Wightman functions
with step-function coefficients.

Let us explore the consequences of CPT invariance on the Wightman functions.
From the antilinearity of Θ and the CPT-invariance of the vacuum it follows [see
Eq. (7.32)]

6 This section is substantially more mathematical than the rest of the text and it can be safely
skipped. Its purpose is to prove Eq. (11.82).
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〈Ω|Φ(x1) . . . Φ(xn)|Ω〉 =〈Ω|ΘΦ(xn)
†Θ−1 . . . ΘΦ(x1)

†Θ−1|Ω〉
=(−1)M+F 〈Ω|Φ(−xn) . . . Φ(−x1)|Ω〉.

(11.81)

Here M is the total number of dotted field indices in the correlation function and
(−1)F is the sign that comes form inverting the order of the fields. Remarkably, the
identity we just derived

Wn(x1, . . . , xn) = (−1)M+F Wn(−xn, . . . ,−x1) (11.82)

is not just a necessary condition for CPT symmetry, but it is also sufficient.
Hence, to prove the CPT theorem one shows that Eq. (11.82) holds for any quantum

field theory satisfying the list of axioms listed above. The strategy of Jost’s proof is
to perform an analytic continuation of the Wightman function to complex values of
the arguments and then show that there is a corner of the analyticity domain in which
this relation is satisfied.

We begin then by studying the analyticity properties of the Wightman functions.
The first thing to notice is that, as a consequence of translational invariance, they are
function of the n − 1 coordinate differences

Wn(x1, . . . , xn) = Wn(ξ1, . . . , ξn−1) where ξi = xi − xi+1. (11.83)

To prove this one has to use the Poincaré invariance of the vacuum together with
Φ(x) = ei P·xΦ(0)e−i P·x , where Pμ is the momentum operator of the theory. To
perform the analytic continuation on ξi we start by writing Wn(ξ1, . . . , ξn−1) in terms
of its Fourier transform as

Wn(ξ1, . . . , ξn) =
∫ (

n−1∏
i=1

d4ξi

)
W̃n(q1, . . . , qn−1) exp

(
−i

n−1∑
i=1

ξi · qi

)
.

(11.84)
In fact, W̃n(q1, . . . , qn−1) has the interesting property that it is equal to zero whenever
one of the arguments lies outside the spectrum of Pμ. This is clear if we write the
Fourier transform as

W̃2(q1, . . . , q2) =〈Ω|Φ(0)δ(4)(P − q1)Φ(0)δ
(4)(P − q2)

· · ·Φ(0)δ(4)(P − qn−1)Φ(0)|Ω〉. (11.85)

This last property tells us how to analytically continue the Wightman function
to complex arguments. Since qi is confined to be in the forward light-cone (q2

i ≥
0, q0

i > 0), the integral (11.84) will define an analytic function if we replace

ξi −→ ζi ≡ ξi − iηi , (11.86)

provided ηi lies inside the forward light-cone, V+ = {ηi ∈ R
4|η2

i > 0, η0
i > 0}.

Indeed, when this condition is satisfied the integrand has a damping exponential
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factor guaranteeing that the resulting integral defines a holomorphic function. With
this we have found the primitive domain of holomorphy of the Wightman functions

Tn−1 = {(ζ1, . . . , ζn−1) ∈ C
4(n−1)| − Imζi ∈ V+}. (11.87)

Notice that, by definition, this domain does not contain any real points. The orig-
inal Wightman function Wn(ξ1, . . . , ξn−1) is retrieved as the boundary value of the
analytic function on Tn−1 when Imζi → 0.

This is not the largest analyticity domain of the Wightman function. Proper
complex Lorentz transformations (see Sect. B.4) have a well defined, continuous
action on the Wightman functions. They can be used to further analytically continue
them into the extended domain T′n−1 obtained by acting with arbitrary proper
complex Lorentz transformations on points in Tn−1,

T′n−1 = {(Λζ1, . . . , Λζn−1)|(ζ1, . . . , ζn−1) ∈ Tn−1,Λ ∈ L+(C)}. (11.88)

The extension to T′n−1 has a double advantage. First of all, space-time inversion
PT is an element of L+(C). This means that if (ζ1, . . . , ζn−1) belongs to T′n−1 so
does (−ζ1, . . . ,−ζn). Moreover, applying the transformation of Wn(ζ1, . . . , ζn−1)

under space-time inversion we find [cf. Eq. (B.45)]

Wn(ζ1, . . . , ζn−1) = (−1)MWn(−ζ1, . . . ,−ζn−1), (11.89)

with M the number of dotted indices.
Equation (11.89) comes short of the CPT theorem by the fact that the arguments

are complex and not in the right order. A second property of the domain T′n−1 comes
now handy: unlike Tn−1, it contains real points. These are the so-called Jost points,
the real (ζ1, . . . , ζn−1) ∈ T′n−1 such that

(
n−1∑
i=1

λiζi

)2

< 0 for all λi ≥ 0 and such that
n−1∑
i=1

λi > 0. (11.90)

This condition implies that, in particular, the Jost points satisfy ζ 2
i < 0. Notice that

since the Jost points are in T′n−1 the Wightman function are holomorphic there. This
point will be crucial in the following.

Let us consider now (x1, . . . , xn) such that ζi ≡ xi − xi+1 is a Jost point. Since
ζ 2

i < 0 we can use the microcausality postulate stating that quantum fields evaluated
at xi either commute or anticommute. This leads to the following relation between
the Wightman functions evaluated at the Jost points

Wn(ζ1, . . . , ζn−1) =〈Ω|Φ(x1) . . . Φ(xn)|Ω〉
=(−1)F 〈Ω|Φ(xn) . . . Φ(x1)|Ω〉
=(−1)FWn(−ζn, . . . ,−ζ1).

(11.91)
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Now, as Wn(ζ1, . . . , ζn−1) is holomorphic at the Jost points, the previous relation
between Wightman functions has to hold in a neighborhood of those points and,
by analytic continuation, in the whole extended domain T′n−1. Combining this with
Eq. (11.89) the following identity is obtained

Wn(ζ1, . . . , ζn−1) = (−1)M+FWn(ζn−1, . . . , ζ1), (11.92)

valid throughout the whole extended domain T′n−1 and therefore on Tn−1. Going
finally to the boundary of Tn−1 by taking Im ζn−1 → 0 the CPT identity (11.82) is
obtained. This concludes the proof.

The most appealing feature of the above proof of the CPT theorem is its generality.
It avoids entering into the details of the theory, such as the terms in the action,
and instead only appeals to very general and fundamental properties of quantum
field theory. In particular it makes very transparent how the invariance under CPT
depends on three crucial ingredientes: Poincaré invariance, positivity of the energy
and causality, the latter encoded in the local commutativity postulate. This is what
gives CPT the very special status it enjoys in theoretical physics since, unlike other
discrete symmetries, it cannot be broken without destroying what are believed to be
very fundamental physical principles.

Implications of the Theorem

To close this section we discuss some consequences of the CPT theorem for the
spectrum of the theory. It was first proved by Lüders and Zumino [8] that CPT
invariance implies the equality of the masses and decay widths of particles and
antiparticles. To see how this comes about look at a theory with a CPT-invariant
Hamiltonian ΘHΘ−1 = H and assume that it can be split into two pieces H =
Hs+Hw.The first piece Hs contains the free Hamiltonian and the strong interactions.
Hw represents the weakly coupled interactions of the theory.

Denote by |ψn〉 the energy eigenstates of Hs and define the resolvent

Gn(λ) = 〈ψn | 1

λ− H
|ψn〉. (11.93)

In the limit where the weakly interacting terms Hw are switched off the state |ψn〉
becames an energy eigenstate of the theory and the function Gn(λ) has a pole located
at λ = mn, where mn is the mass of the state. When Hw is included, the states |ψn〉
become unstable (they are no longer energy eigenstates) and the pole of the resolvent
originally located at λ = mn migrates into the complex plane. The real part of the
pole gives its mass, and its imaginary part its width (i.e., the inverse of its lifetime).

We now repeat the analysis for the CPT transformed state Θ|ψn〉 ≡ |Θψn〉. The
corresponding resolvent is

GΘ
n (λ) = 〈Θψn| 1

λ− H
|Θψn〉 = 〈Θψn|ΘΘ−1 1

λ− H
Θ|ψn〉. (11.94)
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Using now the antilinearity ofΘ and the invariance of the Hamiltonian we can write

Θ−1 1

λ− H
Θ = 1

λ∗ − H
. (11.95)

Applying one last time the antiunitarity of Θ we arrive at the conclusion that the
resolvent is CPT invariant

GΘ
n (λ) =〈Θψn|Θ 1

λ∗ − H
|ψn〉

=〈ψn | 1

λ∗ − H
|ψn〉∗ = Gn(λ).

(11.96)

We know that CPT acting on one-particle states exchanges particles and antiparticles.
Since the pole structure of Gn(λ) and GΘ

n (λ) are the same, we are led to conclude
that particles and antiparticles have the same mass and decay widths.

11.7 Spin and Statistics

When dealing with the canonical quantization of the Dirac field in Chap. 3 we were
forced to replace the canonical Poisson brackets with anticommutators, instead of
the commutators used for scalar and gauge fields. The reason for this choice was
compelling. Had we used commutators the resulting quantum theory would have
had an energy spectrum unbounded from below.

This relation between spin and (anti)commutators is dictated by the spin-statistics
theorem. It states that fields with integer spin have to be quantized using canonical
commutation relations, whereas fields with half-integer spin require the use of anti-
commutators. In other words, particles with integer and half-integer spin follow the
Bose-Einstein and Fermi-Dirac statistics respectively.7

As the CPT theorem, the spin-statistic theorem in a consequence of locality and
Poincaré invariance. In fact it can be easily proved using the techniques applied in
the previous section to the CPT theorem. Let us thus consider a quantum field theory
with a single quantum field Φ(x) and look at the two-point Wightman function

W (x1, x2) = 〈Ω|Φ(x1)
†Φ(x2)|Ω〉. (11.97)

Applying now the CPT identity (11.82) to this function we have

〈Ω|Φ(x1)
†Φ(x2)|Ω〉 = (−1)M+F 〈Ω|Φ(−x2)Φ(−x1)

†|Ω〉. (11.98)

7 The reader surely has noticed by now that in this book we have been assuming the spin-statistics
theorem all the time since we have been consistently using the term “fermion” or “fermionic” to
refer to spinor fields.
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The sign (−1)F comes from reversing the order of the two operators when they are
spatially separated, and therefore it is equal to+1 for bosonic and −1 for fermionic
fields. Furthermore, M is equal to the number of dotted indices in the Wightman
function. Since Hermitian conjugation transforms dotted into undotted indices and
vice versa, we find that M equals to total number of dotted plus undotted indices of
the field Φ(x).

At this point we have to recall that, according to the field theory postulates,
quantum fields are in fact distributions. Smearing the fields with an arbitrary test
function f(x), we can write the identity (11.98) as

||Φ( f )|Ω〉||2 = (−1)M+F ||Φ( f )|Ω〉||2, (11.99)

where f (x) = f (−x). Now, since the Hilbert space of the quantum theory only
contains states with positive norm we are led to conclude that

(−1)M+F = 1. (11.100)

Fields with integer spin have an even number of dotted plus undotted indices, and
from this identity we see that Φ(x1)

† and Φ(x2) have to commute when x1 − x2
is space-like. If, on the other hand, Φ(x) is a half-integer spin field the number of
dotted plus undotted indices has to be odd and, as a consequence of (11.100), the
fields have to be anticommuting. This proves the spin-statistics theorem.

References

1. Ramond, P.: Journeys Beyond the Standard Model. Perseus Books, Cambridge (1999)
2. Mohapatra, R.N.: Unification and Supersymmetry: The Frontiers of Quark-Lepton Physics.

Springer, New York (2003)
3. Lüders, G.: On the equivalence of the invariance under time reversal and under particle-anti-

particle conjugation. Dansk. Mat. Fys. Medd. 28, 5 (1954)
4. Pauli, W.: Exclusion principle, Lorentz group and reflection of space-time and charge. In: Pauli,

W. (eds) Niels Bohr and the Development of Physics, Pergamon, London (1955)
5. Jost, R.: Eine Bemerkung zum CTP Theorem. Helv. Phys. Acta 30, 409 (1957)
6. Streater, R.F., Wightman, A.S.: Spin and Statistics and All That. Princeton University Press,

Princeton (1964)
7. Haag, R.: Local Quantum Physics. Fields, Particles, Algebras. Springer, Berlin (1992)
8. Lüders, G., Zumino, B.: Some consequences of TCP-invariance. Phys. Rev. 106, 385 (1957)



Chapter 12
Effective Field Theories and Naturalness

Effective field theories are among the most powerful instruments in the toolbox of
contemporary physics. Although the concept of effective field theory has been already
discussed in Chap. 8, here we are going to provide a relatively elementary description
of the relevant technology. Although rather unrealistic, the examples of effective field
theories studied next serve the purpose of illustrating the relevant physics involved.
The chapter will be closed with a discussion of the concept of naturalness, which
plays a central role in modern particle physics. The reader is advised not to be scared
by the technicalities of the Feynman diagram computations contained in the chapter.
Most of the conclusions can be reached without caring too much about the precise
value of the numerical prefactors.

12.1 Energy Scales in Quantum Field Theory

When introducing the renormalization group in Chap. 9 we did not go into a detailed
evaluation of Feynman diagrams. In the present chapter we will provide some more
details, particularly the computation of loop diagrams and how to extract divergences
from them. The interpretation of the results coming from particle colliders like the
Tevatron at Fermilab or the LHC at CERN requires extensive loop computations
in the standard model. Simple cut-off methods or other regularization schemes are
inadequate for this task.

The calculation of quantum corrections is necessary also when trying to derive
effective field theories valid at low energies from more fundamental descriptions
at high energies. This raises the important question of the separation of scales in
quantum field theory. In the standard model, for example, we have widely separated
energy scales. We have the mass of the W± boson mW ∼ 102 GeV characterizing
the scale of the electroweak processes. At the same time there is another energy scale
that can be constructed from the three fundamental constants of physics, Planck’s
constant �, the speed of light c and Newton’s constant G N . This is the Planck mass
defined by
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MP =
√

�c

G N
∼ 1019 GeV. (12.1)

The theory might have additional “intermediate” high energy scales, such as the
grand unification (GUT) energy at about 1015–1016 GeV.

The important question to be addressed is how physical processes at energies
below the lower scale, E < mW , depend on higher scales such as the Planck or the
GUT scale. The analysis of this question often invokes the naturalness criterion to
be explained later. It should be stressed, however, that naturalness rather than a law
of Nature should be seen as a good guiding principle to understand the sizes of the
dimensionful parameters, specially masses, in the low-energy theory.

Later on we will argue that the fact that light fermions, such as the electron or
the muon, have masses much smaller than the Planck scale should not be considered
unnatural. The situation is different for scalar particles, such as the so-far hypothetical
Higgs boson. In this case the fact that the Higgs mass is expected to be light with
respect to other higher energy scales is quite unnatural. To see this let us take the
point of view that the standard model is a valid physical description up to some
energy scale Λ, that we can take to be the Planck, GUT or any other relevant scale.
Identifying thenΛ as the momentum cutoff in the quantum theory, one finds that the
correction to the Higgs mass depends quadratically on it

δm2 ∼ g2

16π2Λ
2. (12.2)

The conclusion is that the Higgs mass should be very sensitive to the details of the
physics at higher energies since it strongly depends on the energy scale Λ at which
the standard model should be replaced by a more complete description. This simple
remark is the kernel of the famous hierarchy problem. Due to the strong dependence
of the Higgs mass corrections on the scale of new physics, keeping mH and Λwidely
apart

m2
H = m2

0 + δm2 � Λ2 (12.3)

requires a fantastic fine tuning of m2
0. This is what is meant by the statement that a

light Higgs mass is unnatural.
The questions we just introduced will be formulated in more detail later on. We

still do not have answers to many questions about naturalness. Their resolution will
bring deep breakthroughs in our understanding of Nature at short and long distances.

12.2 Dimensional Regularization

To get started we present the method of dimensional regularization and renormaliza-
tion that is universally used specially in theories with local gauge symmetries like
the standard model. Introduced in the early seventies [1, 2], it is a remarkably clever
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way to regulate the integrals appearing in the perturbative calculation of scattering
amplitudes.

In Chap. 8 we learned in a particular example how the calculation of Feynman
diagrams with loops leads to divergent integrals over the momenta running in them,
that should be regularized. In all cases the integrand has the structure of a rational
function of the loop momenta. Dimensional regularization (DR) prescribes these
integrals to be carried out in an arbitary dimension d instead of d = 4.The integration
gives a finite result depending on d that can then be analytically continued to complex
values of the dimension. The divergence of the original loop integral reappears as
poles of different order in d − 4. This is a rather economical and efficient way of
regularizing divergences.

Apart from its computational simplicity DR presents various advantages. The most
important is that it automatically preserves the symmetries of the theory whenever
they admit an extension to higher dimensions. This is the case of vector-like gauge
theories like QCD where the gauge symmetry can be formulated in any dimension.
This means that DR regularizes the theory without breaking gauge invariance.

Chiral (gauge) symmetries, on the other hand, are more problematic. The reason
is that the notion of chirality is very “four-dimensional”, and chiral gauge theories
like the electroweak sector of the standard model require a very special treatment.
The fact that chiral symmetries do not admit an extension to higher dimensions is
related to the existence of the chiral anomaly studied in Chap. 9. The fact that DR
frequently preserves the original symmetry is a big advantage with respect to other
regularization procedures. Among its few drawbacks one should mention that so far
all attempts to find a nonperturbative formulation of DR have been unsuccessful.

