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We outline an introduction to quantum mechanics based on the sum-over-paths method originated
by Richard P. Feynman. Students use software with a graphics interface to model sums associated
with multiple paths for photons and electrons, leading to the concepts of electron wavefunction, the
propagator, bound states, and stationary states. Material in the first portion of this outline has been
tried with an audience of high-school science teachers. These students were enthusiastic about the
treatment, and we feel that it has promise for the education of physicists and other scientists, as
well as for distribution to a wider audience. ®&998 American Institute of Physics.
[S0894-18668)01602-3

Thirty-one years ago, Dick Feynman told me about his written with Ralph Leightod. Feynman didnot use his
“sum over histories” version of quantum mechanics. “The powerful sum-over-paths formulation in his own introduc-
electron does anything it likes,” he said. “It just goes in tory text on quantum mechanieésThe sum-over-paths
any direction at any speed. .however it likes, and then  method is sparsely represented in the physics-education
you add up the amplitudes and it gives you the wave- |iteraturé and has not entered the mainstream of standard
function.” I said to him, “You're crazy.” But he wasn't. undergraduate textbookaVhy not? Probably because until
--Freeman Dyson, 1980 recently the student could not track the electron’s explora-
tion of alternative paths without employing complex math-
INTRODUCTION ematics. The basic idea is indeed simple, but its use and
application can be technically formidable. With current
The electron is a free spirit. The electron knows nothing of desktop computers, however, a student can command the
the complicated postulates or partial differential equation of modeled electron directly, pointing and clicking to select
nonrelativistic quantum mechanics. Physicists have known paths for it to explore. The computer then mimics Nature to
for decades that the “wave theory” of quantum mechanics g,y the results for these alternative paths, in the process

is neither simple nor fundamental. Out of the study of displaying the strangeness of the quantum world. This use

uantum electrodynamic€ED) comes Nature’s simple, .
?undamental threg—wordce?omr%and to the electron:p“Ex- of computers complements the mathematical approach used

plore all paths.” The electron is so free-spirited that it re- by Feynman and H_|bbs and often provides a deeper sense
fuses to choose which path to follow—so it tries them all. ©f theé phenomena involved. o
Nature’s succinct command not only leads to the results of  This article describes for potential instructors the cur-
nonrelativistic quantum mechanics but also opens the doorficulum for a new course on quantum mechanics, built
to exploration of elementary interactions embodied in around a collection of software that implements Feynman’s
QED. sum-over-paths formulation. The presentation begins with
Fifty years ago Richard Feynmarpublished the  the first half of Feynman’s popular QED book, which treats
theory of guantum mechanics generally known as “the path the addition of quantum arrows for alternative photon paths
integral method” or “the sum over histories method” or to analyze multiple reflections, single- and multiple-slit in-
“the sum-over-paths method(as we shall call it heje terference, refraction, and the operation of lenses, followed
Thirty-three years ago Feynman wrote, with A. R. HiBias, by introduction of the spacetime diagram and application of
more complete treatment in the form of a text suitable for pe sum-over-paths theory to electrons. Our course then
study at the upper undergraduate and graduate level. Toqeayes the treatment in Feynman’s book to develop the non-
ward the end of his career Feynman developed an elegant, g 4iyistic wavefunction, the propagator, and bound states.
brief, yet completely honest, presentation in a popular book In a later section of this article we report on the response of
a small sample of studentsnostly high-school science
#Now at the Center for Innovation in Learning, Carnegie Mellon Univer- teachersto the first portion of this approadsteps 1-11 in
b)sity, 4800 Forbes A_ve., Pittsburgh, PA 15213; E-mail: eftaylor@mit.edu the outline), tried for three semesters in an Internet com-
vokos@phys.washington.edu

Jjoh3n@geophys.washington.edu puter pogference course based at Montana State
Ynthornbe@rvcc.raritanval.edu University.
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I. OUTLINE OF THE PRESENTATION

Alternative paths explored ,
by the SINGLE photon

rotations = 7.876 ® Addition of arrews

head to tail

Below we describe the “logic line” of the presentation,
which takes as the fundamental question of quantum me-
chanics: Given that a particle is locatedxgtat timet,,
what is the probability that it will be located & at a later
time t,? We answer this question by tracking the rotating
hand of an imaginary quantum stopwatch as the particle
explores each possible path between the two events. The
entire course can be thought of as an elaboration of the
fruitful consequences of this single metaphor.

