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Feynman’s path to quantum mechanics

10.1 Introduction

Feynman began his 1948 paper in the Reviews of Modern Physics, entitled
‘space—-time approach to non-relativistic quantum mechanics’, by stating: ‘It is
a curious historical fact that modern quantum mechanics began with two
quite different mathematical formulations: the differential equation of
Schrodinger, and the matrix algebra of Heisenberg [as well as the g-number
formulation of P. A. M. Dirac]. The two, apparently dissimilar approaches,
were proved to be mathematically equivalent. These two points of view were
destined to complement one another and to be ultimately synthesized in
Dirac’s transformation theory.

‘This paper will describe what is essentially a third formulation of non-
relativistic quantum theory. This formulation was suggested by some of
Dirac’s remarks concerning the relation of classical action to quantum
mechanics.! The probability amplitude is associated with [the] entire motion
of a particle at a particular time.’?

With these words Richard Feynman introduced one of his now most well
known papers. In the spring of 1947 he decided to publish the most important
parts of his Ph.D. thesis. Feynman had thought about publishing this work in
a regular journal earlier, but World War Il intervened, and he was not able to
do so: ‘The war interrupted the work.”

‘During the war, I didn’t have time to work on these things very extensively,
but wandered about on buses and so forth, with little pieces of paper (in my
pockets), and struggled to work on it and discovered indeed that there was
something wrong. . ..”* He discovered that he was not able to exclude the
possibility of a complex value for the energy in his quantum action-at-a-
distance theory. And if this was to be the case, one would obtain obviously
wrong results for the probabilities of the events in this theory. In particular, the
sum of the probabilities of all possible independent events in such a theory
would not be equal to one. But this sum must be equal to one, because in every
case some of these events should happen.
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Feynman had started to think about these things in the fall of 1946 at
Cornell, but at that time he found it quite difficult to write it all down in the
form of a paper. At the January 1947 annual meeting of the American Physical
Society Feynman encountered Herbert C. Corben, his friend from the early
days in Princeton; Corben had discouraged Feynman at that time from getting
too deeply involved in the ideas of A.S. Eddington. Corben had returned to
Australia in 1942, with his California-born wife Mulaika (née Barclay), where
he taught at the University of Melbourne. The Corbens had returned to the
United States in the fall of 1946, after Herbert had accepted the offer of an
appointment at the Carnegie Institute of Technology at Pittsburgh. Feynman
told them about the problems he was working on, how his work was going,
and the difficulties he was having in getting it all down on paper; ‘but after
three weeks the paper emerged.”

This was not the whole story. In April 1970, Feynman recalled: ‘I wrote up
this paper and sent it to the Physical Review, and they suggested that I publish
it in the Reviews of Modern Physics, which I did. At first, it was returned; they
said it was too long, that this stuff was old hat, and that the first part in the
paper was well known, which could be left out. Hans Bethe taught me a trick.
He said, “You have to emphasize that this part is known, and others that are
new. It will take only a few paragraphs. In fact, I will shorten it for you.” Then
Bethe took out one sentence, and said, “If you make a small effort in this
direction you don’t have to take the whole thing out.” That worked. They
published it.” In the paper, Feynman thanked H. C. Corben and his wife. ‘She
more than cooked. She was very enthusiastic, cooperating with my writing
and trying to encourage me.’

In his 1948 paper (herein later referred to as the RMP (1948) article),
Feynman first described that part of his Ph.D. thesis that did not produce any
difficulties. ‘All the ideas which appear in the RM P (1948) article were written in
such a form that if any generalization is possible, they can be translated. . .. The
thesis contains a somewhat more detailed analysis of the general relation of the
invariance properties of the (action) functional and constants of the motion.
Also the problems of elimination of the intermediate harmonic oscillators is
done more completely than is done [in the RMP (1948) article]. The reason I
did not publish everything in the thesis is this. I met with a difficulty. An
arbitrary action functional S produces results which do not conserve
probability; for example, the energy values come out complex. I do not know
what this means, nor was I able to find that class of action functionals which
would be guaranteed to give real eigenvalues for the energies.”®

10.2 The path-integral

In the RMP (1948) article Feynman presented in detail his new approach to
quantum mechanics. Feynman’s third way of formulating quantum mechanics
was based on the new physical interpretation of the mathematical method
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which he had developed in his thesis. The ‘key words’ which led to the new
conceptual advances were ‘superposition of probability amplitudes’. The
important equation (6.11) can be interpreted physically as a Huygens’s
principlet for matter waves, and it describes the evolution of the wave function
during a small time interval. In the case of quantum mechanics, the classical
trajectories play the role of rays in geometrical optics. Then, instead of
Fermat’s principle of least time, we can apply Hamilton’s principle of least
action (see equations (6.1) and (6.4) in Chapter 6) for classical or ‘geometrical’
mechanics. The analogy between geometrical optics and wave optics was used
by Schrodinger when he derived the wave equation in quantum mechanics.®
Feynman used this analogy in a more direct way to reach the right physical
interpretation of his new method. The formula (6.11) says that ‘if the
amplitude y of the wave is known on a given “surface”, in particular the
“surface” consisting of all x at time t, its value at a particular nearby point ¢t +¢,
is a sum of contributions from all points of the “surface” at t. Each
contribution is delayed in phase by an amount proportional to the action it
would require to get from the “surface” to the point along the path of least
action of classical mechanics.”®

It ought to be emphasized that Huygens’s principle is actually not
completely correct in optics, and has to be replaced by some modification,
which was given by Kirchhoff. Since the wave equation in optics is of second
order with respect to time derivatives, one should—in accordance with
Kirchhoff’s modification—give both the amplitude and its time derivative on
the adjacent surface. It is curious that Huygens’s principle actually may be