Since our presentation only requires the calculation of a few one-loop diagrams,
we illustrate the use of DR with the basic integral

In(d,m2) =
∫

dd p

(2π)d
1

(p2 − m2 + iε)n
. (12.4)

For d = 4 this integral is divergent when n = 0, 1, 2. To evaluate it we begin with
the integration over p0. Due to the iε prescription, the integrand

1

(p2 − m2 + iε)n
= 1

[(p0)2 − E2
p + iε]n (12.5)

has poles located just above and below the real p0 axis with real parts ±Ep. The
integral over the real axis can be carried out applying Cauchy’s theorem to the contour
shown in Fig. 12.1. Since the contour encloses no poles and the integrand vanishes
as |p0| → ∞, the integration over real p0 can be expressed as the integral over the
imaginary axis, namely

∞∫
−∞

dp0

2π

1

[(p0)2 − E2
p + iε]n = i(−1)n

∞∫
−∞

dp0
E

2π

1

[(p0
E )

2 + E2
p]n
. (12.6)
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Fig. 12.1 Contour of
integration used to evaluate
the integral In(d,m2). The
absence of poles in the first
and third quadrants allows
the integration contour along
the real axis to be rotated to
the imaginary axis (Wick
rotation)

E

p  = 0

p  = 0
p

p

i ε−

− +i ε

Im p0

Re p0

E

For m �= 0 the poles are away from the imaginary axis and the iε prescription drops
out of the second integral. Hence, Eq. (12.4) becomes

In(d,m2) = i(−1)n
∫

dd pE

(2π)d
1

(p2
E + m2)n

, (12.7)

where pE is an Euclidean d-dimensional momentum, p2
E = (p0

E )
2 + p2.

To compute of the Euclidean integral (12.7) one exponentiates the integrand with
the help of the identity

1

an
= 1

Γ (n)

∞∫
0

dt tn−1e−az (a > 0), (12.8)

to write

∫
dd pE

(2π)d
1

(p2
E + m2)n

= 1

Γ (n)

∞∫
0

dt tn−1e−tm2
∫

dd pE

(2π)d
e−tp2

E . (12.9)

The Euclidean character of pE ensures the convergence of the momentum integral.
Using

∫
dd pE

(2π)d
e−p2

E = π d
2 , (12.10)

we arrive at the final result for the integral (12.7)

In(d,m2) = i(−1)n

(4π)2+ d−4
2

Γ (n − 2− d−4
2 )

Γ (n)(m2)n−2− d−4
2

. (12.11)

The dependence of In(d,m2) on the dimension can be analytically continued to
complex values of d. The pole structure is derived from the properties of the Euler



12.2 Dimensional Regularization 235

gamma function Γ (z), which can be found in any book on special functions. Here
we just notice that Γ (z) has poles at nonpositive integer values of the argument,
z = 0,−1,−2, . . . In the case at hand, for n > 2 the integral converges as d → 4.
When n = 1, 2, on the contrary, the expression contains either a factor of Γ (1 −
d/2) or Γ (2− d/4) in the numerator, both functions diverging in the limit d → 4.

To find the behavior of In(d,m2) around d = 4 we use the Laurent expansion of
the gamma function around its poles

Γ (−k + ε) = (−1)k

k!
[

1

ε
+ ψ(k + 1)+ O(ε)

]
k ∈ N, (12.12)

where ψ(z) is the dilogarigthm function, defined as the logarithmic derivative of the
gamma function

ψ(z) = d

dz
logΓ (z), ψ(k + 1) = −γ +

k∑
n=1

1

n
, (12.13)

with γ = −ψ(1) = 0.5772 . . . the Euler-Mascheroni constant. Applying this to our
integral we find its behavior as d → 4 to be

In(d,m2)
d→4−→− i(m2)2−n

16π2

2

d − 4
+ finite part, n = 1, 2. (12.14)

Other integrals can be computed along similar lines. One of special interest is

In(d,m2, q) =
∫

dd p

(2π)d
1

(p2 + 2p · q − m2 + iε)n
. (12.15)

Upon completing the square in the denominator and shifting the integration variable
(a legitimate step once the integral is regularized), it reduces to an integral of the
type (12.7)

In(d,m2, q) = In(d,m2 + q2). (12.16)

In the case of the integrals arising in the calculation of diagrams with higher loops
we would find a collection of gamma functions that would produce poles at d = 4
of various orders

1

(d − 4)L
,

1

(d − 4)L−1 , . . . ,
1

d − 4
, (12.17)

with L the number of loops in the diagram. It is quite remarkable in fact that the
second and higher order poles are determined by the first order poles as we will show
later on. This provides a very useful check on multi-loop computations.

The analytical continuation of the dimension in the integrals can be formulated in
an axiomatic way. All we need is to define the operation of d-dimensional integration



236 12 Effective Field Theories and Naturalness

(with d complex) preserving the basic properties of multi-dimensional integrals,
namely

∫
dd p

[
f (p)+ g(p)

]
=

∫
dd p f (p)+

∫
dd pg(p),

∫
dd p f (λp) = λ−d

∫
dd p f (p) (with λ ∈ C),

∫
dd p f (p + k) =

∫
dd p f (p).

(12.18)

Since rational functions can be turned into exponentials by using identities like (12.8),
the evaluation of any integral appearing in the computation of a Feynman diagram can
be done using the previous properties together with the action of the d-dimensional
integration on Gaussian functions, given by Eq. (12.10).

A simple perusal of the DR calculation carried out above shows that both
I1(d,m2) and I2(d,m2) diverge exactly in the same way as d → 4, namely with a
simple pole. The conclusion is that DR is only sensitive to logarithmic divergences
and all polynomial divergences are regularized to zero. As a matter of fact, in DR
we can write ∫

dd p(p2)n = 0. (12.19)

One way to see how this identity comes about is to consider In(d,m2) with n ≥ −1
and take the limit m → 0 in the region Re d ≥ 2n and away from the poles of
the gamma function in (12.11). The limit is then equal to zero and the result can be
analytically continued to the whole complex d plane. DR is also useful in handling
infrared divergences.

The fact that DR eliminates quadratic divergences might seem surprising in the
light of the previous discussion of the hierarchy problem. Indeed, as DR regularizes
the quadratic divergences to zero it seems that the whole hierarchy problem results
from using a clumsy regulator, and that by using DR we could shield the Higgs mass
from the scale of new physics. This is not the case, but for interesting reasons. In
spite of DR the Higgs mass is still sensitive to high energy scales. If it is ever found
with a low mass, we will also get relevant information on what shields its mass from
the higher scales. Before explaining the interesting reasons, we need to develop more
theory.

12.3 The φ4 Theory: A Case Study

To get a better understanding of how a quantum field theory is regularized using DR
we look into a very simple field theory: a massive real scalar field φ(x)with a quartic
self-interaction
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L = 1

2
∂μφ∂

μφ − 1

2
m2φ2 − λ

4!φ
4. (12.20)

As we learned in Chap. 6 the perturbative expansion is constructed using the Feynman
rules. In this case we only have to specify one propagator and one vertex

together with the delta function conservation (2π)4δ(4)(p1 + p2 + p3 + p4), where
we use the convention that all momenta in the vertex are incoming. Since the scalar
field is real, it does not carry charge and therefore the lines of the Feynman diagrams
do not have orientation.

The quantization using DR requires defining the theory in d dimensions

S =
∫

dd xL (φ, ∂μφ). (12.21)

Since the dimensions of the fields and parameters in the action depend on d, it is
useful to stop for a moment and carry out some dimensional analysis. In natural units
� = c = 1 the action is dimensionless and looking at the kinetic term we can fix the
energy dimensions of the scalar field1

Dφ = d − 2

2
. (12.22)

The same analysis can be done for fermions and gauge fields with the respective
result

Dψ = d − 1

2
, DA = d − 2

2
. (12.23)

The energy dimensions of the parameter of the scalar theory (12.20) are

Dm = 1, Dλ = 4− d. (12.24)

In the case of scalar field theories with cubic self-interaction and/or Yukawa couplings
to Dirac fermions, the dimension of the corresponding coupling constants are

λ′φ3 =⇒ Dλ′ = 1+ 4− d

2

gφψψ =⇒ Dg = 4− d

2
(12.25)

1 Our choice of natural units allows us to specify the dimensions of all quantities in terms of
powers of energy. Thus, for the coordinates we have [xμ] = E−1, which we denote by Dx = −1.



238 12 Effective Field Theories and Naturalness

In the particular case of the φ4 example the dependence of the energy dimension
of λ with d suggests replacing the coupling constant in the action (and therefore in
the Feynman rules) by

λ −→ μ4−dλ, (12.26)

where μ is an arbitrary energy scale. What we achieve with this is that λ is kept
dimensionless for any value of d. In a theory with several couplings we would do the
same with all of them using always the same scale μ.

We apply DR to the one loop renormalization of the φ4 theory using the method
of renormalized perturbation theory outlined in Sect. 8.3. The aim is to compute the
renormalized Lagrangian

Lren = 1

2
∂μφ0∂

μφ0 − m2
0

2
φ2

0 −
λ0

4! φ
4
0 ,

(12.27)

depending on the bare parameters and fields. This can be written as Lren = L +Lct
where

L = 1

2
∂μφ∂

μφ − 1

2
m2φ2 − λ

4!μ
4−dφ4 (12.28)

depends only on renormalized couplings and fields and the counterterms have the
structure

Lct = 1

2
A(d − 4)∂μφ∂

μφ − 1

2
m2 B(d − 4)φ2 − λ

4!μ
4−dC(d − 4)φ4. (12.29)

The functions A(d−4), B(d−4) and C(d−4) contain all the dependence of Lren
on the regulator d and are related to the bare quantities by

φ0(x) ≡
√

Zφ(d − 4)φ(x) = √
1+ A(d − 4)φ(x),

m2
0(d − 4) = m2 1+ B(d − 4)

1+ A(d − 4)
,

λ0(d − 4) = λμ4−d 1+ C(d − 4)

[1+ A(d − 4)]2 .
(12.30)

The time-ordered Green’s functions of the renormalized fields computed using the
Lagrangian Lren are finite in the limit d → 4.The fieldφ(x) interpolates between the
vacuum and the one particle states and therefore the scattering amplitudes computed
in terms of these Green’s functions are finite as well. The renormalization conditions
are then used to express the renormalized mass m and coupling constant λ in terms
of measurable quantities.

We see now how this program is implemented. The first divergent Feynman
diagram appears in the one-loop calculation of the two-point function
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(12.31)

The factor of 1
2 is a symmetry factor. We can take advantage of the calculations made

in the previous section to isolate the divergent part of the diagram as d → 4

(12.32)

To cancel this divergence we add a counterterm− 1
2 δm

2φ2 to the Lagrangian density
where δm2 is given by

δm2 = − λm2

16π2

1

d − 4
. (12.33)

Adding this counterterm means to include in the Feynman rules a new vertex with
two external legs

(12.34)

Its contribution to the two point function to order λ exactly cancels the divergent part
of the one loop diagram (12.31). There is of course an ambiguity in the definition
of the counterterm because in addition to the pole we could also have subtracted a
finite part. For the time being, however, we choose not to do so.

The next divergent diagram in the φ4 theory comes from the one-loop calculation
of the four-point function. In fact there are three diagrams contributing at order λ2

(12.35)

The last two diagrams differ in a permutation of the momenta p3 and p4. Since
the corresponding legs are attached to different vertices the two diagrams are topo-
logically nonequivalent. Applying the Feynman rules listed above, we find that the
contribution of these three diagrams can be written as

(12.36)
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The 1
2 in front of the integral is again a combinatorial factor associated with the

symmetry of each of the three diagrams.
A look at the integrals (12.36) shows that for d = 4 they diverge logarithmically.

To extract their divergent part we begin by exploiting the identity

1

a1a2
=

1∫
0

dx

[xa1 + (1− x)a2]2 , (12.37)

where x is called a Feynman parameter. This reduces the contribution of the three
diagrams to a combination of integrals of the type I2(d,m2, q) computed above.
Using the expansion of the integrals around d = 4 one arrives at the result

(12.38)

As with the two-point function, we can remove the divergence (12.38) by adding a
counterterm − δλ4! μ4−dφ4 to the Lagrangian density of the theory with

δλ = − 3λ2

16π2

1

d − 4
. (12.39)

We can also incorporate this couterterm in the Feynman rules by adding the new
vertex

(12.40)

We have computed the only two one-loop 1PI diagrams that are divergent. It is
not difficult to show that the one-loop contribution to the six-point function is finite.
Thus, our calculation determines, at one loop order, the functions appearing in the
counterterm Lagrangian (12.29)

A(d − 4)1−loop = 0,

B(d − 4)1−loop = − λ

16π2

1

d − 4
,

C(d − 4)1−loop = − 3λ

16π2

1

d − 4
.

(12.41)

The bare parameters and the field renormalization can be computed from them using
Eq. (12.29). In particular, we find that Zφ(d − 4)1−loop = 1 and the scalar field does
not get renormalized at one loop.

Having reached this point, some remarks are in order. We notice that the construc-
tion of counterterms is intrinsically ambiguous because together with the divergent
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part we can also subtract a finite contribution. In our analysis we just removed the
pole parts without imposing any renormalization condition at a particular value of the
momenta. This is called minimal subtraction (MS). Most frequently, however, one
uses a modified version of MS denoted by MS consisting in subtracting, together
with the pole, also the term γ − log(4π). This results in a simplification of the
expressions.

Both MS and MS are examples of mass independent subtraction schemes [3–5].
They owe their name to the fact that by subtracting just the pole at d = 4 (plus
maybe other numerical constants) we get counterterms that are independent of any
mass scale of the theory. As we will see very soon, this feature is very convenient for
computational purposes and their use is crucial in the construction of effective field
theories to be presented later.

In the study of the renormalization of QED carried out in Chap. 8 we learned
that it is enough to consider the contribution of the 1PI irreducible diagrams, since
all other diagrams can be written in terms of them. Here the situation is exactly
the same, and we can focus our attention on the correlation functions obtained by
summing all amputated 1PI Feynman diagrams with n external legs and incoming
momenta p1, . . . , pn .The correlation functions computed from the Lagrangian L +
Lct are finite in the limit d → 4, since the counterterms are constructed to cancel all
divergences. These bare 1PI correlation functions depend on the bare parameters m0
and λ0 but are independent of the energy scale μ, which does not enter in (12.27).

The bare 1PI correlation functions can be written as [cf. (8.90) and the associated
discussion]

Γn(pi ;m0, λ0, d − 4)0 = Zφ(d − 4)−
n
2Γn(pi ;m, λ, μ, d − 4), (12.42)

where in the right-hand side we have the correlation function computed with the
renormalized fields. This depends only on the renormalized couplings m and λ, as
well as on μ. Since the bare parameters do not depend on μ, the left-hand side is
independent of this arbitrary scale, while the μ-dependence of the right-hand side is
both explicit and implicit through the renormalized parameters. Taking the derivative
with respect toμwe can write the analog of the renormalization equations discussed
in Chap. 8

[
μ
∂

∂μ
+ β

(
λ,

m

μ
, d − 4

)
∂

∂λ
+ γm

(
λ,

m

μ
, d − 4

)
m
∂

∂m

−nγ

(
λ,

m

μ
, d − 4

)]
Γn(pi ;m, λ, μ, d − 4) = 0. (12.43)

Since they only involve renormalized quantities these equations are regular in the
limit d → 4. The functions appearing on the left-hand side are defined by
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β

(
λ,

m

μ
, d − 4

)
= μ ∂λ

∂μ
,

γm

(
λ,

m

μ
, d − 4

)
= μ

m

∂m

∂μ
,

γ

(
λ,

m

μ
, d − 4

)
= 1

2
μ
∂

∂μ
log Zφ.

(12.44)

They measure the change of λ, m and Zφ with the scale μ.
The main reason to introduce the energy scale μ was to keep the dimensions of

the expressions correct. It would be interesting to trade the evolution of the renormal-
ized couplings with respect to μ by their evolution with respect to some physically
meaningful energy scale, such as the one characterizing the process under study. To
this end, we rescale all momenta in the correlation functions by a common factor
pi → spi and study how they change with s.

The 1PI function Γn(spi ; λ,m, μ, d − 4) has canonical dimension

Dn = 4− n − d − 4

2
(n − 2). (12.45)

This formula can be heuristically justified by dimensional analysis of the contribution
of a one-loop 1PI diagram with n = 2k external legs. The canonical dimension Dn

determines how the correlation function changes when we change the energy units
in which the dimensionful parameters pi , m and μ are measured. In mathematical
terms this means that the correlation function is a homogeneous function of weight
Dn , namely

Γn(ξspi ; λ, ξm, ξμ, d − 4) = ξ DnΓn(spi ; λ,m, μ, d − 4), (12.46)

for any ξ > 0. Euler’s well known theorem for homogeneous functions implies that

(
μ
∂

∂μ
+ s

∂

∂s
+ m

∂

∂m
− Dn

)
Γn(spi ; λ,m, μ, d − 4) = 0. (12.47)

This equation is useful because it can be combined with Eq. (12.43) evaluated at spi

to eliminate the derivative with respect to μ. Indeed, subtracting the two equations
and taking the limit d → 4 we arrive at the Callan–Symanzik equation

{
−s

∂

∂s
+ β

(
λ,

m

μ

)
∂

∂λ
+

[
γm

(
λ,

m

μ

)
− 1

]
m
∂

∂m

+ 4− n

[
1+ γ

(
λ,

m

μ

)]}
Γn(spi ;m, λ, μ) = 0. (12.48)

It is at this point that the advantage of using a mass independent renormalization
schemes becomes evident. Since the couterterms are mass independent, the func-
tions appearing in the renormalization group equations only depend on the coupling
constant λ



12.3 The φ4 Theory: A Case Study 243

{
−s

∂

∂s
+ β(λ) ∂

∂λ
+

[
γm(λ)− 1

]
m
∂

∂m

+ 4− n

[
1+ γ (λ)

]}
Γn(spi ;m, λ, μ) = 0. (12.49)

This fact makes it possible to formally integrate the equations in s to find how the
1PI correlation functions behaves under a simultaneous rescaling of all momenta.
We introduce the functions λ(s) and m(s) solving the differential equations

s
∂

∂s
λ(s) = β

(
λ(s)

)
,

s

m(s)

∂

∂s
m(s) = γm

(
λ(s)

)
− 1 (12.50)

with the initial conditions λ(1) = λ,m(1) = m. Since both β(λ) and γm(λ) can
be computed order by order in renormalized perturbation theory, these equations
completely determine the functions λ(s) and m(s).

