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Path integrals and quantum mechanics

Thirty-one years ago, Dick Feynman told me about his ‘sum over
histories’ version of quantum mechanics. ‘The electron does any-
thing it likes’, he said. ‘It goes in any direction at any speed, forward
or backward in time, however it likes, and then you add up the
amplitudes and it gives you the wave-function.’ I said to him,
“You’re crazy’. But he wasn’t.

F.J. Dyson*

A common type of calculation in particle physics is that of a scattering cross
section for a particular process, for example electron—electron scattering
e"e” — e~ e~ . Under the inspiring guidance of Feynman, a short-hand way of
expressing — and of thinking about — these quantities has been developed.
Thus, in the particular case of e~ e scattering, to a first order approximation
the process is represented by the ‘Feynman diagram’ of Fig. 1.14, and the
crucial part of this diagram is the ‘propagation’ of the photon between the two
electrons. There are ‘Feynman rules’ which allow one to associate with each
diagram a scattering amplitude, and from the total amplitude (there may be
more than one diagram for each process) one calculates the cross section in a
straightforward way. In this chapter and the next one it will be shown how the
Feynman rules arise, and, in particular, how to find an expression for the
‘propagation’ of the virtual particle. In this chapter it will be shown how
quantum mechanics can be formulated so that scattering processes may be
understood directly in these terms. In the next chapter we shall extend the
treatment to scalar and spinor fields, and in Chapter 7 to gauge fields. In this
chapter we retain Planck’s constant # in the relevant formulae.

5.1 Path-integral formulation of quantum mechanics

In the usual formulation of quantum mechanics, the quantities g and p are
replaced by operators which obey Heisenberg commutation relations. The
mathematics one invokes is that of operators in Hilbert space. The path-
integral formulation of quantum mechanics, on the other hand, is based directly
on the notion of a propagator K(gsts; g;t;). Given a wave function y(gq;, t;) at

* In H. Woolf (ed.), Some Strangeness in the Proportion, Addison-Wesley, 1980, p. 376. Quoted
with kind permission.
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time ¢;, the propagator gives the corresponding wave function at a later time t;
by an appeal to Huygens’ principle:

W(gs, 1) = j K(gsts; i) w(git;) da;. (5.1)

(For simplicity we consider only one spatial dimension.) This equation is quite
general and merely expresses causality. According to the usual interpretation
of quantum mechanics, y(qy, t;) is the probability amplitude that the particle is
at the point g at the time #;, so K(gst¢; ¢;t;) is the probability amplitude for a
transition from g; at time t; to g; at time ;. The probability that it is observed
at g; at time ¢¢

P(qste; qit;) = | K(gsts; git)]*.

This is a fundamental principle of quantum mechanics, as every student knows.

Let us divide the time interval between t; and t; into two, with r as the
intermediate time, and ¢ the intermediate point in space, as shown in Fig. 5.1.
Repeated application of (5.1) gives

Y(gs, tg) = HK(qftf; qt)K(qt: qiti)y(q;, t;) dg;dq,

from which it follows that

K(qsts; qit) = JK(C]flﬁ qt)K(qt: git;)dq, (5.2)

so the transition from (g;, ;) to (gs, t;) may be regarded as the result of
transition from (g;, t;) to all available intermediate points q followed by
transition from (g, f) to (g, t1)-

As a simple and familiar illustration of this, consider the 2-slit experiment
with electrons, shown in Fig. 5.2. Denote by K(2A;1) the probability
amplitude that the electron passes from the source 1 to the hole 24, and by
K(3;2A) the amplitude that it passes from the hole 2A to the detectors 3, and
so on. Equation (5.2) then gives

KG3;1) = K(3;2A)K(2A4; 1) + K(3:2B)K(2B: 1)
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Fig. 5.1. Propagation of a particle from (g;, t,) to (gs, t;) via an intermediate position
(q,1)-
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Fig. 5.2. The 2-slit experiment.

and the intensity pattern of the ‘screen’ 3 is given by the probability
P(3:1) = [K(3: D

which will clearly contain interference terms, characteristic of the quantum
theory. Note that we cannot say ‘the electron travelled either through hole A
or hole B’ - it travelled, in a sense, over both paths (if not detected at the
slits).* This notion of all possible paths is important in the path integral
formalism.

We may show that the propagator K is actually the more familiar quantity
(qs¢tilgit;) - To see this, note that the wave function y(q, t) is

w(g, 1) = (qlyt)s

where the state vector |yt )g in the Schrodinger picture is related to that in the
Heisenberg picture |y)y by

[pt)s = e Hly)y.
Let us define the vector
lq1) = e"q) (53)
which we may call, for obvious reasons, a ‘moving frame’. We then have
w(g, 1) = (qt|y)u. (5.4)
Completeness of states enables us to write
(getily) = j<4ftf|Qiti><Qitilw> dg;

which, with the help of (5.4), is

gy, tg) = f(qftf‘CIiti>W(4ia t;) dg;.

* For an excellent discussion of the 2-slit experiment. see Feynman, Leighton & Sands (1965).
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On comparison with (5.1) we see that
(getilgit) = K(qets qir))s (5.5)

as claimed.

The propagator K summarises the quantum mechanics of the system. In the
usual formulation of quantum mechanics, given an initial wave function, one
can find the final wave function by solving the time-dependent Schrodinger
equation. In this formulation, however, the propagator gives the solution
directly. The idea now is to express g;t¢|g;t;) as a path integral.

Let us split the time interval between ¢; and ¢; into (n + 1) equal pieces 7. as
in Fig. 5.3. Equation (5.2) now becomes

(gstilgit;) = f . deIdQZ - dq,(getelgntn) (Gntnl @norta=1) - - - {qutilqit;)
(5.6)

and the integral is taken over all possible ‘trajectories’; they are not trajectories
in the normal sense, since each segment (g;;: gj_1¢;_;) may be subdivided into
smaller segments, so there is no derivative. The paths are really Markov
chains.

