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Non-relativistic quantum mechanics is formulated here in a different way. It is, however,
mathematically equivalent to the familiar formulation. In quantum mechanics the probability
of an event which can happen in several different ways is the absolute square of a sum of
complex contributions, one from each alternative way. The probability that a particle will be
found to have a path x(¢) lying somewhere within a region of space time is the square of a sum
of contributions, one from each path in the region. The contribution from a single path is
postulated to be an exponential whose (imaginary) phase is the classical action (in units of %)
for the path in question. The total contribution from all paths reaching x, £ from the past is the
wave function ¢ (x, ¢). This is shown to satisfy Schroedinger’s equation. The relation to matrix
and operator algebra is discussed. Applications are indicated, in particular to eliminate the
coordinates of the field oscillators from the equations of quantum electrodynamics.

1. INTRODUCTION

T is a curious historical fact that modern
quantum mechanics began with two quite

different mathematical formulations: the differ-
ential equation of Schroedinger, and the matrix
algebra of Heisenberg. The two, apparently dis-
similar approaches, were proved to be mathe-
" matically equivalent. These two points of view
were, destined to complement one another and
to be ultimately synthesized in Dirac’s trans-
formation theory. _

This paper will describe what is essentially a
third formulation of non-relativistic quantum
theory. This formulation was suggested by some
of Dirac’s®? remarks concerning the relation of

1P. A. M. Dirac, The Principles of Quantum Mechanics
(The Clarendon Press, Oxford, 1935), second edition,
Secnon 33; also, Physik. Zeits. Sow_]etumons 64 (1933).
2P, A. M. Dirac, Rev. Mod. Phys. 17, 195 (1945).

classical action?® to quantum mechanics. A proba-
bility amplitude is associated with an entire
motion of a particle as a function of time, rather
than simply with a position of the particle at a
particular time.

The formulation is mathematically equivalent
to the more usual formulations. There are,
therefore, no fundamentally new results. How-
ever, there is a pleasure in recognizing old things
from a new point of view. Also, there are prob-
lems for which the new point of view offers a
distinct advantage. For example, if two systems
A and B interact, the coordinates of one of the
systems, say B, may be eliminated from the
equations describing the motion of 4. The inter-

3 Throughout this paper the term “action” will be used
for the time integral of the Lagrangian along a path.
When this path is the one actually taken by a particle,
moving classwally, the integral should more properly be
called Hamilton’s first principle function.
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action with B is represented by a change in the
formula for the probability amplitude associated
with a motion of 4. It is analogous to the classical
situation in which the effect of B can be repre-
sented by a change in the equations of motion
of A (by the introduction of terms representing
forces acting on A4). In this way the coordinates
of the transverse, as well as of the longitudinal
field oscillators, may be eliminated from the
equations of quantum electrodynamics.

In addition, there is always the hope that the
new point of view will inspire an idea for the
modification of present theories, a modification
necessary to encompass present experiments.

We first discuss the general concept of the
superposition of probability amplitudes in quan-
tum mechanics. We then show how this concept
can be directly extended to define a probability
amplitude for any motion or path (position vs.
time) in space-time. The ordinary quantum
mechanics is shown to result from the postulate
that this probability amplitude has a phase pro-
portional to the action, computed classically, for
this path. This is true when the action is the time
integral of a quadratic function of velocity. The
relation to matrix and operator algebra is dis-
cussed in a way that stays as close to the language
of the new formulation as possible. There is no
practical advantage to this, but the formulae are
very suggestive if a generalization to a wider
class of action functionals is contemplated.
Finally, we discuss applications of the formula-
tion. As a particular illustration, we show how
the coordinates of a harmonic oscillator may be
eliminated from the equations of motion of a
system with which it interacts. This can be ex-
tended directly for application to quantum elec-
trodynamics. A formal extension which includes
the effects of spin and relativity is described.

2. THE SUPERPOSITION OF PROBABILITY
AMPLITUDES

The formulation to be presented contains as
its essential idea the concept of a probability
amplitude associated with a completely specified
motion as a function of time. It is, therefore,
worthwhile to review in detail the quantum-
mechanical concept of the superposition of proba-
bility amplitudes. We shall examine the essential
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changes in physical outlook required by the
transition from classical to quantum physics.