Almost every step in the following sequence is accom- ResuTting arrow: :
panied by draft softwafewith which the student explores Tollstoriginal ot
the logic of that step without using explicit mathematical stopwatch arrow.
formalism. Only some of the available software is illus-
trated in the figures. The effects of spin are not included in

the present analysis. Figure 1. A single photon exploring alternative paths in two space dimen-
sions. The student clicks to choose intermediate points between source and
A. The photon detector; the computer calculates the stopwatch rotation for each path and

adds the little arrows head-to-tail to yield the resulting arrow at the de-

Here are the steps in our presentation. tector, shown at the right,

(1) Partial reflection of light: An everyday observa-
tion. In his popular bookQED, The Strange Theory of
Light and Matter,Feynman begins with the photon inter-
pretation of an everyday observation regarding light: partial
reflection of a stream of photons incident perpendicular to tor, calculates rotation of the quantum stopwatch along the
the surface of a sheet of glass. Approximately 4% of inci- path, and adds the small arrow from each pé#ngth
dent photons reflect from the front surface of the glass and shown in the upper right corner of the left-hand panel
another 4% from the back surface. For monochromatic head-to-tail to arrows from all other selected paths to yield
light incident on optically flat and parallel glass surfaces, the resulting arrow at the detector, shown at the right. The
however, the net reflection from both surfaces taken to- figure in the right-hand panel approximates the Cornu spi-
gether is typically not 8%. Instead, it varies from nearly 0% ral. The resulting arrow is longErthan the initial arrow at
to 16%, depending on the thickness of the glass. Classicalthe emitter and is rotated approximately 45° with respect to
wave optics treats this as an interference effect. the arrow for the direct path. These properties of the Cornu

(2) Partial reflection as sum over paths using quan-  spiral are important in the later normalization of the arrow
tum stopwatches. The results of partial reflection can also  that results from the sum ovall paths between emitter and
be correctly predicted by assuming that the photon exploresdetector(step 18.
all paths between emitter and detector, paths that include
single and multiple reflections from each glass surface. The
hand of an imaginary “quantum stopwatch” rotates as the
photon explores each pathinto the concept of this imagi-
nary stopwatch are compressed the fundamental strange-  (6) Goal: Find the rotation rate for the hand of the
ness and simplicity of quantum theory. electron quantum stopwatch. The similarity between

(3) Rotation rate for the hand of the photon quan- electron interference and photon interference suggests that
tum stopwatch. How fast does the hand of the imaginary the behavior of the electron may also be correctly predicted
photon quantum stopwatch rotate? Students recover all theby assuming that it explores all paths between emission and
results of standard wave optics by assuming that it rotatesdetection.(The remainder of this article will examine par-
at the frequency of the corresponding classical wave. ticle motion in only a single spatial dimensipm\s before,

(4) Predicting probability from the sum over paths. exploration along each path is accompanied by the rotating
The resulting arrow at the detector is the vector sum of the hand of an imaginary stopwatch. How rapidly does the
final stopwatch hands for all alternative paths. The prob- hand of the quantum stopwatch rotate for tlectror? In
ability that the photon will be detected at a detector is pro- this case there is no obvious classical analog. Instead, we
portional to the square of the length of the resulting arrow prepare to answer the question by summarizing the classi-
at that detector. This probability depends on the thickness cal mechanics of a single particle using the principle of
of the glass. least actionFig. 2).

(5) Using the computer to sum selected paths for (7) The classical principle of least action. Feynman
the photon. Steps 1-4 embody the basic sum-over-paths gives his own unique treatment of the classical principle of
formulation. Figure 1 shows the computer interface for a least action in his book,The Feynman Lectures on
later task, in which the student selects paths in two spacePhysics'® A particle in a potential follows the path of least
dimensions between an emitter and a detector. The studentction (strictly speaking, extremal actipnbetween the
clicks with a mouse to place an intermediate point that events of launch and arrival. Action is defined as the time
determines one of the paths between source and detectorintegral of the quantityKE—PE) along the path of the
The computer then connects that point to source and detecparticle, namely,

B. The electron
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Drag INTERMEDIATE dots up & down. = . . . . .

SET Smin=
(_SETsmin=s )( STRRT AGAIN ) Figure 3. lllustrating the “fuzziness” of worldlines around the classical

path for a hypothetical particle of mass 100 times that of the electron
Figure 2. Computer display illustrating the classical principle of least MoVing in a region of zero potential. Worldlines are drawn on a spacetime
action for a 1-kg stone launched vertically near the Earth's surface. A diagram with the time axis vertical (the conventional choice). The particle
trial worldline of the stone is shown on a spacetime diagram with the time 1S initially located at the event dot at the lower left and has a probability

axis horizontal (as Feynman draws it in his introduction to action in Ref. Of being located later at the event dot in the upper right. The three world-
13). The student chooses points on the worldline and drags these points uplin€s shown span a pencil-shaped bundle of worldiines along which the
and down to find the minimum for the value of the accalculated by~ StoPwatch rotations differ by half a revolution or less from that of the

the computer and displayed at the bottom of the screen. The table of stralg_ht-l!ne classical pa_th. This pencil of Worldlme_s makes the major

numbers on the right verifies (approximately) that energy is conserved for CONtribution to the resuiting arrow at the detector (Fig. 5).

the minimum-action worldline but is not conserved for segments 3 and 4,

which deviate from the minimum-action worldine. are those worldlines that contribute significantly to the final

arrow. In the limit of large mass, the only noncanceling
path is the single classical path of least action. Figures 3, 4,

action=S= Jalong {KE—PE)dt. 1) and 5 il!ustrate the s_eamless transiti_on between quantum
worldiine mechanics and classical mechanics in the sum-over-paths
approach.