Let us calculate the propagator over a small segment in the path integral.
From (5.3) we have

—iHt/h

<q1'+1lj+1|61jtj> = (CIj+1|e |q]~)

= <q]'+1 q]'>

= 5(¢]j+1 - CIj) - %<%’+1|H’%‘>

1- %Hr + 0()

fdpeXp[ —p(gjs1 — q,] —(q]+1)H$q,> (5.7)

N

>z
e

-

4, dr q

Fig. 5.3. Propagation over many paths from (g;, ;) to (gs, t;)-
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The Hamiltonian H is a function of the operators p and g. In the special case
where H is of the form

2
H=2 +v(g (5.8)
2m

(actually, H can be any function of p plus any function of ¢), the matrix
element in (5.7) may easily be calculated. We have

p?
> fdp dp(gjlp’ >< ’ l >(p|q,
2m
and now substitute (g;.4|p’) = (2mh) " exp (ip'gj+1/h), giving

-

<q]’+1 £

2m

2

< Qj+1 ‘E—

2m

dp'dp [i , ]pz ,
q,> - p h(p di+1 — PYj) P~ (p—p)
2

dp i p
= |—=exp|—p(gi+1 — g)|—- 5.9
f . p[h p(gj+1 q,)]zm (59)
It is to be noted here that p? on the left-hand side of (5.9) is an operator,
whereas on the right-hand side it is a number. We could (and perhaps should)
have used a notation such as p to call attention to the operator nature of p on

the left-hand side. But in any case, it is an important result that the formula we
have on the right of (5.9) contains no operators. In a similar way,

‘ Giv1 + q;
(gi:1V(9)lg; = V(%)(‘]ﬁ”‘]})
= V('qﬁ—li—’@)é(q]ﬂ - qj)

= f—dhﬁ exp [—;Z—p(qj'ﬂ - qj')]V(q]'): (5.10)

where g; = %(qj + gj-1), and V(q) on the left is an operator expression, but the
integral on the right contains no operators. Putting (5.9) and (5.10) together,
we have

d i _
<61j+1iH|CIj> = JTP exp [‘;—P(%‘H - q]-)]H(p, a
and, from (5.7),

(gj+1t1lgj1) = ~fdp,eXP{ —[pi(gj+1 — 9)) — rH(p,,q,]} (5.11)

where p; is the momentum between f; and f;,, o1, equivalently, ¢; and g;,; -
see Fig. 5.4. This gives the propagator over a segment of one possible path.
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LA

> p

Fig. 5.4. Segments of the trajectory in momentum space.

The full propagator is got by substituting this into (5.6), giving, in the
continuum limit (where p; is the momentum along the path between g; and
qj+1)7

(qstelgit;) = hmfﬂ dg;[ ] —eXp{ . 2[1),(61]“ q;) — TH(p;, 67;]} (5.12)
j=0 h h]—

with qg = ¢q;, gn+1 = g;. This may be written in the symbolic form

@ (audans) = (P2 exp [ "aiipg - o0l 519

with ¢q(t;) = q;, q(t¢) = g¢. In the continuum limit g becomes a function of ¢,
and the integral is a ‘functional integral’, an integral over all functions. It is
infinite-dimensional. Expression (5.13) is the path integral expression for the
transition amplitude from (g, t;) to (g;. r7). Each function ¢(t) and p(r)
defines a path in phase space. As mentioned above. the more usual approach
to quantum mechanics is to solve the Schrodinger equation iA(d|y)/dr) =
H|y) where H is an operator, subject to some boundary conditions. In the
path-integral formulation we have an explicit expression for the transition
amplitude, which is clearly very well suited to scattering problems. The
quantities p and g occurring in the integral are classical quantities, not
operators (c-numbers, not g-numbers). It is not obvious, however, that infin-
ite-dimensional integrals of this type are well-defined mathematically, that is,
whether they converge; in other words, exist! We shall assume that they do.
The reader interested in the mathematical status of functional integrals is
referred to Gel'fand & Yaglom (1960), Kac (1959), Keller & McLaughlin
(1975), and Gudder (1979).

There is another form for the transition amplitude. which holds when H is of
the form (5.8), since in that case we can perform the p-integration. Equation
(5.12) becomes

<qftf|qlt > - hm fﬂ d%n"— exp {_E[p](%Tl %) - _T - V(q])l']}
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As far as the p; integration is concerned, this is of the same form as equation
(5A.3) (see the appendix to this chapter), so we get

o -t ) ffonen (2222 )

(5.14)

and hence, in the continuum limit
I
| (qstilqits) = Nf@q exp [%f L(q, f?)df] (5.15)
n

where L = T — V, the classical Lagrangian. In the limit n — o, N becomes
infinite, but this does not matter, since we shall always deal with normalised
transition amplitudes.

The integrand in (5.15) is the classical action § = f L dt. We have proved this
equation from the postulates of quantum mechanics, and by assuming that the
Hamiltonian is of the form (5.8). Feynman’s original approach was to adopt
(5.15) as a hypothesis and then prove the Schrodinger equation from it. The
disadvantage of this approach is that (5.15) does not hold in general, since (5.8)
does not. A counter example has been given by Lee & Yang (1962). If

L=-=-1),

which describes a system with a velocity-dependent potential, then the momen-
tum is

p—a =4qf(q)

9q
and the Hamiltonian is

H=pq—-L =) =12
pq 34°1(q) 2f(q)

and this is not of the form (5.8). Substituting this into (5.13) and performing
the p integrations gives, eventually,

(getilgity) = Nfi’bq exp (*;-I'Seff)

where
Sett = fdf[L(q, q) — %5(0) In f(q)]~

Instead of (5.14), we have an effective action, which differs from § = f Lds.
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In the case of field theories, similarly, the transition from an equation like
(5.13) to one like (5.15) may not in general be made, and in particular this is
true in the case of non-Abelian gauge-field theories. However, when we come
to consider these theories, in Chapter 7, we shall for simplicity adopt a
‘heuristic’ approach to the derivation of the Feynman rules, and work from an
equation analogous to (5.15).

