
Path Integrals in Quantum Theories: 
A Pedagogic First Step 

As I have mentioned elsewhere (Quantum Field Theory: Introduction and Background)1, I 
strongly believe it far easier, and more meaningful, for students to learn QFT first by the 
canonical quantization method, and once that has been digested, move on to the path integral 
(many paths) approach.  Hopefully, the material below will help such students, as well as those 
who are forced to begin their study of QFT via path integrals. 

1 Background Math: Examples and Definitions 

1.1 Functionals 

Functionals form the mathematical roots of Feynman’s many paths approach to quantum 
theories.  A functional is simply a function of another function. 

Example:  Kinetic energy  21
2T mv=  where v = v(t).  T is a function of v, and v is a function of t. 

Definition(s):  A functional is 1) a function of a function, OR equivalently, 2) a function of a 
dependent variable, OR equivalently, 3) a mapping of a function to a number. 

Symbolism: 
 [ ] [ ]( ) or ( ), ( )F x t F x t x t�  (1) 

The square bracket notation is common, but not always used.  Mathematically, x and t 
represent any function and its independent variable, though in physical problems, they are 
typically spatial position and time, respectively.  Functionals are often dependent on the 
derivative(s) of a function, as well as the function itself, as in the RHS of (1).  Total energy, with 
potential energy dependent on x(t) and kinetic energy dependent on ( )x t� , is one example.  
Additionally, a functional could also be a direct (rather than indirect as in (1)) function of t, i.e. 

 [ ]( ), ( ),F x t x t t� . (2) 

1.2 Functional Derivative 

Definition: A functional derivative is simply the derivative of a functional (F above) with respect 
to a function upon which it depends (x above). 

Symbolism: 

 or
( )
F F

x t x
δ δ

δ δ
 (3) 

The δ notation is common, though the partial derivative symbol � is often used instead. 

1.3 Functional Integral 

Definition:  A functional integral is the integral of a functional with respect to a function upon 
which it depends. 

Symbolism: 

 or ( )b b

a a

x x

x x
F x F x tδ δ� �  (4) 
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In the literature, one may find use of the usual differential symbol d instead of δ. 

2 Different Kinds of Integration with Functionals 
The value of a functional F of a physical system, such as a particle, is dependent on where it 

is in space and time, i.e., x(t) and t in (1) are then considered spatial position and time.  Further, 
one can integrate a functional F in different ways over its path in space and time, or over 
projections of that path.  Several of these are depicted in Table 1 below.  The first three kinds of 
integration shown below are fairly self explanatory.  We comment on the fourth after the table. 
 

Table 1.  Some Ways to Integrate Functionals 
Type of 

Integration Graphically Math Comment & 
Use in Physics 

1. 
Area over the 
path in x(t) 
vs. t space 

 

b

a

s

s
Fds�  

where s is 
spacetime 
distance 
along path 

No real physical 
application. 

2. 

Projection of 
the area in 1 
onto the F-t 
plane 

 

b

a

t

t
Fdt�  

If F=L, the Lagrangian, 
then this integral = S, 
the action. 

Classically, S = 
minimum (or 
stationary) for physical 
paths 

3. 

Projection of 
the area in 1 
onto the F-
x(t) plane 

 

( )b

a

x

x
F x tδ�  

This is the usual 
definition of 
“functional integral”  

This is starting point for 
4, below 

4. 

Simultaneous 
integration 
over all 
possible paths 
in 3 

 

( )b

a

x

x
F x t� �

 

QM & QFT Feynman 
path integral approach.  
� symbol implies a 
sum of the integrals of 
all paths in 3, not just 
the classical path 

sb

sa t

x(t)F[x(t)]

path in x-t space

F along path

 

t

x(t)F[x(t)]

projection onto
F-t plane

tb

 

ta

t

x(t)F[x(t)] projection onto
F-x plane

 

xa

xb

t

x(t)F[x(t)]
4 of an infinite 
number of paths

 

b

a

.
.
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The fourth way to integrate above is not simple, nor is its purpose at all obvious at this point.  
We devote entire sections below to explaining its origin, its value, and means to evaluate it.  So, 
for now, just let it float easily through your head and don’t bother straining to understand it. 

Alternative nomenclature:  Because functional integrals are integrated over particular paths (in x-
t space in above examples), they are often also referred to as path integrals. 