Here KE and PE are the kinetic and potential energies of
the particle, respectively. See Fig. 2.

This step introduces the spacetime diagr@plot of ~ C- The wavefunction

the position of the stone as a function of tim&mission (10) Generalizing beyond emission and detection at
and detection now becomevents,located in both space  single events. Thus far we have described an electron
and time on the spacetime diagram, and the ideaath emitted from a single initial event; we sample alternative

generalizes to that of theorldline that traces out on the  paths to construct a resulting arrow at a later event. But this

spacetime diagram the motion of the stone between thesdater event can be in one of several locations at a given later

endpoints. The expression for action is the first equation time, and we can construct a resulting arrow for each of

required in the course. these later events. This set of arrows appears along a single
(8) From the action comes the rotation rate of the horizontal “line of simultaneity” in a spacetime diagram,

electron stopwatch. According to quantum theory, the

number of rotations that the quantum stopwatch makes as

the particle explores a given path is equal to the ac8on — ,
along that path divided by Planck’s constant® This fun- | o5 o Foqafeidrpal _ roionsss (1)
damental(and underivef postulate tells us that the fre- £05 2. rotations: 56.48
quencyf with which the electron stopwatch rotates as it ,52:’ 3. rotetions: 3698 (y)
explores each path is given by the expres€ion o ”
KE—PE co3.
= (2) o 025
h goz -
c 0.1

(9) Seamless transition between quantum and clas- o
sical mechanics. In the absence of a potentid@igs. 3 and "z _
4), the major contributions to the resulting arrow at the 03115225535 443 355663 T \Sumot eseatrows
detector come from those worldlines along which the num-

ber of rotations differs by one-half rotation or less from that

of the classical path, the direct worldlifBig. 5). Arrows Figure 4. Reduced “fuzziness” of the pencil of worldlines around the
from all other paths differ greatly from one another in di- classical path for a particle of mass 1000 times that of the electron (10
rection and tend to cancel out. The greater the particle times the mass of the particle whose motion is pictured in Fig. 3). Both
mass, the more rapidly the quantum clock rotdtes a this and Fig. 3 illustrate the seamless transition between quantum and
given speed in Eq2)] and the nearer to the classical path classical mechanics provided by the sum-over-paths formulation.
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Figure 5. Addition of arrows for alternative paths, as begun in Fig. 1. The
resulting arrow for a (nearly) complete Cornu spiral (left) is approxi-
mated (right) by contributions from only those worldlines along which the
number of rotations differs by one-half rotation or less from that of the
direct worldline. This approximation is used in Figs. 3 and 4 and in our
later normalization process (step 16 below).

as shown in Fig. 6. In Fig. 6 the emission event is at the
lower left and a finite packet is formed by selecting a short
sequence of the arrows along the line of simultaneity at
time 5.5 units. A later row of arrowsshown at time 11.6

units) can be constructed from the earlier set of arrows by
the usual method of summing the final stopwatch arrows

along paths connecting each point on the wavefunction at

the earlier time to each point on the wavefunction at the
later time. In carrying out this propagation from the earlier
to the later row of dots, details of the original single emis-
sion event(in the lower left of Fig. 6 need no longer be
known.

In Figs. 6 and 7 the computer calculates and draws
each arrow in the upper rotime near 12 units in both

Click repeatedly anywhere above bottom set of dots.
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Click MULTIPLE times for wave function.

Figure 6. The concept of “wavefunction” arises from the application of
the sum-over-paths formulation to a particle at two sequential times. The

student clicks at the lower left to create the emission event, clicks to select

the endpoints of an intermediate finite packet of arrows, then clicks once

above these to choose a later time. The computer samples worldlines from

the emission (whose initial stopwatch arrow is assumed to be vertical)
through the intermediate packet, constructing a later series of arrows at
possible detection events along the upper line. We call this series of ar-
rows at a given time the “wavefunction.” This final wavefunction can be

derived from the arrows in the intermediate packet, without considering
the original emission (Ref. 17).
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Figure 7. An extended arbitrary initial wavefunction now has a life of its
own, with the sum-over-paths formulation telling it how to propagate for-
ward in time. Here a packet moves to the right.

figures by simple vector addition of every arrow
propagated/rotated from the lower rditime 5.5 units in
Fig. 6, time 3 units in Fig. ¥ Each such propagation/
rotation takes place only along the SINGLE direct world-
line between the initial point and the detection point—NOT
along ALL worldlines between each lower and each upper
event, as required by the sum-over-paths formulation. Typi-
cally students do not notice this simplification. Steps 12—16
repair this omission, but to look ahead we remark that for a
free particle the simplefand incompleteformulation illus-
trated in Fig. 7 still approximates the correetative prob-
abilities of finding the particle at different places at the later
time.