5.2 Perturbation theory and the S matrix*

It is our aim to illustrate how the path-integral method is used in the
calculation of scattering processes, and we shall consider Rutherford scattering
in particular, in §5.3 below. The scattering of one particle on another is
described, non-relativistically, by interaction through a potential V(x) (we
change the notation, in this section, for the space co-ordinate, from g of x).
Since the expression for the transition amplitude is not exactly calculable, we
resort, as usual, to perturbation theory. This is valid when the potential V(x) is
small, or, more precisely, when the time integral of V(x, ) is small compared
with #. In that case we may write

["i W )d] L A [ V|
exp|— X, t)dt| = —~J x,t t———J x, t)ydr| +---
P hjr. Al 2107 U

(5.16)

This is the perturbation expansion. When substituted into the expression (5.15)
for the propagator K (x;t; x;t;) (see (5.5)) we get a series expansion

K=Ky+ K +Kr+ ..., (5.17)

the first term of which is the free propagator Ky:

Ky=N f [exp (%S)]be
= Nj[exp(;l—fémxzdt) Tx

To evaluate this, we write it in the discrete form (see (5.14))

n—x

(n+1)2 .« 1 im n
Ky = lim ( ) J H dx; exp[ > (X1 = xj)z].
iht 2ht j=0

¥ In this section and the following one I have drawn freely from M. Veltman. lectures at
Basko-Polje School, 1974 (unpublished).
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The value of this integral is known: see (5A.4),

. n/2 .
integral = —L—(lh—r) exp [“L(xf - xi)Z]’
(n+ 1)\ m 2a(n + Dt

so, putting (n + 1)T = t; — t;, we have for the free particle propagator
1/2 : — )2
Koxste; x;t) = (———m——) exp [M] (r:>1).  (5.18)
Ih([f — 2n(ts — ;)

The condition t¢ > ¢; is clearly crucial for the propagator, since it vanishes, by
causality, if t; < t;, so we may properly put

12 : 2
Ko(xstg; xit;) = 0(t — ti)(i;(—t:n———ti—)) exp [lrzn?((x_t_ff_:%] (5.19)

Let us now calculate K. From (5.14) and (5.16) we have

K, = — lim N("”)/zE fexp [—;—;P——E(xjﬂ - xj)z]V(x,-, t;)dxy ... dx,,
T /20

h n—w
where N = m/iht, and we have replaced integration over ¢ by summation over
t;. Noting that V depends on x;. we now split up the sum in the exponent into

two, one going from j=0to j=i— 1, and the other from j=ito j = n. We
also separate out the integration over x;, and get

n—®

K; = lim ———2 de{N(" i= 1)/?'Jexp ———E(xjﬂ - X)) ]dx,+1 . dx, }

x V(x,-, ti){Ni/zjexp [ﬂ—E(Xj+1 - Xj)z] dx; ... dx,'_l}.
2h7 j=o

The two terms in curly brackets are K(x¢t¢; xt) and Ko(xt; x;t;), so, replacing
rf dx; by f dx dt, the above expression becomes

Ky(xte; xity) = __H dtj Ko(xete; xt)V (x, ) Ko(xt; xit) dx.  (5.20)
t —w©

Now Kg(x¢ts; xt) vanishes if ¢ > 1y and Ko(xt; x;t;) vanishes if ¢t <, so the
integration in (5.20) may be taken over all values of ¢, to give

Kl(xfzf;xizi)=:}l-‘-f dtho(xftf;xt)V(x,t)KO(xt;xiti)dx. (5.21)

This is the first order correction to the free propagator. In a similar way, we
may prove that the second order correction is
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c\2 . % x x
Ko(x¢tg; xit;) = (71) f dflf dfzf dle dx, Ko(x¢ts; x212) V(x2, 12)
X Ko(xatz; x10)V (x1, 1) Ko(x1812 xi85). (5.22)

Analogous expressions hold for all X, in the expansion (5.17), so we write

K (x¢te; xit;) = Ko(xets; xit;) — —;I'JKO(xf[f; x1t)V(xy, t1) Ko(xity; xit5) dxy diy

1
- ;z“fKo(xfffL x1t)V(xy, 1) Ko(x1113 x212) V(x215)
X KO(thz; xiti) dx1 de d[l d[2 + ..., (523)

This is the solution to the perturbation series in K. and is called the Born
series. It may be visualised as in Fig. 5.5. K, describes the free propagation of
the wave function from x;r; to x¢ty; K, describes propagation with one
interaction with the potential V'; and so on.

A noteworthy feature of (5.22) is that it does not include the factor 1/2!
present in (5.16). The reason for this is as follows. The two interactions with V
occur at different times but are indistinguishable, so we write

L[ orimirrom qor aon — L [tars o v pron
Z_JV(t)V(z)dt de _Z!J[e(x V() (")
+ 0" — )V (') V("] de’ dr”
=f9(t1 — 1)V (1,)V(ty) dty dis. (5.24)

In a similar way, there is no factor 1/n! in the expression for K,. We shall now

Xglg xflf
xqlt
A
+ xh = +
Xoly
. xili
Xiti Xili
K=K, + K, + K, +...

Fig. 5.5. The Born series.
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show that the free propagator K, is simply the Green's function for the
Schrodinger equation. To see this, substitute the Born series (5.23) into (5.1),
giving

Y(xst) = IK(Xftf; X; 1) Y(xit;) dx;
= fKo(Xflf; Xi 1) P(x;t;) dx;

—-}be@ggxnv«xz)demxnow@nodHMdm
1
+ ... (5.25)

Here we have changed from one space dimension to three. Assuming the series
above converges, the effect of the unwritten terms is to modify the last K, to
the full propagator K. so that

Y(x¢ty) = fKo(Xfffl X ) Y(xit) dx; — —;l-fKo(Xfff; xt)V(x, t)y(xt)dxdz.
(5.26)

This equation is exact, and is an integral equation for . Now assume that in
the distant past, t;— —=, y becomes free — a plane wave ¢ — then the first
term on the right-hand side of (5.26) is also a plane wave, since it results from
the free propagation of y(x;t;), and we may write

W(xete) = P(x¢ts) — %fKO(Xftﬁ xt)V(x, t)y(xr)dx dr. (5.27)
Now y(x;1¢) obeys the Schrodinger equation

