Chapter 1.2

Path Integral Formulation
of Quantum Physics

The professor’s nightmare: a wise guy in the class

As I noted in the preface, I know perfectly well that you are eager to dive into
quantum field theory, but first we have to review the path integral formalism
of quantum mechanics. This formalism is not universally taught in introductory
courses on quantum mechanics, but even if you have been exposed to it, this chapter
will serve as a useful review. The reason I start with the path integral formalism
is that it offers a particularly convenient way of going from quantum mechanics
to quantum field theory. I will first give a heuristic discussion, to be followed by a
more formal mathematical treatment.

Perhaps the best way to introduce the path integral formalism is by telling a
story, certainly apocryphal as many physics stories are. Long ago, in a quantum
mechanics class, the professor droned on and on about the double-slit experiment,
giving the standard treatment. A particle emitted from a source S (Fig.1.2.1) at time
t = 0 passes through one or the other of two holes, A; and A,, drilled in a screen
and is detected at time t = T by a detector located at O. The amplitude for detection
is given by a fundamental postulate of quantum mechanics, the superposition
principle, as the sum of the amplitude for the particle to propagate from the source
S through the hole A, and then onward to the point O and the amplitude for the
particle to propagate from the source S through the hole A, and then onward to
the point O.

Suddenly, a very bright student, let us call him Feynman, asked, “Professor,
what if we drill a third hole in the screen?”’ The professor replied, “Clearly, the
amplitude for the particle to be detected at the point O is now given by the sum
of three amplitudes, the amplitude for the particle to propagate from the source §
through the hole A, and then onward to the point O, the amplitude for the particle
to propagate from the source S through the hole A, and then onward to the point
O, and the amplitude for the particle to propagate from the source S through the
hole A; and then onward to the point O.”

The professor was just about ready to continue when Feynman interjected again,
“What if I drill a fourth and a fifth hole in the screen?” Now the professor is visibly
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losing his patience: “All right, wise guy, I think it is obvious to the whole class that
we just sum over all the holes.”

To make what the professor said precise, denote the amplitude for the particle
to propagate from the source S through the hole A; and then onward to the point
O as A(S = A; — 0). Then the amplitude for the particle to be detected at the
point O is

A(detected at O)= Z A(S —> A; > 0) 1

1

But Feynman persisted, “What if we now add another screen (Fig. 1.2.2) with
some holes drilled in it?” The professor was really losing his patience: “Look, can’t
you see that you just take the amplitude to go from the source S to the hole 4; in
the first screen, then to the hole B j in the second screen, then to the detector at O,
and then sum over all i/ and j?”

Feynman continued to pester, “What if I put in a third screen, a fourth screen,
eh? What if I put in a screen and drill an infinite number of holes in it so that the
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screen is no longer there?” The professor sighed, “Let’s move on; there is a lot of
material to cover in this course.”

But dear reader, surely you see what that wise guy Feynman was driving at.
I especially enjoy his observation that if you put in a screen and drill an infinite
number of holes in it, then that screen is not really there. Very Zen! What Feynman
showed is that even if there were just empty space between the source and the
detector, the amplitude for the particle to propagate from the source to the detector
is the sum of the amplitudes for the particle to go through each one of the holes
in each one of the (nonexistent) screens. In other words, we have to sum over the
amplitude for the particle to propagate from the source to the detector following
all possible paths between the source and the detector (Fig. 1.2.3).

A (particle to go from S to O intime T) =

Z A (particle to go from S to O in time T following a particular path) 2)
(paths)

Now the mathematically rigorous will surely get anxious over how Z(Pams) is
to be defined. Feynman followed Newton and Leibniz: Take a path (Fig. 1.2.4),
approximate it by straight line segments, and let the segments go to zero. You can
see that this is just like filling up a space with screens spaced infinitesimally close
to each other, with an infinite number of holes drilled in each screen.
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Fine, but how to construct the amplitude A (particle to go from S to O in time T
following a particular path)? Well, we can use the unitarity of quantum mechanics:
If we know the amplitude for each infinitesimal segment, then we just multiply
them together to get the amplitude of the whole path.