(1) The wavefunction as a discrete set of arrows.
We give the naménonrelativisti¢ wavefunctiorto the col-
lection of arrows that represent the electron at various
points in space at a given time. In analogy to the intensity
in wave optics, the probability of finding the electron at a
given time and place is proportional to the squared magni-
tude of the arrow at that time and place. We can now in-
vestigate the propagation forward in time of an arbitrary
initial wavefunction (Fig. 7). The sum-over-paths proce-
dure uses the initial wavefunction to predict the wavefunc-
tion at a later time.

Representing a continuous wavefunction with a finite
series of equally spaced arrows can lead to computational
errors, most of which are avoidable or can be made insig-
nificant for pedagogic purposéS.

The process csamplingalternative pathgsteps 1-11
and their elaborationhas revealed essential features of
guantum mechanics and provides a self-contained, largely
nonmathematical introduction to the subject for those who
do not need to use quantum mechanics professionally. This
has been tried with students, with the results described later
in this article. The following steps are the result of a year's
thought about how to extend the approach to include cor-
rectly ALL paths between emission and detection.

D. The propagator

(12) Goal: Sum ALL paths using the “propaga-
tor.” Thus far we have beemampling alternative paths
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between emitter and detector. Figures 1, 3, and 4 imply the
use of only a few alternative paths between a single emis- !
sion event and a single detection event. Each arrow in the | |4%37]

final wavefunction of Fig. 7 sums the contributions along E05 1
just asingle straight worldline from each arrow in the ini- } 0.45]
tial wavefunction. But Nature tells the electréin the cor- Nos
rected form of our commandExplore ALL worldlinesTo 1035
draw Fig. 7 correctly we need to take into account propa- éoj J
gation along ALL worldlines—including those that zigzag Rg.25

back and forth in space—between every initial dot on the
earlier wavefunction and each final dot on the later wave-
function. If Nature is good to us, there will be a simple
function that summarizes the all-paths result. This function
accepts as input the arrow at a single initial dot on the
earlier wavefunction and delivers as output the correspond- 0 05 1 15 2o g g e
ing arrow at a single dot on the later wavefunction due to DISTANCE IN MICROMETERS
propagation via ALL intermediate worldlines. If it exists,
this function answers the fundamental question of quantum . _ . _ _
mechanics: Given that a particle is locatecagt timet,, Figure 8. Resulting arrows at different times, derived naively from an
what is the probability(derived from the squared magni- initial wavefunction that is uniform in profile and very wide along the
tude of the resulting arromthat it will be located ak,, at a axis (extending in both directions beyond the segment shown as parallel
later timet,? It turns out that Nature is indeed good to us; &Tows at the bottom of the screen). The resulting arrows at three later
such a function exists. The modern name for this function times, shown at one-fifth of their actual lengths, are each calculated by

is the “propagator,” the name we adopt here because the fotating every initial arrow along the single direct worldline connecting it
function tells how ’a quantum arropropagatesfrom one with the detection event and summing the results. The resulting arrows are

event to a later event. The function is sometimes called the (1) 100 long, (2) pointin the wrong direction, and (3) incorrectly increase
“transition function”; Feynman and Hibbs call it the “ker- N length with time.
nel,” leading to the symboK in the word equation

Omwo
o o
- o
o

arrow at
earlier eventa

arrow at

later eventb =K(b,a)

. 3 arrows at three later times from an initially uniform wave-
function shown along the bottom. The computer derives

The propagatoK (b,a) in Eq. (3) changes the magni- each later arrow incorrectly by propagating/rotating the

tude and direction of the initial arrow at evemtto create ~ contribution from each lower arrow along a SINGLE direct
the later arrow at evenb via propagation along ALL worldline, then.summing the res_ults f_rom all these direct

worldlines. This contrasts with the method used to draw Worldlines, as it did in constructing Fig. 7. The resulting
Fig. 7, in which each contribution to a resulting upper ar- &ITOWs at three later times are shown in Fig. 8 at one-fifth
row is constructed by rotating an arrow from the initial their actual lengths. These lengths are much too great to
wavefunction along the SINGLE direct worldline only. In represent a_wavefunctlon that does not change with time.
what follows, we derive the propagator by correcting the 1hiS is the first lack shown by these resulting arrows. The
inadequacies in the construction of Fig. 7, but for a simpler S€cond is that they do not point upward as required. The
initial wavefunction. reason for this net rotation can be found in the Cornu spiral