2 (st
92yt + in 2L
m tf

= V(xet)) Y(x¢ty). (528)
Since ¢(x;t;) obeys the free-particle equation (with V' = 0), then Ky must obey

2
h—v,z‘fKo(Xf[f; X[) + ihaiK()(Xftf; X[) = Ihé(Xf - X)é([f - t) (529)
m te

which is the equation for the Green’s function of (5.28). Note that the presence
of the &(t; — 1) is to be expected from the 6(z; — t) occurring in the definition
(5.19) of Ky. The propagator Kj is then simply the Green’s function of the
Schrodinger equation, as claimed.
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We pass now to the calculation of the scattering amplitude. In the measure-
ment of a scattering process, the experimental conditions are that a particle is
free at t+ = —, then scatters, and is free again at t = +o. This is a source of
difficulty, however, because a free particle (that is, one with a definite energy
and momentum) is described by a plane wave, which spreads out over all space
and time, including the centre of the interaction potential V' (x), so the particle
can never be free! To get round this problem the adiabatic hypothesis is
invoked; the potential V is switched on and off again slowly, so that V =0 at
t = + % and the particle is free. ¥V must not be switched on and off too quickly;
this would imply, through Fourier transformation, that the time dependence of
V results in the scattering centre emitting or absorbing energy. which must not
happen.

Returning to the scattering problem, the initial condition is that y is a plane
wave:

Pn(xit;)) plane wave.

We assume that V — 0 for large negative ¢, and that ¢; is even further in the
past. Taking the first Born approximation in (5.25) gives

Y (xety) = fKO(Xftf: Xiti) Yin (Xi 1) dx;
- _;Z‘IKO(Xftf; xn)V(x, 1) Ko(xt; x;1;) ¥ (x;4;) dx dx; de. (5.30)

The superscript on y)(x;1;) denotes that it corresponds to a wave which was
free at t = —, and thus involves the ‘retarded’ propagator Ky(xt; x't"). which
vanishes for ' >t. It is equally acceptable to write a solution y(7)(x;1,)
consisting of a wave which becomes free at ¢ = *(y,,,), and an "advanced’
propagator Ky(xt; x't") which vanishes when t" <.

We are interested in the amplitude for detecting a final particle with definite
momentum, i.e. a plane wave .. This is called the scattering amplitude S,
and is the overlap of the wave functions

S =JW§ut(xftf) Y (xet) dxg
= JWﬁm(Xftf) Ko(x¢ts: xi 1) Wi (Xi1;) dx; dx;
- _;l‘fwzl;ut(xftf)KO(xftﬁ xt)V(x, 1) Ko(xt: X1;) Pin(xi1;) dx¢ dx dx; dt

= fwgut(xftf)¢(xftf) dx; — %f%ku:(xfff) Ko(xsts: xt)

X V(x, 1) Ko(xt; Xt;) Yin(x;1;) dx¢ dx dx; dr (5.31)
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where ¢(x¢t;), just like i (xit;), is a plane wave. If the initial and final
momenta are p; = hk;, p; = fik¢, we have, with box normalisation,

=L el ipx - E
win(XI) \/l_exp[h(l)x X Elt)]?

Youlx1) = %exp [—;—@f x - Efo] (5.32)

where E = p?/2m and 1 is the volume of the box, which of course is arbitrary.
Substituting (5.32) into the first term of (5.31), using

j 9% dx = (2m)°6(q),

and putting, for convenience, 7 = (27)*, we get

S = (ki — ky) — % f Wea(xet) Ko(xetg X0V (x, 1)
X Ko(xt; xit;) ¥in (x;;) dx dx dx; d¢. (5.33)

The scattering amplitude is then seen to be one element of a matrix S, whose
(fi) element appears above; this is the scattering matrix or S matrix. The first
term corresponds to no interaction giving momentum conservation and a unit §
matrix. Genuine interactions are represented by the second term in (5.33), and
the amplitude that a particular ‘out’ state results from a particular ‘in’ state is

A= —-;ll—ngut(xftf)KO(Xftf; xN)V(x, 1) Ko(xt; X 1;) Pin(x;1;) dx¢ dx dx; dr.

(5.34)

We now have an expression for the scattering amplitude in terms of the
free propagator K, and the interaction potential V. Equation (5.34) may be
translated into a set of simple rules for the scattering amplitude; these rules are
known as the Feynman rules.

We may represent amplitude (5.34) (which is a first order approximation),
by the diagram

(5.35)

X.I.

It is clear that the rules for translating this diagram into the expression for the
scattering amplitude may be summarised by making the correspondence
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Ko(xat7; x111) (5.36)

Xt Xyty

|4

1 . .
/(\ —;V(xt); integration over x and ¢

In addition, we multiply by vy, and %, at the ends of the diagram and
integrate over the two relevant spatial variables. Thus, the amplitude for the
second order process

Xt

iti

|4

5.37
»V//X'I’ ( )

X! xf’f

is
—i\?
A® = (7) [ttt Kot XV, £ Kol 13 0V (3, 1

X Ko(Xt; xiti)win(xiti) dx; dx d¢ dx'dt’ de.

The rules (5.36) are called the Feynman rules. In the non-relativistic quantum
mechanics we are dealing with at present, these rules are hardly necessary to
do calculations, but in quantum field theory. to be considered in the next
chapter, they are a great aid to calculation.