+ Huygens’s principle was established by Christiaan Huygens in 1678. The wave
properties of light were discovered in quite a long chain of investigations, which
were started by the work of Francesco Grimaldi (1618-63) leading to the discovery
of the diffraction of light. His experiments were repeated by Robert Hooke and then
by Isaac Newton. In 1675 Olaf Roemer established the finite speed of light, by
measuring the periods of the eclipses due to Jupiter’s shadow on its innermost
moon. Starting from Roemer’s discovery, Huygens was able to explain the
propagation of light as a wave phenomenon. This explanation says that when the
wave reaches a given point in space, this point becomes the source of spherical
waves, which spread out with a finite speed. The spherical waves from all space
points result in the interference of the spreading waves. Thus Huygens was able to
prove the rectilinear nature of light rays as a consequence of his spherical waves.

The modern idea of interference was given by Thomas Young in 1801, and then
the theory of these phenomena was developed by Augustin Fresnel in 1818.
Fresnel’s theory was expressed in purely geometrical terms by using the famous
zone construction.” Finally, in 1883 Gustav Kirchhoff wrote the solution of the
equation for the light waves in the correct form as an integral like equation (6.11),
but involving a wave derivative in time. For the partial differential equations of
more general type, Kirchhoff’s approach was developed by Jacques-Salomon
Hadamard in 1923.

The change from Feynman’s work to Schrodinger’s looks like a change from
Grimaldi to Kirchhoff, but only as an evolution in the opposite direction.
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applied to the quantum wave equation without any modification, as Feynman
showed. ‘The wave equation of quantum mechanics is of first order in the time;
therefore, Huygens’s principle is correct for matter waves, the action replacing
the time.”

Thus the complete and clear physical interpretation of equation (6.11) was
obtained. But the more important step was to arrive at the correct physical
interpretation of equation (6.13), which gives the amplitude K for a finite time
as the limit of the integration performed multiple times on the coordinates.
What can this procedure mean physically? After some general considerations
of the relation between probabilities and quantum magnitudes, Feynman
arrived at an extremely nice and simple answer to this principal question. To
explain how this can be done, he assumed that he had a particle moving in one
dimension, which can take up various values of a coordinate x. Then he wrote
the formula (6.11) in the form

dx;yy dx;

) i
K=£1_{13fRexp<£Zi:S(xi+1,xi)>" <~ a1 (10.1)

where A is a normalization factor. Here Feynman divided the time interval
from the initial instant to the final instant into a large number of small
intervals, given by successive times ¢, t,, t5, . .. , where t;, ; =t;+¢. Then the
coordinates x,, X,, X3, . . . , which lie in some region R, could be considered as
coordinates of the positions of the particle at corresponding times ¢, t,, t5,
.. .. ‘From the classical point of view, the successive values x,, x,, X5, . . . of
the coordinates practically define the path x(t). Eventually, we expect to go to
the limit e—0.” 1 By varying the values of a coordinate x;, we will have various
paths in the range R.

The quantity S(x;, ,, x;) in equation (10.1) is simply the classical action on
the corresponding path from point x; , ; to point x;. One can obtain this action
function from the the formula (6.10). Hence, the sum in the exponent in
equation (10.1) in the limit e—0 goes to the classical action on the path x(t):
S=1lim,,, Y ; S(x;4,x,). Finally, the many-time integration in equation
(10.1) obviously means a summation over all possible paths in the range R,
since by varying x —s we will have all possible paths in this range. But this
means just the interference of the terms exp(iS/h), which corresponds to every
possible path in R. Hence, Feynman’s main postulate was: ‘The paths
contribute equally in magnitude, but the phase of their contribution is the
classical action (in units of #), i.e. the time integral of the Lagrangian taken
along the path.’!!

Later on, Feynman explained this postulate as follows: ‘The total amplitude
can be written as the sum of the amplitudes of each path—for each way of
arrival. For every x(t) that we could have—for every possible imaginary
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trajectory—we have to calculate an amplitude. Then we add them all together.
What do we take for the amplitude for each path? Our action integral tells us
what the amplitude for a single path ought to be. The amplitude is
proportional to some constant times exp(iS/#), where S is the action for the
path. That is, if we represent the phase of the amplitude by a complex number,
the phase angle is S/A. The action S has dimensions of energy times time, and
Planck’s constant # has the same dimensions. It is the constant # that
determines when quantum mechanics is important.’*? ‘I could see the paths
.. .each path got an amplitude. (So the) clarity came from writing up the RMP
(1948) article.” 13

As a straightforward consequence of Feynman’s extremely important and
completely new viewpoint concerning the relation (10.1),T one can answer a
three-century-old question about the meaning of the principle of least action
(Section 6.2). ‘Here is how it works: Suppose that for all paths, Sis very large
compared to #. One path contributes a certain amplitude. For a nearby path,
the phase is quite different, because with an enormous S even nearby paths will
normally cancel their different phases—because # is so tiny. So, nearby paths
will normally cancel their effects out in taking the sum—except for one region,
and that is when a path and a nearby path all give the same phase in the first
approximation (more precisely, the same action within #). Only those paths
will be the important ones. So in the limiting case in which Planck’s constant #
goes to zero, the correct quantum mechanical laws can be summarized by
simply saying: “Forget about all these probability amplitudes. The particle
does go on a special path, namely, that one for which S does not vary in the

+ Considering the formula (6.1) from a purely mathematical point of view, one
ought to emphasize that Feynman was not the first to discover such types of
relations. In pure mathematics, an analogous idea was first developed by Vito
Volterra.'* He studied an ordinary linear differential equation which is similar to
Schrédinger’s equation, but in infinite-dimensional spaces. Volterra proved
rigorously that one can represent the solution of these equations in a form similar to
equation (10.1), but instead of integration there occurred summation on certain
discrete indices, and instead of terms like exp [iS(x; ;, x;)/h] there were matrices.
Then the corresponding type of the limit in equation (10.1) will yield a so-called
‘multiplicative of Volterra’, which was studied by many mathematicians. Volterra
also considered the case of the infinite-dimensional linear functional space like
w(g)."?