Although not explicitly indicated, the function λ(s) also depends on the initial
condition λ, whereas m(s) depends on both λ and m. This can be seen by rewriting
(12.50) in integral form

log s =
λ(s)∫
λ

dt

β(t)
, m(s) = m exp

⎡
⎢⎣
λ(s)∫
λ

dt
γm(t)− 1

β(t)

⎤
⎥⎦ . (12.51)

Differentiating with respect to λ and m we find that

∂λ

∂λ
= β(λ)

β(λ)
,

∂m

∂m
= m

m
,

∂m

∂λ
= m

[
γm(λ)− γm(λ)

β(λ)

]
. (12.52)

Using these identities it is not difficult to show that the renormalization group equa-
tions (12.49) are formally solved by

Γn(spi ;m, λ, μ) = s4−nΓn

(
pi ,m(s), λ(s), μ

)
exp

⎡
⎣−n

s∫
1

ds′

s′ γ
(
λ̄(s ′)

)⎤
⎦

(12.53)
This solution gives the dependence of the 1PI Green’s functions on the momentum

rescaling factor s and can be used to determine their high-energy behavior by taking
the limit s →∞.To get some intuition about the meaning of Eq. (12.53), we consider
a massless theory sitting at a fixed point of the renormalization group flow where
β(λ∗) = 0. In this case (12.53) takes the simple form

Γn(spi ; λ∗, μ) = s4−n(1+γ ∗)Γn(pi ; λ∗, μ). (12.54)

This result would be the one expected from dimensional analysis in a theory where
the scalar field φ(x) has energy dimensions Dφ = 1 + γ ∗ instead of the canon-
ical value Dφ = 1. For this reason γ ∗ is called the anomalous dimension of the
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field. This name is also given by extension to the function γ (λ,m/μ) introduced in
Eq. (12.44), although it should be noticed that, strictly speaking, it only admits such
an interpretation at the fixed point.

12.4 The Renormalization Group Equations
in Dimensional Regularization

So far we have studied some general properties of the renormalization group equa-
tions. To extract more precise information from them one needs to know the functions
β(λ), γ (λ) and γm(λ). This is going to be our next task, namely we are going to
learn how to compute these functions using DR. The techniques we describe next
were developed in [3, 4].

Our analysis is going to be as general as possible. For this reason we consider
a theory characterized by a number of bare couplings denoted collectively by
λ0k, with k = 1, . . . , N . They include coupling constants, masses and the wave
function renormalization of the different fields. As prescribed by DR, we define the
theory in dimension d and proceed to construct the counterterms required to cancel
the divergences order by order in renormalized perturbation theory. A divergent
L-loop diagram give rise to poles of the type shown in Eq. (12.17). Collecting the
contributions to all orders in perturbation theory the bare couplings can be expressed
as a Laurent series in d − 4, namely

λ0k = μDk

[
λk +

∞∑
v=1

a(v)k (λ�)

(d − 4)v

]
, (12.55)

where the coefficients a(v)k (λ�) depend on the renormalized couplings λ�. The energy
dimensions Dk of the bare couplings are generically of the form

Dk = D(0)
k + (d − 4)D(1)

k , (12.56)

where D(0)
k is the dimension of λ0k in four dimensions. The renormalized couplings

have been rescaled by the appropriate powers of μ in order to make them dimen-
sionless.

Each coefficient a(v)k (λ�) in the expansion (12.55) receives contributions from
divergent L-loop diagrams with L ≥ v. What makes these expressions still useful is
that all coefficients a(v)k (λ�) with v > 1 can be expressed in terms of a(1)k (λ�), as we
show next.

Let us differentiate Eq. (12.55) with respect to μ. Since the bare couplings are
independent of this energy scale, the left hand side gives zero. The right-hand side,
however, depends on μ both explicitly and implicitly through the renormalized
couplings λk . We can take the derivative of the couplings to have the form



12.4 The Renormalization Group Equations in Dimensional Regularization 245

μ
∂λk

∂μ
= Ak(λ�)+ (d − 4)Bk(λ�) (12.57)

and solve order by order in d − 4. To begin with we get two terms proportional to
d − 4 that have to cancel. This determines the coefficient Bk(λ�) to be

Bk(λ�) = −λk D(1)
k . (12.58)

Repeating this for the terms of order (d − 4)0 we find

Ak(λ�) = −λk D(0)
k − D(1)

k

(
1− λk

∂

∂λk

)
a(1)k (λ�)

+
N∑

j �=k

D(1)
j λ j

∂

∂λ j
a(1)k (λ�). (12.59)

Finally, from the coefficients of the poles at d = 4 the following recursion relation
is obtained

0 =
(

D(0)
k + Ak

∂

∂λk

)
a(v)k (λ�)+ D(1)

k

(
1− λk

∂

∂λk

)
a(v+1)

k (λ�)

+
N∑

j �=k

[
A j (λ�)

∂

∂λ j
a(v)k (λ�)− D(1)

j λ j
∂

∂λ j
a(v+1)

k (λ�)

]
, (12.60)

where A j (λ�) is given above in terms of a(1)k (λ�).
There are several interesting conclusions to be extracted from the relations just

derived. First, taking the limit d → 4 we find that the running of the coupling λk is
fully determined by the coefficients of the single poles at d = 4, namely

μ
∂λk

∂μ
= −λk D(0)

k − D(1)
k

(
1− λk

∂

∂λk

)
a(1)k (λ�)

+
N∑

j �=k

D(1)
j λ j

∂

∂λ j
a(1)k (λ�). (12.61)

At this point we have to recall that all couplings have been made dimensionless by
rescaling them with powers of μ. This can be undone by a new rescaling

λk −→ μ−D0
k λk (12.62)

that has the effect of canceling the first term on the right-hand side of Eq. (12.61).
This equation becomes even simpler when using a mass independent subtraction
scheme. In this case the counterterms do not depend on the mass couplings of the
theory and as a consequence they do not appear in the sum on the right-hand side of
(12.61).



246 12 Effective Field Theories and Naturalness

As we already explained, generically a(1)k (λ�) receives contributions to all loops.
However, as promised, the recursion relations (12.60) give a way to compute
a(v)k (λ�) with v = 2, 3, . . . in terms of a(1)k (λ�). This fact provides a very conve-
nient method to check loop computations since, for instance, the coefficient of the
two-loop 1/(d − 4)2 pole is determined by the one-loop 1/(d − 4) pole, and so on.

We go back now to the φ4 theory we studied in the previous section. At one loop
we only have to worry about two couplings m2 and λ, since there is no wave function
renormalization at this order. From Eqs. (12.30) and (12.41) we find the following
expression for the bare couplings at one loop

m2
0 = m2

(
1− λ

16π2

1

d − 4

)
,

λ0 = μ4−d
(
λ− 3λ2

16π2

1

d − 4

)
. (12.63)

We have used a mass-independent scheme, and the coefficients of the Laurent expan-
sions of the bare couplings do not depend on the renormalized mass m. This simplifies
the calculation of the renormalization group functions β(λ) and γm2(λ)

β(λ) ≡ μ ∂λ
∂μ
= 3λ2

16π2

γm2(λ) ≡ μ

m2

∂m2

∂μ
= λ

16π2 (12.64)

With this result we find that the beta function vanishes at zero coupling but it
is positive for λ > 0. Applying what we learned from our analysis of Sect. 8.2 we
conclude that λ = 0 is an infrared fixed point of the renormalization group flow. The
one-loop beta function equation in (12.64) can be integrated to give

λ(μ) = λ(μ0)

1− 3
16π3 λ(μ0) log

(
μ
μ0

) , (12.65)

where μ0 is an arbitrary reference energy scale. This shows that the renormalized
coupling grows with the energyμ.The coupling decreases as we go to lower energies,
so perturbation theory becomes more and more reliable in this regime. This also
indicates that the operator φ4, which was originally marginal, becomes irrelevant
once quantum corrections are included. Finally, we notice that the one-loop result
(12.65) blows up at the nonperturbative energy scale

μ = μ0 exp

[
16π3

3λ(μ0)

]
. (12.66)

This Landau pole, similar to the one discussed for QED in Sect. 8.2, indicates that
the theory becomes strongly coupled at high energies.
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12.5 The Issue of Quadratic Divergences

We can return now to the problem of quadratic divergences introduced in Sect. 12.1.
Instead of using DR we regularize the Euclidean integral (12.7) for d = 4 using a
sharp cutoff |pE | < Λ and find the following leading behavior as Λ→∞

∫
|pE |<Λ

d4 pE

(2π)4
1

(p2
E + m2)n

∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m2

8π2

[
Λ2

m2 − log
(
Λ2

m2

)]
n = 1

1
8π2

[
log

(
Λ2

m2

)
− 1

2

]
n = 2

m4−2n

8π2(n−1)(n−2)
n > 2

(12.67)

where we have dropped all terms that go to zero in this limit. These expressions
contrasts with the DR result (12.11), where the integral diverges in the same way for
n = 1 and n = 2, namely with a simple pole at d = 4.

The one-loop renormalization of the φ4 field theory described in the previous
section can now be implemented using the cutoff regularization. The cancelation of
the divergent part of the diagram (12.31) gives the bare mass and coupling constant

m0(Λ)
2 = m2

{
1− λ

16π2

[
Λ2

m2 − log

(
Λ2

m2

)]}
,

λ(Λ) = λ
[

1− 3λ

16π2 log

(
Λ2

m2

)]
. (12.68)

We can invert the first equation to write the renormalized mass in terms of the bare
parameters to first order in the bare coupling constant

m2 = m0(Λ)
2 + λ0(Λ)

16π2

[
Λ2 − log

Λ2

m0(Λ)2

]
. (12.69)

Would the scalar theory be valid for arbitrary high energies, this would be the
end of the story. The cutoff Λ would be an artifact of the quantization that should
disappear at the end of the calculations. Physical results would only depend on the
renormalized quantities m andλ.The situation is however different if we have reasons
to believe that our theory is only valid up to certain energy scale at which new physics
is expected to play a role. Then Eq. (12.69) has to be interpreted in Wilsonian terms
(see Sect. 8.5) by regarding Λ as the energy above which our φ4 theory is replaced
by some unknown new dynamics. Just below this scale the leading part of the theory
(not including irrelevant operators) is defined by the Lagrangian (12.27), the effect
of the high energy degrees of freedom is codified in the cutoff dependence of the
bare field and parameters φ0(x,Λ), m0(Λ) and λ0(Λ). From this point of view m
and λ are the parameters characterizing the theory at energies well below the cutoff
scale, E � Λ.
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The relation (12.69) between the low energy (renormalized) mass and the high
energy bare parameters shows a strong dependence of the former on the cutoff Λ.
Indeed, due to the term proportional toΛ2 the value of the mass m will be determined
by the cutoff scale unless the value of m0(Λ) is carefully chosen to cancel the
contribution of the quadratic term up to many decimal places. The conclusion is that
the preservation of the hierarchy m � Λ requires an important fine tuning of the
mass at the cutoff scale. This is the hierarchy problem.

Any theory with fundamental scalars is afflicted with this problem, including the
standard model due to the presence of the Higgs field. The only exception are theories
with Nambu-Goldstone bosons. They only include derivatives couplings preserving
the invarianceφ(x)→ φ(x)+ constant, thus forbidding any mass term in the action.2

We have seen in Sect. 12.2 that using DR there are no quadratic (or polynomial)
divergences. The momentum integral of the one-loop self-energy diagram (12.31)
has the same divergent behavior when d → 4 as the milder logarithmically divergent
integral appearing in the calculation of the four-point function. In fact, quadratically
divergent integrals are not signaled in DR by higher order poles at d = 4, but by
additional poles for d < 4.We can see this from Eq. (12.11). For the logarithmically
divergent integral I2(d,m2) the Gamma function in the numerator has a single pole
for real positive d, namely at d = 4. In the case of I1(d,m2), on the other hand,
Γ ( 2−d

2 ) has, besides the pole at d = 4, another one at d = 2. Generically [6], in
the integrals arising from L-loop diagrams these additional poles occur for fractional
values of the dimension, d = 4− 2

L . This is how quadratic divergences are identified
using DR.

The previous discussion might lead us to believe that the hierarchy problem is
a regularization artifact that can be disposed of by a smart choice of the regulator.
The whole thing, however, is more complicated. Integrating the second equation in
(12.64) we find

m(μ)2 = m(μ0)
2 exp

⎡
⎢⎣

λ(μ)∫
λ(μ0)

dx

β(x)
γm2(x)

⎤
⎥⎦ . (12.70)

This expression shows that the mass at the scale μ is proportional to the initial
condition m(μ0). This however does not clarify the issue, since in order to decide
whether the ultraviolet sensitivity of the low energy parameters persists in DR we
should find out how the initial condition m(μ0) depends on the high energy scales.

We arrive at the conclusion that in order to understand the low energy role of
quadratic divergences in DR we should look into the more general problem of under-
standing this regularization procedure in a Wilsonian setup. Therefore we turn to a
brief description of effective field theories to address systematically the question of
the separation of scales and how low-energy properties can be derived in a theory with

2 The other known way of canceling quadratic divergences is to have supersymmetry (see
Sect. 13.2), where the quadratically divergent corrections to the scalar masses are cancelled by
the contribution of diagrams with fermion loops.
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natural energy scales that are widely separated. As a bonus we will clarify the role
played in Physics by nonrenormalizable field theories and arrive at the formulation
of a criterion for naturalness [7] in quantum field theory.

12.6 Effective Field Theories: A Brief Introduction

One of the main reasons behind our progress in the understanding of physical
processes is the fact that at a given length scale, and using the correct variables,
our description of the physical phenomena is to a large extend independent of the
physics at much shorter distances. This is a glaring fact in the history of Physics.
For example, thermodynamics was formulated well before a microscopic descrip-
tion of the thermal processes in terms of statistical mechanics and atomic theory was
available. Similarly, a moderately accurate calculation of the energy levels of the
hydrogen atom is possible without concerning ourselves with the internal structure
of the proton. Details such as its spin or charge radius have indeed an effect on the
hydrogen spectral lines, but these are subleading corrections.

These examples, that can be multiplied at will, illustrate the basic fact that
Physics largely deals with the formulation of effective theories describing physical
phenomena within a certain range of energy scales with an acceptable accuracy. This
is also the case in quantum field theory. At energies below the Fermi energy 1/

√
G F

weak interactions can be faithfully described using the Fermi theory. Only when
higher energies become available experimentally, the effective low energy descrip-
tion has to be replaced by (or embedded in) a more general theory that takes into
account the new degrees of freedom relevant for the exploration of new phenomena.

The basic ingredients in the building of effective field theories are the light degrees
of freedom and the relevant symmetries of the problem. The latter provide the guiding
principle to write a Lagrangian that would be the starting point for the calculation of
observables. In Sect. 8.5 we learned that the infrared physics is dominated by relevant
and marginal operators. A Lagrangian constructed using only these operators defines
a renormalizable theory, such as QED, QCD or φ4. Observables can be computed in
terms of a limited number of parameters associated to the renormalized couplings of
the relevant and marginal operators in the action.

The description in terms of relevant and marginal operators is very accurate in
the deep infrared region. However, if we want to include the corrections due to new
physics above an energy scale M we have to include irrelevant operators. These,
generically, will appear in the action suppressed by the necessary powers of the
scale M at which the new degrees of freedom become excited. This is precisely what
happens in the case of Fermi’s theory of weak processes, where β-decay is described
by the four-fermion interaction of the Fermi theory discussed in Sect. 8.5 and M
is set by the Fermi energy. Another example is provided by the description of the
low energy properties of leptons and light quarks. At energies E � mb,mt we do
not have to include the b and t quarks as dynamical fields. They make themselves
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noticed, however, through irrelevant operators in the effective action for the light
fields suppressed by powers of 1/mb and 1/mt .

These examples should be enough to illustrate how as we go to higher ener-
gies (i.e., as we increase the power of our “magnifying glass”) effective theories
are replaced by a more complete description. In general this process repeats as
we increase the energy. For example, the standard model is itself expected to be
embedded at higher energies in a more general theory (maybe a GUT). Going to
arbitrarily high energies would require a theory of everything that is not yet avail-
able.

The presence of irrelevant operators means that effective field theories are
nonrenormalizable. This might seem to be a problem. The common lore states
that nonrenormalizable theories do not have predictive power. The cancelation of
the divergences in loop diagrams requires the introduction of an infinite number
of different couterterms. Thus, in order to calculate observables one would need
to specify an infinite number of parameters associated with the infinite number of
irrelevant operators generated by quantum corrections.