The rules (5.36) are written in co-ordinate space. In many calculations,
however, it is more convenient to work in momentum space, and in the
remainder of this section we will derive the corresponding Feynman rules in
momentum space. Let JH(py, t1; poto) be the amplitude that a particle with
momentum pg at time ¢y be later observed to have momentum p; at time ¢;. It

is given by

i i
H(p1, t1; Poto) = fexp (‘%m : Xl) K (x1t1; Xotp) €xp (zpo . Xo) dxo dx;. (5.38)
The free propagator Ko(xX;t1; Xoto) is given by the 3-dimensional generalisation
of (5.19),i.e.

im (%9 — x1)°

2 (6= 1) ] (5.39)

m 32
Ko(x111; Xotg) = 6(t; — 10)[.—“—‘—] CXP[
lh(tl d [0)

Ho is then
m 32 i
Ho(p1t1; Poto) = 6(t1 — to)(_“—‘—, ) fexp [—(Po’ X0 — P1 'Xl)]
ih(t; — t0) n

. w2
X exp [ﬂgg—x—l)—] dx dx;.
21 (1y = to)
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To evaluate this integral we introduce the variables
Xx=% —X;, X=X +X, p=po—P1, P=po+p
so that
2(po %o —p1°x) =P-x+p-X.
The Jacobian of the transformation is (%)3 = gl-, so we have

20 V1 i
Ho(p1s 11: Pos Lo) = O(t1 — m(%") -éj exp —2—‘h—p-x dx
1

X fexp (LP . x) el* gy
2h
where o = m/2h(t; — t3). The first integral is 8(27#)>dp = 8(274)*8(py — P1),
SO

32 .
3{0([)1[1; po[o) = (2ﬁf2)39([1 - [0)(3([)0 - pl)(-g:ey—) J’exp (iP X + IO’XZ) dx.
1

The integral may be evaluated by appealing to equation (5A.3) giving

—iP(1, — ro>]
mh

Ho(p111; Poto) = (2wh)*6(ty — 10)S(Po — Pl)eXP[ .

Note that the delta function implies that p; = pg, and there is only propagation
when momentum is conserved. Moreover, we then have P? = 4p(2), so finally

.2
1 {1 —1
Ho(p1ts; Poto) = (2mA)36(t; — ro)a(po—poexp[——p“z;m 0)]. (5.40)

This propagator, as already noted, gives the amplitude for observing a particle
with momentum p; at time ¢, if one has been observed with momentum p at
time rg. The Fourier transform of this quantity is, of course, Ho(x1t1; Xoto),
given by the inverse of (5.38), which yields, on substituting (5.40),

Ko(ati: otg) = — g f exp (Lpl 'xl)ﬁfo(pltl; Po’o) exp(—LPO'XO) dp: dpo
(2mh) h h

= 0(t; ~ 1g)— jexp {L[q (x1 = %0) = ‘q’z—(h - fo)]} dq.
(2mh)’ h 2m

(5.41)

We shall use this expression in the calculation of Coulomb scattering in the
next section.

Finally, let us take the Fourier transform of the ¢ dependence, so as to treat
time and space in a symmetric manner. This is necessary for relativistic
examples. The propagator we require is then
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i .
ko(p1Ev; PoEo) = feXP (;Eltl)%o(pltl; Pofo) €Xp (“—‘;:E()to) dtodt,

. 2
= e’ 500 = p1) 010 exp( sk r)

m
X exp [—;I—(Eltl - Eoto)]dtodh (5.42)
where T = t; — to. Regarding 7 and ¢, as the independent variables, this gives

Ho(pLE1; poEo) = (2mh)’8(po — pl)f exp [—;1—(E1 - EO)IO] dt,

* i pi
x O(r)exp|—| E, — —|r|dt.
J—w() p[h( : 2m)]
The first of these integrals is (2772)6(E, — E,). The presence of the 6(1)
function in the second integral means that it is of the form

ool

f elTdr
0

which, if o is real, does not converge. To make it converge, w must be
replaced by  + ig, where ¢ is small and positive. The value of the integral is
then i/(w + i€).* Substituting for @, we have finally

ko1 Evs poEo) = (2h)*8(po — pIS(Ey — E)—— . (5.43)
E, - LAl + ig
2m
As may have been anticipated, this propagator yields energy conservation as
well as momentum conservation. The limit € — 0 should be understood in
equation (5.43). An important observation to make is that the energy E is not
necessarily p?/2m for a particle described by wave mechanics. E and p are
independent variables (used to define Fourier transforms from ¢ and x space).
It is only for a classical point particle, described in quantum theory by a wave
packet of vanishing size, that £ = p?/2m. In this limiting case, the propagator
above has a pole. Propagation takes place in general, however, for any value of
E and p.
It is now straightforward, if tedious, to show that if we introduce the Fourier
transform of the potential V(x, ) by

V(x.1) = fexp [%(q-x - Wt)]v(q. W)dqdw (5.44)

* Equivalently. the Fourier transform of 6(r) is given by

o(1) = lim Lje L
e 21 w — i€
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then the amplitude (5.34) may be expressed in terms of ky, and v, and
summarised by the momentum-space diagram

PoEo\\’/’nEl
v

P: Po
E,—E,
whose meaning is given by the Feynman rules
1A
p,E L . : , (5.45)
2mh 2
@) f _ P e
2m
\\ / —L2nh)*o(q, W).
v h
q. W with energy and momentum
conservation.

These are the Feynman rules in momentum space. The expression for the
scattering amplitude A contains ¥, ¥, and integration over relevant vari-
ables.

5.3 Coulomb scattering
Let us now apply the theory developed above to the well-known problem of
the scattering of charged spinless particles in a Coulomb field (Rutherford
scattering). The scattering amplitude in the first Born approximation is given
by (5.34)
A= %f%kut(xﬂl)Ko(Xﬂu x)V(x, 1) Ko(xt; Xot0) Yin(Xoto) dx; dx dx ds

where V(x, t) represents the Coulomb potential. Now substitute for K, from
(5.41), and for Yoy and yy, from (5.32), giving

_-i1 S Pt _
S (2nh)6Jexp[ n (pf H 2mt1)]9(t1 )
X exp {i[q - - Loy - r)]}
h 2m

: 2
X V(x, t)exp{%[q' “(x = Xo) - g—m(t - to)]}g(’ = 1o)

. 2
X exp [%(Pi "X — zp—'to)] dx; dx dxodsdqdq’.
m
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Integration over x; and x( gives the delta functions
Qah)*6(ps — q) and (27h)’8(q" — py).