Feynman did not know this mathematical result. He was not looking for
rigorous formal proofs of his new method, but only for clear intuitive arguments.
Before Feynman, nobody had ever made the attempt to visualize the summation in
equation (10.1) in the intuitively clear way he did it.

The purely mathematical considerations show why the path-integral method
should be extremely useful in various scientific domains, although it was invented
by Feynman for quantum mechanics. The reason for this is that from the
mathematical point of view the path-integral method gives the solution of a linear
differential equation in a linear space with any dimension whatsoever. The basic
equations in many scientific domains are of this type, hence the generality of
Feynman’s method.
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first approximation.” That’s the relation between the principle of least action
and quantum mechanics.’}12

Thus Feynman’s postulate leads to the principle of least action (6.1) and
gives us the right explanation as to where this principle is coming from. As far
as the principle of least action, the most fundamental principle of classical
physics, is concerned, one which leads to the classical dynamical equations in
all the fundamental classical theories, one can truly say that it was Feynman
who discovered the deepest import of this principle.

10.3 The new operator algebra

In several sections of his RMP (1948) paper, Feynman developed the new
formalism of quantum mechanics, and proved its equivalence to the older
formulations of Heisenberg and Schrodinger. He showed how one can
introduce the wave function in his path-integral approach, and derived the
Schrédinger equation for this wave function. We have explained Feynman’s
derivation of the Schrodinger equation in Section 6.4. Then he introduced his
new so useful notion of the ‘transition amplitude’, which can now be
found in textbooks on quantum mechanics. Given two quantum states with
wave functions Y(x,t) and y(x,t), Feynman called the expression
[x*(x, ¢ W(x, t') dx the ‘transition amplitude’. Here y*(x, t”) is the function
conjugate to x(x, r) at the instant of time ¢”, and ¥ (x, t) is taken at another

+ A derivation of the principle of least action from quantum mechanical
reasoning was first given by Dirac.’ This served as the point of departure for
Feynman’s investigations on the path-integral method. Considering equation
(10.1)as an approximation to the exact quantum transition function from the initial
to the final instants of time, Dirac discovered that the quantum analog of
Hamilton’s action principle (equation (6.1)) is absorbed in the composition law
(10.1), and the classical requirement that the values of the intermediate coordinates
shall make the action stationary corresponds to the condition in quantum
mechanics that all values of the intermediate coordinates are important in
proportion to the integral (10.1). Then Dirac considered the limiting case when #
tends to zero and stated that the integrand in equation (10.1)is a rapidly oscillating
function when # is small. Thus the multiple integral (10.1) ‘contains the quantum
analog of the action principle (as far as) the importance of our considering any set of
values for the intermediate [coordinates] is determined by the importance of this
set of values in the integration. If we now make make # tend to zero, this statement
goes over into the classical statement that . . . the importance of our considering
any set of values for the intermediate [ coordinates] is zero unless these values make
the action stationary.’!

From the above remarks it is clear that Dirac was very close to the interpretation
of equation (10.1) as a summation over all virtual paths, and he had found the new
formulation as an extremely nice and important way to explain the principle of least
action as a result of quantum laws. However, Dirac was not able to complete this
line of his investigation on quantum mechanics because his point of view was that
the exponent of the classical action in the form of Hamilton’s principal function is
only an approximate semiclassical relation. Dirac was interested only in a general
question: What is the quantum analog of the classical principle of least action?
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instant of time t'. Thus the transition amplitude gives us the quantum
amplitude for the transition from the quantum state Y at the time t' to the
quantum state y at the time t”. Feynman showed that, in his path-integral
method, the average of the transition amplitude may be regarded as unity, that
is

dx

el >s = tim j j*(x" < explistip (e, ) 0 Bt gy,

(10.2)

In the language of ordinary quantum mechanics, if the quantum
Hamiltonian operator H does not depend on time, this transition amplitude is
the matrix element of the quantum evolution operator exp[ — (" —t' )H/h],
between the quantum states y, and ,. This operator describes the evol-
ution of the wave function y from the instant ¢ to the instant ¢”:
Y (x, t")=exp[— ("=t H/h]Y (x, t').

As a generalization of formula (10.2), Feynman introduced the formula for
the averages of any functional F of the coordinates x; for ¢’ <, <t¢". He defined
the ‘transition element’ of the functional F between the states y at ¢’ and y” at t”
for the action S as

Ctel I 55 =lim J . f K ) (X, Xy - -y X))

i dx dx.
xexp<£2i:S(xi+1, xi)>|p(x’, t')—f . ;1 Ldx;. (10.3)

Then he used these basic formulas to obtain several fundamental results
from his new formulation of quantum mechanics.

The first application was the new formulation of the so-called perturbation
theory in quantum mechanics. Suppose we consider a second problem which

+ It turns out that, historically, this was the fundamental result of Feynman’s
path-integral method, which was first used in important physical problems.
Feynman himself used this part of his method very soon in his papers on quantum
electrodynamics.