This argument, however, is far too naive. In effective field theories we are inter-
ested in physical phenomena taking place in a range of energies much below the
scale of new physics, E � M , and the contributions of the nonrenormalizable coun-
terterms to a physical processes are weighted by powers of E/M. As it turns out,
to a given degree of accuracy, there are only a few irrelevant operators that need be
taken into account in our computations. Therefore, when looked at in the right way,
nonrenormalizable theories are respectable and predictive.

It is important to realize that frequently it is experimental information that forces
us to introduce higher-dimensional operators in a renormalizable theory. The classic
example is the discovery of neutrino masses and mixing. The simplest way to accom-
modate this experimental fact in the standard model would be to include for each
generation a sterile right-handed neutrino that is a singlet under the standard model
gauge group SU(3)×SU(2)×U(1)Y . This would generate Dirac mass terms for the
neutrinos while preserving lepton number conservation. One can, however, take the
widely accepted point of view that global symmetries such as lepton number conser-
vation are mere accidental symmetries of the low energy theory that do not have to
be preserved at high energies. In this case Majorana mass terms for the neutrinos
are allowed.3 The simplest way to generate these terms is by adding to the standard
model Lagrangian the following dimension-five operator

ΔLSM = − 1

M

3∑
i, j=1

gi j

(
LC

i σ
2H

)(
HTσ 2L j

)
+ h.c. (12.71)

where gi j are dimensionless coupling constants, Li are the three lepton doublets intro-
duced in Table 5.1, and H is the Higgs doublet (10.3). This term is gauge invariant,

3 As a matter of fact, once we decide that lepton number conservation is not a fundamental
symmetry we can also introduce, in addition to the Dirac masses, Majorana mass terms for the
right-handed neutrinos.
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as can easily be shown using the definition of the charge conjugated spinors and the
identity (10.6). Since this operator has dimension five it comes suppressed by M, the
energy scale at which new physics is expected. Upon symmetry breaking, the Higgs
doublet develops the vacuum expectation value (10.11) and the new term generates
a Majorana mass for the three neutrinos [cf. equation (11.41)]

ΔLSM = −μ
2

M

3∑
i, j=1

gi j vC
i v j + h.c. (12.72)

Using the experimental value of μ and the bounds for the neutrino masses it turns
out that M can be as high as M ∼ 1015 GeV � mW . The discovery of neutrino
masses may provide a hint to new physics at some high energy scale M. This would
indicate that the standard model is an effective field theory, and therefore we should
also include irrelevant operators to describe the effect of its ultraviolet completion.

After this long digression we study some basic features of effective field theories.
Detailed introductions to the subject can be found in Ref. [8–11]; here we follow
mainly the presentations of [12–14]. To illustrate our discussion we consider two
unphysical toy models that however contain all the main features of more realistic
effective field theories. The first is a non-renormalizable theory of a single Dirac
spinor with a four-fermion interaction

L = ψ(i∂/− m)ψ − a

Λ2 (ψψ)
2 + · · · (12.73)

where a is a dimensionless coupling and the dots stand for higher-dimensional opera-
tors that we ignore. Using this Lagrangian we can study the effect of loop corrections
induced by non-renormalizable interaction. These are the ones that, allegedly, would
render the theory non-predictive. From our previous discussion we know thatΛ sets
the energy scale at which our nonrenormalizable Lagrangian should be completed
with new degrees of freedom. We quantize the theory using this scale as a cutoff.
The Feynman rules contain a single four-fermion vertex

(12.74)

and the only one-loop diagram contributing to the fermion self-energy is given by



252 12 Effective Field Theories and Naturalness

(12.75)

As explained in Chap. 8 the physical mass of the fermion is defined by the zero
of /p − m − �(/p,Λ). Since the one-loop fermion self-energy is independent of the
momentum, the mass correction is simply given by

δm = −6iam

Λ2

Λ∫
d4q

(2π)4
1

q2 − m2 + iε
= −3am

4π2

[
1+ m2

Λ2 log

(
Λ2

m2 + 1

)]

∼ −3am

4π2 (when m � Λ). (12.76)

To compute the integral we have performed a Wick rotation, as explained in Sect. 12.2,
and integrated the Euclidean momentum in the range |qE | < Λ.We have found that
the leading correction to the mass is of order (m/Λ)0, i.e., it is not suppressed by
powers of Λ. This is not a peculiarity of the dimension-six operator chosen here. It
also occurs for other higher-dimension operators.

This is a disastrous result. It leads to the conclusion that the fermion mass gets
corrections from higher-dimensional operators that are not suppressed by the scale
Λ and therefore are large even when we are considering energies much below the
scale of new physics. What we are saying is that the value of low energy parameters
is strongly influenced by what is going on at arbitrarily high energies. Thus, in order
to compute the corrections to the mass of the fermion in our theory we would need
to know the details of the dynamics at energies above the scale Λ.

The reason behind our failure in separating low energy physics from the details
of the theory at high energies lies in the fact that we did not renormalize the theory.
Instead of cutting off the integrals at the scale Λ we are going to regularize it using
DR and a mass independent subtraction scheme. From the expressions derived in
previous sections we can compute the fermion self-energy to be

�(p/,Λ) = −6iam

Λ2

∫
ddq

(2π)d
1

q2 − m2 + iε

= −3am

8π2

(m

Λ

)2
[

2

d − 4
+ γ + log

(
m2

4πμ2

)
+ · · ·

]
. (12.77)

In the MS subtraction scheme we add a counterterm that cancels the pole in d = 4
together with the constants γ − log(4π). Then we find the following correction to
the fermion mass
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δm = −3am

8π2

(m

Λ

)2
log

(
m2

μ2

)
. (12.78)

This is a much nicer result. The mass correction is suppressed by powers of m/Λ,
small in the regime where the effective field theory is applicable, m � Λ. In addition,
the expression only depends logarithmically on μ. This energy scale is an artifact of
the regularization and therefore should be absent of all physical quantities.

It is a general result that in a mass independent subtraction scheme, effective field
theories produce a well defined expansion in powers of m/Λ or E/Λ, where E is
the characteristic energy of the process under consideration. This means that to a
given numerical accuracy only a few terms in the expansion should be considered.
It is in this sense that effective field theories can be considered as predictive as
renormalizable quantum field theories.

The reader might be puzzled at the comparison of the different results we have
obtained for the mass renormalization using a cutoff, and DR plus a mass indepen-
dent subtraction scheme. In fact, there is no contradiction between them. Physical
predictions cannot depend on the way we choose to regularize and renormalize the
theory. Cutting off the integrals at the scaleΛ results in an infinite number of contri-
butions to each order in 1/Λ. Were we able to resum these terms we would obtain
a result agreeing with the expression found using a mass independent scheme. The
latter method provides a systematic way of organizing the 1/Λ contributions. As a
consequence there is only a finite number of operators contributing to a given degree
of accuracy.

Before closing our discussion of the Lagrangian (12.73) we mention the fact that
the mass correction (12.78) is proportional to the mass m and therefore vanishes for
m = 0. This apparently innocuous fact has a deep underlying explanation based on a
symmetry enhancement of the theory at m = 0. Indeed, in the massless case both the
kinetic term and the four-fermion interaction are invariant under the discrete chiral
transformation

ψ −→ γ5ψ, ψ −→ −ψγ5. (12.79)

This is however not a symmetry of the mass term, changing sign under it. Thus, the
theory at m = 0 has an addition symmetry protecting the fermion from acquiring a
mass through quantum corrections. This is why, in general, one can say that having
a light fermion is natural in spite of the presence of a large energy scale Λ in the
theory.

The second example we want to study is a renormalizable theory of two interacting
real scalar fields with masses m and M, with m � M and Lagrangian

L = 1

2
∂μφ∂

μφ − m2

2
φ2 + 1

2
∂μΦ∂

μΦ − M2

2
Φ2 − g

2
φ2Φ. (12.80)

From the inspection of the interaction term we find that the Feynman rules contain
the vertex
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(12.81)

where the dashed and continuous lines represent respectively the light and heavy
fields. The propagators are the usual ones for scalar fields with the appropriate values
of the mass. To find the leading correction to the mass of the light field due to the
heavy field, we consider the following diagram

(12.82)

To write the second equality we have colleted together the two propagators using the
trick (12.37), thus reducing the expression to a single integral of the type I2(d,m2).

Let us take m = 0. To compute the leading correction to the mass it is enough
to evaluate the previous diagram at zero momentum. An explicit calculation of the
integral around d = 4 gives

(12.83)

and in the MS subtraction scheme the mass corrections is found to be

δm2 = g2

16π2 log

(
M2

μ2

)
, (12.84)

which is nonzero even if we set m = 0. This simple calculation illustrates the
important point that the mass of the scalar field is not protected against quantum
corrections. The interaction with the heavy scalar produces a correction to the mass
whose scale is set by the dimensionful coupling constant g, while depending only
logarithmically on the mass of the heavy scalar. This means that having a scalar with
mass well below g/(4π) is unnatural.

A similar result would be obtained in the case of a light scalar field φ(x) coupled
to a heavy fermion ψ(x) of mass M through the Yukawa interaction

Lint = g′φψψ. (12.85)

Now, since g′ is dimensionless, the scalar field mass m gets quantum corrections
whose scale is set by the mass of the heavy fermion. This can be seen by computing
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the one-loop fermion correction to the scalar two-point function. Taking again m = 0
and using DR and the MS subtraction scheme the scalar acquires a mass of order

δm2 ∼ g′2 M2 log

(
M2

μ2

)
. (12.86)

Therefore there is no natural way to keep the mass of the scalar away from the scale
of the heavy fermion.

The theories defined by the Lagrangians (12.73) and (12.80) show that while
chiral symmetry makes light fermions natural, it is very difficult is to prevent scalar
fields from acquiring masses of the order of the higher energy scales in the theory.
This illustrates, in a toy model, the hierarchy problem: unlike fermions, low energy
scalars are extremely sensitive to high energy scales.

These examples help also to clarify the issue of quadratic divergences in DR.
We have seen that, in spite of the apparent absence of quadratic divergences in the
Feynman integrals, the scalar masses in general are still quadratically sensitive to high
energy scales. The hierarchy problem is therefore not an artifact of the regularization
procedure.

12.7 Remarks on Naturalness

There are a number of hints, such as neutrinos masses and oscillations, indicating
that the standard model is an effective theory. Since light scalars are unnatural in
the presence of higher energy scales, it is necessary to explain what keeps the value
of the Higgs mass below the scale 1015−1019 GeV where new physics is expected,
unless we are willing to accept an unnatural fine tuning of the Higgs mass. This can
be rephrased as the fact that the ratio between the GUT or Planck mass scale (i.e.,
the scale of “new physics” MNP) and the standard model energy scale MSM ∼ 100
GeV is a large number

MNP

MSM
∼ 1013−1016. (12.87)

The problem of accounting for large numbers has been around for a long time.
Dirac [15] was worried about the emergence of large numbers in Physics, like the
ratio between the strengths of the electromagnetic and gravitational interactions of
protons and electrons. In a more modern context we can construct a dimensionless
ration between the Fermi and Newton constants

G F c2

G N �2 � 1.73× 1033. (12.88)

It is to Dirac’s credit that he did not invoke any anthropic explanation. In his large
number hypothesis he assumed that all these large dimensionless ratios should be
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related in a simple way to a single large number which he chose to be the age of the
Universe. This led him to conclude that the fundamental constants of Nature vary
with time.

We do not want to dwell any further on this subject. Excelent expositions of the
notion of naturalness in high energy physics are available in the literature (see, for
example, [16, 17]). In view, however, of the examples discussed in the previous
section we find it necessary to state a naturalness criterion that probably most physi-
cists would find acceptable:

At any energy scale μ, a physical parameter or a set of physical parameters αi (μ) is allowed
to be very small only if the replacement αi (μ) = 0 would increase the symmetry of the
system.

This criterion, originally formulated by Wilson [18] and further elaborated among
others by ’t Hooft [7] and Susskind [19], has been a guide for nearly four decades
in the construction of theories beyond the standard model. The fact that the Higgs
particle, if thought as an elementary scalar, has not yet been found adds a good deal
of drama associated with naturalness.

This naturalness criterion may apply to particle physics, but in the broader context
where gravity is included it is severely violated. In our discussion of effective field
theories we have systematically forgotten the identity operators which, having zero
dimension, should be dominant in the infrared. The reason why we could afford to
ignore this operator so far is that we were not considering gravitational effects. The
coupling of the identity operator receives contributions from the zero-point energy
of all the quantum fields and, as long as gravity is left out of the game, can be simply
ignored.

General relativity teaches us that all forms of energy gravitate, and this applies
also to the zero-point energy of the quantum fields. Therefore once gravitational
effects are considered there is no way to ignore the coupling of the identity operator
to the gravitational field. This term is Einstein’s famous cosmological constant Λc.

Its contribution to the energy density of the Universe

ρΛ = Λc

8πG N
(12.89)

can be measured from cosmological observations with the result

ρΛ � (10−3 eV)4 = 10−48 GeV4. (12.90)

On the other hand, since ρΛ has dimensions of (energy)4 and the only natural energy
scale in gravity is the Planck mass MP ∼ 1019 GeV, naturalness would require the
scale of ρΛ to be set by MP, that is

ρΛ ∼ M4
P ∼ 1076 GeV4. (12.91)

This means that there is a mismatch of more than 120 orders of magnitude between
the natural and the measured value of the cosmological constant. To add to the puzzle,
if we compare ρΛ with the cosmological critical density at the present time
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ρc = 3H 2
0

8πG N
, (12.92)

we find the two values to be very close, ρΛ � 0.74ρc.
Is it just serendipity that the measured value of the cosmological constant is so

close to the Universe’s critical density today? In view of this it is difficult to avoid the
question of whether naturalness should only apply to particle physics in the absence
of gravity. In fact, the problem of the apparent fine tuning of the cosmological constant
is 60 or 70 orders of magnitude worse than the one for the Higgs mass. This brings
in the question: why should gravity be excluded in naturalness arguments?

It is safe to say that currently nobody knows the answer to these questions. For
the Higgs naturalness problems some scenarios have been suggested: supersymmetry
and technicolor among others, that are likely to be tested soon. In the case of the
cosmological constant, apart from anthropic arguments [20] or the string landscape
[21, 22], there is very little to say. Large numbers are likely to continue haunting
particle physicists and cosmologists for some time to come.

12.8 Coda: Heavy Particles and Decoupling

We have appraised mass independent subtraction schemes as the appropriate way
to deal with the renormalization of effective field theories. They have, however,
an important disadvantage: heavy particles do not decouple at energies below their
masses, as expected from the Appelquist-Carazzone decoupling theorem [23].

A simple example showing this is provided by the calculation in QED of the
contribution of a heavy fermion to the photon vacuum polarization (more details can
be found in [13, 14]). The basic ingredient is the DR computation of the one loop
polarization tensor

(12.93)

where the polarization function Π(p2; d − 4) is given by

Π(p2; d − 4) = − e2

12π2

{
2

d − 4
+ γE − log(4π)

+ 6

1∫
0

dxx(1− x) log

[
m2

f − x(1− x)p2

μ2

]}
. (12.94)

Following the analysis of Sect. 8.3, the divergence in the previous expression is
subtracted by adding to the QED Lagrangian a counterterm of the form
− 1

4 C(d − 4)Fμv Fμv. In the MS scheme we obtain
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Π(p2)MS = −
e2

2π2

1∫
0

dx x(1− x) log

[
m2

f − x(1− x)p2

μ2

]
. (12.95)

At leading order in the renormalized charge e the beta-function can be computed as

β(e) = e

2
μ
∂

∂μ
Π(p2)MS =

e3

12π2 (MS scheme). (12.96)

Alternatively, the same result can be obtained from the expression of the bare
charge coupling contant

e0 = eμ
4−d

2

(
1− e2

12π2

1

d − 4

)
+ finite part (12.97)

by applying the techniques introduced in Sect. 12.4. Since in a mass independent
subtraction scheme the beta function is determined solely by the pole at d = 4, it
does not depend on the value of the fermion mass. This is surprising because, on
physical grounds, one would expect the fermion to decouple in the limit of large
mass m f →∞. In this limit the theory should have a vanishing beta function.

We repeat now the calculation of the beta function but using a mass dependent
scheme. In particular we work in the so-called μ-scheme where the counterterm
coefficient C(d−4) is chosen in such a way that its contribution cancels the diagram
(12.93) evaluated at the Euclidean momentum p2 = −μ2. The renormalized polar-
ization tensor is obtained by adding the contribution of the counterterm to the one-
loop diagram, with the result

Π(p2)μ = − e2

2π2

1∫
0

dx x(1− x) log

[
m2

f − x(1− x)p2

m2
f + x(1− x)μ2

]
, (12.98)

where the subscriptμ indicates that we are dealing with the renormalized polarization
function in the μ-scheme. The calculation of the beta function then gives

β(e) = e

2
μ
∂

∂μ
Π(p2)μ

= e3

2π2

1∫
0

dx

[
x2(1− x)2μ2

m2
f + x(1− x)μ2

]
(μ-scheme). (12.99)

Unlike the result (12.96) this beta function depends on the quotient between the
fermion mass m f and the subtraction point μ. In particular, when m f � μ we find
that β(e) approaches the value (12.96), whereas in the opposite limit m f � μ it
tends to zero quadratically

β(e) � e3

60π2

(
μ

m f

)2

. (12.100)
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This is what we expect physically: a heavy fermion decouples from the low energy
theory which asymptotically becomes a theory of free photons with vanishing beta
function.