Integration over q and q' then eliminates the terms in #; and #y. Taking the
limits tg — —%, t; — = to eliminate the 8 functions then gives

A= ;_Tifexp{%[(pi —p)x—(E — Ef)t]}V(x, 1) dx dt

with E;; = pif/Zm. For the Coulomb potential V = Ze?/4meyr and integration
over t then gives

—i E. - E 2

A= 71277(5(-—1 f)—Ze

i 1
exp|—(p; — - X |[—dx.
- | p[h(p ) ]r

47780

The last integral does not converge at infinity, so a factor e is introduced,
and, on letting a — 0, the value of the integral is 474 /g%, where q = p; — p;. SO

A= (5.46)

—i 2w Ze*H? a( E, - Ef)

ht  gq? h

This is the scattering amplitude, from which we want to calculate the scattering
cross section 0. |A|? gives the probability that a particle emerges with momen-
tum p¢. Assuming a box normalisation volume 7. then

Tdps
(2mh)?

AP

gives the probability that a particle emerges with momentum between p; and
pr + dp;. If the interaction lasts an effective time 7', then

AP de
T (2nh)}

is the number of particles per second emerging in this momentum range. To get
the cross section, we divide by the incident flux and integrate over p;. The
incident particles travel with speed p;/m and there are 1/t of them per unit
volume, so the flux is p;/Tm particle per second per unit area. The cross section
is then

2
o= j——“‘” m Tdpe (5.47)
T pi (2ah)’
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|AJ? involves |8(E; — E¢/h)|*. What is this? We appeal to the definition of

o(x):
(52 |
h

lim

T—=

1 T2
— f exp[i(E; — E¢)t/n]dt
2r)-TR

Sil’l[(Ei — FE
7(E; — Ey)/h

- ia(ﬂ)
27 7]

~ sk - Ep (5.48)
2

T—=<

where we have used the formula lim,_. (sin® ax/ax?) = w8(x). Collecting
together equations (5.46-8) gives

- mz%e f__é(Ef E;) & ps
4‘7'8()

_ mZe lipfdpfa(Ef E;)dQ.
477’28() Di

Now use E = p?/2m to put p; = (2mE Y2 and pidps = Qm*E )l/szf and
integrate over E; to give

2,4

_ m?Z% f 2 4o
477'280

where, because of the delta function, p; = ps = p. Hence g* = 4p?sin®(6/2)

where 0 is the angle between p; and p;. Finally, putting p = mv we have the

differential cross section

d_ff:( Ze? )2 1 (5.49)
d@2  \8rgymuv?/ sin*(6/2)

which is the Rutherford formula.

5.4 Functional calculus: differentiation

Quantities like the propagator
-
(xstelx;ty) = Jébx exp [% L(x, x) dt]
t

are functional integrals: the integration is taken over all functions x(r). The
left-hand side is a number, so the integral associates with each function x(t), a
number. The integral is called a functional, and clearly depends on the value of
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the function x(t) at all points. We may write this in short hand:

functional: function — number. (5.50)

A function, for example f(t) = t> + 2¢, has a value (a number) for each value
of the independent parameter, which is also a number. Given a value for ¢, we
calculate the value of f. In short hand:

function: number — number. (5.51)

In mathematical notation, numbers belong to the space of reals R, so a
function defines a mapping

function: R — R. (5.52)

Sometimes, of course, a function may be a vector quantity, like an electric field
E, and therefore belong to R>; and it associates this electric field with every
point of 3-dimensional space, and so is a mapping R> — R®. On the other hand,
a scalar function ¢(x) clearly defines a mapping R?> — R. In general, then, we
have the definition

function: R” — R™. (5.53)

Functions are continuous - to be precise, they are n-times differentiable. In
physics, we generally concern ourselves with functions which are infinitely
differentiable. The underlying co-ordinate space is a manifold M (for example
R, or R? for 3-dimensional Euclidean space), and a function is denoted C"(M);
and in the case of infinitely differentiable functions, C*(M). A functional,
then, from (5.50), defines a mapping

functional: C*(M) — R. (5.54)

It should by now be obvious, but nonetheless important to note, that a
functional is not a function of a function, which is, of course, a function. It is
common to denote a functional F of a function f by using square brackets,
Ff1.

We now define functional differentiation. By analogy with ordinary differen-
tiation, the derivative of the functional F[f] with respect to the function f(y) is
defined by

SFIF()] _ . FIf(x) + edx = y)] = FIf()] (5.55)
of(y) = e

Let us take a specific example. Consider the functional

F[f] = ff(x)dx. (5.56)
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Then

SFIf] _ .. 1
o gg%;{ JUreo) + eox = yax - | f(x)dx}

= J(S(x — y)dx =1. (5.57)
As a second example, consider
Elf] =[G, »)f(y) dy. (5.58)

Here, x on the left-hand side is to be regarded as a parameter. Then

SR[fl _ . 1
of(z) £‘L%;(f (Gl If() + ey = D)) dy - [Glr, y)f(y)dy)
= [G(x. )8y ~ 2y dy
- oo (5.59)

5.5 Further properties of path integrals
We have shown that the transition amplitude from g;¢; to gst; is given by

.
(qetelgits) = Nf%q exp [—;Tf dtL(q, q)
n

in the case where H = (p*/2m) + V(q), which is sufficiently general for the
present purposes, and the boundary conditions of the problem are

q(t)) = qr, q(t;) = q;-

This type of boundary condition may be appropriate in the motion of
classical particles, but it is not what we meet in field theory. Its analogue there
would be, for example, y(t;) = v, y(t;) = Y. But what really happens is
that particles are created (for example, by collision), they interact, and are
destroyed by observation (i.e. by detection). For example, in measuring the
differential cross section do/dQ for N scattering, the pion is created by an
NN collision, and it is destroyed when it is detected.