The perturbation theory plays a very important role in many physical problems.
Very often one cannot solve the exact problem because of its complexity. But it may
turn out that we can solve some other problem, which differs slightly from the initial
one. In this case, one can say that some small ‘perturbation’ leads from the
unperturbed solvable problem to the perturbed one that we actually wish to solve.
In such a situation, the method which permits one to reach the solution of the
complicated problem, using the solution of the simpler one, is needed. This method
is called ‘perturbation theory’. Feynman’s path-integral method leads to the now
very successful formulation of the perturbation theory in quantum mechanics,
based on formulas like equation (10.4). Very soon after the RMP (1948) article,
Feynman proposed a proper generalization of his new perturbation theory in
quantum electrodynamics. Since then Feynman’s perturbation theory has been one
of the most useful methods in the quantum theory of various physical fields.
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differs from the first because, for example, the potential is augmented by a
small amount AU(x, t). Then in the new problem the quantity replacing S is
§'=5+Y; AU(x;, t). Substituting it into equation (10.2) leads directly to an
expression, which after performing some algebra leads to an important
perturbation formula. If the effect of U is small, we find

<Xt"{1|lpt'>s' = <Xt"| lllpt’>S + % <Xt”

Z AU(x;, t;)

%>. (10.4)
S

Formula (10.4) permits one to calculate the effects of the perturbation
+U(x, t) to first order with respect to the small parameter A, using the solution
of the more simple problem with the action function S.

The next fundamental result of Feynman’s new formulation was a
completely new derivation of Newton’s equations and the commutation
relations. By using formula (10.3), Feynman had, in his dissertation, already
derived the quantum Lagrange equation.'® In the RMP (1948) paper, he
wrote Newton’s equations in the form

0?—T<”“_”—”_”*>—wm. (10.5)
& & &

Here ¢ is the small difference between the successive times 7, , t,, t5, . . . that
is, ,, , —t;=¢. Hence (x, , ; — x;)/¢ is the velocity and the term [ (x, , ; — X;)/e —
{x, — X, 1)/€]/e presents the acceleration a of the particle. The derivative of the
potential V(x), taken with the minus sign, gives the force term F. Thus, the
right-hand side in the expression (10.5) represents just the classical term
—ma+ F, which according to Newton, must be equal to zero. Actually, in
quantum mechanics, this expression corresponds to some quantum operator,
which cannot be equal to the zero operator. But the average values of this
operator (with respect to some given action S, according to equation (10.3)),
are zero, and that is completely sufficient for the right physical interpretation
of the meaning of this operator. Feynman employed the symbol 5 to
emphasize the fact that two different functionals may give the same result for
the transition amplitude between any two states or, in other words, they are
equivalent under one action S but may not be equivalent under another.

So, equation (10.5) represents Newton’s equations in Feynman’s formula-
tion of quantum mechanics.

It turns out that in Feynman’s formulation of quantum mechanics, one can
also derive the quantum commutation relations in exactly the same manner.
The commutation relations between the quantum momentum operator p and
the quantum position operator x, in the usual formulation of quantum
mechanics, reads: [p, x]=px—xp=h/i. Feynman showed that in his new
formulation of quantum mechanics a new relation corresponds to the old one.
This new relations reads
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— — X h
m(fﬁ_l_M‘)xk_m(%)ka_‘. (10.6)
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Since (x,,; —x,)/¢ corresponds to the velocity v of the particle, here
m(x, , , — X, )/e corresponds to the classical momentum p=muo.

Taking into account the new form of the commutator relation, equation
(10.6), as far as the new form of Newton’s equations (10.5) are concerned, we
see that ‘the operators corresponding to the functions of x, ., will appear to
the left of the operators corresponding to the functions of x,, i.e. the order of
terms in a matrix operator product (in the old formalism of quantum
mechanics) corresponds (in Feynman’s new formulation) to an order in time of
the corresponding factors in a functional. Thus, if the functional can be, and is,
written in such a way that in each term factors correspond to earlier terms, the
corresponding operator can immediately be written down if the order of the
operators is kept the same as in the functional. Obviously, the order of factors
in a function is of no consequence. The ordering just facilitates transition to
conventional operator notation.’!” This is the essence of the new Feynman
operator algebra, where the usual operator ordering is replaced by the ordering
of the classical-like terms in time.

The Hamiltonian operator is of central importance in the usual formulation
of quantum mechanics. Therefore, Feynman studied in detail the functional
corresponding to this operator. He preferred to define the Hamiltonian
functional in a physical way by the changes made in a state when it is displaced
in time. Feynman had to perform the calculations especially carefully, because
of the squared dependence of the Hamiltonian on the velocity of the particle.
He derived the following expression for the functional, which corresponds to
the Hamiltonian operator:

H, = +V(x). (10.7)

m <xk+1_xk>2 n
2\ br1— 1t 21— 1)

The second term in this expression is proportional to Planck’s constant #. It
is a very important term, because it is due to this term that the kinetic energy
turns out to be finite. The first term in equation (10.7) leads only to the infinite
kinetic energy because of the relation (x,,  —x,)> (h/m) (t,4, — t,), which
says that the root mean square of the ‘velocity’ (x, ., —xX,)/(ty+1— 1) is of
order (t,, , —t,)~'/?, hence it goes to infinity when ¢, , , —t, goes to zero. From
the physical point of view this leads to the important conclusion that,
nevertheless, the paths which give an essential contribution to the Feynman
path-integral for the transition amplitude (see equation (10.1)) are continuous
paths, the velocity of the particle at each point of the paths is not well defined,
and goes to infinity. One can imagine such a path as a continuous line, which
breaks its direction at every point. From the mathematical point of view such a
‘zigzag’ path is not a differentiable path, hence the velocity of the particle is not
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well defined. This fact does not make difficulties in the Hamiltonian, because
of the second term in equation (10.7), which cancels the infinity from the first
term exactly in the limit when ¢, , —t, goes to zero. Feynman derived the
second term in equation (10.7) from the factor 4 in equation (10.1). One has to
remember that this factor was just needed to establish the exact relation
between the quantum transition amplitude and the exponent of the classical
action S times i/h, which was the starting point of Feynman’s invention of the
new formulation of quantum mechanics (see Section 6.5)