(13) Demand that a uniform wavefunction stay uni- (Fig. 5), which predicts thesame netotation for all later

form. We derive the free-particle propagator heuristically times. The third deficiency is that the resulting arrows in-

by demanding that an initial wavefunction uniform in space Créase in length with time. All of these deficiencies spring
propagate forward in time without chantfe.‘l’he initial from the failure of the computer program to properly sum

wavefunction, the central portion of which is shown at the the results over ALL pathgall worldlines between each
bottom of Fig. 8, is composed of vertical arrows of equal initial arrow and the final arrow. We will now correct these

length. The equality of the squared magnitudes of theseins“f(ﬁfg’ns:zz_g:_r?o'Etéu‘:tr;hgr';.rgg'g?rgge e(r)o%a%at\(t)?r.
arrows implies an initial probability distribution uniform in E kl ! g i ph pert r N p pdg -

x. Because of the very wide extent of this initial wavefunc- mrgg?fy)aa ?r"’i‘; S?(fpag;gr Eu(ralct?ct::\ eanfe (z:ocr)r?ps){ﬁtﬂer tfrE:?]yap-
tion alo_r_lg th_ex direction, we expect that any diffusion of plies it to EACH arrow in the initial wavefunction of Fig. 8
probability will leave local probability near the center con- 5 "yic 2w influences the resulting arrow at the single
stant for a long time. This analysis does not tell us that the yo.o ion event later in time, then sums the results for all
arrows will also Sgay vertical with time, but we postulate initial arrows. What can we predict about theopertiesof

this result as welf’ The student applies a trial propagator this propagator function?

function between every dot in the initial wavefunction and '

every dot in the final wavefunction, modifying the propa- (a) By trial and error, the student will find that the propa-

gator until the wavefunction does not change with time, as gator must include an initial angle ahinus45° in
shown in Fig. 10. order to cancel the rotation of the resultant arrow
(14) Errors introduced by sampling paths. In Fig. shown in Fig. 8.

8, we turn the computer loose, asking it to construct single (b) We assume that the rotation rate in space and time for
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Figure 9. Similar to Fig. 8. Here the “pyramid” indicates those direct
worldlines from the initial wavefunction to the detection event for which
the number of rotations of the quantum stopwatch differs by one-half
revolution or less compared with that of the shortest (vertical) worldline.
(The central vertical worldline implies zero rotation.)

the trial free-particle propagator is given by frequency
Eq. (2) with PE equal to zero, applied along the direct
worldline.

(©
with time to counteract the time increase in magni-
tude displayed in Fig. 8.

(16) Predicting the magnitude of the propagator.

2X=2

hT 1/2
) . (5)

m

The arrows in the initial wavefunction that contribute sig-
nificantly to the resulting arrow at the detection event lie
along the base of this pyramid. The number of these arrows
is proportional to the width of this base. To correct the
magnitude of the resulting arrow, then, we divide by this
width and insert a constant of proportionalBy The con-
stantB allows for the arbitrary spacing of the initial arrows
(spacing chosen by the studgand provides a correction

to our rough estimate. The resulting normalization constant
for the magnitude of the resulting arrow at the detector is

normalization
constant for | _(m 12
hT

magnitude of
resulting arro

(6)

The square-root expression on the right-side of (Bg.
has the units of inverse length. In applying the normaliza-
tion, we multiply it by the spatial separation between adja-
cent arrows in the wavefunction.

The student determines the value of the dimensionless
constantB by trial and error, as described in the following
step.

(17) Heuristic derivation of the free-particle propa-
gator. Using an interactive computer program, the student
tries a propagator that gives each initial arrow a twist of

The propagator must have a magnitude that decreases-45°, then rotates it along the direct worldline at a rate

computed using Eq2) with PE=0. The computer applies
this trial propagator for the tim& to EVERY spatial sepa-
ration between EACH arrow in the initial wavefunction and

The following argument leads to a trial value for the mag- the desired detection event, summing these contributions to
nitude of the propagator: Figs. 3—5 suggest that most of theYield a resulting arrow at the detection event. The computer
contributions to the arrow at the detector come from world- Multiplies the magnitude of the resulting arrow at the de-

lines along which the quantum stopwatch rotation differs tector by the normalization constant given in K6). The
by half a revolution or less from that of the direct world- Student then checks that for a uniform initial wavefunction

line. A similar argument leads us to assume that the major the resulting arrow points in the same direction as the initial
influence that the initial wavefunction has at the detection arrows. Next the student varies the value of the condfant
event results from those initial arrows, each of which ex- in Eq. (6) until thel resulting arrow has the same length as
ecutes one-half rotation or less along the direct worldline to each initial arrow?* thereby discovering tha@=1. (Nature

the detection event. The “pyramid” in Fig. 9 displays
those worldlines that satisfy this criteriohThe vertical
worldline to the apex of this pyramid corresponds to zero

is very good to us.The student continues to use the com-
puter to verify this procedure for different time intervdls
and different particle masses, and to construct wavefunc-

particle velocity, so zero kinetic energy, and therefore zero tions(many detection eventst several later times from the

net rotation according to Eq2).]

Let X be the half-width of the base of the pyramid
shown in Fig. 9, and leT be the time between the initial
wavefunction and the detection event. Then E&).yields

initial wavefunction(Fig. 10.