The act of creation may be represented as a source, and that of destruction
by a sink, which is, in a manner of speaking, a source. The boundary
conditions of the problem may then be represented as in Fig. 5.6; the vacuum
at t = — evolves into the vacuum at r — %, via the creation, interaction and
destruction of a particle, through the agency of a source. We want to know the
vacuum-to-vacuum transition amplitude in the presence of a source. This
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—

Particle destroyed

Particle created

[— -0

Fig. 5.6. Representation of the vacuum-vacuum transition amplitude in the presence of
a source.

formulation, using the language of sources, is due to Schwinger (1969). The
source J(t) is represented by modifying the Lagrangian

L— L+ hi(t)q(e). (5.60)

If |0, ¢)7 is the ground state (vacuum) vector (in the moving frame) in the
presence of the source, i.e. for a system described by (5.60), then the transition
amplitude is

Z[J] o <07 oOiO, _°°>] (561)

where a proportionality factor has been omitted. The source J(¢) plays a role
analogous to that of an electromagnetic current, which acts as a ‘source’ of the
electromagnetic field. The charged scalar field ¢, for example, has the Lagran-
gian (3.65) and its interaction with the electromagnetic field A* is given by the
Lagrangian (3.73), of the form J,A". The current J, acts as a source of the
electromagnetic field, and this idea is generalised by Schwinger in the above
formulation: any field ¢ may be ‘created’ by an appropriate source J. Z[J] is a
functional of J, and we now derive an expression for it, i.e. for the transition
amplitude up to a constant factor. The salient feature is the presence of the
ground state; how do we arrive at it?

The situation is represented by looking at the time axis in Fig. 5.7. What
follows leans heavily on Abers & Lee (1973). The source J(¢) is non-zero only
between times ¢ and '(r < t'). T is an earlier time than ¢, and T’ a later time
than ¢', so the transition amplitude is

(0'T'|QT)’ = Nf@q exp [lfrdt(L + th)]. (5.62)
hlJr

\ v T . -
.J=0 J¢QN Time axis
Rotated

)

time axis

Fig. 5.7. Rotation of the time axis in calculating the vacuum-vacuum transition ampli-
tude.
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We may write

<Q'T'|QT>’=jdq'dq<Q'T'|q'r'><q'r'|qr>’<qr|QT>. (5.63)

i i
exp|——HT' |exp|—Ht'||q’
p( h ) p(fz ) 1 >

=2 0m(Q")¢h(q") exp [—;{Em(ﬂ - T’)], (5.64)

Referring to (5.3) we then have

—

where ¢,,(q) are a complete set of energy eigenstates, Similarly,

(qt|QT) = Z%(q)ﬁ(Q)eXp[—%En(f - T)]- (5.65)

Now substitute these equations into (5.63). By taking the limit T’ — we ™,
T — —we ® with § an arbitrary angle < 7/2 (see Fig. 5.7), we see that, since
the imaginary part of T is i|T|sin 8, the term (i/h)E,T contains a real part
—(1/R)|T|sin 6 which gives a damping factor exp {—(1/4)E,|T|sin §}. In the
summation in (5.65), then, all the terms are damped but, the larger E, is, the
more they are damped. Hence the term which suffers the least damping is the
one with the smallest E,, that is E,, the lowest energy stage, or vacuum.
Hence in the summation only the ground state (vacuum) contribution survives.
This is the feature we want. We then have

Tli‘li_.a(Q'T"QT)] = ¢6"(Q)¢0(Q')CXP[_%E0(T' - T)]
T——xe™i0
X qu'dq%“(q’, t'){(q't'|qt) $o(q, 1)

or

qu’dq%"(q’, 1) {(q't'|qt) ¢o(q, 1)
Xy all J
- lim (o'T ‘Q.” . (5.66)
[ ‘EO(T'—T)]

T==2e™ $5(Q)Po(Q") exp r

The left-hand side is the ground state expectation value of the transition
amplitude. The times ¢’ and —¢ may be taken as large as one likes, so the
left-hand side becomes (0, |0, —=)’. The denominator on the right-hand side
is simply a numerical factor, so we have
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QT)’ (5.67)

(0,20, =)« lim (Q'T’
T'—o0e™10

T

with
i" :
(o rior) = N[aex {1 alL@. 0) + 1.
hir

Finally, instead of rotating the time axis as we have done, the ground state
contribution may be isolated by adding a small negative imaginary part to the
Hamiltonian in (5.64) and (5.65); adding —%isq2 will achieve the result. This is
equivalent to adding +3ieg? to L, so we finally define Z[J] in (5.61) by

B Z[J]= J(:bq exp [%J' dr(L + hJg + %isqz)] x (0. [0, —=)’. (5.68)
This expression for the transition amplitude will be taken over when we
consider field theory, in the next chapter. Meanwhile, we shall prove one more
relation, involving the functional derivatives of Z with respect to J(t).

To begin, instead of (qg¢t¢lq;t;), consider (g¢t;|q(t,)lgiti), where t; > 1, >
t;, and it should be remembered that ¢(z, ) is an operator. Consider equation
(5.6), and choose t,, to be one of the times ¢;, . . ., t,. Then

(qgetelg (1)l giti) = qux oo dgn(qetelgntn) (Gntnl qno1ta-1)

ca <qnltn||q(tn|)|qn1—1tn1—l> o Aaqinlgin).

The expression (g ty,|q(tn)|{qn-11s,—1) may clearly be replaced by
q(12){qn,tn,|{Gn,~1tn,~1), Where this time ¢(r,) is a scalar. The rest of the
argument is analogous to that leading from (5.6) to (5.13). so we have, finally,

DqgDp

(gstdlg(t)lgiti) =f q(t;) exp {-;l—f“[pq - H(p, q)]dt}- (5.69)

Next, we suppose we want to find
(getilg(ta)q(tn ) giti) -
If r,, > t,, we have
<qftf|q(tn|)q(tn3)|qiti> = J.dql s dqn<qftf|Qntn> s <Qn1[n1|q(tnl)|qnl—l[n1—1>
EE <qnztn2iq(tng)|qn:—ltn:—1> LR <‘htl|‘hti>,

giving, finally,

(aetdatae)lain) = | @q}f‘iq(rl)q(mexp [% [ g - H)dr] (5.70)
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if 11 >1t,. If, on the other hand, t, > r;, this is not true; in that case, the
right-hand side of (5.70) is equal to

(gstilg(t2)g(tr)lgiti).
In general, then, the right-hand side of (5.70) is equal to

(qete| T[q(t1)q(12)]lg;it;)

where the time ordering operator T has the definition

iAol - | gehe | (5.71)

T has the effect of putting earlier times to the right. The result we have found
generalises to