To understand why the MS subtraction scheme (or any mass-independent scheme
for that matter) renders an incorrect result for the beta function of QED in the limit of
large fermion mass we have to look at the renormalized polarization function (12.95).
When the momentum goes below the fermion mass, p2 � m2

f , it approaches the
value

Π(p2)MS �
e2

72π2 log

(
m2

f

μ2

)
. (12.101)

When m f � μ this logarithm is large and, as a result, the perturbative expansion
breaks down at low energies. This is the reason why the result obtained for the beta
function is not reliable in this regime. The problem is absent in the mass dependent
scheme used above, where the renormalized polarization tensor (12.98) vanishes in
the limit of large fermion mass

Π(p2)μ � − e2

60π2

(
p2 + μ2

m2
f

)
−→ 0. (12.102)

The limit of heavy fermion mass is amenable to perturbation theory and the beta
function can be reliably computed in this limit.

The way to deal with heavy particles in mass independent schemes is by integrating
them out as we move down the energy ladder. At energies below the mass of a particle
we have to use an effective field theory including only the light degrees of freedom at
the corresponding scale, while the effects of the heavy fields are felt through higher-
dimension operators. It is important to bear in mind that both the high and the low
energy theories have the same light particle content, so they share the same infrared
properties. They are however different in the ultraviolet, where the dynamics of the
heavy particle distorts the high energy behavior of the effective field theory.

It is crucial that the description provided by the two theories be consistent at the
threshold energy set by the mass of the particle that is being integrated out. This
means, for example, that the scattering amplitudes of light particles cannot depend
on whether we compute them using one theory or the other. The way to proceed is to
match the Feynman graphs computed from the low energy effective field theory with
the corresponding one-light-particle irreducible diagrams in the high energy theory.
These are those Feynman graphs having only light particles on the external legs and
that cannot be disconnected by cutting an internal light-particle line. These matching
conditions implement the effects of heavy particles and high energy modes in the
low energy effective field theory.

To summarize, the discussion carried out in this section shows that in the MS
subtraction scheme, or any other mass-independent scheme, the decoupling of parti-
cles as we run from high to low energies has to be implemented by hand, integrating
out the field that become heavy as we lower the energy. Thus, every time a particle
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threshold is found, the corresponding field has to be integrated out and the appropriate
matching conditions on the low energy field theory imposed. Proceeding systemat-
ically in this way, we guarantee the correct decoupling of the heavy species while
retaining the computational advantages of a mass independent scheme.
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Chapter 13
Special Topics

In this closing chapter we have decided to present a few special topics in quantum field
theory that have applications in cosmology and particle phenomenology. Given that
we have not covered so many things in this book, the number of subjects to choose
from is vast. Our choice is to study the creation of particles by classical external
sources, including the Schwinger effect: the creation of electron–positron pair in a
strong electric field; and then to explore the general properties of supersymmetric
theories. Currently a large fraction of theories beyond the standard model are based
on various supersymmetric completions. The reader will find the most rudimentary
properties of such theories and the basic representation of this new symmetry.

13.1 Creation of Particles by Classical Fields

Particle Creation by a Classical Source

In a free quantum field theory the total number of particles is a conserved quantity.
For example, in the case of the quantum scalar field studied in Chap. 2 we have that
the number operator commutes with the Hamiltonian

n̂ ≡
∫

d3k

(2π)3
1

2Ek
α†(k)α(k), [Ĥ , n̂] = 0. (13.1)

This means that any states with a well-defined number of particle excitations will
preserve this number at all times. The situation, however, changes as soon as inter-
actions are introduced, since in this case particles can be created and/or destroyed as
a result of the dynamics.

Another case in which the number of particles might change is if the quantum
theory is coupled to a classical source. The archetypical example of such a situation is
the Schwinger effect, in which a classical strong electric field produces the creation of
electron–positron pairs out of the vacuum. However, before plunging into this more
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involved situation we can illustrate the relevant physics involved in the creation of
particles by classical sources with the help of the simplest example: a free scalar field
theory coupled to a classical external source J(x). The action for such a theory can
be written as

S =
∫

d4x

[
1

2
∂μφ(x)∂

μφ(x)− m2

2
φ(x)2 + J (x)φ(x)

]
, (13.2)

where J(x) is a real function of the coordinates. Its identification with a classical
source is obvious once we calculate the equations of motion(

∂μ∂
μ + m2

)
φ(x) = J (x). (13.3)

Our plan is to quantize this theory but, unlike the case analyzed in Chap. 2, now
the presence of the source J(x) makes the situation a bit more involved. The general
solution to the equation of motion can be written in terms of the retarded Green
function for the Klein–Gordon equation as

φ(x) = φ0(x)+ i
∫

d4x ′G R(x − x ′)J (x ′), (13.4)

where φ0(x) is a general solution to the homogeneous equation and

G R(t, x) =
∫

d4k

(2π)4
i

k2 − m2 + iεsign(k0)
e−ik·x

= iθ(t)
∫

d3k

(2π)3
1

2Ek

(
e−i Ek t+k·x − ei Ek t−ik·x) , (13.5)

with θ(x) the Heaviside step function. The denominator in the first integral is
reminding us that the integration contour over k0 surrounds the poles at k0 = ±Ek
from above. Since G R(t, x) = 0 for t < 0, the function φ0(x) corresponds to the
solution of the field equation at t → −∞, before the interaction with the external
source.1

To make the argument simpler we assume that J(x) is switched on at t = 0, and
only lasts for a time τ, that is

J (t, x) = 0 if t < 0 or t > τ. (13.6)

We are interested in a solution of (13.3) for times after the external source has been
switched off, t > τ. In this case the expression (13.5) can be written in terms of the
Fourier modes J̃ (E, �k) of the source as

φ(t, x) = φ0(t, x)+ i
∫

d3k

(2π)3
1

2Ek

[
J̃ (Ek,k)e−i Ek t+ik·x

− J̃ (Ek,k)∗ei Ek t−ik·x] . (13.7)

1 We could have taken instead the advanced propagator G A(x) in which case φ0(x) would corre-
spond to the solution to the equation at large times, after the interaction with J(x).
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The general solution φ0(t, x) has been already computed in Eq. (2.55). Combining
this result with Eq. (13.7) we find the following expression for the late time general
solution to the Klein–Gordon equation in the presence of the source

φ(t, x) =
∫

d3k

(2π)3
1

2Ek

{[
α(k)+ i J̃ (Ek,k)

]
e−i Ekt+ik·x

+
[
α∗(k)− i J̃ (Ek,k)∗

]
ei Ekt−ik·x} . (13.8)

On the other hand, for t < 0 we find from Eqs. (13.4) and (13.5) that the general
solution is given by Eq. (2.55).

Now we can proceed to quantize the theory. The conjugate momentum π(x) =
∂0φ(x) can be computed from Eqs. (2.55) and (13.8). Imposing the canonical equal
time commutation relations (2.52) we find that α(k), α†(k) satisfy the creation-
annihilation algebra (2.29). From our previous calculation we find that for t > τ

the expansion of the operator φ(x) in terms of the creation-annihilation operators
α(k), α†(k) can be obtained from the one for t < 0 by the replacement

α(k) −→ β(k) ≡ α(k)+ i J̃ (Ek,k),

α†(k) −→ β†(k) ≡ α†(k)− i J̃ (Ek,k)∗. (13.9)

Since J̃ (Ek,k) is a c-number, the operators β(k), β†(k) satisfy the same algebra as
α(k), α†(k) and therefore can be interpreted as well as a set of creation-annihilation
operators. This means that we can define two vacuum states, |0−〉, |0+〉 associated
with both sets of operators

α(k)|0−〉 = 0
β(k)|0+〉 = 0

}
for all k. (13.10)

For an observer at t< 0, α(k) andα†(k) are the natural set of creation-annihilation
operators in terms of which to expand the field operator φ(x). After the usual zero-
point energy subtraction the Hamiltonian is given by [cf. 2.59]

Ĥ (−) = 1

2

∫
d3k

(2π)3
α†(k)α(k) (13.11)

and the ground state of the spectrum for this observer is the vacuum |0−〉. At the
same time, a second observer at t > τ will also see a free scalar quantum field (the
source has been switched off at t = τ), and consequently will expand φ in terms
of the second set of creation-annihilation operators β(k), β†(k). In terms of these
operators the Hamiltonian is written as

Ĥ (+) = 1

2

∫
d3k

(2π)3
β†(k)β(k). (13.12)

Then for this late-time observer the ground state of the Hamiltonian is the second
vacuum state |0+〉.
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In our analysis we have been working in the Heisenberg picture, where states are
time-independent and the time dependence is in the operators. This means that the
states of the theory and defined globally in time. Suppose now that the system is in
the “in” ground state |0−〉. An observer at t < 0 will find that there are no particles

n̂(−)|0−〉 = 0. (13.13)

However the late-time observer will find that the state |0−〉 contains an average
number of particles given by

〈0−|n̂(+)|0−〉 =
∫

d3k

(2π)3
1

2Ek

∣∣∣ J̃ (Ek,k)
∣∣∣2 . (13.14)

Moreover, |0−〉 is no longer the ground state for the “out” observer. On the contrary,
this state has a vacuum expectation value for Ĥ (+)

〈0−|Ĥ (+)|0−〉 = 1

2

∫
d3k

(2π)3

∣∣∣ J̃ (Ek,k)
∣∣∣2 . (13.15)

The key to understand what is going on here lies in the fact that the external source
breaks the invariance of the theory under space-time translations. In the particular
case we have studied here where J(x) has support on a finite time interval 0 < t < τ,

this implies that the vacuum is not invariant under time translations, so observers at
different times will make different choices of vacua that will not necessarily agree
with each other. This is clear in our example. An observer in t < 0 will choose the
vacuum to be the lowest energy state of her Hamiltonian, |0−〉. On the other hand,
the second observer at late times t > τ will naturally choose |0+〉 as the vacuum.
For this second observer, the state |0−〉 is not the vacuum of his Hamiltonian, but an
excited state that is a superposition of states with well-defined number of particles. In
this sense it can be said that the external source has the effect of creating particles out
of the “in” vacuum. Besides, this breaking of time translation invariance produces a
violation in the energy conservation as we see from Eq. (13.15). Particles are created
from the energy pumped into the system by the external source.

The Schwinger Effect

A typical example of creation of particles by external fields is the Schwinger effect
[1] consisting in the creation of electron–positron pairs by a strong electric field. To
illustrate the main physical features of this effect we use a heuristic argument based
on the Dirac sea picture and the WKB approximation.

In the absence of an electric field the vacuum state of a spin- 1
2 field is constructed

by filling all the negative energy states as depicted in Fig. 1.2. We switch on a constant
electric field E ux in the range 0 < x < L . The associated electrostatic potential is
taken to be
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Fig. 13.1 Left: pair creation by a electric field in the Dirac sea picture. Right: effective potential
felt by the electron in the x direction. The pair creation corresponds to the tunneling of the particle
from the right to the left of the potential bump

V (r) =
⎧⎨
⎩

0 x < 0
−E x 0 < x < L
−E L x > L

. (13.16)

The Dirac sea is deformed into the shape shown in the left panel of Fig. 13.1 (in
drawing this figure we have to bear in mind that electrons have negative electric
charge q = −e). When the electric field satisfies eE L > 2m there are states in
the Dirac sea with x > L having the same energy as some positive energy states
in the region x < 0. It is therefore possible for a Dirac sea electron with energy
m � E0 � eE L − m to tunnel through the classically forbidden region leaving
a hole behind. The physical interpretation of such process is the production of an
electron–positron pair out of the vacuum by the effect of the electric field.

We can make this heuristic picture more precise with a simplified model where
electrons are described by a single component wave function Ψ (x) satisfying the
equation2

{[
i
∂

∂t
+ eV (x)

]2

+ ∂2

∂x2 +∇2
T − m2

}
Ψ (t, x, xT ) = 0. (13.17)

This is obtained from the dispersion relation

(E + eV )2 − p2 − m2 = 0 (13.18)

using the correspondence principle (1.2). Since the potential only depends on the
coordinate x, we have separated it from the transverse coordinates denoted by xT .

This also suggests the following ansatz for the single-particle wave function

Ψ (t, x, xT ) = f (x)e−i E0t+ipT ·xT . (13.19)

2 Our analysis essentially ignores the effect of the spin of the electron, the two helicities being
treated as scalar fields. A more careful treatment of the problem using the Dirac equation can be
found in [2].
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Substituting this expression in (13.17) results in the Schrödinger-like equation

−1

2
f ′′(x)+ Veff (x) f (x) = 0, (13.20)

where the effective potential Veff(x) is given by

Veff(x) = 1

2

{
p2

T + m2 − [E0 + eV (x)]2
}
. (13.21)

This effective potential has two flat regions (x < 0 and x > L) joined by
an inverted parabola, as shown in the right panel of Fig. 13.1. In the language of
the Schrödinger equation (13.20) the production of particle pairs corresponds to the
tunneling of an “analogue particle” of unit mass and zero energy through this potential
bump. To solve the problem semiclassically we compute the classical turning points

x± = 1

eE

(
E0 ±

√
p2

T + m2
)
, (13.22)

in terms of which the WKB transmission coefficient is given by

TWKB = exp

⎛
⎝−2

x+∫
x−

dx
√

2|Veff (x)|
⎞
⎠

= exp

⎡
⎣−2

x+∫
x−

dx
√

m2 + p2
T − (E0 − eE x)2

⎤
⎦ . (13.23)

The calculation of the integral yields the result

TWKB = e−
π

eE (p
2
T+m2). (13.24)

Integrating the transmission coefficient over transverse momenta gives the number
of pairs produced per unit time and unit transverse volume with energies between
E0 and E0 + d E

d N

dt d2xT
= 2e−

πm2
eE

(
d E

2π

)∫
d2 pT

(2π)2
e−

π
eE p2

T

= eE

2π2 e−
πm2
eE

(
d E

2π

)
, (13.25)

where the factor of 2 takes into account the two polarizations of the electron. To find
the production rate per unit volume we notice that in the tunneling picture the turning
points x± are the coordinates at which the two particles of the pair are produced.
Shifting the energy by dE results in a change in the positions of the particles by
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dx = d E
eE . Using this relation in Eq. (13.25) we find the pair production rate per unit

volume to be

W = e2E 2

4π3c�2 e−
πm2c3
�eE , (13.26)

where we have restored the powers of � and c.
The production of electron–positron pairs is exponentially suppressed for “weak”

electric fields. This suppression ceases when the exponent becomes of order one,
i.e., when the electric field reaches the critical value

Ecrit = m2c3

�e

 1.3× 1016 V cm−1. (13.27)

This is indeed a very strong electric field which is extremely difficult to generate in a
laboratory. The Schwinger effect can also be produced by time-varying electric fields
[3]. It is expected that pair production could be observed in the strong alternating
fields produced by lasers.

In QED the decay of the vacuum into electron–positron pairs induced by an
external field can be computed from the imaginary part of the effective action Γ [Aμ]
in the presence of a classical gauge potential Aμ. In terms of path integrals this
quantity is defined by

eiΓ [Aμ] ≡
∫

DΨDΨ ei
∫

d4xΨ (i∂/−m−e/A)Ψ . (13.28)

Expanding the integrand in powers of the electric charge e gives the diagrammatic
expansion

(13.29)

The determinant can be computed using standard heat kernel techniques [1, 3].
The probability of pair production is proportional to the imaginary part of iΓ [Aμ]
and gives Schwinger’s result

W = e2E 2

4π3

∞∑
n=1

1

n2 e−n πm2
eE . (13.30)

Comparing this with (13.26) we see that our semiclassical analysis only captured the
leading term in (13.30). The subleading contributions can also be obtained semiclas-
sically by taking into account the probability of production of several particle pairs,
i.e. the tunneling of more than one electron through the barrier.
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Here we have illustrated the creation of particles by semiclassical sources in
quantum field theory using simple examples. Our results can be summarized as
follows: in Minkowski spacetime quantum fields have a vacuum state invariant under
the Poincaré group. This, together with the covariance of the theory under Lorentz
transformations, implies that all inertial observers agree on the number of particles
contained in a quantum state. Coupling the theory to a space- or time-varying external
source results in the vacuum not being invariant under space(time) translations. The
consequence is that it is no longer possible to define a state which would be recognized
as the vacuum by all observers.

This is also the case when fields are quantized on curved backgrounds. If the back-
ground is time-dependent (as it happens in a cosmological setup or for a collapsing
star) different observers will identify different vacuum states: what one observer
calls the vacuum will contain particles for a different one. This is what is behind the
phenomenon of Hawking radiation [4]. The emission of particles by a physical black
hole formed by gravitational collapse follows from the fact that what an observer in
the asymptotic past would identify as the vacuum is full of particles for an observer
in the asymptotic future. Thus, a particle detector located far away from the black
hole detects a stream of thermal radiation with temperature

THawking = �c3

8πG N k M
, (13.31)

where M is the mass of the black hole, G N is Newton’s constant and k is Boltzmann’s
constant. As in the case of the Schwinger effect, particle creation by black holes can
be heuristically understood as resulting from quantum tunneling of particles through
the barrier created by the black hole gravitational potential [5].

13.2 Supersymmetry

One of the things that we have learned in our journey around the landscape of quantum
field theory is that our knowledge of the fundamental interactions in Nature is based
on the idea of symmetry, and in particular gauge symmetry. The Lagrangian of the
standard model can be written just including all possible renormalizable terms (i.e.
with canonical dimension smaller o equal to 4) compatible with the gauge symmetry
SU(3) × SU(2) × U(1)Y and Poincaré invariance. All attempts to go beyond start
with the question of how to extend the symmetries of the standard model.