(18) Mathematical form of the propagator. The
summation carried out between all the arrows in the initial
wavefunction and each single detection event approximates

an expression that relates these quantities to the assumethe integral in which the propagator functiéhis usually
one-half rotation of the stopwatch along the pyramid’'s employed? for a continuous wavefunction,
slanting right-hand worldline, namely,

+ oo
L ke e s t)= | Kb @Y. 0
number of rotations 5 =—-T= —-T=2-T o
Here the labeh refers to a point in the initial wavefunc-
mx? tion, while the labelb applies to a point on a later wave-
= ohT: (4) function. The free-particle propagatris usually writteR®
. . . . m Y2 im(xp—Xga)?
Solving for 2X, we find the width of the pyramid base K(b.a)= —) exp—— "3 8
in Fig. 9 to be ) B TTr
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Figure 10. Propagation of an initially uniform wavefunction of very wide  Figure 11. Time propagation of an initial wavefunction with a “hole” in
spatial extent (a portion shown in the bottom row of arrows) forward to it, using the verified free-particle propagator. The student chooses the
various later times (upper three rows of arrows), using the correct free- initial wavefunction and clicks once for each later time. The computer
particle propagator to calculate the arrow at each later point from all of ~ then uses the correct free-particle propagator to propagate the initial
the arrows in the initial wavefunction. The student chooses the wavefunc- wavefunction forward to this later time, showing that the “hole” spreads
tion in the bottom row, then clicks once above the bottom row for each outward.
later time. The computer then uses the propagator to construct the new
wavefunction.
that is, a second derivative. The stage is now set for
development of the Schdinger equation, which relates the
where the conventional direction of rotation is counter- time derivative of a free-particle wavefunction to its second
clockwise, zero angle being at a rightward orientation of space derivative. We do not pursue this development in the
the arrow. Notice the difference betweknn the normal- present articlé*
ization constant and in the exponent. The square-root
coefficient on the right side of this equation embodies not F. Wavefunction in a potential

only the normalization constant of E() but also the ini- (21) Time development in the presence of a poten-

tial twist Of. —45%, expre_ssed N th(_a 9uant|ty . Th|s” tial. Equation(2) describes the rotation rate of the quan-

coefficient is not a function ok, so it "passes through™ 4, stopwatch when a potential is present. A constant po-
the integral of Eq(7) and can be thought of as normalizing  tential uniform in space simply changes everywhere the
the summation as a whole. Students may or may not begtation rate of the quantum clock hand, as the student can
given Egs.(7) and (8) at the discretion of the instructor. verify from the display. Expressions for propagators in

The physical content has been made explicit anyway, andyarious potentials, such as the infinitely deep square well
the computer will now generate consequences as the stuzpg the simple harmonic oscillator potential, have been de-

dent directs. rived by specialist® It is too much to ask students to
search out these more complicated propagators by trial and
E. Propagation in time of a nonuniform wavefunction error. Instead, such propagators are simply built into the

computer program and the student uses them to explore the

(19) Time development of the wavefunction. With for the i devel f1h f
a verified free-particle propagator, the student can now pre- ¢onsequences for the time development of the wavefunc-

dict the time development adny initial one-dimensional
free-particle wavefunction by having the computer apply .
this propagator to all arrows in the initial wavefunction to 6- Bound states and stationary states
create each arrow in the wavefunction at later times. Figure (22) Bound states. Once the propagator for a one-
11 shows an example of such a change with time. dimensional binding potential has been programmed into
(200 Moving toward the Schrodinger equation.  the computer, the student can investigate hawy wave-
Students can be encouraged to notice that an initial wave-function develops with time in that potential. Typically, the
function very wide in extent with a ramp profileonstant probability peaks slosh back and forth with time. Now we
slope, i.e., constant firstderivative propagates forward in  can again challenge the student to find wavefunctions that
time without change. We can then challenge the student todo not change with tim¢aside from a possible overall ro-
construct for a free particle an initial wavefunctionfirfite tation). One or two examples provided for a given potential
extent in thex direction that does not change with time. prove the existence of thestationary statesghallenging
Attempting this impossible task is instructive. Why is the the student to construct others for the same potential. The
task impossible? Because the profile of an initial wavefunc- student will discover that for each stationary state all ar-
tion finite in extent necessarily includedangesn slope, rows of the wavefunction rotate in unison, and that the
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more probability peaks the stationary-state wavefunction Q5. | found Feynman’s approach to qguantum mechanics to
has, the more rapid is this unison rotation. This leads to be
discrete energies as a characteristic of stationary states. boringfiriitatig 1 2 3 4 5 fascinating/
Spin must be added as a separate consideration in this stimulating
treatment, as it must in all conventional introductions t0 ¢ dent choices © 0 0 2 11 (average: 4.85

nonrelativistic quantum mechanics. ) ]
Q18. For my understanding of the material, the software

Il. EARLY TRIALS AND STUDENT RESPONSE was

For three semesters, fall and spring of the academic year
1995-96 and fall of 1996, Feynman’s popular QED book student choices 0 0 1 1 11(average: 4.7

was the basis of an online-computer-conference college . .
b 9 Student enthusiasm encourages us to continue the de-

course called "Demystifying Quantum Mechanics,” taken velopment of this approach to quantum mechanics. We rec-

by small groups of mostly high-school science teachers. : . .
The course covered steps 1-11 that were described earlier29N1Z€: of course, that student enthusiasm may be gratify-