3 The Transition Amplitude 

3.1 General Wave Functions (States) 

Recall from QM wave mechanics, that for a general normalized wave function ψ equal to a 
superposition of energy eigenfunction waves (which are each also normalized), 

 1 1 2 2 3 3A A Aψ ψ ψ ψ= + + , (5) 

A1 is the amplitude of ψ 1, so the probability of finding ψ 1 upon measuring is 

 
2*

1 1 1A A A= . (6) 

If we were to start with ψ initially, and measure ψ 1 later, the wave function would have 
collapsed, i.e., underwent a transition to a new state.  (6) would be the transition probability. 

Definition:  The transition amplitude is that complex number, the square of the absolute 
magnitude of which is the probability of measuring a transition from a given initial state to a 
specific final state. 

Symbolism:  The transition amplitude is often written as 

 ( , ; )i fU Tψ ψ , (7) 

implying an initial state ψi, a final state ψf, and an elapsed time between measurements of the 
two of T. 

This terminology carries over to QFT when particles change types.  For example, the 
probability that an electron and a positron would annihilate to create two photons would be the 
square of the absolute value of the transition amplitude between the initial (e– , e+) and final (2 γ) 
states.  (Almost all of QFT is devoted ultimately to determining the transition amplitudes for the 
different possible interactions between particles.) 

Schroedinger Approach Amplitudes 

We can’t get into explaining it here (for those who may not know it already), but the 
Schroedinger approach to QM leads to an expression of the transition amplitude of form 

 
� �

/

initalstatefinal state
atmeasured

at 
evolved state
 at 

( , ; )

a

a

a

iHT
i f f i

t
T t

T t

U T eψ ψ ψ ψ−

+

+

= �

�������

, (8) 

where H is the Hamiltonian operator. 
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Alternative nomenclature: The transition amplitude U is sometimes called the propagator 
(though not the “Feynman propagator” of QED) because it is the contribution to the wave 
function at f at time T from that at i at time 0.  It “propagates” the particle from i to f. 

3.2 Position Eigenstates 

When the particle has a definite position, e.g., xi, the wave function is an eigenstate of 
position, and the ket is written |xi >.  The transition amplitude for measuring a particle initially at 
xi, and finally at xf, would take the form 

 /

evolved state

( , ; ) iHT
i f f iU x x T x e x

ψ

−= �

�����
 . (9) 

 In wave mechanics notation, |xi> and 
|xf> are both delta functions of form 
δ(x-xi) and δ(x- xf), the first of which 
is represented schematically on the 
left in Figure 1.  As the initial state 
evolves into ψ, however, it, like wave 
packets generally do, spreads, and its 
peak diminishes (see wave function 
envelope on right side of Figure 1.)  
The amplitude for measuring the 
particle at time T at xf, i.e., for 
measuring a delta function |xf > that 
collapsed from ψ, is (9). 

We can re-write (9), in wave mechanics notation as 

 ( , ; ) ( ) ( , ) ( , )i f f fU x x T x x x T dx x Tδ ψ ψ
+∞

−∞
= − =� . (10) 

Thus, 

 
2

( , ; ) *( , ) ( , ) probability density ati f f f fU x x T x T x T xψ ψ= = . (11) 

 

Modification to definition:  Hence, the square of the absolute value of the transition amplitude 
for eigenstates of position is probability density, not probability, as was the case for energy 
eigenstate wave functions of form (5). 

As we will see, the value found using the RHS of (9), i.e., that of the Schroedinger approach, 
is the same as the value found using Feynman’s many paths approach. 

4 Expressing the Wave Function Peak in Terms of the Lagrangian 

4.1 Background 

One of Feynman’s assumptions for his path integral approach to QM and QFT was to 
express the wave function value at the peak of a wave packet (see Figure 1) in terms of the 
Lagrangian (exact relation shown at the end of this section 4).  I have never seen much 

�

dx

Dirac delta 
function

dx

Wave 
function 
envelope at 
time T

Wave 
function 
envelope at 
time = 0

x fxi

|�| Peak velocity = 
Group velocity v

x

 

 
Figure 1. Propagation of a Position

Eigenstate Quantum Wave
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justification for this in the literature, other than it is simply an assumption that works (so learn to 
live with it and move on!) 

In the present section I have taken a different tack, by providing rationale for why we could 
expect Feynman’s form of the wave function peak to work.  The logic herein may well parallel 
what went on in Feynman’s mind as he was developing his path integral approach. 