(g Tla(t)ates) - a()llas) = [P Lq(0)a(rs) . q()

-
X exp {% [pg — H(p, q)]dt}~ (5.72)
t
In the case where H is of the form (5.8), this becomes
(et Tla(t)q(r2) - - - q()lgits) = N [Dgq(tn)q(z2) - - q(t,)

(i "Ld) (5.73)
Xexp|— ty. .
P50

However, from the definition of Z[J] in (5.68), its functional derivative with
respect to J is

8Z[J] _ . [i - ’ ]
= =1|9qq(t;)exp|—| dt(L + AJg + 3ieq”
St qu( 1) exp hf_w ( q +3ieq”)
and hence

" Z[J]

-

=i" ir i 2
oIty - . 0J(ty) ! f@qwo e q(tn)eXP[hf dt(L + hJq + 3ieq )}

(5.74)

which gives, on putting J = 0,

8" Z[J]
8J(1y) ... 8J(ty)

= i"f@qq(tl) ... g(t,)exp [—;—J’i} de(L + %ieqz)]. .

(5.75)

J=0
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Comparing the right-hand side of this equation with that of (5.73) above, we
note that the difference lies in the %isq2 term: but we know, from what was said
above, that it is this term that has the effect of isolating the ground state
contribution, so we finish up with the vacuum expectation value of the
time-ordered product:

O"Z[J]
0J(ty) ... 8J(ty) li=0
This is the second result we wanted, and to which we shall have recourse in the
next chapter.

xi"(0, ©|T[q(r) . . . q(t,)]|0, —).  (5.76)

Appendix: some useful integrals

We begin by stating a well-known formula

P ’ T 1/2
j e dy = (—) (@>0). (5A.1)
—x o
Proving it is clearly the same as proving that
f f e dy dy = L, (5A.2)
—cJ — o

and this is shown by going over to polar co-ordinates (r, 6):

x

27 % R R
f je—“"rdrde =27rJ e~ dr
0 /0 0

nj ear’ d(rz)
0

T
o

Thus, (5A.1) is proved.
Now we pass from the integration of Gaussians to that of quadratic forms

x< N x©
j e—ax-+bx+c dy = J' eq(x) dx.
—_ —x

Let X be the value of x giving a minimum of g:
,

b..
, qg(x)=—+c.
1 da

_ b
X = —
a

This allows us to ‘uncomplete’ the square:

q(x) = q(x) — a(x — %)*.
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Hence

f el dy = eq(f)J'ac e ax=%)’ 4y

12
= eq(f)(_“_)
a

* b* 7\
J' exp(—ax? + bx + ¢)dx = exp (T + c)(——) : (5A.3)
—x a

a

from (5A.1). Finally, we have

Lastly, we show that

o

f exp {iM[(x; — @)* + (x2 — x1)* + ... + (b — x,)*]} dxy . .. dx,

it }1/2 [
————| exp
(n + A"

iA

B n+1

(b - a)z]. (5A.4)

It is proved by induction; we assume it is true for n, and show it is true for
n + 1. We have

=

f exp {iA[(x; — a) + ...+ (b = xu)?] dxy - . . dxya

i"r" 12 o iA 2 . 2
=|—"=| [ e (o1 — @) | exp[i(b = x,41)7] Ay
(n + A" —w n+1
i"ﬂn 12 e . 1 2 2
=|—"=| | ewiir (st = @2 + (b = %) | § Ay
(n + 1)A" —o n+1
Putting x,.; — a = y, the term in square brackets becomes
n+2
Y2+ -a-yP= y2=2y(b—a)+ (b - a)’
n+1 n+1
2
_ n+2[y_ ’H'l(b—a)} L1 (b — a.
n+1 n+2 n+2

Now we put A — (n + 1/n + 2)(b — a) = 7 and find that the integral is

‘n..n 1/2 oc .
(—l——) f exp it 222 + it (b - a)z]dz
(n+ 1A" - n+1 n+2
sn+1l,n+1 1/2
_ _I_W___T] exp[ S a)z]
(n +2)A"* n+2

which is (5A.4) with n + 1 instead of n. It only remains to show that the
formula holds when n = 1. In this case the integral is
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x

I= f exp (iA[(x — a)? + (b — x)}]} dx

_ o[ A= by i_n)”2
exp [1—————2 ](2A

where in the last step (5A.3) has been used, but with a in that equation
imaginary. This value for [ is the same as the value obtained from (5A.4) by
putting n = 1. We have therefore proved (5A.4) for all n.

Summary

'Feynman’s path integral formulation of quantum mechanics is explained, and
%a perturbation series (the Born series) developed. The S matrix (for scattering
of ‘particles’) is defined and it is shown how the resulting transition amplitudes
may be obtained by reference to the ‘Feynman rules’. These are written down
in co-ordinate space and momentum space. °It is shown how the case of
Coulomb scattering results in Rutherford’s formula. *A brief account of
functional differentiation is followed by °a demonstration that the scattering
amplitude, written as a vacuum-to-vacuum transition amplitude in the presence
of a source J, is a functional integral of J, and relates the vacuum expectation
values of time-ordered products of operators to corresponding functional
derivatives of this functional integral. The appendix proves the integrals
needed in the course of the chapter.

Guide to further reading

The first papers on path-integral quantisation were Dirac (1933) and Feynman
(1948); these are both reprinted in Schwinger (1958). An expanded account is
to be found in Feynman & Hibbs (1965). There are by now a number of good
reviews of path-integral quantisation as used in physics, among which are the
following: Marinov (1980), DeWitt-Morette, Maheshwari & Nelson (1979),
Schulman (1981), Lee (1981, ch. 19), J.R. Klauder in Papadopoulos & Dev-
reese (1978), Blokhinstev & Barbashov (1972), and Abers & Lee (1973). Good
introductions to the mathematical aspects of functional integration are Gel’fand
& Yaglom (1960), Kac (1959), Keller & McLaughlin (1975). For more rigorous
treatment, see Gudder (1979), Simon (1979), and M.C. Reed in Velo &
Wightman (1973). Schwinger’s philosophy of sources is explained in, for
example, Schwinger (1969).