As explained in Sect. 6.1, in a quantum field theoretical description of the inter-
action of elementary particles the basic observable quantity to compute is the scat-
tering or S-matrix giving the probability amplitude for the scattering of a number of
incoming particles with a certain momentum into some final products

S(in→ out) = 〈p′1, . . . ; out|p1, . . . ; in〉. (13.32)

An explicit symmetry of the theory has to be necessarily a symmetry of the S-matrix.
Hence it is fair to ask what is the largest symmetry of the S-matrix.
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Let us ask this question in the simple case of the scattering of two particles with
incoming four-momenta p1 and p2 described by the graph

We will make the usual assumptions regarding positivity of the energy and analyt-
icity of the S-matrix. Invariance of the theory under the Poincaré group implies that
the amplitude can only depend on the scattering angle ϑ through the square of the
transferred momentum p′1 − p1

t = (p′1 − p1)
2 = 2

(
m2

1 − p1 · p′1
)

= 2
(

m2
1 − E1 E ′1 + |p1||p′1| cosϑ

)
. (13.33)

We assume now the existence of an extra symmetry with a bosonic conserved charge
transforming as a tensor under the Poincaré group. Due to its tensor properties,
the charge of the asymptotic states would depend nontrivially on their momentum
eigenvalues. Therefore, charge conservation would restrict the scattering angle to a
set of discrete values. In this case the S-matrix cannot be analytic, since it would
vanish everywhere except for the discrete values selected by the extra symmetry.3

Thus, the condition of having nontrivial scattering implies that the conserved charges
associated with internal symmetries cannot transform as tensors under the Poincaré
group (this result is the Coleman–Mandula theorem).

One possible way to extend the symmetry of the theory without renouncing to
the analyticity of the scattering amplitudes is to introduce “fermionic” symmetries,
i.e. symmetries whose generators are anticommuting objects [6–8]. This means that
in addition to the generators of the Poincaré group Pμ, J μv and the ones for the
internal gauge symmetries G, we can introduce a number of fermionic generators
QI

a, QȧI (I = 1, . . . ,N ),where QȧI = (Q I
a)

†. The most general algebra that these
generators satisfy is the N -extended supersymmetry algebra [9]

{QI
a, QḃJ } = 2σμ

aḃ
Pμδ

I
J ,

{Q I
a, Q J

b } = 2εabZ
I J ,

{Q I
ȧ, Q

J
ḃ } = 2εȧḃZ

I J
,

(13.34)

3 Technically this is correct only if the additional symmetry is additive in the incoming and
outgoing Hilbert spaces. If this additivity is violated, then the conclusion does not hold.
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where Z I J ∈ C commute with any other generator and satisfies Z I J = −Z J I .We
also have the commutators determining the Poincaré transformations of the fermionic
generators Q I

a, Qȧ J

[
QI

a, Pμ
]
= [

QȧI , Pμ
] = 0,

[
[Q I

a,J
μv

]
= 1

2
(σμv)a

b Q I
b,

[
QȧI ,J

μv] =− 1

2
(σμv)ȧ

ḃ QḃI ,

(13.35)

where σ 0i = −iσi , σ
i j = εi jkσk and σμv = (σμv)†. These identities simply mean

that QI
a, Qȧ J transform respectively in the

( 1
2 , 0

)
and

(
0, 1

2

)
representations of the

Lorentz group.
We know that the presence of a global symmetry in a theory implies that the

spectrum can be classified in multiplets with respect to that symmetry. In the case
of supersymmetry we start with N = 1 where there is a single pair of supercharges
Qa, Qȧ satisfying the algebra

{Qa, Qḃ} = 2σμ
aḃ

Pμ, {Qa, Qb} = {Qȧ, Qḃ} = 0. (13.36)

Notice that in the N = 1 case there is no possibility of having central charges.
We study the representations of the supersymmetry algebra (13.36), starting with

the massless case. Given a state |k〉 satisfying k2 = 0,we can always find a reference
frame where the four-vector kμ takes the form kμ = (E, 0, 0, E). Since the theory
is Lorentz covariant we can obtain the representation of the supersymmetry algebra
in this frame where the expressions are simpler. In particular, the right-hand side of
the first anticommutator in Eq. (13.36) is given by

2σμ
aḃ

Pμ = 2(P0 − σ 3 P3) =
(

0 0
0 4E

)
. (13.37)

Therefore the algebra of supercharges in the massless case reduces to

{Q1, Q†
1} = {Q1, Q†

2} = 0,

{Q2, Q†
2} = 4E . (13.38)

The commutator {Q1, Q†
1} = 0 implies that the action of Q1 on any state gives a

zero-norm state of the Hilbert space ||Q1|Ψ 〉|| = 0. If we want the theory to preserve
unitarity we must eliminate these null states from the spectrum. This is equivalent
to setting Q1 ≡ 0. On the other hand, in terms of the second generator Q2 we can
define the operators

a = 1

2
√

E
Q2, a† = 1

2
√

E
Q†

2, (13.39)
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which satisfy the algebra of a pair of fermionic creation-annihilation operators,
{a, a†} = 1, a2 = (a†)2 = 0. Starting with a vacuum state a|λ〉 = 0 with helicity
λ we can build the massless multiplet

|λ〉,
∣∣∣λ+ 1

2

〉
≡ a†|λ〉. (13.40)

Here we consider two important cases:

• Scalar multiplet: we take the vacuum state to have zero helicity and positive parity
|0+〉 so the multiplet consists of a scalar and a helicity- 1

2 state

|0+〉,
∣∣∣ 1

2

〉
≡ a†|0+〉. (13.41)

This multiplet is not invariant under the CPT transformation which reverses the
sign of the helicity of the states. In order to have a CPT-invariant theory we have
to add to this multiplet its CPT-conjugate which can be obtained from a vacuum
state with helicity λ = − 1

2

|0−〉,
∣∣∣ −1

2

〉
. (13.42)

Putting them together we can combine the two zero helicity states with the two
fermionic ones into the degrees of freedom of a complex scalar field and a Weyl
(or Majorana) spinor.

• Vector multiplet: now we take the vacuum state to have helicity λ = 1
2 , so the

multiplet contains also a massless state with helicity λ = 1

∣∣∣ 1

2

〉
, |1〉 ≡ a†

∣∣∣ 1

2

〉
. (13.43)

As with the scalar multiplet, we add the CPT conjugated obtained from a vacuum
state with helicity λ = −1

∣∣∣ −1

2

〉
, | − 1〉, (13.44)

which together with (13.43) give the propagating states of a gauge field and a
spin- 1

2 gaugino.

In both cases we see the trademark of supersymmetric theories: the number of
bosonic and fermionic states within a multiplet is the same.

In the case of extended supersymmetry we have to repeat the previous analysis
for each supersymmetry charge. At the end, we have N sets of fermionic creation-
annihilation operators {aI , a†

I } = δ I
J , (aI )

2 = (a†
I )

2 = 0. Let us work out the case
of N = 8 supersymmetry. Since for several reasons we do not want to have states
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with helicity larger than 2, we start with a vacuum state |−2〉 of helicity λ = −2.The
rest of the states of the supermultiplet are obtained by applying the eight different
creation operators a†

I to the vacuum:

λ = 2 : a†
1 . . . a

†
8 | − 2〉 (8

8

) = 1 state,

λ = 3
2 : a†

I1
. . . a†

I7
| − 2〉 (8

7

) = 8 states,

λ = 1 : a†
I1
. . . a†

I6
| − 2〉 (8

6

) = 28 states,

λ = 1
2 : a†

I1
. . . a†

I5
| − 2〉 (8

5

) = 56 states,

λ = 0 : a†
I1
. . . a†

I4
| − 2〉 (8

4

) = 70 states,

λ = − 1
2 : a†

I1
a†

I2
a†

I3
| − 2〉 (8

3

) = 56 states,

λ = −1 : a†
I1

a†
I2
| − 2〉 (8

2

) = 28 states,

λ = − 3
2 : a†

I1
| − 2〉 (8

1

) = 8 states,

λ = −2 : | − 2〉 (8
0

) = 1 state.

(13.45)

Putting together the states with opposite helicity we find that the theory contains:

• 1 spin-2 field gμv (a graviton),
• 8 spin- 3

2 gravitino fields ψ I
μ,

• 28 gauge fields A[I J ]
μ ,

• 56 spin- 1
2 fermions ψ [I J K ],

• 70 scalars φ[I J K L],

where by [I J . . .] we indicated that the indices are antisymmetrized. We see that,
unlike the massless multiplets ofN = 1 supersymmetry studied above, this multiplet
is CPT invariant by itself. As in the case of the massless N = 1 multiplet, here we
also find as many bosonic as fermionic states:

bosons: 1+ 28+ 70+ 28+ 1 = 128 states,

fermions: 8+ 56+ 56+ 8 = 128 states.

Now we study briefly the case of massive representations |k〉, k2 = M2. Things
become simpler if we work in the rest frame where P0 = M and the spatial compo-
nents of the momentum vanish. Then, the supersymmetry algebra becomes:

{QI
a, QḃJ } = 2Mδaḃδ

I
J . (13.46)

We proceed in a similar way to the massless case by defining the operators

aI
a ≡

1√
2M

QI
a, a†

ȧ I ≡
1√
2M

QȧI . (13.47)
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The multiplets are found by choosing a vacuum state with a definite spin. For example,
for N = 1 and taking a spin-0 vacuum |0〉 we find three states in the multiplet
transforming irreducibly with respect to the Lorentz group:

|0〉, a†
ȧ |0〉, εȧḃa†

ȧa†
ḃ
|0〉, (13.48)

which, once transformed back from the rest frame, correspond to the physical states
of two spin-0 bosons and one spin- 1

2 fermion. For N -extended supersymmetry the
corresponding multiplets can be worked out in a similar way.

The equality between bosonic and fermionic degrees of freedom is at the root
of many of the interesting properties of supersymmetric theories. For example, in
Sect. 3 we computed the divergent vacuum energy contributions for each real bosonic
or fermionic propagating degree of freedom4

Evac = ±1

2
δ(0)

∫
d3 pωp, (13.49)

where the sign± corresponds respectively to bosons and fermions. Hence, for a super-
symmetric theory the vacuum energy contribution exactly cancels between bosons
and fermions. This boson-fermion degeneracy is also responsible for supersymmetric
quantum field theories being less divergent than nonsupersymmetric ones.
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Appendix A
Notation, Conventions and Units

For the benefit of the reader we summarize in this Appendix the main conventions
used throughout the book.

A.1 Covariant Notation

We have used the ‘‘mostly minus’’ metric

glm ¼

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

0
BB@

1
CCA: ðA:1Þ

Derivatives with respect to the four-vector xl ¼ ðct; xÞ are denoted by the
shorthand

ol �
o

oxl
¼ 1

c

o

ot
;r

� �
:

Sporadically we have used the notation

f ðxÞo
$

lgðxÞ ¼ f ðxÞolgðxÞ � olf ðxÞgðxÞ: ðA:2Þ

As usual space-time indices will be labelled by Greek letters (l; m; . . . ¼ 0; 1; 2; 3)
while Latin indices will be used for spatial directions (i; j; . . . ¼ 1; 2; 3). We reserved
a, b for Dirac and a; b; c; . . . for Weyl spinor indices.

The electromagnetic four-vector potential Al is defined in terms of the scalar u
and vector potential A by

Al ¼ u; Að Þ: ðA:3Þ
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The components of the field strength tensor Flm ¼ olAm � omAl and its dual eFlm ¼
1
2 elmrkFrk are given respectively by

Flm ¼
0 Ex Ey Ez
�Ex 0 �Bz By
�Ey Bz 0 �Bx
�Ez �By Bx 0

0
B@

1
CA; eFlm ¼

0 Bx By Bz
�Bx 0 Ez �Ey
�By �Ez 0 Ex
�Bz Ey �Ex 0

0
B@

1
CA; ðA:4Þ

with E ¼ ðEx;Ey;EzÞ and B ¼ ðBx;By;BzÞ the electric and magnetic fields. Similar
expressions are valid in the nonabelian case.

A.2 Pauli and Dirac Matrices

We have used the notation rl
� ¼ ð1;�riÞ where ri are the Pauli matrices

r1 ¼
0 1
1 0

� �
; r2 ¼

0 �i
i 0

� �
; r3 ¼

1 0
0 �1

� �
: ðA:5Þ

They satisfy the identity

rirj ¼ dij1þ eijkrk; ðA:6Þ

from where their commutator and anticommutator can be easily obtained.
Dirac matrices have always been used in the chiral representation

cl ¼ 0 rl
�

rl
þ 0

� �
: ðA:7Þ

The chirality matrix is normalized as c2
5 ¼ 1 and defined by c5 ¼ �ic0c1c2c3.

In many places we have used the Feynman’s slash notation a= ¼ clal.

A.3 Units

Unless stated otherwise, we work in natural units �h ¼ c ¼ 1. Electromagnetic
Heaviside-Lorentz units have been used, where the Coulomb and Ampère laws
take the form

F ¼ 1
4p

qq0

r3
r;

dF

d‘
¼ 1

2pc2

II0

d
: ðA:8Þ

In these units the fine structure constant is

a ¼ e2

4p�hc
: ðA:9Þ

The electron charge in natural units is dimensionless and equal to e � 0:303.
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Appendix B
A Crash Course in Group Theory

Group theory is one of the most useful mathematical tools in Physics in general
and in quantum field theory in particular. To make the presentation self-contained
we summarize in this Appendix some basic facts about group theory. Here we
limit ourselves to the statement of basic results. Proofs and more detailed
discussions can be found in the many books on the subject, such as the ones listed
in Ref. [1, 2, 3, 4].

B.1 Generalities

Physical transformations have a number of interesting properties. To have an
intuitive example in mind let us think of rotations in three-dimensional space.
These transformations have interesting properties: if two rotations are performed
in sequence the result is another one, and any rotation can be ‘‘undone‘‘.

Group theory is a way to translate these elementary properties of rotations or
any other physical transformations into mathematical terms. A group G is a set of
elements among which an operation G� G! G is defined that associates to every
ordered pair of elements ðg1; g2Þ of the group another element, their product g1g2.
In order to be a group, the set G and the product operation have to satisfy a number
of properties:

• The group product should be associative. This means that given three elements
g1; g2; g3 2 G they satisfy g1ðg2g3Þ ¼ ðg1g2Þg3:

• G has a unit element 1 such that g1 ¼ 1g ¼ g for every element g of the group.
• The group G contains together with every element g 2 G of the group its

inverse, g�1 2 G, that satisfies the property g�1g ¼ gg�1 ¼ 1:

In Physics one usually deals with group representations. These are realizations
of abstract groups in terms of finite or infinite dimensional matrices. In more

L. Ávarez-Gaumé and M.Á. Vázquez-Mozo, An Invitation to Quantum Field Theory,
Lecture Notes in Physics 839, DOI: 10.1007/978-3-642-23728-7,
� Springer-Verlag Berlin Heidelberg 2012

277



technical terms, it can be said that a representation of a group G is a correspondence
between its elements and the set of linear operators acting on a vector space V. This
correspondence

DðgÞ : V �! V ðB:1Þ

has to ‘‘mimic’’ the group product: given g1; g2 2 G

Dðg1ÞDðg2Þ ¼ Dðg1g2Þ; Dðg�1
1 Þ ¼ Dðg1Þ�1: ðB:2Þ

A representation of a group is a set of operators acting of a certain vector
space V. It might well happen that all these operators leave a proper subspace
U � V (i.e. U 6¼ V and U 6¼ Ø) invariant, DðgÞU � U for any element DðgÞ of
the representation. When this happens it is said that the representation is reducible.
A reducible representation can be decomposed into irreducible ones. These latter
are the ones that satisfy that if DðgÞU � U for any element of the representations
then either U = Ø or U ¼ V .

A very important result concerning irreducible representations is Schur’s
lemma: if D(g) is a irreducible representation of a group G acting on a complex
vector space V, and if there is an operator A : V ! V that commutes with all the
elements of this representation, then A must be proportional to the identity,
A ¼ k1. Here k is some complex number.

Schur’s lemma can be a useful tool in deciding whether a representation is
reducible. If given a group representation we manage to find an operator that,
commuting with all elements of such representations, is not proportional to the
identity this automatically implies that the representation is reducible. This
criterium was used in Chap. 3 to show that Dirac spinors transform in a reducible
representation of the Lorentz group.

B.2 Lie Groups and Lie Algebras

Specially interesting for their applications in quantum field theory are the Lie
groups whose elements are labelled by a number of continuous parameters. In
mathematical terms this means that a Lie group G can be seen as a manifold where
the parameters provide a set of (local) coordinates. The simplest example of a Lie
group is SO(2), the group of rotations in the plane. Each element RðhÞ is labelled
by the rotation angle h, with the multiplication acting as Rðh1ÞRðh2Þ ¼ Rðh1 þ h2Þ.
The angle h is defined modulo 2p, therefore the manifold of SO(2) is a
circumference S1:

One of the interesting properties of Lie groups is that in a neighborhood of the
identity any element can be expressed in terms of a set of generators TA

(A ¼ 1; . . .; dimG) as

DðgÞ ¼ expð�iaATAÞ �
X1
n¼0

ð�iÞn

n!
aA1 . . .aAn TA1 . . .TAn ; ðB:3Þ
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where aA 2 C are a set of coordinates of G in a neighborhood of 1. Using the
general Baker-Campbell-Haussdorf formula (see for example [5], p. 81–82), the
multiplication of two group elements is encoded in the value of the commutator of
two generators, that in general has the form

½TA; TB� ¼ if ABCTC; ðB:4Þ

where f ABC 2 C are called the structure constants. The generators can be
normalized in such a way that f ABC is completely antisymmetric in all its indices.