4.2 Deducing Feynman’s Phase Peak Relationship  

4.2.1 The Simplified, Heuristic Argument 
In QM, the plane wave function solution to the Schroedinger equation, 

 ( ) /i EtAeψ − − ⋅= p x �  , (12) 

means the phase angle, at any given x and t, is 

 ( ) /Etφ = − − ⋅p x �   . (13) 

If we have a particle wave packet, it is an aggregate of many such waves, so it is not in an 
energy or momentum eigenstate.  However, it does have energy and momentum expectation 
values that correspond to the classical values for the particle.  The wave packet peak travels at 
the wave packet group velocity, which corresponds to the classical particle velocity. 

Now, imagine that we approximate the wave packet with a (spatially short) wave function 
such as ψ, where E and p take on the values of the wave packet expectation values for energy 
and momentum, respectively.  If x represents the position of the wave packet peak (the middle of 
our approximated wave function ψ), the time rate of change of phase at the peak is then 

 
( )d E T V

dt
φ − − ⋅ − − + ⋅= =p v p v

� �
 , (14) 

where v is the velocity of the wave peak, T is kinetic energy, and V is potential energy.  Non-
relativistically,  

 21
2 2T mv m T= = → =p v p v� , (15) 

so, in terms of the classical Lagrangian L, 

 
d T V L
dt
φ −= =

� �
 . (16) 

More formally, using the Legendre transformation 

 ( here)i iL p q H L E= − = ⋅ −p v� , (17) 

directly in (14), we get (16). 

Thus, from (16), the phase difference between two events the particle traverses is 

 
L S

dtφ = =� � �
 , (18) 

where S is the classical action of Hamilton.  The classical path between two events is that for 
which the Hamiltonian action is least.  Note that (18) is an integral of type 2 in Table 1. 

Hence, the wave function at the peak could be written in terms of the Lagrangian as 
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L S
i dt i

peak Ae Aeψ �= =� �  . (19) 

This is the typical starting point assumption when teaching the Feynman path integral 
approach (still to be developed beginning in Section 5.) 

In relativistic quantum mechanics (RQM) and quantum field theory (QFT), we get a solution 
form similar to (12) (differing only in the normalization factor A), and thus (14) is also true 
relativistically.  Further, since (17) is true relativistically, as well, then so are (16), (18), and (19). 

4.2.2 More Precise Argument 
The precise expression for a QM particle wave packet2, where overbars designate 

expectation (classical) values; vg, the group (peak, classical) velocity; and g(p), the momentum 
space distribution is 

 
( )

�
( )( ) ( )2

1 for peak, time dependreal
i.e., for &complex

2

( ) for

1
( , ) ( )

2
g

peak

g

x
x v t

i ti i p pEt px v t x p p
m

A t x x

x t e g p e e dpψ
π

+∞

−∞
= =

=

− −− − − − −

=

= � �� �
������������

�

�����������������

. (20) 

We are interested in the value of (20) at the peak, ψ(xpeak,t), where xpeak = vg t.  To begin, 
note that with x=xpeak inside the integral, the exponent of the second factor in the integrand 
equals zero, and so that factor equals one.  The function g(p) is typically a real, Gaussian 
distribution in p p− , and independent of time.  The third factor in the integrand is complex and 
time dependent. 

Thus, with x=xpeak, the integral in (20) is a function (generally complex) only of time, which, 
along with the factor in front, we will designate as A(t).  Thus, for the entire history of the wave 
packet, the wave function value at the peak is 

 
( )

( , ) ( ) peak

peak

i Et px
x t A t eψ

− −
= � . (21) 

Except for the time dependence in A(t), this is equivalent to (12), as the expectation values 
for E and p equal the classical values for the particle.  So, with regard to the exponent factor in 
(21), all of the logic from (13) through (19) applies here as well.  The final result is so important, 
we repeat it below, with L being the classical particle Lagrangian, T representing the time when 
the peak is detected, and phase at t = 0 taken as zero.  The RHS comes from (10). 

( ) 0, ( ) ( ) ( , , )
T

peak i f

L Si dt i
x T A T e A T e U x x Tψ = = =� � �  (22) 

We evaluate A(t) exactly in the Appendix. 

Definition:  Borrowing a term from electrical engineering, we will herein refer to eiφ as a phasor. 