In this way, Feynman demonstrated the self-consistency of his path-integral
method and its equivalence to the old Schrodinger and Heisenberg
formulations of quantum mechanics. At the end of the general discussion of
the path-integral method, Feynman mentioned the shortcomings in his
formulation of quantum mechanics. He noted: ‘The formulation given here
suffers from a serious drawback. The mathematical concepts needed are new.
At present, it requires an unnatural and cumbersome subdivision of the time
interval to make the meaning of the equations clear. Considerable improve-
ment can be made through the use of the notation and concepts of the
mathematics of functionals. However, it was thought best to avoid this in the
first presentation. One needs, in addition, an appropriate measure for the
space of the argument functions x(t) of the functionals.

‘It is also incomplete from the physical standpoint. One of the most
important characteristics of quantum mechanics is its invariance under
unitary transformations. These correspond to the canonical transformations
of classical mechanics. Of course, the present formulation, being equivalent to
ordinary formulations, can mathematically be demonstrated to be invariant
under these transformations. However, it has not been formulated in such a
way that it is physically obvious that it is invariant. This incompleteness shows
itself in a definite way. No direct procedure has been outlined to describe
measurements of quantities other than position. Measurements of momen-
tum, for example, of one particle, can be defined in terms of measurements of
positions of other particles. The result of the analysis of such a situation does
show the connection of momentum measurements to the Fourier transform of
the wave function. But this is a rather roundabout method of obtaining such
an important physical result. It is to be expected that the postulates can be
generalized by the replacement of the ideas of “paths in a region of space—time
R”, or to “paths of class R”, or “paths having the property R”. But which
properties correspond to which physical measurements has not been
formulated in a general way.’'®

Feynman then gave an outline of the generalization of his path-integral
method and how it could be used to solve certain problems. We shall discuss
these matters in Section 10.5, but before doing so we will give a brief historical
account of functional integration before Feynman, something which he
discovered independently, without any knowledge of what had been done
before.
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10.4 Functional integration before Feynman

As we have noted, Feynman’s principal mathematical result was the new
method for the calculation of averages of quantum mechanical quantities with
the help of formulas like (10.2) and, in more general cases, like (10.3). From the
mathematical point of view, these formulas give us the averages of certain
functionals F [(x, t)] on the paths x(t) in the configuration space of the
classical mechanical system, where the time ¢ runs from some initial instant ¢;,
to some final instant ¢;;,. As a weight in the averaging procedure, one may use
the other functional, namely, the exponent of the classical action times i/h. We
will now present an outline of some landmarks in the theory of functionals,
which has developed and been applied very extensively after Feynman’s work.

(a) Vito Volterra

The general theory of functionals was developed in the works of Vito Volterra,
long before Feynman’s investigations on the new quantum mechanical
formalism. We have already mentioned the contribution of Volterra in the
solution of linear equations in multi- or infinite-dimensional linear spaces by
means of his multiplicative integral. Developing the general theory of the
functional calculus,'® Volterra invented the way to reduce the calculations
with functionals to calculations with usual functions of many variables. This
procedure was of just the type which Feynman used later: namely, one has to
divide the interval from the initial time ¢, to the final time ¢, into a large, but
finite number N of time instants t;, and then to approximate the functional
F[(x, t)] with the function F (. . ., x;,, X;. . .), where x; gives the value of x(t,).
Then, one has to work with this function, instead of the functional F[(x, t)].
This procedure is called a finite-dimensional approximation, or discretization,
of the functional F [(x,t)], which itself may be considered as a function of
infinitely many variables x(t), with a continuous label ¢. After performing
operations on the function F (.. ., x;,, X;, . . .) in the final result one has to
take the limit N— o0, keeping ¢;, and t;, fixed. And this is just the procedure
which Feynman employed.

(b) Norbert Wiener and others

The first considerations of the average value of a functional in pure
mathematics, without any connection with quantum mechanics, were given by
P.J. Daniel,2° R. Gateaux,?! P. Lévy,?? and in several papers by Norbert
Wiener.?3

The first physical application of the functional machinery was Wiener’s
approach to the Brownian motion of very small particles in a colloidal
suspension.

Brownian motion was discovered by Robert Brown, a Scottish botanist, in
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1827, when he saw through the microscope the strange chaotic movement of
very small particles in colloidal suspensions. The analysis of this phenomenon,
given by many physicists, shows that this movement is caused by small
particles being struck by the molecules of the liquid in which they were
suspended. Since these hits are random, the movement is too chaotic and leads
to the diffusion of the particles in the liquid. The path of a single particle looks
like a zigzag line, consisting of straight lines with random orientation and
length. These zigzag straight lines describe the motion of the free particle
between sequential impacts.