For this purpose, consider an imaginary experi-
ment in which we can make three measurements
successive in time: first of a quantity 4, then
of B, and then of C. There is really no need for
these to be of different quantities, and it will do
just as well if the example of three successive
position measurements is kept in mind. Suppose
that e is one of a number of possible results which
could come from measurement 4, b is a result
that could arise from B, and ¢ is a result possible
from the third measurement C.* We shall assume
that the measurements 4, B, and C are the type
of measurements that completely specify a state
in the quantum-mechanical case. That is, for
example, the state for which B has the value b is
not degenerate.

It is well known that quantum mechanics deals
with probabilities, but naturally this is not the
whole picture. In order to exhibit, even more
clearly, the relationship between classical and
quantum theory, we could suppose that classi-
cally we are also dealing with probabilities but
that all probabilities either are zero or one.
A better alternative is to imagine in the classical
case that the probabilities are in the sense of
classical statistical mechanics (where, possibly,
internal coordinates are not completely specified).

We define P, as the probability that if meas-
urement A gave the result ¢, then measurement B
will give the result b. Similarly, Py, is the proba-
bility that if measurement B gives the result b,
then measurement C gives ¢. Further, let P,, be
the chance that if 4 gives a, then C gives c.
Finally, denote by P, the probability of all
three, i.e., if A gives a, then B gives b, and C
gives ¢. If the events between @ and b are inde-
pendent of those between b and ¢, then

-Pabt::Pabec- (1)

This is true according to quantum mechanics
when the statement that B is b is a complete
specification of the state.

*For our discussion it is not important that certain
values of @, b, or ¢ might be excluded by quantum me-
chanics but not by classical mechanics. For simplicity,
assume the values are the same for both but that the
probability of certain values may be zero.
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In any event, we expect the relation

ac= ; Pabc‘ (2)

This is because, if initially measurement 4 gives
a and the system is later found to give the result
¢ to measurement C, the quantity B must have
had some value at the time intermediate to 4
and C. The probability that it was b is Pgp..
We sum, or integrate, over all the mutually
exclusive alternatives for b (symbolized by Y_s).

Now, the essential difference between classical
and quantum physics lies in Eq. (2). In classical
mechanics it is always true. In quantum me-
chanics it is often false. We shall denote the
quantum-mechanical probability that a measure-
ment of C results in ¢ when it follows a measure-
ment of A giving a by P2 Equation (2) is
replaced in quantum mechanics by this remark-
able law :® There exist complex numbers @, @e,
@qe such that

Pab=l¢’ab|2y Pbczlﬁpbclzy and Pacq=|¢ac|2- (3)

The classical law, obtained by combining (1)
and (2),
Po=3 PuPy. 4)
b

is replaced by
Pac = Z Pab Pbe- (5)
b

If (5) is correct, ordinarily (4) is incorrect. The
logical error made in deducing (4) consisted, of
course, in assuming that to get from a to ¢ the
system had to go through a condition such that
B had to have some definite value, b.

If an attempt is made to verify this, i.e., if B
is measured between the experiments 4 and C,
then formula (4) is, in fact, correct. More pre-
cisely, if the apparatus to measure B is set up
and used, but no attempt is made to utilize the
results of the B measurement in the sense that
only the 4 to C correlation is recorded and
studied, then (4) is correct. This is because the B
measuring machine has done its job; if we wish,
we could read the meters at any time without

5 We have assumed b is a non-degenerate state, and that
therefore (1) is true. Presumably, if in some generalization
of quantum mechanics (1) were not true, even for pure
states b, (2) could be expected to be replaced by: There
are complex numbers @as such that Pue= | ¢ac|2 The ana-
log of (5) is then @ue=24 @abe.
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disturbing the situation any further. The experi-
ments which gave ¢ and ¢ can, therefore, be
separated into groups depending on the value
of b.

Looking at probability from a frequency point
of view (4) simply results from the statement
that in each experiment giving ¢ and ¢, B had
some value. The only way (4) could be wrong is
the statement, ‘B had some value,”” must some-
times be meaningless. Noting that (5) replaces
(4) only under the circumstance that we make
no attempt to measure B, we are led to say that
the statement, “B had some value,” may be
meaningless whenever we make no attempt to
measure B.6

Hence, we have different results for the corre-
lation of ¢ and ¢, namely, Eq. (4) or Eq. (5),
depending upon whether we do or do not attempt
to measure B. No matter how subtly one tries,
the attempt to measure B must disturb the
system, at least enough to change the results
from those given by (5) to those of (4).” That
measurements do, in fact, cause the necessary
disturbances, and that, essentially, (4) could be
false was first clearly enunciated by Heisenberg
in his uncertainty principle. The law (5) is a
result of the work of Schroedinger, the statistical
interpretation of Born and Jordan, and the
transformation theory of Dirac.?