5 Feynman’s Path Integral Approach: The Central Idea 
Feynman’s remarkable idea takes a little getting used to.  He reasoned that a particle/wave 

(such as an electron) traveling a path (world line in spacetime) between two events could 
actually be considered to be traveling along all possible paths (infinite in number) between those 
events.   
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Difficult as it may be, initially, to believe, we will see below that the result from 
superimposition of the phasors from all of these paths gives us the same result as if we used the 
standard QM theory of Schroedinger with a single wave.  The two different approaches are 
equivalent. 

Definition:  Feynman’s method is called the “path integral”, “many paths”, or “sum over 
histories” approach to QM (and QFT). 

Note that the paths do not have to satisfy physical laws like conservation of energy, F=ma, 
least action, etc.  Moreover, each possible path is considered equally probable. 

We will lead into the formal mathematics of the many paths approach by first examining 
simple situations with a finite number of paths between two events. 

6 Superimposing a Finite Number of Paths3 

6.1 The Rotating Phasor 
The phasor of (22) can be expressed in the complex plane as a unit length vector with angle 

φ relative to the real positive (horizontal) axis.  As time evolves this vector rotates at the rate L/�, 

i.e., the total phase 
L

dtφ = � �
.  So we can picture the phasor 

as a unit length vector rotating like a hand on a clock in a 2D 
complex plane (though it is a counterclockwise rotation). 

For the purposes of Feynman’s approach, we can consider 
the particle as a wave packet with phase at the peak 
determined by (22), and our final measurement a position 
eigenstate measured at the packet peak.  We then imagine a 
different wave packet following each one of the infinitely 
many paths between two specific events.  We visualize the 

phasor at the peak for each of these paths as a vector rotating in the complex plane as time passes 
(i.e., as the wave packet peak moves along the path), eventually having a particular value at the 
final event, the arrival place and time.  Each path will have a different final phase. 

6.2 Several Paths Graphically 
Fig. 24 in Feynman’s book QED: The Strange Theory of Light and Matter4, is an insightful, 

somewhat heuristic, illustration of the many paths concept for light.  Since we wish to focus, for 
the time, on non-relativistic quanta, we employ a similar, and at least equally heuristic, 
illustration in Fig. 3 for an electron rather than a photon.  In Fig. 3 an electron is emitted at event 
a, reflected, like light from a mirror, off of a scattering surface, and detected at point b.  The 
scattering surface might be difficult to construct in practice, but one can imagine a surface 
densely packed with tightly bound negative charge. 

We look at a representative 15 different paths for the electron, out of the infinite number in 
the many paths approach, and label them with letters A to O.  Each path takes the same time T.  
Note that path H is the classical path, having equal angles of incidence and reflection.  Since it is 
the shortest, particle speed for that path is lowest. 

The Lagrangian here is simply the kinetic energy, and this is constant, though different, for 
each path.  Since speed is least for the classical path H, it has the smallest Lagrangian, and thus 

e �i   L/��dt

�=  L/��dtφ
Re

Im
 

 Figure 2. Rotating Phasor
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the least action.  The other paths do not obey the 
usual classical laws, such as least action, equal 
angles of incidence and reflection, etc.  But 
according to Feynman’s approach, we have to 
include all of them. 

From (22) and Fig. 2, we can determine the 
phasor eiS/� of (22) for the particle/wave arriving at 
event b, for each path, where S = LT = ½ mv2T.  
The phasor direction in complex space for each 
path at the detection event b is depicted in the 
middle of Fig. 3. 

The bottom part of Fig. 3 shows the addition 
of the final event phasors for all 15 paths.  Note 
that the paths further from the classical path H tend 
to cancel each other out, because they are out of 
phase.  Conversely, H and the paths close to H are 
close to being in phase, and thus, reinforce each 
other via constructive interference.  So, the primary 
contributions to the phasor sum are from those 
paths close to the classical path. 

If we were to increase the number of paths, the 
jaggedness of the curve formed by the 15 phasors 
would smooth out, but its basic overall shape 
would remain essentially the same.  If we were to 
increase the Lagrangian, while keeping speed the 
same for each path (i.e., increasing mass of the 
particle), phasors now near the middle of the curve 
would shift towards the ends, and thus, be 
cancelled out via interference.  In other words, 
increasing mass brings us closer to the classical 
case, and the paths closer to classical then make 

greater contributions to the final sum.  A similar effect would occur if the value for Planck’s 
constant were smaller.  As � � 0, all paths but H would tend to cancel out. 