Let us consider, for simplicity, a particle which wanders along the X axis
only. Let ¢(x, t) denote the probability distribution of the particle to be at the
point x at at time ¢. In his paper on Brownian motion, Albert Einstein?*
showed that if one supposes that the particle wanders a given distance in a
given time that is independent of (1) the starting position of the particle, (2) the
initial instant of time when it begins to wander, (3) the direction in which it
starts to wander, then the probability distribution that after a time ¢ the
particle has wandered from the origin to a position lying between x and x + dx
is given by

¢(x, t)= (4nDt) ~'1* exp(—x?/4Dt),
and this probability distribution satisfies the so-called diffusion equation:
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Here D is called the ‘diffusion coefficient’, and it is related to the size and the
mass of the particle and to the temperature and the viscosity of the liquid. It
may be connected, too, with Boltzmann’s constant k and hence with the
fundamental Avogadro number N=6.02213 x 10?3 mol ™!, being the number
of molecules in one gram-molecule of matter. In fact, the possibility of
obtaining the value of the fundamental constant from experiments stimulated
Einstein and Smoluchowski to develop the theory of this phenomenon at the
beginning of the century. However, from the mathematical point of view, the
value of the diffusion coefficient is not essential and by a proper choice of the
units one may put it equal to 1 for simplicity. Then

o(x, t)=(nt) " 1? exp(—x?/t).

Wiener investigated the history of the wandering particle. He assumed that
this history is represented by the equation x=x(t), x(¢t) being a continuous
function; then he considered ‘particle histories’ or ‘time paths’, these being the
key notions, which Wiener used in the proper sense for the first time, and said:
‘There are certain assemblies of time paths to which we can immediately assign
a measure, a probability. These assemblies are obtained by restricting the
position of the particle at certain specified times, finite in number, to certain
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specified finite intervals.’?® Using Feynman’s notation (see equation (10.1)),
we can write this probability as

i
dx;q g dx
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In the limit N—oo, when the time intervals ¢,_,—t, go to zero, this
expression defines a measure on the set of all paths x =x(t). Wiener showed
that this measure is concentrated on the set of continuous paths, which are not
differentiable. In such a limit, the term in the exponent gives just twice the
integral on the time of the kinetic energy of the particle with unit mass:
[¢%(z)? dr. Then we can denote the so-called ‘Wiener measure’ as

dw[x()]= 1/Cexp<—f1 x(r)? d‘L’) ﬁ dx(t),

0 0

and calculate the average value of any functional F[x(t)] on the path x(t)
according to the formula {F )y, =§RF [x(t)] dw[x, t]. In the Wiener measure,
C is a normalization constant, which normalizes the infinite-dimensional
integral under the condition [ dy[x()]=1.

Thus we can see that Wiener represented the corresponding probability and
the average values of the functionals for Brownian particles as functional
integrals, i.e. as weighted sums on all the possible paths or, in other words, on
the histories of the particle.

But there exists an essential difference between Wiener’s formula given
above and equation (10.3) for Feyman’s averages. Wiener’s averages (F )y,
look almost like Feynman’s averages {F)g (see equation (10.2)) for a free
particle, when the action functional reduces to the integral over the time of the
kinetic energy of the particle. But in the exponent of Feynman’s averages there
remains an imaginary factor i/h, which makes it impossible to interpret
Feynman’s averages as averages with respect to some real measure. In contrast
to Wiener’s path integral, in Feynman’s averages there exist rapidly oscillating
complex exponential functions, owing to which, as we know, there exist the
least action principle and classical mechanics. These rapidly oscillating
integrals are not convergent and one must understand them in a proper sense.
In contrast, Wiener’s integrals are very well convergent because of the
properties of the Wiener measure.

Taking into account the finite-dimensional case one may ask how one
should include the exponent of the kinetic energy with the minus sign in
Wiener’s measure. Is it impossible to define the measure in the infinite case as
[5 dx(z)? Such an expression would be completely analogous to the
expression [ [\= | dx;, which gives the measure, i.e. the volume of the ranges in
N-dimensional space. If this were possible, one could include the exponential
factor in the functional, and one would have to take the average both in
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Feynman’s and Wiener’s cases. Moreover, if this were possible we shall have
obtained a translational invariant additive measure, like Lebesgue’s, in an
infinite-dimensional case, and it would be possible to treat both cases in a
similar manner. Unfortunately, one can easily prove that this is impossible
and such a measure does not exist in infinite-dimensional spaces.

The reason is quite simple. Suppose we have a translational invariant
additive measure in the infinite-dimensional linear space, and the volume of
the bounded bodies with respect to this measure is infinite. This means that the
volume of each body does not depend on its position in the infinite-
dimensional space and this volume is the sum of the volumes of all parts of the
body. Let us put on every axis in this space one ball with radius 1, centered at a
distance 1 from the origin. The volume of every such ball is a finite number ¥V,
but the volume of the whole set of such balls is infinite because the space is
infinite-dimensional, and one will have an infinite set of balls, one in every
direction, which does not intersect with another (see Fig. 10.1). Now we may
consider a new ball of radius 10 with its center at the origin. It is evident that all
the infinitely many initial balls will lie within this bigger ball, which must also
have a finite volume V, since we have a Lebesgue-like measure. But this is
impossible, since the volume of the big ball is larger than the common volume
of the entire initial set of balls, which now lie within the larger one. The
common volume of the small balls is infinite.

This consideration shows that it is impossible to treat Wiener’s and
Feynman’s averages in a similar way. The fast decreasing exponential,
included in the Wiener measure, allows one to use measure theory. But in the
case of Feynman’s averages this is impossible and one needs some completely
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Fig. 10.1. Three-dimensional illustration of the geometrical picture we
have to consider to prove the absence of the translational invariant
additive measure in infinite-dimensional space. In the infinite-dimen-

sional case there are infinitely many axes, hence, infinitely many small
balls in the big ball.
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different ideas to give his procedure a rigorous meaning. In spite of this
problem, we should note that now there exist different approaches which can
deal with Feynman’s averages involving certain pseudomeasures. There exists
a very suggestive short conference address given by Kirkwood,?® in which he
mentioned that one could apply to quantum physics the integration of
functionals in the Wiener sense for the calculation of the statistical sum. This is
the first known attempt to connect the functional integral method with
quantum problems.