Equation (5) is a typical representation of the
wave nature of matter. Here, the chance of
finding a particle going from @ to ¢ through
several different routes (values of ) may, if no
attempt is made to determine the route, be
represented as the square of a sum of several
complex quantities—one for each available route.

61t does not help to point out that we could have
measured B had we wished. The fact is that we did not.

7 How (4) actually results from (5) when measurements
disturb the system has been studied particularly by J. von
Neumann (Mathematische Grundlagen der Quantenmechanik
(Dover Publications, New York, 1943)). The effect of
perturbation of the measuring equipment is effectively to
change the phase of the interfering components, by 6, say,
so that (5) becomes ¢uc=2Zp e®papr.. However, as von
Neumann shows, the phase shifts must remain unknown
if B is measured so that the resulting probability Pa. is
the( s;quare of ¢q averaged over all phases, 6,. This results
in (4).

8 If A and B are the operators corresponding to measure-
ments A and B, and if ¥, and y» are solutions of Ay, =ay,
and Bxs=bxs, then oum= /x*Vedx = (x*, ¥a). Thus, ¢ is
an element (a|b) of the transformation matrix for the
transformation from a representation in which A is
diagonal to one in which B is diagonal.
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Probability can show the typical phenomena

- of interference, usually associated with waves,
whose intensity is given by the square of the
sum of contributions from different sources. The
electron acts as a wave, (5), so to speak, as long
as no attempt is made to verify that it is a
particle; yet one can determine, if one wishes,
by what route it travels just as though it were a
particle ; but when one does that, (4) applies and
it does act like a particle. .

These things are, of course, well known. They
have already been explained many times.’ How-
ever, it seems worth while to emphasize the fact
that they are all simply direct consequences of
Eq. (5), for it is essentially Eq. (5) that is funda-
mental in my formulation of quantum mechanics.

The generalization of Egs. (4) and (5) to a
large number of measurements, say 4, B, C, D,
-+-, K, is, of course, that the probability of the
sequence &, b, ¢, d, -, k is

Pubcd---k = | Pabed-+ <k l 2-
The probability of the result a, ¢, k, for example,
if b, d, - - - are measured, is the classical formula:

Packzz Z . 'Pabcd---ky (6)
b d

while the probability of the same sequence a, ¢, k
if no measurements are made between 4 and C
and between C and K is

Poot =122 -« @avea--r| % (N
b d

The quantity ggpea...r we can call the probability
amplitude for the condition 4 =a, B=5, C=c,
D=d, -+, K=F. (It is, of course, expressible as
a product @ @scPed’ * * jk.)

3. THE PROBABILITY AMPLITUDE FOR A
SPACE-TIME PATH

The physical ideas of the last section may be
readily extended to define a probability ampli-
tude for a particular completely specified space-
time path. To explain how this may be done, we
shall limit ourselves to a one-dimensional prob-
lem, as the generalization to several dimensions
is obvious.

9 See, for example, W. Heisenberg, The Physical Prin-
ciples of the Quantum Theory (University of Chicago Press,
Chicago, 1930), particularly Chapter IV,
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Assume that we have a particle which can
take up various values of a coordinate x. Imagine
that we make an enormous number of successive
position measurements, let us say separated by a
small time interval e. Then a succession of
measurements such as 4, B, C, - - - might be the
succession of measurements of the coordinate x
at successive times £y, Ig, #3, * - -, where {1 =f;~+e.
Let the value, which might result from measure-
ment of the coordinate at time #;, be x;. Thus,
if 4 is a measurement of x at #; then x; is what
we previously denoted by a. From a classical
point of view, the successive values, xi, x3, x3, - * -
of the coordinate practically define a path x(¢).
Eventually, we expect to go the limit e—0.