Clarification 
I used to think that increasing mass, and thus getting closer to the classical situation, would 

bring the phase angle of the sum-of-all-paths phasor in directional alignment with H, the 
classical path phasor (or at least with U of (22).)  However, this is not the case.  The important 
thing in Feynman’s approach is not the phase of the sum-of-all-paths phasor, but its length, 
which is proportional to |U|.  And this length gets greater contribution from paths nearer H than 
from those further away. 

 Note that in order to get a graphically significant Fig. 3, I had to use a value for � almost 
eight orders of magnitude greater than the actual value.  Otherwise the phase angles between 
adjacent paths, for the relatively large spacing between paths of the figure, would have resulted 

Many Paths Electron Reflection

BA C D E F G H I J K L M N O

a b

electron
scattering
surface

electron
emission

electron
detection

 

 
 
Action

A B C D E F G H I J K L M N O

Phasor direction of each path at event b  

A

B
C

D

E
F G

H I J

K

L

M

N O

Im

Phase Addition of All Paths at Event b
Re

 

 
Figure 3. Graphical Justification for

Many Paths Approach
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in a seemingly random hodgepodge of phasors, and obscured, rather than illumined, the real 
physics involved. 

If you would like to experiment with changing values for mass, �, and number of paths 
yourself, download the Excel spreadsheet Many Paths Graphic Electron Reflection5 . 

End of Clarification 

Feynman intuited that the amplitude of the final phasor sum was extremely meaningful.  
That is, the square of its absolute value (i.e., the square of its length in complex space) was 
proportional (approximately, for a finite number of paths; exactly, for an infinite number) to the 
probability density for measuring the photon/particle at event b.  What we mean by 
“proportional” should become clearer after the following three sections. 

6.3 Many Paths Mathematically 

Consider particle paths similar to those of Fig. 3, where the wave function peak for path 
number 1, with A1(T) as in (22),  as 

 1 /
1 1( ) iSpeak A T eψ = � . (23) 

In the spirit of the prior section, one considers the phasor of (23) without A1(t) as representing the 
particle, AND that particle is considered to simultaneously travel many paths between events a 
and b.  Then, the summation of the final phasors for each path is expressed mathematically as  

 3 sum1 2 // / .....iS iiS iS
be e e A e φ+ + + =�� �  (24) 

where Ab is the amplitude of the sum.  As the number of paths approaches infinity, |Ab|2 becomes 
proportional to the probability density of measuring the particular final state at event b.  That is, 

 sum sum
2 2 2/

1

lim ( , , )  (probability  density)j

N
iS i i

b i f b b
j

N
e A e U x x T A e A Uφ φ

=→∞
= ∝ = ∝�

� . (25) 

We will learn how to evaluate the limit in (25). 

6.4 Another Example 

Consider a double slit experiment with a classical Huygen’s wave analysis showing 
alternating fringes of light and dark, which via the classical interpretation is caused by 
constructive and destructive interference of light/electron waves. 

By the Schroedinger wave 
approach, a single quantum wave 
travels through both slits, interferes 
with itself, either constructively or 
destructively, to result in a wave 
amplitude that varies with location 
along the receiving screen.  The 
probability density (square of the 
amplitude absolute value) of 
finding a photon/electron also 
varies with that screen location.  So 
as the quantum waves collapse, one 

x

y
screendouble slit barrier

various paths

xf yf,

|U(y )|f
2

source

 

 Figure 4. Double Slit Experiment in
Many Paths Approach
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at a time, on the screen, they tend to collapse more often in the high probability (high magnitude 
amplitude) regions.  These correspond to the bright fringe regions, which, with enough 
individual quanta collapsing on the screen, are seen by the human eye. 

In the many paths approach, for any particular spot on the screen, we would add the phases 
of every “possible” path from the emission point, through one slit, to that spot (xf,yf), plus all 
paths through the other slit to the spot.  See Figure 4.  The result would be proportional to the 
amplitude at the spot found in the Schroedinger approach.  That is, the sum of all phasors at xf,yf  
(see (25)) yields 

 /

1

lim ( , ; , ; )j

N
iS

i i f f
j

N
C e U x y x y T

=→∞
=�

� , (26) 

where C is some constant. 