The computer-conference format is described elsewffere. :gegx’rnlz:}cjjt {;Vg%easvg?wto:i!s?: dIQoﬁ”nnyredhitﬁgi\\/lcvarlla;[/v}]haetystt?j\(laents
Students used early draft software to interact with Fey- : P y

nman’s sum-over-paths model to enrich their class discus‘_understand after using this draft material, or what new mis-
sions and to solve homework exercises conceptions it may have introduced into their mental pic-

Because the computer displays and analyzes paths ex_:)ure. O]f quart1t'gum rr]techa?ics,t. Irt1.deedt, (\;ve tWi” n:)t ha\ﬁha
plored by the particle, no equations are required for the first SSE!szLr?t?I (')TJ? Es“tc?r“alinoer” giéngcigmegnni]r?s gcr));tvc\)/aree
third of the semester. Yet, from the very first week, discus- Jf ther devel panying
sions showed students to be deeply engaged in fundamentaf'® Turther developed.
gquestions about quantum mechanics. Moreover, the soft-
ware made students accountable in detail: exercises couldlII ADVANTAGES AND DISADVANTAGES OF THE SUM-OVER-PATHS
be completed only by properly using the software. FIiRMUI.ATIIIN

How did students respond to the sum-over-paths for-

fall 1995 course(Three periods separate comments by dif- the sum-over-paths formulation include the following.
ferent students.

“The reading was incredill. . . | really get a
kick out of Feynman'’s totally off-wall way of (ii)
describing this stdf...Truly a ground-

breaker. .. He brings up some REALLY in-

teresting ideas that | am excited to discuss with (i)
the rest of the clas. . . I'm learning twice as

much as | ever hoped to, and we have just
scratched the surfac . .It's all so profound. |

find myself understanding ‘physics’ at a more
fundamental leve . . | enjoy reading him be-

not important 1 2 3 4 5very important

(i) The basic idea is simple, easy to visualize, and
quickly executed by computer.

The sum-over-paths formulation begins with a free
particle moving from place to place, a natural exten-
sion of motions studied in classical mechanics.

The process ofsampling alternative pathg(steps
1-11 and their elaboratipmeveals essential features
of quantum mechanics and can provide a self-
contained, largely honmathematical introduction to
the subject for those who do not need to use quan-
tum mechanics professionally.

cause he seems so honest about whatane (i : . .

. iv)  Summingall paths with the propagator permits nu-
everyone elsedoes not knw . . . Man, it made , merically accurate results of free-particle motion
me feel good to read that Feynman couldn'’t and bound statessteps 12—22
;‘hn;{et[]séagg;ms .sugf e'tggc' It %Cgﬂﬁeto 0Tt€va o (v)  One can move seamlessly back and forth between
simn Iat'orns Ieghlz eafl)j tr?g:oft are Sla . r classical and quantum mechanisse Figs. 3 and)4

imuat W ve . . . ware piay (vi) Paradoxically, although little mathematical formal-

a very strong role in helping us understand the

points being made by Feynman.” ism is required to introduce the sum-over-paths for-

mulation, it leads naturally to important mathemati-

During the spring 1996 semester, a student remarked cal tools used in more advanced physics. “Feynman
in a postscript: diagrams,” part of an upper undergraduate or gradu-
“PS—Kudos for this course. | got an A in my ate course, can bezgthought of as extensions of the
intro gm class without having even a fraction of meaning of “paths.™ The propagator is actually an
the understanding | have wa..This all example of a Green's function, useful throughout
makes so much more sense now, and | owe a theoretical physics, as are variational mettiBads-
large part of that to the software. | neviérad| cluding the method of stationary phase. When
such compelling and elucidating simulations in formalism is introduced later, the propagator in
my former course. Thanks again!!!” Dirac ~ notation ~ has a  simple  form:
At the end of the spring 1996 class, participants com- K(b,2)= (X5 tblXa ta)-
pleted an evaluative questionnaire. There were no substan- The major disadvantages of introducing quantum me-
tial negative comments. Feynman’s treatment and the chanics using the sum-over-paths formulation include the
software were almost equally popular: following.
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(i) It is awkward in analyzing bound states in arbitrary 3
potentials. Propagators in analytic form have been
worked out for only simple one-dimensional binding 4
potentials. 5

(i)  Many instructors are not acquainted with teaching
the sum-over-paths formulation, so they will need to 4
expend more time and effort in adopting it.

(i) It requires more time to reach analysis of bound
states. 7

IV. SOME CONCLUSIONS FOR TEACHING QUANTUM MECHANICS

8.

The sum-over-paths formulatideteps 1—-1Jlallows physi-
cists to present quantum mechanics to the entire intellectual
community at a fundamental level with minimum manipu-
lation of equations.