In quantum mechanics, the amplitude to propagate from a point ¢; to a point g p
in time T is governed by the unitary operator e 77 where H is the Hamiltonian.
More precisely, denoting by |q) the state in which the particle is at g, the amplitude
in question is just (gg|e*#T |q,). Here we are using the Dirac bra and ket
notation. Of course, philosophically, you can argue that to say the amplitude is
(grle™"T |g;) amounts to a postulate and a definition of H. It is then up to
experimentalists to discover that H is hermitean, has the form of the classical
Hamiltonian, et cetera.

Indeed, the whole path integral formalism could be written down mathemat-
ically starting with the quantity (gz|e "7 |q;), without any of Feynman’s jive
about screens with an infinite number of holes. Many physicists would prefer a
mathematical treatment without the talk. As a matter of fact, the path integral for-
malism was invented by Dirac precisely in this way, long before Feynman.

A necessary word about notation even though it interrupts the narrative flow: We
denote the coordinates transverse to the axis connecting the source to the detector
by g, rather than x, for a reason which will emerge in a later chapter. For notational
simplicity, we will think of g as 1-dimensional and suppress the coordinate along
the axis connecting the source to the detector.

Dirac’s formulation

Let us divide the time T into N segments each lasting ¢z = T/ N. Then we write

(arle™ T |q;) = (gple e H ...~ H g )
Now use the fact that |g) forms a complete set of states so that f dqglg){q| =1
Insert 1 between all these factors of e ™% and write

(qrle” T |q;)
N-1

=1 f dq;)qrle” " lgn_1)gn-1le " H¥ lgn_s) - -
j=1

e Agol e g ) (g e g, ) 3)

Focus on an individual factor (g j+1|e_iH‘3’ lg;). Let us take the baby step
of first evaluating it just for the free-particle case in which H = p?/2m. The
hat on p reminds us that it is an operator. Denote by |p) the eigenstate of p,
namely p |p) = p|p}. Do you remember from your course in quantum mechanics
that (g|p) = €'P4? Sure you do. This just says that the momentum eigenstate is
a plane wave in the coordinate representation. (The normalization is such that
f (dp/2m)|p){p| = 1.) So again inserting a complete set of states, we write
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Note that we removed the hat from the momentum operator in the exponential:
Since the momentum operator is acting on an eigenstate, it can be replaced by its
eigenvalue.

The integral over p is known as a Gaussian integral, with which you may already
be familiar. If not, turn to Appendix 1 to this chapter.

Doing the integral over p, we get

1

(@il e gy — (—iazﬂ m) 2 lim(q41—q)?)/288
t

4
= ("2” ’") ? I8t /DI 1~q /8T

3t

Putting this into (3) yields
N N-1
j=0

with gg = g; and g = g

We can now go to the continuum limit 5§ — 0. Newton and Leibniz taught us
to replace [(g;11 — 4;)/8¢F by ¢, and 8¢ Zj.vz_ol by fOT dt. Finally, we define the
integral over paths as

—i2mm
Dq(t) = li dg;.
/ q(1) Ng@( > ) ]_!)/ a;
We thus obtain the path integral representation
i T 1,2
(qFle_lHT Iq]) =/Dq(t)el-/;) dtzmq (4)

This fundamental result tells us that to obtain (gz|e "7 |¢,) we simply inte-
grate over all possible paths ¢ (f) such that g (0) = g; and ¢(T') = gp.

As an exercise you should convince yourself that had we started with the
Hamiltonian for a particle in a potential H = p?/2m + V(§) (again the hat on
q indicates an operator) the final result would have been

—i . T 1 .2_V
(arle 1) = [ D@y o i@ (5)
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We recognize the quantity %qu — V(q) as just the Lagrangian L(q, q). The
Lagrangian has emerged naturally from the Hamiltonian. In general, we have

. ; T .
(arle” T lq;) =/Dq(t)e Jo 4t ©

To avoid potential confusion, let me be clear that ¢ appears as an integration variable
in the exponential on the right-hand side. The appearance of ¢ in the path integral
measure Dq(¢) is simply to remind us that g is a function of ¢ (as if we need
reminding). Indeed, this measure will often be abbreviated to Dg. You might recall
that fOT dtL(q, q) is called the action S(g) in classical mechanics. The action § is
a functional of the function ¢(z).