We would then repeat that procedure for every other point on the screen.  Since, for a fixed 
source at xi,yi , and a fixed xf  for the screen, the amplitude would be spatially only a function of 
yf, and we could express it simply as U(yf). 

6.5  Finding the Proportionality Constant: By Example 

The square of the absolute value of the amplitude U is the probability density.  So we can 
normalize U over the length of the screen, i.e., 

 
2

2/

1

lim ( ) 1
f fj

f f

Ny yiS
f f fy y

j
N

C e dy U y dy
=+∞ =+∞

=−∞ =−∞
=→∞

= =�� �
� , (27) 

and thus, once the value of the limit is determined, readily find the proportionality constant C. 

7 Summary of Approaches 

7.1 Feynman’s Postulates 

Richard Feynman was probably well aware of much of the foregoing when he speculated on 
the viability of the following three postulates for his many paths approach.  Subsequent extensive 
analysis by Feynman and many others has validated his initial speculation. 

The postulates of the many paths approach to quantum theories are: 

1. The phasor value at any final event is equal to eiS/� where the action S is calculated along 
a particular path beginning with a particular initial event. 

2. The probability density for the final event is given by the square of the magnitude of a 
typically complex amplitude. 

3. That amplitude is found by adding together the phasor values at that final event from all 
paths between the initial and final events, including classically impossible paths.  
The amplitude of the resultant summation must then be normalized relative to all 
other possible final events, and it is this normalized form of the amplitude that is 
referred to in 2. 
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Note two things. 

First, there is no weighting of the various path phasors.  The nearly classical paths are not 
weighted more heavily than the paths that are far from classical.  That is, the different individual 
paths in the summation do not have different amplitudes (see (24) and Fig. 3).  The correlation 
with the classical result comes from destructive interference among the paths far from classical, 
and constructive interference among the paths close to classical. 

Second, time on all paths (all histories) must move forward.  This is implicit in the exponent 
phase value of (19), where the integral of L is over time, with time moving forward.  Our paths 
do not include particles zig-zagging backward and forward through time. 

Footnote:  Caveat: A famous quote by Freeman Dyson states that Feynman, while speculating on this approach, 
told him that one particle travels all paths, including those going backward in time.  But the usual development of 
the theory (see Section 8) only includes paths forward in time.  Perhaps all paths backward in time sum to zero and 
so are simply ignored.  In such case, Dyson’s quote would be accurate.  But I don’t know for sure.  End footnote. 

7.2 Comparison of Approaches to QM 

Unifying Chart 1 summarizes the major similarities and differences between alternative 
approaches to QM. 

Unifying Chart 1.  Equivalent Approaches to Non-relativistic Quantum Mechanics 

 Schroedinger Wave 
Mechanics 

Heisenberg Matrix 
Mechanics Feynman Many Paths 

Probability 
Density of 
Position  

Eigenstates 

|amplitude|2 |amplitude|2 

Transition 
Amplitude 

/( , ; ) iHT
i f f iU x x T x e x−= �  

0

/

1

( , ; ) lim

( )

j

T

N
iS

i f
j

L
x f

xi

i dt

N
U x x T e

e x t

=→∞
∝

�=

�

�

�

� ��

 

Comments Above assumes normalized 
states. 

Same results as 
other two 

approaches. 

RHS above must be 
normalized for ∝  �  =. 

We haven’t done the integral 
part yet. 

8 Finite Sums to Functional Integrals 

8.1 Time Slicing: The Concept 

After all of the foregoing groundwork, it is time to extend the phasor sum of a finite number 
of paths, such as we saw in Fig. 3 and (24), over into an infinite sum, or in other words, an 
integral.  To do this, we first consider finite “slices” of time, for a finite number of paths in one 
spatial dimension, as shown in Fig. 5 where, for convenience, we plot time vertically and space 
horizontally.  As opposed to our spatially 2D example in Fig. 3, different paths in Fig. 5 actually 
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refer to the particle traveling along the x axis only between i and f, though at varying (both 
positive and negative) velocities.  The paths between each slice are straight lines, but there is no 
loss in generality, as one can take the time between slices ∆t � dt, and thus, any possible shape 
path can be included. 