The probability of such a path is a function
of x1, X, =+, %, -+, say P(-- %s Toy1, - -).
The probability that the path lies in a particular
region R of space-time is obtained classically by
integrating P over that region. Thus, the proba-
bility that x; lies between a; and b;, and x;, lies
between a1 and b,y etc., is

bi pbit+1
f f c P X X ) d%addipr -
ai Yai+1

=fP(~-x1-,xi+1,-~-)-'-dx1-dxi+1---, (8)
R

the symbol Jr meaning that the integration is
to be taken over those ranges of the variables
which lie within the region R. This is simply
Eq. (6) with a, b, - - - replaced by x1, %3, - - - and
integration replacing summation.

In quantum mechanics this is the correct
formula for the case that xy, xg, «- -, %;, * -+ Were
actually all measured, and then only those paths
lying within R were taken. We would expect the
result to be different if no such detailed measure-
ments had been performed. Suppose a measure-
ment is made which is capable only of deter-
mining that the path lies somewhere within R.

The measurement is to be what we might call
an ‘“‘ideal measurement.” We suppose that no
further details could be obtained from the same
measurement without further disturbance to the
system. I have not been able to find a precise
definition. We are trying to avoid the extra
uncertainties that must be averaged over if, for
example, more information were measured but
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not utilized. We wish to use Eq. (5) or (7) for

all x; and have no residual part to sum over in .

the manner of Eq. (4).

We expect that the probability that the par-
ticle is found by our ‘‘ideal measurement’ to be,
indeed, in the region R is the square of a complex
number |¢(R)|2. The number ¢(R), which we
may call the probability amplitude for region R
is given by Eq. (7) with a, b, --- replaced by

Xiy Xigl, and summation replaced by in-
tegration : '
¢(R)=Lim f
e—0 R
Xq)(...x/i,xl._‘_l...)...dxidxi+1...‘ (9)

The complex number ®(- - x4, xiy1- - +) is a func-
tion of the wvariables x; defining the path.
Actually, we imagine that the time spacing € ap-
proaches zero so that & essentially depends on
the entire path x(¢) rather than only on just the
values of x; at the particular times £;, x;=x(;).
We might call ® the probability amplitude func-
tional of paths x(?).

We may summarize these ideas in our first
postulate :

I. If an ideal measurement is performed to
determine whether a particle has a path lying in a
region of space-time, then the probability that the
result will be affirmative is the absolute square of a
sum of complex contributions, one from each path
in the region.

The statement of the postulate is incomplete.
The meaning of a sum of terms one for “each”
path is ambiguous. The precise meaning given
in Eq. (9) is this: A path is first defined only by
the positions x; through which it goes at a
sequence of equally spaced times,'® ¢{;=f; 1+e.
Then all values of the coordinates within R have
an equal weight. The actual magnitude of the
weight depends upon e and can be so chosen
that the probability of an event which is certain

10 There are very interesting mathematical problems
involved in the attempt to avoid the subdivision and
limiting processes. Some sort of complex measure is being
associated with the space of functions x(¢). Finite results
can be obtained under unexpected circumstances because
the measure is not positive everywhere, but the contribu-
tions from most of the paths largely cancel out. These
curious mathematical problems are sidestepped by the sub-
division process. However, one feels as Cavalieri must
have felt calculating the volume of a pyramid before the
invention of calculus.
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shall be normalized to unity. It may not be best
to do so, but we have left this weight factor in a
proportionality constant in the second postulate.
The limit e—0 must be taken at the end of a
calculation. '

When the system has several degrees of free-
dom the coordinate space x has several dimen-
sions so that the symbol x will represent a set of
coordinates (x®, x®, ... x®) for a system with
k degrees of freedom. A path is a sequence
of configurations for successive times and is
described by giving the configuration x; or
(20, @, -« x;®), ie., the value of each of
the % coordinates for each time ¢;. The symbol dx;
will be understood to mean the volume element
in 2 dimensional configuration space (at time #;).
The statement of the postulates is independent
of the coordinate system which is used.

The postulate is limited to defining the results
of position measurements. It does not say what
must be done to define the result of a momentum
measurement, for example. This is not a real
limitation, however, because in principle the
measurement of momentum of one particle can
be performed in terms of position measurements
of other particles, e.g., meter indicators. Thus,
an analysis of such an experiment will determine
what it is about the first particle which deter-
mines its momentum.