(c) Subrahmanyan Chandrasekhar

Wiener’s treatment of the Brownian motion of the particles in liquids
was approximate, because he neglected the inertia of the particle and
external forces, such as the gravitational force and others, which can act
on the particles. The next important step in this direction was taken by
Subrahmanyan Chandrasekhar,?® who treated Brownian motion entirely by
the functional integral method, although nowhere did he mention this name.

In 1908 Paul Langevin®’ had proposed to treat Brownian motion as the
motion of a classical particle of mass m under the action of a random force f (t),
and a frictional force — (m/7)x, which is proportional to the velocity x of the
particle. The frictional force describes the interaction of the particle with the
medium, and 7 is the relaxation time of the particle. In addition, there exists an
external force F. Thus the so-called Langevin equation for the particles reads;

d? d
mﬁzf(t)—(m/r)d—);+F(x, t).

One can solve this equation with respect to the velocity v(t)=x of
the particle. The result shows that the velocity of the particle is a functional
of the random force f(t): v=v[f(t)]. Then, in order to calculate the
physical quantities for the Brownian particle, one has to obtain the averages
of this or other functionals. To do so Chandrasekhar used Wiener’s
method. He assumed the probability distribution of the Wiener force to be
Wiener-like; that is, the probability of finding the value of the force
between f(t) and f(¢t)+df (t) in a short interval of time from ¢ to t+ At to be
(4na/At)'? exp(—f* At) df, where a=kT (m/t) is a constant, k being
Boltzmann’s constant and 7T the temperature of the medium. By a proper
choice of the units one may put a equal to % for simplicity; then the above
probability becomes equal to:

(m/At)~ 12 exp(—f2 At) df.

Chandrasekhar introduced a Wiener-like measure:

dwLf(6)]=(1/C) exp (Lt de[ f(1)] 2> l;[ df(t)-
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By calculating the functional average {}V)y,, Chandrasekhar showed that
the average velocity of the Brownian particle does not depend on the random
force f(t), and the mean square displacement {Ax?), along any direction is
proportional to the time ¢.

For the relaxation processes for times larger than t, the relaxation time of
the particle, we have to go back to Einstein’s approximation, neglecting the
inertia of the particles. This means that we have to write down the Langevin
equation in a more simple form: (m/t) dx/dt=f(t)+ F(x, t). The solution of
this equation is a functional of the random force f{(¢): x(¢)=x[t; x,, to;f(t)].
Here x, is the initial position of the particle at the initial instant ¢,.
Chandrasekhar invented the new approach to evaluate averages of the
functions ®(x, t) of the position x of the Brownian particle at time ¢; this
approach now has a large number of applications both in quantum mechanics
and in statistical physics. The average value of the function ®[x(¢), t],

(OLx(), Ty = f Ox[t: X1 to: ST} dul £ ()],

according to Chandrasekhar, may be represented in the form

(@Lx(1), t]Hw = f‘b(x, DP(x, t; X, to) dx,

where

P(x, £ X, Lo) =[x —x()Dw = J5{x —x[£; %o, 1o/ (01} dwl f(1)],

is the average value of Dirac’s delta-function of the corresponding argument.
The point is that one can calculate this average quite simply by using certain
techniques. Thus, when the external force equals zero, one obtains the result
that the above function, ¢(x, t; x,, t,), is exactly the probability distribution,
first established by Einstein, and the diffusion coefficient is D =kT(zt/m).

Chandrasekhar showed that the function ¢(x,t) obeys the diffusion
equation for the free particle, which we have written above. This was the first
derivation of this equation by the method of functional integration.
Chandrasekhar used a procedure which is exactly the same as Feynman’s
method for the derivation of the Schrodinger equation in his dissertation (see
Section 6.5). Chandrasekhar also used the same method for the derivation of
the Fokker—Planck equation in the general case:

OW/ot =B div,(Wv)+q V2W.

Here W(v, t) is the probability distribution in velocity space, f=m/t, and
q=kT/t is a constant.
Thus Chandrasekhar showed how one could obtain the phenomenological
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results of Einstein and Smoluchowski from a microscopical point of view by
using functional integration. We should note that nowadays a similar
approach is used in so-called statistical quantization to arrive at quantum
mechanics from classical mechanics.

Chandrasekhar also solved the problem of a particle subject to both a
random force and an external force, for example a harmonic oscillator under a
random force. Then he used his method and results in many physical and
astrophysical problems: the theory of density fluctuations, colloid statistics,
thermodynamical irreversible processes, effects of gravity on Brownian
motion, the phenomenon of sedimentation, the theory of coagulation in
colloids, the escape of a particle over potential barriers, and various problems
of stellar dynamics.