Often, instead of specifying that the particle starts at an initial position ¢; and
ends at a final position g, we prefer to specify that the particle starts in some
initial state / and ends in some final state F. Then we are interested in calculating
(F|e~'HT |1}, which upon inserting complete sets of states can be written as

/dqp/dqz(qup><que‘i”T lar}a;11),

which mixing Schrodinger and Dirac notation we can write as

f dqr f dq;¥Yp(gp) (grle T g\, ().

In most cases we are interested in taking |} and |F) as the ground state, which
we will denote by |0). It is conventional to give the amplitude (0| e T |0) the
name Z.

At the level of mathematical rigor we are working with, we count on the

T .
pathintegral [ Dgq(t) ¢ fO dilgmg’ =V (@] to converge because the oscillatory phase
factors from different paths tend to cancel out. It is somewhat more rigorous to
perform a so-called Wick rotation to Euclidean time. This amounts to substituting
t — —it and rotating the integration contour in the complex ¢ plane so that the
integral becomes

T .2
Z=/ Dq(e) e Jo alimi*+v @] 7

known as the Euclidean path integral. As is done in Appendix 1 to this chapter with
ordinary integrals we will always assume that we can make this type of substitution
with impunity. ‘

One particularly nice feature of the path integral formalism is that the classical
limit of quantum mechanics can be recovered easily. We simply restore Planck’s
constant 7% in (6):

. T R
(qple_(i/ﬁ)HT 'ql) =/ Dq(t) e(l/ﬁ)'/;) dtL(q.q)
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and take the % — 0 limit. Applying the stationary phase or steepest descent method

(if you don’t know it see Appendix 2 to this chapter) we obtain e’/ wfy ALGere)
where ¢,.(¢) is the “classical path” determined by solving the Euler-Lagrange
equation (d/dt)(8L/84) — (8L /8q) = 0 with appropriate boundary conditions.

Appendix 1

I will now show you how to do the integral G = f_+o°0° dxe™3** The trick is to square the
integral, call the dummy integration variable in one of the integrals y, and then pass to polar

coordinates:
+00 1.2 +oo 1.2 +o0 1.2
G2=f dx e” 2% f dye 27 =27rf drre 3"
- 0

o -0
+00
=27 / dwe ™ =2m
0
Thus, we obtain
+oo 1.2
f dx e 7% =2n 8)

Believe it or not, a significant fraction of the theoretical physics literature consists
of performing variations and elaborations of this basic Gaussian integral. The simplest
extension is almost immediate:

o0 ;
f dx e 3% = (2—”) : )]
—00 a

as can be seen by scaling x — x/./a.
Acting on this repeatedly with —2(d/da) we obtain

+00 ~tax? on
d 3
M=i(2n_1)(2n_3)...5.3.1 (10)
f+oo dx e_%ax2 a"

—00

<x2") =

The factor 1/a" follows from dimensional analysis. To remember the factor (2n — D!l =
(2n — 1(2n —3) ---5-3 - 1 imagine 2 points and connect them in pairs. The first point
can be connected to one of (2n — 1) points, the second point can now be connected to one of
the remaining (2n — 3) points, and so on. This clever observation, due to Gian Carlo Wick,
is known as Wick’s theorem in the field theory literature. Incidentally, field theorists use the
following graphical mnemonic in calculating, for example, (x%) : Write (x®) as (xxxxxx)
and connect the x’s, for example

(xxxxxx)

The pattern of connection is known as a Wick contraction. In this simple example, since
the six x’s are identical, any one of the distinct Wick contractions gives the same value
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a3 and the final result for (x%) is just a3 times the number of distinct Wick contractions,
namely 5 - 3 - 1= 15. We will soon come to a less trivial example, in which we have distinct
x’s, in which case distinct Wick contraction gives distinct values.