The set of generators TA with the commutator operation (B.4) define the Lie
algebra g associated with the Lie group G. Hence, given a representation of the Lie
algebra of generators we can construct a representation of the group by
exponentiation (at least locally near the identity).

Besides their dimension, i.e. the number of generators, Lie algebras are
characterized by their rank. This is defined as the maximal number of generators
that commute among themselves. It is easy to see that those commuting generators
form a subalgebra, called the Cartan subalgebra of the Lie algebra. The rank of a
Lie algebra is therefore equal to the dimension of its Cartan subalgebra.

We illustrate these concepts with three particular examples of physical
relevance.

U(1)
This is about the simplest Lie group one can imagine. Its Lie algebra consists

of a single generator, T. Group elements can then be written as

UðaÞ ¼ e�iaT : ðB:5Þ

with a a real number. This group is abelian and all its irreducible representations
are one-dimensional. This last result can be easily proved using Schur’s lemma.
This means that irreducible representations are of the form

DqðaÞ ¼ e�iqa; ðB:6Þ

where q is a real number labeling the representation. This number is the analog of
the electric charge for the U(1) gauge group of QED.

It is useful to make a distinction between noncompact and compact U(1)
groups. The difference lies in the fact that in the first case a takes its values over
the whole real line. For a compact U(1), on the other hand, the parameter a varies
in a compact range. This latter case is realized when all irreducible representations
of the group U(1) are characterized by values of q that are integer multiples of
some real number q0, i.e. q ¼ nq0 with n 2 Z. If this is the case one has

Dq aþ 2p
q0

� �
¼ DqðaÞ ðB:7Þ

for every q. This periodicity is not satisfied when the U(1) is noncompact, in which
case q can take any real value.
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SU(2)
The group SU(2) is well-known from the theory of angular momentum in

quantum mechanics. Its Lie algebra has three generators fT1; T2; T3g that
satisfy

½Tk; T‘� ¼ iek‘mTm: ðB:8Þ

The generators

T� ¼ 1ffiffiffi
2
p ðT1 � iT2Þ; T3 ðB:9Þ

can alternatively be used to write the SU(2) Lie algebra as

½T3; T�� ¼ �T�; ½Tþ; T�� ¼ T3: ðB:10Þ

Either form of the algebra shows that no subset of generators is mutually
commuting. Therefore the Cartan subalgebra of SU(2) can be taken to be made of
a single generator that, by convention, we can take to be T3.

Using (B.10), the irreducible representations of the Lie algebra of SU(2) can be
constructed following the standard techniques familiar from quantum mechanics.
They are characterized by their spin s, a nonnegative integer or half-integer, and
have dimension 2sþ 1. Here we focus on two basic representations. One is the
fundamental two-dimensional representation with spin s ¼ 1

2. The generators can
be written in terms of the Pauli matrices as

Tk ¼ 1
2
rk; k ¼ 1; 2; 3; ðB:11Þ

whereas finite transformations in the connected component of the identity are

D1
2
ðakÞ ¼ e�

i
2a

krk : ðB:12Þ

The second representation of SU(2) that we mention here is the three-
dimensional adjoint (or spin 1) representation which can be written as

D1ðakÞ ¼ e�iakJk
; ðB:13Þ

with the generators given by

J1 ¼
0 0 0
0 0 1
0 �1 0

0
@

1
A; J2 ¼

0 0 �1
0 0 0
1 0 0

0
@

1
A; J3 ¼

0 1 0
�1 0 0
0 0 0

0
@

1
A: ðB:14Þ

The Jk (k ¼ 1; 2; 3) generate rotations around the x, y and z axis respectively.

SU(3)
This group has eight generators and two basic three-dimensional irreducible

representations, the fundamental and antifundamental denoted respectively by 3
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and 3. In QCD these representations are associated with the transformation of
quarks and antiquarks under the color gauge symmetry SU(3). The elements of
these representations can be written as

D3ðakÞ ¼ e
i
2a

kkk ; D3ða
aÞ ¼ e�

i
2a

kkT
k ðk ¼ 1; . . .; 8Þ; ðB:15Þ

where kn are the eight hermitian Gell-Mann matrices

k1 ¼
0 1 0

1 0 0

0 0 0

0
B@

1
CA; k2 ¼

0 �i 0

i 0 0

0 0 0

0
B@

1
CA; k3 ¼

1 0 0

0 �1 0

0 0 0

0
B@

1
CA;

k4 ¼
0 0 1

0 0 0

1 0 0

0
B@

1
CA; k5 ¼

0 0 �i

0 0 0

i 0 0

0
B@

1
CA; k6 ¼

0 0 0

0 0 1

0 1 0

0
B@

1
CA;

k7 ¼
0 0 0

0 0 �i

0 i 0

0
B@

1
CA; k8 ¼

1ffiffi
3
p 0 0

0 1ffiffi
3
p 0

0 0 � 2ffiffi
3
p

0
BB@

1
CCA:

ðB:16Þ

Hence the generators of the representations 3 and 3 are given by

Tkð3Þ ¼ 1
2

kk; Tkð3Þ ¼ � 1
2
kT

k : ðB:17Þ

The rank of SU(3) is 2, its Cartan subalgebra being generated by T3 and T8.
Given a representation D(g) of a group G, it is easy to see that the set of

operators obtained by complex conjugation DðgÞ	 are also a representation of the
same group. In the case of a Lie group this is reflected in the fact that the
generators �ðTAÞ	 satisfy the Lie algebra relations (B.4) with the same structure
constants. In fact, irreducible representations of a Lie algebra can be classified in
three types, real, complex and pseudoreal, depending on whether �ðTAÞ	 is or is
not related to the original generators TA by a similarity transformation:

• Real representations: a representation is said to be real if there is a symmetric
matrix S which acts as intertwiner between the generators and their complex
conjugates, namely

ðTAÞ	 ¼ �STAS�1; ST ¼ S: ðB:18Þ

This is the case of the adjoint representation of SU(2) generated by the matrices
(B.14). In this example all the generators are real matrices and the intertwiner is
just the identity.

• Pseudoreal representations: are the ones for which an antisymmetric matrix
S exists with the property

ðTAÞ	 ¼ �STAS�1; ST ¼ �S: ðB:19Þ
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As an example we can mention the spin-1
2 representation of SU(2) generated by

1
2 ri. The intertwiner is S ¼ �ir2.

• Complex representations: finally, a representation is complex if the generators and
their complex conjugates are not related by a similarity transformation. This is for
instance the case of the two three-dimensional representations 3 and 3 of SU(3).

B.3 Invariants

There are a number of invariants that can be constructed associated with an
irreducible representation R of a Lie group G and that can be used to label such a
representation. Let TA

R be the generators in a certain representation R of the Lie
algebra g. Using the antisymmetry of f ABC it can be proved that the matrixPdimG

A¼1 TA
RTA

R commutes with every generator TA
R. Therefore, according to Schur’s

lemma, it has to be proportional to the identity.1 This defines the Casimir invariant
C2ðRÞ as

XdimG

A¼1

TA
RTA

R ¼ C2ðRÞ1: ðB:20Þ

A second invariant T2ðRÞ associated with a representation R can also be defined by
the identity

Tr TA
RTB

R ¼ T2ðRÞdAB: ðB:21Þ

Taking the trace in Eq. (B.20) and combining the result with (B.21) we find that
both invariants are related by

C2ðRÞdim R ¼ T2ðRÞdim G; ðB:22Þ

with dim R the dimension of the representation R.
These two invariants appear frequently in quantum field theory calculations

with nonabelian gauge fields. For example T2ðRÞ comes about as the coefficient of
the one-loop calculation of the beta-function for a Yang-Mills theory with gauge
group G. In the case of SU(N), for the fundamental representation, we find the
values

C2ðfundÞ ¼ N2 � 1
2N

; T2ðfundÞ ¼ 1
2
; ðB:23Þ

1 Schur’s lemma also applies to the representations of a Lie algebra: if a representation is
irreducible and there is a matrix of the same dimension as the representation that commutes with
all the generators then this element has to be proportional to the identity.
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whereas for the adjoint representation the results are

C2ðadjÞ ¼ N; T2ðadjÞ ¼ N: ðB:24Þ

A third invariant AðRÞ is specially important in the calculation of anomalies. As
discussed in Chap. 9, the chiral anomaly in gauge theories is proportional to the
group-theoretical factor Tr TA

RfTB
R; T

C
Rg

� �
. This leads us to define AðRÞ as

Tr TA
RfTB

R; T
C
Rg

� �
¼ AðRÞdABC; ðB:25Þ

where dABC is symmetric in its three indices and does not depend on the
representation. The cancellation of anomalies in a gauge theory with fermions
transformed in the representation R of the gauge group is guaranteed if the
corresponding invariant AðRÞ vanishes.

It is not difficult to prove that AðRÞ ¼ 0 if the representation R is either real or
pseudoreal. Indeed, if this is the case, then there is a matrix S (symmetric or
antisymmetric) that intertwins the generators TA

R and their complex conjugates
ðTA

RÞ
	 ¼ �STA

RS�1. Then, using the hermiticity of the generators we can write

Tr TA
R

n
TB

R; T
C
R

oh i
¼ Tr TA

R

n
TB

R; T
C
R

oh iT
¼ Tr ðTA

RÞ
	
n
ðTB

RÞ
	; ðTC

RÞ
	
oh i
: ðB:26Þ

Now, using (B.18) or (B.19) we have

Tr ðTA
RÞ
	
n
ðTB

RÞ
	; ðTC

RÞ
	
oh i
¼� Tr STA

RS�1
n

STB
RS�1; STC

R S�1
oh i

¼� Tr TA
R

n
TB

R; T
C
R

oh i
; ðB:27Þ

which proves that Tr TA
RfTB

R; T
C
Rg

� �
¼ 0 and therefore AðRÞ ¼ 0 whenever the

representation is real or pseudoreal. Since the gauge anomaly in four dimensions is
proportional to AðRÞ, anomalies appear only when the fermions transform in a
complex representation of the gauge group.

B.4 A Look at the Lorentz and Poincaré Groups

Finally, we close this Appendix with the review of some features of the Lorentz
group used at several places in this book. We avoid getting into detailed proofs.
They can be found in a number of textbooks (for example [6, 7]), as well as in
reference [6] of Chap. 11.

The Lorentz Group
The Lorentz group SO(1,3) is defined as the group of space-time

transformations that preserve the Minkowski metric, that is

x0l ¼ Kl
mx

m such that glmK
l
rK

m
k ¼ grk: ðB:28Þ

Appendix B: A Crash Course in Group Theory 283



From its very definition we find that Kl
m satisfies det K ¼ �1 and

ðK0
0Þ2 �

X3

i¼1

ðKi
0Þ2 ¼ 1; ðB:29Þ

which follows from the 00 component of the second equation in (B.28). From

Eq. (B.29) we find ðK0
0Þ2
 1 and the Lorentz group can be split into the following

four disconnected components

• L"þ: proper, orthochronous transformations with det K ¼ 1, K0
0
 1.

• L"�: improper, orthochronous transformations with det K ¼ �1, K0
0
 1.

• L#�: improper, non-orthochronous transformations with det K ¼ �1, K0
0��1.

• L#þ: proper, non-orthochronous transformations with det K ¼1, K0
0� �1.

The term (non)-orthochronous refers to whether the Lorentz transformation
preserves or not the direction of time. Notice that the identity is included in L"þ and
therefore this is the only branch of the Lorentz group that forms a subgroup. The
other three branches are connected to the orthochronous, proper Lorentz subgroup
by parity and time reversal in the following way (see Chap. 11)

L"þ!
P

L"�; L"þ!
T

L#�; L"þ!
PT

L#þ: ðB:30Þ

We focus then on L"þ. We are going to see that transformations in this subgroup
can be written in terms of complex 2� 2 matrices of unit determinant. We
consider a four-vector Vl and construct the Hermitian matrix

V ¼ V01þ
X3

i¼1

Viri ¼ V0 þ V3 V1 � iV2

V1 þ iV2 V0 � V3

� �
: ðB:31Þ

This defines a one-to-one correspondence between four-vectors and Hermitian
matrices, whose determinant gives the norm of the vector

det V ¼ glmV
lVm: ðB:32Þ

Now, the determinant is preserved by any SL(2, C) transformation acting as

V �! AVAy; det A ¼ 1: ðB:33Þ

Since the transformed matrix is also Hermitian, it defines a transformed four-
vector V 0l with the same norm. This means that the linear map (B.33) has to act on
the components Vl as a Lorentz transformation

Vl �! V 0l ¼ Kl
mðAÞVm: ðB:34Þ

That this Lorentz transformation belongs to L"þ can be seen as follows: the group
SL(2, C) is simply connected and the relation between SL(2,C) and Lorentz
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transformations continuous. Since it includes the identity, the Lorentz
transformation Kl

mðAÞ has to lie in the connected component of the identity, i.e. L"þ:

The correspondence between L"þ and SL(2, C) is in fact two-to-one. This is
obvious if we take into account that A and �A define the same Lorentz
transformation. This is why SL(2, C) is said to be the double covering of the
proper, orthochronous Lorentz group.

The relation between the Lorentz group and SL(2, C) is very important for the
definition of spinors. An undotted spinor is a two-component complex object na

(with a ¼ 1; 2) that under the Lorentz group transforms as

xl �! Kl
mðAÞxm; na �! Aa

bnb: ðB:35Þ

Since the spinor na is a complex objects, its conjugate does not transform with the
matrix A but with its complex conjugate A	. Such objects are called dotted spinor.
More precisely, they are two-component complex quantities g _a (with _a ¼ _1; _2) that
under L"þ transforms with the complex conjugate representation, namely

xl �! Kl
mðAÞxm; g _a �! ðA	Þ _a

_bg _b: ðB:36Þ

Spinors with upper undotted and dotted indices are defined as objects

transforming in the representations ðATÞ�1 and ðAyÞ�1 respectively. In fact,
these representations are equivalent to A and A	, as can be seen from the identity

ðATÞ�1 ¼ e Ae�1 where e ¼ 0 1
�1 0

� �
; ðB:37Þ

valid for any A 2 SLð2;CÞ. This means that indices can be raised and lowered by

contraction with eab, e _a _b, eab and e _a _b.
Bearing in mind the previous discussion and comparing with (B.33), we see that

the matrix V associated with a Lorentz four-vector has an undotted and a dotted
index, Va _b. To connect with the SU(2)�SU(2) label of the representations of the
Lorentz group introduced in Chap. 3, we notice that undotted spinors correspond to
Weyl spinors in the representation 1

2 ; 0
� �

. The element of SL(2, C) associated with

a Lorentz transformation characterized by a rotation hn and a boost b ¼
ðb1; b2; b3Þ can be read from (3.14) to be

A ¼ e�
i
2ðhn�ibÞ�r: ðB:38Þ

From the same equation we see that a spinor u� in the representation 0; 1
2

� �

transforms with ðAyÞ�1 and therefore has an upper dotted spinor index. Thus, in the
chiral representation of the c-matrices, a Dirac spinor can be decomposed in dotted
and undotted components as

w ¼ na

g _a

� �
: ðB:39Þ
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Since all other representations of the Lorentz group can be obtained by
decomposing products of the two fundamental representations 1

2 ; 0
� �

and 0; 1
2

� �
,

any quantity transforming in a irreducible representation of the Lorentz group can
be written as a mixed tensor

Ua1...an
_b1... _bm

; ðB:40Þ

where all undotted and dotted indices have to be symmetric among themselves.2

They transform as

U0a1...an
_b1... _bm

¼ Aa1
_c1 . . .Aan

_cnðA	Þ _b1

_d1 . . .ðA	Þ _b1

_d1Uc1...cn
_d1... _dm

; ðB:41Þ

that in the language of SU(2) representations corresponds to ðs1; s2Þ ¼ ðn2 ; m
2Þ.

For some technical issues, such as the proof of the CPT theorem outlined in
Sect. 11.6, it is necessary to study the complexification of the Lorentz group. This
is defined again as in (B.28) but with Kl

m complex. The only condition that follows
from this equation now is that det K ¼ �1. Therefore, unlike its real analog, the
complexified Lorentz group has two connected components L�ðCÞ labelled by the
sign of the determinant.

Since now coordinates and four-vectors are complex as well, the matrix (B.31)
associated to Vl is not Hermitian. This means that

V �! AVBT ; A;B 2 SLð2;CÞ; ðB:42Þ

defines a complex Lorentz transformation

Vl �! V 0l ¼ Kl
mðA;BÞVm: ðB:43Þ

Undotted and dotted spinors transform under LþðCÞ with the matrices A and
B belonging to the two factors of SL(2, C)�SL(2, C). For a general tensor (B.40)
the transformation is

U0
a1...an

_b1... _bm
¼ Aa1

_c1 . . .Aan

_cn B _b1

_d1 . . .B _b1

_d1Uc1...cn
_d1... _dm

: ðB:44Þ

Using the same continuity arguments as for the real Lorentz group, we conclude
that the correspondence ðA;BÞ ! KðA;BÞ defines a two-to-one isomorphism
between SL(2, C)�SL(2, C) and the proper complex Lorentz group LþðCÞ. The
elements ðA;BÞ and ð�A;�BÞ correspond to the same complex Lorentz
transformation. An important thing achieved by the complexification of the
Lorentz group is that now the space-time inversion PT : xl ! �xl lies in the
connected component of the identity LþðCÞ. This transformation acts on tensors
by multiplying it by �1 for each dotted spinor,

2 Notice that if the quantity were antisymmetric in a pair of dotted or undotted antisymmetric
indices these can be eliminated using either eab or e _a _b. For example, if Uab��� ¼ �Uba��� we can
write Uab��� ¼ eabU��� where U��� ¼ 1

2 ecdUcd���.
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PT : Ua1...an
_b1... _bm

�! ð�1ÞmUa1...an
_b1... _bm

: ðB:45Þ

The Poincaré Group
The Poincaré group P is the Lorentz group supplemented by space-time

translations

P : xl �! Kl
mx

m þ al: ðB:46Þ

The group has ten generators: six of the Lorentz group, Jlm, plus the four of space-
time translation, Pl. In addition to (3.5) its Lie algebra contains the commutators

½Pl;Pm� ¼ 0; ½Jlm;Pr� ¼ iglrPm � igmrPl: ðB:47Þ

Each element of the Poincaré group is labelled by a Lorentz transformation and a
four-vector. The restriction of the Lorentz transformations to the proper subgroup
L"þ � SLð2;CÞ defines the proper Poincaré subgroup Pþ.