The enthusiasm of high-school science teachers par-

ticipating in the computer conference courses tells us that 1

the material is motivating for those who have already had
contact with basic notions of quantum mechanics.

The full sum-over-paths formulatioristeps 1-2p
does not fit conveniently into the present introductory treat-
ments of quantum mechanics for the physics major. It con-
stitutes a long introduction before derivation of the Sehro
dinger equation. We consider this incompatibility to be a
major advantage; the attractiveness of the sum-over-paths
formulation should force reexamination of the entire intro-
ductory quantum sequence.
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To conform to the “stopwatch” picture, rotation is taken to be clock-

wise, starting with the stopwatch hand straight up. We assume that

later [for example, with Eq(8) in step 1§ this convention will be

“professionalized” to the standard counterclockwise rotation, starting

with initial orientation in the rightward direction. The choice of either

convention, consistently applied, has no effect on probabilities calcu-
lated using the theory.

11. Feynman explains later in his popular QED b@pkge 104 of Ref. ¥

that the photon stopwatch hand does not rotate while the photon is in
transit. Rather, the little arrows summed at the detection event arise
from a series of worldlines originating from a “rotating” source.

In Fig. 1, the computer simply adds up stopwatch-hand arrows for a
sampling of alternative paths in two spatial dimensions. The resulting
arrow at the detector is longer than the original arrow at the emitter.
Yet the probability of detectior{proportional to the square of the
length of the arrow at the detecjocannot be greater than unity.
Students do not seem to worry about this at the present stage in the
argument.

R. P. Feynman, R. B. Leighton, and M. Sandse Feynman Lectures

on Physic§Addison—Wesley, Reading, MA, 1964/0l. I, Chap. 19.

14. See, Ref. 2, Sec. 4, postulate II.
15.

The classical principle of least action assumes fixed initial and final
events. This is exactly what the sum-over-paths formulation of quan-
tum mechanics needs also, with fixed events of emission and detec-
tion. The classical principle of least action is valid only when dissi-
pative forces(such as friction are absent. This condition is also
satisfied by quantum mechanics, since there are no dissipative forces
at the atomic level.

A naive reading of Eq2) seems to be inconsistent with the deBroglie
relation when one makes the substitutidasv/A =p/(mA) andKE
=p?/(2m) and PE=0. In Ref. 3, pp. 44-45, Feynman and Hibbs
resolve this apparent inconsistency, which reflects the difference be-
tween group velocity and phase velocity of a wave.

. \ € 17, imilar figure in Ref. 3, Fig. 3-3, p. 48.
other members of the Physics Education Group, especially See a similar figure in Ref. 3, Fig. 3-3, p. 48

. We have found three kinds of errors that result from representing a
continuous wavefunction with a finite series of equally spaced arrows.
(1) Representing a wavefunction of wide x extension with a narrower
width of arrows along the x direction leads to propagation of edge
effects into the body of the wavefunction. The region near the center
changes a negligible amount if the elapsed time is sufficiently short.
(2) The use of discrete arrows can result in a Cornu spiral that does
not complete its inward scroll to the theoretically predicted point at
each end. For example, in the Cornu spiral in the left-hand panel of
Fig. 5, the use of discrete arrows leads to repeating small circles at
each end, rather than convergence to a point. The overall resulting
arrow (from the tail of the first little arrow to the head of the final
arrow) can differ slightly in length from the length it would have if the
scrolls at both ends wound to their centers. Ttetional error is
typically reduced by increasing the number of arrows, thereby in-
creasing the ratio of resulting arrow length to the length of the little



19.

20.

component arrowg3) The formation of a smooth Cornu spiral at the
detection event requires that téferencein rotation to a point on the

final wavefunction be small between arrows that are adjacent in the 21

original wavefunction. But for very short times between the initial and
later wavefunctions, some of the connecting worldlines are nearly
horizontal in spacetime diagrams similar to Figs. 3 and 4, correspond-
ing to large values of kinetic enerd¢E, and therefore high rotation
frequencyf =KE/h. Under such circumstances, th#ferencein ro-
tation at an event on the final wavefunction can be great between
arrows from adjacent points in the initial wavefunction. This may lead
to distortion of the Cornu spiral or even its destruction. In summary, a
finite series of equally spaced arrows can adequately represent a con-
tinuous wavefunction provided the number of arrdfes a given total

x extension is large and the time after the initial wavefunction is
neither too small nor too great. We have done a preliminary quanti-

tative analysis of these effects showing that errors can be less than 2%2

for a total number of arrows easily handled by desktop computers.
This accuracy is adequate for teaching purposes.
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Feynman implies this connection in his popular presentdRe. 4).

For example, the principle of extremal aging can be used to derive
expressions for energy and angular momentum of a satellite moving
in the Schwarzschild metric. See, for example, E. F. Taylor and J. A.
Wheeler,Scouting Black Holesjesktop published, Chap. 11. Avail-
able from Taylor(Website in Ref. 28
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