An important variant is the integral

1
/-+oo dx e~ 39 +1% (gf-) RRLE an

oo a

To see this, take the expression in the exponent and “complete the square™: —ax’24+Jx=
—(a/2)(x% — 2Jx/a) = —(a/2)(x — J/a)* + J?/2a. The x integral can now be done by
shifting x — x + J/a, giving the factor of (27/a) 3. Check that we can also obtain (10) by
differentiating with respect to J repeatedly and then setting J = 0.

Another important variant is obtained by replacing J by i J:

1
/m dx "3 HIY o (2—”) Tt (12)

oo a

To get yet another variant, replace a by —ia:

N4
f T g edia i _ (@) * gmida (13)

s a

Let us promote a to a real symmetric N by N matrix A;; and x to a vector x; (i, j =
1,--., N). Then (11) generalizes to

+00  pt00 o0 N\ 3 _
/' f /' dxydiy -« dxy e~ 3EATHT = <er)_)2 AT (g
—00 J-00 —00 det[A]

where x - A - x = x;A;;x; and J - x = J;x; (with repeated indices summed.) To see this,
diagonalize A by an orthogonal transformation O: A = O~!. D . O where D is a diagonal
matrix. Call y; = O;;x;. In other words, we rotate the coordinates in the N' dimensional
Euclidean space over which we are integrating. Using

+00 +00 +00 too
f f dxl...de=f f dy, - - -dyy
—00 -00 -0 —00

we factorize the left-hand side of (14) into a product of N integrals of the form in (11). The
result can then be expressed in terms of D~!, which we write as O - A~ - 0~L. (To make
sure you got it, try this explicitly for N =2.)

Putting in some i’s (A — —i A, J — iJ), we find the generalization of (13)

+00  pto00 +o00
/' /' - f dx,dy - - - dxy eC/DxATHI
—o0 J—o0 00

. 1
-(S ]I[l/):]v) e as)
(!

The generalization of (10) is also easy to obtain. We differentiate (14) with respect to J
repeatedly and then setting J — 0. We find
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ixj o xex) =Y (AN (A Dy (16)
Wick
where we have defined

(exj - - xpxy)

+o0 o0 +o0 I Py
_f-oo f—oo "'f—oo dxdx,---dxye? XX XX

an
—1xA.

IO e [ dxdxy - dxy e T AF

and where the set of indices {a, b, - - - , ¢, d} represent a permutation of the set of indices
{i, j, -, k,1}). The sum in (16) is over all such permutations or Wick contractions. It is

easiest to explain (16) for a simple example (x;x ;x;x;). We connect the xs in pairs (Wick
contraction) and write a factor (A~),;, if we connect x, to x;,. Thus,

ixxexy) = (A7) (A Dy + A DA D+ A He@™h (18)

(Recall that A and thus A~! are symmetric.) Note that since {x;x i) = (A‘l),»j, the right-
hand side of (16) can also be written in terms of objects such as (x;x ). Please work out
(X% jX %) X Xp )5 you will become an expert on Wick contractions. Of course, (16) reduces
to (10) for N = 1.

Perhaps you are like me and do not like to memorize anything, but some of these formulas
might be worth memorizing as they appear again and again in theoretical physics (and in
this book).

Appendix 2

To do an exponential integral of the form I = [**° dge=(/Mf@ we often have to resort
to the steepest-descent approximation, which I will now review for your convenience.
In the limit of # small, the integral is dominated by the minimum of f(gq). Expanding
f(@ = f@+3f"@)q —a)’ + Ol(q — a)*] and applying (9) we obtain

1 1
[=¢ W@ (———2’”‘ )2 e 0t (19
f@

For f(q) a function of many variables g, ..., gy and with a minimum at ¢; =a;, we

generalize immediately to

1
] =~ D@ (iﬁ__) : e—O(ﬁ%) (20)
det f"(a)

Here f"(a) denotes the N by N matrix with entries Lf"@]; = (aZf/aq,.aqj):qﬂ, .Inmany
situations, we do not even need the factor involving the determinant in (20). If you can derive
(20) you are well on your way to becoming a quantum field theorist!

Exercises

1.2.1. Verify (5).
1.2.2. Derive (16).