The unitary irreducible representations of the Poincaré group are labelled by
two Casimir operators. The first one is constructed from the generator of
translations as

M2 ¼ PlPl: ðB:48Þ

The second one is defined by

W2 ¼ WlWl; ðB:49Þ

where Wl is the Pauli-Lubański vector

Wl ¼ 1
2
elmrkJmrPk: ðB:50Þ

The representations are classified according to the sign of M in the following three
classes:

• Timelike or massive representations (M2 [ 0). The representation acts on a
linear space whose basis we take to be eigenstates of the translation operator Pl

with eigenvalue pl. Since plpl ¼ M2 [ 0, we can choose a reference frame
where the eigenvalue takes the form pl ¼ ðM; 0Þ. Then, the Pauli-Lubański
vector acting on these states has the form Wl ¼ ð0;MJÞ, with J the generator of
spatial rotations. The rotation group generated by J defines the little group, i.e.
the group preserving the form of the eigenvalue pl. The Casimir operator is
easily computed to be

W2 ¼ �M2sðsþ 1Þ; ðB:51Þ

where s is the spin that takes positive integer or half-integer values. Notice that
the second Casimir operator W2 is a Lorentz scalar and therefore its value is
independent of the particular system of coordinates used.
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• Light-like or massless representations (M2 ¼ 0). We work again in a basis of
eigenstates of Pl. Since the eigenvalues satisfy plpl ¼ 0 the wise choice of
reference frame is one where pl ¼ ðM; 0; 0;MÞ. It takes a little bit of algebra to
check that the transformations preserving this vector are generated by J3, K1 þ
J2 and K2 � J1. Working out their commutation relations we find that they
generate the two-dimensional euclidean group ISO(2) of rotations and
translations in a plane. Its unitary finite dimensional representations are one-
dimensional and labelled by the eigenvalue of J3, the helicity, that takes values
k ¼ 0;�1=2; . . . If we want the representation to preserve CPT, we need to
include together the positive and negative eigenvalues of J3. Therefore, the
representation associated with a massless particle contains the helicities k and
�k. This is the reason why photons or other massless particles come only in two
helicity states.

• Space-like or tachyonic representations (M2 \ 0). There are no known
particles transforming under this class of representations. Therefore we will
not elaborate on them.

Unitary irreducible representations of the Poincaré group are determined by the
eigenvalue of P2 and the irreducible representation of the corresponding little
group [i.e., SO(3) � SU(2) for massive and ISO(2) for massless representations].
What we usually call a particle is a state that transforms in one of these irreducible
representations, which comes labelled by its mass and spin/helicity.
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188, 189, 192
Axial gauge, 68
Axial vector current, 176, 179, 181–183,

185, 186, 188, 189

B
Bare coupling constants, 150, 168, 244, 246,

247, 258
Bare field, 109, 155, 157, 159, 168,

238, 247
Bare Green’s functions, 168
Bare mass, 158, 162, 168, 169, 247
Baryon number, 84, 131, 184

Baryons, 82, 86, 87, 89, 91, 203
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C (cont.)
Charge conjugation, 73, 85, 209–216, 218,

219, 222
Chiral anomaly

see gauge anomaly
Chiral symmetry, 183, 187, 233, 255
Chirality, 41, 93, 233

matrix, 40, 278
vs. helicity, 41

CKM matrix see Cabbibo-Kobayashi-
Maskawa matrix

Classical electromagnetism
as a constrained system

CMB polarization, 122, 123, 125, 126
E- and B-mode, 125

Coleman theorem, 140
Coleman-Mandula theorem, 269
Collective coordinates, 77
Color (quantum number), 90, 281

and confinement, 91
color factor, 207

Commutation relations (canonical), 19
Compton scattering, 116
Constrained dynamics, 62
Correspondence principle, 1
Cosmological constant, 256
Counterterms, 162

for /4 theory, 238, 240
for QED, 162

Covariant derivative
nonabelian gauge theory, 59
QED, 57

CP invariance, 221
CP violation, 219–221
CPT theorem, 209, 222, 223, 225–229, 286
Creation-annihilation operators

Klein-Gordon field, 15
Cross section

differential, 101
total, 102

D
Decay times, 82
Deep inelastic scattering, 86, 90
Differential cross section see Cross section
Dimensional regularization see also Quadratic

divergences, 232, 233, 244
Dimensional transmutation, 204
Dirac algebra, 39, 212, 213, 215

chiral representation, 39, 276, 285
Dirac charge quantization condition, 53

Dirac equation, 3, 4, 39, 40, 42, 43
and discrete symmetries, 211–213
in 1 + 1 dimensions

Dirac sea, 4, 6, 178, 179, 264
Dirac spinors see Spinors
Dirac string, 52
Dirac-Schwinger-Zwanziger charge

quantization condition, 54
Discrete symmetries see Charge conjugation,

CP, CPT, Time reversal, Parity,
Symmetry

Dyons, 53

E
Effective charge, 150, 152, 161
Effective field theories, 172, 249–251, 253, 257
Electroweak theory, 92, 98, 193
Energy-momentum tensor, 129

g, g’ mesons, 87, 89, 90
Euler-Lagrange equations, 18
External field, 180–182, 264, 267

F
Faddeev-Popov determinant, 65, 66, 68
Faddeev-Popov ghosts, 68
Fermi constant, GF, 93, 199
Fermi’s golden rule, 82
Feynman diagrams, 111, 112, 116
Feynman gauge (n = 1), 111, 113
Feynman parameters, 240
Feynman rules

for /4 theory, 237
for nonabelian gauge theories, 116
for QED, 113, 116
heuristic construction, 111

Field redefinitions, 110
Field strength tensor

abelian, 48, 276
dual, 276
nonabelian, 59

Fixed points (renormalization group), 153,
154, 170

in statistical mechanics, 166
infrared stable, 153
trivial, 153
ultraviolet stable, 153

Frames see Center of mass frame Laboratory
frame, Oblique frame

Free quantum field theory, 22
Fundamental interactions, 81
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G
c5-matrix see Chirality matrix
Gauge anomaly, 189, 233, 283
Gauge fixing see also Axial gauge, Feynman

gauge, 55, 64, 65, 67
Lorentz gauge, Temporal gauge

Gauge invariance, 47, 50
and quantization, 64–68
as redundancy see alsoTopology of gauge

transformations, 56, 62–64, 202
Gauge theories

abelian, 47–58
nonabelian, 58–60
vacuum structure see also Anomaly,

Instanton, QCD, QED, 68–74
Gauge transformation

of electromagnetic potential, 47, 49
of matter fields, 56, 59
of nonabelian field strength, 60
of nonabelian gauge fields, 59
of QED fields, 57

Gauss’ law
electrodynamics, 63
nonabelian gauge theories, 71, 143, 189

Gell-Mann matrices, 281
Gell-Mann-Nishijima formula, 83, 190, 195
Georgi’s toy universe, 207
Glashow-Iliopoulos-Maiani (GIM)

mechanism, 198
Glashow-Weinberg-Salam theory

see Electroweak theory
Gluon, 92
Goldstone’s theorem see also Nambu-

Goldstone modes, 135, 136, 141
Green’s functions see also Propagator

(Feynman), 109
One-particle-irreducible

Group representations, 277, 280
Group theory, 279–290, 297

H
Hadrons, 82
Hawking temperature, 268
Heaviside step function, 12
Heaviside-Lorentz units, 276
Heisenberg ferromagnet, 137
Helicity, 37, 56, 215, 219, 222, 271, 288

operator (Dirac spinor), 40
vs. chirality, 1

Hierarchy problem, 232, 236, 28, 255
Higgs boson, 196, 198–202, 232

couplings, 198, 199
mass, 196, 199, 200

potential, 195, 201
searches, 200

Higgs mechanism see Brout-Englert-Higgs
mechanism

Holes in the Dirac sea as antiparticles, 4, 177,
180, 267

Homotopy group, 69, 70
’t Hooft symbols, 35, 36, 76, 78
Hypercharge

Strong, 84
Weak, 94–96, 190, 195, 196

I
Infrared divergence, 114, 236
Instanton, 30–32, 74–78, 187

number, 78
Interpolating field, 110
Invariant scattering amplitude, Mi!f , 103
Irreducible representation, 278
Irrelevant operators, 167, 171, 247,

249, 20, 251
Isospin

Strong, 83, 89, 92, 187, 205
Weak, 93, 95

K
Kaons, 89, 90

and CP violation, 220
Klein paradox, 4–6
Klein-Gordon equation, 1–4, 37, 55,

264, 265
Kramers theorem , 218

L
Laboratory frame, 106
KQCD, 205–208
Landau pole, 152, 202, 247
Left-handed spinor, 34, 35
Lepton number, 38, 130, 250
Leptons, 84, 86
Lie algebra representations

adjoint, 59, 284
complex, 284
fundamental, 282
pseudoreal, 284
real, 283

Lie algebras, 281–285
rank, 281

Lie groups, 280–290
Little group, 289
Longitudinal polarization

Index 291



L (cont.)
and the Brout-Englert-Higgs

mechanism, 143, 196, 201
Lorentz gauge, 55, 64, 67
Lorentz group

complexified, 288, 289
components, 286
generators, 33, 34, 40
representations, 33–35

LSZ reduction formula
see Reduction formula

M
Magnetic monopoles

Dirac monopole, 52
electric charge quantization, 53
’t Hooft-Polyakov monopole, 54

Majorana mass term see Mass term
Majorana spinors see Spinors
Marginal operators, 167, 171, 172, 247, 250
Mass independent subtraction scheme, 241,

243, 246, 247, 252
and decoupling of heavy particles, 257–260
and effective field theories, 253

Mass renormalization, 158, 232, 239,
247–249, 251–255

Mass term
Dirac, 39
Majorana, 38, 216

Masses in the standard model see Standard
model

Massive gauge fields see also Brout-
Englert-Higgs mechanism, 201, 202

Maxwell equations, 48, 51
Maxwell Lagrangian, 55
Mermin-Wagner theorem, 140
Mesons, 82
Microcausality see Causality
Minimal subtraction (MS, MS), 241

see also Mass independent subtraction
scheme

Mixing see also Cabibbo-Kobayashi-Maskawa
matrix, 89, 250

N
Nambu-Goldstone modes see also Pions, 135,

136, 138–141, 143, 196, 202, 248
Naturalness, 255–257
Negative energy states, 3, 4
Neutrinos, 37, 38, 85, 86, 94, 95

masses, 194, 196, 198, 221, 250, 251
sterile, 95, 191, 250

Noether’s theorem
in classical field theory, 127
in classical mechanics, 127

Nonabelian gauge theories
see Gauge theories

Nonrenormalizability
see Renormalizability

Normal order, 21
Notation, 277, 278

O
Oblique frame, 107, 108
On-shell condition, 12
One-particle states

Lorentz invariant normalization, 14
nonrelativistic, 12

One-particle-irreducible
One-particle-irreducible (1PI)

diagrams, 156–161
Green’s functions, 168

P
Parity, 35, 209–216, 218, 219,

222, 284
intrinsic, 214

Partons, 204
Path integrals

for fermionic fields, 45
for gauge fields, 64, 66
Gaussian, 28
in quantum field theory, 27, 28
in quantum mechanics, 27

Pauli matrices, 276
Pauli-Lubanski vector, 287
Perturbation theory, 111, 147
Phase space factor, 105
/4 theory, 154, 236

beta function, 246
Feynman rules, 237
renormalization, 238, 241–243

Photon
helicity, 56
polarizations, 55, 56

Pions, 82
as Nambu-Goldstone

bosons, 140, 187
Planck mass, 231, 232
Poincaré group, 287, 288
Poisson brackets, 18
Propagator (Feynman)

Dirac field, 44, 158
Klein-Gordon field, 17
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photon (full) see also Feynman
rules, 156, 157

Propagator (in quantum mechanics), 25
fixed-energy, 25
semiclassical, 29

Q
QCD, 91–93, 99, 131, 141, 153, 183–189,

204–208, 221
beta function, 152

QED, 57, 67, 267
beta function, 152
Feynman rules, 111, 113, 115
renormalization, 145, 16, 148, 155, 157,

159, 160–162
Quadratic divergences, 149, 232, 247

and dimensional regularization, 236, 248,
255

Quark model, 86
Quarks, 86

constituent mass, 203
current-algebra mass, 204
flavors, 86
heavy, 207
light, 205
sea, 204
valence, 204

R
Rapidity, 33, 36
Reduction formula, 109–110
Relativistic quantum mechanics, 1–4
Relevant operators, 171, 249
Renormalizability, 162

of the standard model, 195, 200
vs. nonrenormalizability

Renormalization see also /4 theory, QCD,
QED, 114, 145, 146, 148, 154, 155,
157, 159, 160–163, 166–168,
170, 172

Renormalization conditions, 162, 168, 238
Renormalization group equations

see Callan-Symanzik equations
in quantum field theory, 167, 169, 170
in statistical mechanics see also

Fixed points (renormalization
group), 163, 166

Renormalized perturbation
theory, 161, 162, 238

Representations see Group representations,
Lorentz group, Poincaŕe group

Retarded Klein-Gordon propagator

Right-handed spinor, 34, 35
Running coupling constant, 170, 171, 242

/4 theory, 246
QCD, 204, 205
QED, 150, 152

Running mass

S
S-matrix

and correlation functions, 109
and cross sections, 100, 106–108
CPT transformation, 223

Scalar field theory, 15, 17
see also /4 theory

Scale invariance, 154, 155, 175
broken by quantum effects, 154–155
in statistical mechanics, 166

Schrödinger equation, 25, 48–49
Schur’s lemma, 278
Schwinger effect, 264, 267–268
Self-energy

fermion, R, 157–159
in /4 theory, 239
in a four-fermion theory photon

see Vacuum polarization
tensor, 252

Semiclassical approximation see also
Instanton

Slash notation, 276
SO(4)

representations, 35
Spin-statistics theorem, 223
Spinor

Dirac, 38
dotted, 285
Majorana, 215–216
undotted, 287
Weyl, 34, 36

Spontaneous symmetry breaking see also
Abelian Higgs model,
Brout-Englert-Higgs mechanism,
Goldstone’s theorem, 127, 133, 138,
141–142, 144, 187

Standard model, 81–98, 219–221
anomaly cancellation
energy scales, 231–232
masses
naturalness, 255–256

see also Electroweak theory, QCD
Stokes parameters, 123–125
Stress-energy tensor

see Energy-momentum tensor
Strong CP problem, 222
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S (cont.)
Strong interactions, 82–84

see also QCD
Structure constants f ABC, 279
Stückelberg field, 201–202
SU(2), 280
SU(3), 281
Supersymmetry, 269, 270–273
Sutherland-Veltman paradox, 189
Symmetries

continuous, 132–138, 140, 142, 144
discrete, 214, 216, 218–220, 224,

226, 228, 230
Nambu-Goldstone realization, 133
Wigner-Weyl realization see also Noether

theorem, 133

T
Technicolor, 202, 257
Temporal gauge, 63, 118
h-term, 73–74
h-vacuum, 78
Thomson scattering, 117, 121, 122, 124
Time reversal, 213, 217–219, 223, 230
Time-ordered product, 211–212, 216–219, 221

for bosonic fields, 21
for fermionic fields, 45

Topology of gauge transformations see also
Winding number, 70–72, 74

Total cross section see Cross section
Triangle diagram, 186, 188, 189, 191
Tunneling see also Instanton, 30–32, 186–187,

190
Two-dimensional QED, 181

U
U(1), 279

compact, 54, 279
Ultraviolet divergence, 20, 114
Unitarity of the S-matrix, 108
Units, 276

V
V-A interaction, 95
Vacuum energy, 273

and the cosmological constant
Dirac field, 44
in supersymmetric theories, 273
scalar field, 20–21

Vacuum polarization tensor, plm, 148
Vector potential, 48–51, 53
Vertex function, 160

W
W± bosons, 151, 198
Weak charged currents, 95
Weak interactions see also Standard model,

58, 82, 84–85, 93, 141, 171, 220,
249

Weak mixing angle, 94, 97, 199
Weak neutral currents, 84
Weyl spinors see Spinors, 34, 36–37, 174–175,

177, 285
Wick rotation, 234, 252
Wick’s theorem, 21, 44, 111, 182
Wightman function, 225
Wigner’s theorem, 131, 213, 217
Winding number, 69–74, 78
Witten global anomaly, 192

Y
Yang-Mills theories see Gauge theories, 67,

162, 206
Yukawa couplings, 194–197, 199, 202, 237

Z
Z0 boson, 98, 151, 201–202, 219
Zero-point energy, 20, 43, 256
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