4. THE CALCULATION OF THE PROBABILITY
AMPLITUDE FOR A PATH

The first postulate prescribes the type of
mathematical framework required by quantum
mechanics for the calculation of probabilities.
The second postulate gives a particular content
to this framework by prescribing how to compute
the important quantity ® for each path:

II. The paths contribute equally in magnitude,
but the phase of their coniribution is the classical
action (in units of #); i.e., the time integral of the
Lagrangian taken along the path.

That is to say, the contribution ®[x(f)] from a
given path x(f) is proportional to exp(¢/%) S[x(¢) 1,
where the action S[x(¢) = S'L(z(¢), x(2))dt is the
time integral of the classical Lagrangian L(&, x)
taken along the path in question. The Lagrangian,
which may be an explicit function of the time,
is a function of position and velocity. If we
suppose it to be a quadratic function of the
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velocities, we can show the mathematical equiva-
lence of the postulates here and the more usual
formulation of quantum mechanics.

To interpret the first postulate it was necessary
to define a path by giving only the succession of
points x; through which the path passes at
successive times ;. To compute S= S L(&, x)dt
we need to know the path at all points, not just
at x;. We shall assume that the function x(¢) in
the interval between ¢; and #;y; is the path fol-
lowed by a classical particle, with the Lagrangian
L, which starting from x; at ¢; reaches x;,1 at
tiv1. This assumption is required to interpret the
second postulate for discontinuous paths. The
quantity (- - -x;, X1, - -+) can be normalized
(for various ) if desired, so that the probability
of an event which is certain is normalized to
unity as e—0. ,

There is no difficulty in carrying out the action
integral because of the sudden changes of velocity
encountered at the times ¢; as long as L does not
depend upon any higher time derivatives of the
position than the first. Furthermore, unless L is
restricted in this way the end points are not
sufficient to define the classical path. Since the
classical path is the one which makes the action
a minimum, we can write

S=Z S(xi+1, -’X?i), (10)

where

S(xis, ) = Min. f " LG, xd. (1)

3

Written in this way, the only appeal to classical
mechanics is to supply us with a Lagrangian
function. Indeed, one could consider postulate
two as simply saying, “‘® is the exponential of ¢
times the integral of a real function of x(f) and
its first time derivative.” Then the classical
equations of motion might be derived later as
the limit for large dimensions. The function of x
and & then could be shown to be the classical
Lagrangian within a constant factor.

Actually, the sum in (10), even for finite ¢, is
infinite and hence meaningless (because of the
infinite extent of time). This reflects a further
incompleteness of the postulates. We shall have
to restrict ourselves to a finite, but arbitrarily
long, time interval.
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Combining the two postulates and using Eq.
(10), we find

o(R) =Lim
€—0 R
XCX —_ X1, Xi e — e e
Pla s o 4 4

where we have let the normalization factor be
split into a factor 1/4 (whose exact value we

shall presently determine) for each instant of

time. The integration is just over those values
Xi, Xig1, -+ which lie in the region R. This
equation, the definition (11) of S(x:y1, x:), and
the physical interpretation of |¢(R)|? as the
probability that the particle will be found in R,
complete our formulation of quantum mechanics.

5. DEFINITION OF THE WAVE FUNCTION

We now proceed to show the equivalence of
these postulates to the ordinary formulation of
quantum mechanics. This we do in two steps.
We show in this section how the wave function
may be defined from the new point of view. In
the next section we shall show that this func-
tion satisfies Schroedinger’s differential wave
equation.

We shall see that it is the possibility, (10), of
expressing .S as a sum, and hence ® as a product,
of contributions from successive sections of the
path, which leads to the possibility of defining
a quantity having the properties of a wave
function.

To make this clear, let us imagine that we
choose a particular time ¢ and divide the region R
in Eq. (12) into pieces, future and past relative
to t. We imagine that R can be split into: (a) a
region R/, restricted in any way in space, but
lying entirely earlier in time than some #’, such
that ¢/ <¢; (b) a region R"’ arbitrarily restricted
in space but lying entirely later in time than ¢”/,
such that ¢’ >¢; (c) the region between ¢ and ¢’
in which all the values of x coordinates are un-
restricted, i.e., all of space-time between ¢’ and ¢”.
The region (c) is not absolutely necessary. It can
be taken as narrow in time as desired. However,
it is convenient in letting us consider varying ¢ a
little. without having to redefine R’ and R”.
Then |o(R’, R”)|? is the probability that the