Feynman did not know anything about the achievements of functional
analysis in the calculation of functional averages. He was unfamiliar with the
mathematical articles in this domain, but he invented all the things he needed.
‘In order to do [the path-integral method] I had to invent this new kind of
mathematical structure I had thought of, which was similar to a thing called
the Wiener integral . . . . I didn’t know anything about that. Actually, if you
look up the Wiener integral you will find, if 'm not mistaken, that what
Wiener did was to suppose that the e (raised) to minus the kinetic energy piece
was a standard weight, and you could do integrals with that weight, whereas
the way I was looking at at it, that weight as well as the rest of the function was
what you integrate. There’s a lot of difference, maybe not as much as I thought.
Anyway, never mind! I didn’t know anything about Wiener or the source of
the Wiener integral, except the complex plane.’ 28

‘There was much in my thesis [and in the RMP 1948 article] which was of
that kind, things other people had done, and I never even checked the
references, but presumably other people had done them. There was, of course,
a discussion of principles of least action in classical mechanics, and the
problems of the definition of energy and momentum under these circum-
stances. [In my thesis] they were defined in a general way. I think this was
quite early for this definition, but I don’t know if it wasn’t published earlier—
certainly, it has been published since then.” 28

10.5 Possible generalization and some applications

At the end of the RMP (1948) paper, Feynman proposed some generalization
of the path-integral method, which was connected with his action-at-distance
theory. For the case of the theory with a time delay he briefly sketched the
generalization of the method for calculating averages of functionals of a
general type.

Next, Feynman presented the main application of the path-integral method,
namely, the elimination of the field oscillators. This problem had arisen from
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electrodynamics, which Feynman wished to modify in order to avoid the
infinities at the quantum level (see Section 6.3). Feynman briefly illustrated
how one could do this in the simple case of a particle with Lagrangian L(x%, x),
which interacts with an oscillator with Lagrangian (42 — w?q?), with the help
of a term y(x, t)q(t). Here x is the coordinate of the particle, g is the coordinate
of the oscillator, and y(x, t)is an arbitrary function of the coordinate x(t) of the
particle at time ¢. Then the entire classical action of this system may be written
as §=5,+S,+S;, where S is the action of the particle, S, is the action of the
oscillator, and S; is the interaction term in the action of the system. Feynman
showed that the solution of this complicated problem may be divided into two
parts. First, one can take the path integral only on the paths connected with
the oscillator degree of freedom. The result is just the elimination of the
oscillator at the quantum level. Thus one obtains an intermediate problem,
without the oscillator degree of freedom, which has to be solved separately. It
turns out that this intermediate problem is just the action-at-a-distance
theory, which Feynman first considered at the classical level in his dissertation
(see Section 6.3).

The power of the new technique for the calculations of the quantum
amplitudes lies in the possibility one has of separating the complex system into
pieces and ‘integrate out parts of it’. It is very hard to do this in the ordinary
Schrodinger differential or the Heisenberg matrix form of quantum mech-
anics. . . . Drawing on the classical analogue we shall expect that the system
with the oscillator is not equivalent to the system without the oscillator for all
possible motions of the oscillator, but only for those for which some property
[i.e. the initial and final position] of the oscillator is fixed. These properties, in
the cases discussed, are not properties of the system at just one time, so we shall
not expect to find the equivalence simply by specifying the state of the
oscillator at a certain time, by means of a particular wave function. It is just for
this reason that the ordinary methods of quantum mechanics do not suffice to
solve this problem. 2°

However, there is one more extremely important result, which must be
stressed. In the classical elimination of the oscillator degree of freedom there
was one ambiguous choice. There we can choose different solutions of the
classical oscillator equation. To make the right choice in the classical problem,
Feynman had to add an additional requirement: one must derive the
equations of motion of particles without the oscillator from the new principle
of least action. Then it follows that one must choose just this solution of the
classical oscillator equation, which contains one-half advanced and one-half
retarded interaction.

Now, in the quantum problem, there is no need to require the principle of
least action as an additional postulate, because it follows directly from the
path-integral formulation of quantum mechanics for every system (see Section
10.2). In particular, if we have quantum mechanics for the particles without
the oscillator, we shall automatically have a principle of least action for this
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system. Hence, Feynman’s treatment leads unambiguously to the one-half
advanced and one-half retarded interaction in the action-at-a-distance theory.
This result is of great importance for action-at-a-distance theories.

Feynman’s final result of this investigation of the particles interacting
through an intermediate oscillator was that at the quantum level, as at the
classical level, one can eliminate the oscillator and describe the particles as
interacting at a distance, using—in both quantum and classical theories,
respectively—an effective action with delay to describe such an interaction.

Feynman’s method of solving complicated quantum problems, by integrat-
ing by parts the corresponding path integral, is by now a well-known powerful
technique which has got a large number of applications in different kinds of
theoretical investigations. In the last section of his RMP (1948) article,
Feynman gave some suggestions for the applications of the path-integral
method in quantum statistical mechanics and in certain relativistic problems.
He considered the general problem as to how one may include the spin of the
particles in the path-integral method, and suggested a formal way to do it.
‘These results for spin and relativity are purely formal and add nothing to the
understanding of these (problems). There are other ways of obtaining the
Dirac equation which offer some promise of giving a clear physical
interpretation to that important and beautiful equation.”°

The complete realization of this belief of Feynman’s has been reached only
recently in theories making use of the so-called Grassmann variables.3!

At first, Feynman’s fundamental article (RMP, 1948) did not arouse much
interest among theoretical physicists, who were not familiar with Feynman’s
new approach to doing quantum mechanics. As Feynman recalled: ‘At the
Shelter Island Conference [which we shall discuss later on], a lot of exciting
things were discussed and talked about. But in spite of all this, the physicists
ran out of ideas. They asked me if I would explain my path-integral method for
doing quantum mechanics, so I did. I must have been preparing the
manuscript of my paper [RMP, 19487, so that everything was organized and I
explained it. It’s hard to pay attention to some new idea, and they didn’t pay
much attention to it.”*> However, nowadays Feynman’s RMP (1948) paper is
one of the most well known and widely cited papers; it is one of the
cornerstones of modern theoretical physics.
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