As noted earlier, for any single path, the 

 /

one path

phasor at
f

i

t L
i dt

iSte e�= = ��

�������
f  , (28) 

The amplitude U for the transition from i to f is proportional to the sum of (28) for all paths, 

 /

1

sum of phasors at lim j

N
iS

j
N

e
=→∞

∞ = �
�f  . (29) 

 

 

 

 

 

 

 

 

 

 

8.2 Space Slicing:  Simple Paths with Discrete Approximation 

To evaluate (29), we next also discretize (“slice”) space, and consider a small number 
(three) of paths over a small number of discrete events in spacetime, as in Figure 6.  We label the 
paths a, b, and c, and the events with two numbers, such that the first number represents the time 
slice, and the second the space slice.  The continuous range of x values at time t1 will be 
designated x1; at t2, x2; etc.  We limit the spatial range for paths considered to xR – xL = l, where 
the number of paths N = 3 = l /∆x1.  Each path passes through the center of one ∆x1 segment. 

We then assume the phase φ02 at i is zero, and find the phasors at f for each of the three paths 
by subsequently adding the phase difference between discrete events along a given path, as in the 
second column of Table 2 below. 

Note that in the last line of column two in Table 2, the Lagrangian L without subscript is 
assumed to be the L for the particular subpath being integrated, and this is common notation. 

In column three, we approximate the integrals of L over t, such that, for example, for path a 
over an interval ∆t, 

 apprx
a aS L t≈ ∆  (30) 

where, for the first subpath, 

t

x(t)

f

i

t1

t2

t3

tn

tf

t0

} �t

 

 

t

x(t)
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t0

11

xRxL

l

t2

�x
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23

1312

f

i
0,1,2

 

 

a b c

Figure 5. Time Slicing for Finite
Number of Paths

Figure 6. Space Slicing for Three
Dicrete Paths
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2

2 11 02 11 021 1
11 022 2( ) ( , )

2
apprx

a a

x x x x
L mx V x m V L x x

t
− +� � � �= − ≈ − =� � � �∆� � � �

�  (31) 

Similar relations hold for the other subpaths, and are shown in Table 2. 

Note that (31) is solely a function of x11 and x02.  The summation of all three paths in the last 
row of column three in Table 2 is solely a function of x02, x23, and the three intermediate event x 
values x11, x12, and x13.  Since x02 and x23 are the initial and final events, which are fixed and the 
same for all paths, the final summation approximation in Table 2 are really only functions of the 
three x1j.  It will, however, serve a future purpose if we keep x02 and x23 in the relationship for the 
time being. 

 
Table 2.  Adding Phasors at the Final Event for Three Discrete Paths 

Path Phasor at f Phasor at f in Terms of Approx L 

a ( )
11 23

02 11 11 23 02 1123

a a

a

L L
i dt i dtiie e e eφ φφ → →+ � �= = � �  

( ) ( )

11 02 11 02 23 11 23 11

02 11 11 23

2 2
1 1
2 22 2

, ,

x x x x x x x xi i
m V t m V t

t t

i i
f x x f x x

e e

e e

	 
 	 
− + − +� � � � �� � � � � ��− ∆ − ∆� 
 � 
� � � � � � � �∆ ∆� � � � � � � �� � � �� � � �≈

=

� �

� �

 

b ( )
12 23

02 12 12 23 02 1223

b b

b

L L
i dt i dtiie e e eφ φφ → →+ � �= = � �  

( ) ( )

12 02 12 02 23 12 23 12

02 12 12 23

2 2
1 1
2 22 2

, ,

x x x x x x x xi i
m V t m V t

t t

i i
f x x f x x

e e

e e

	 
 	 
− + − +� � � � �� � � � � ��− ∆ − ∆� 
 � 
� � � � � � � �∆ ∆� � � � � � � �� � � �� � � �≈

=

� �

� �

 

c ( )
13 23

02 13 13 23 02 1323

c c

c

L L
i dt i dtiie e e eφ φφ → →+ � �= = � �  

( ) ( )

13 02 13 02 23 13 23 13

02 13 13 23

2 2
1 1
2 22 2

, ,

x x x x x x x xi i
m V t m V t

t t

i i
f x x f x x

e e

e e

	 
 	 
− + − +� � � � �� � � � � ��− ∆ − ∆� 
 � 
� � � � � � � �∆ ∆� � � � � � � �� � � �� � � �≈

=

� �

� �

 

Sum 
of a, 
b, c 

11 23 12 23

02 11 02 12

13 23

02 13

231
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3

1

a a b b

c c

j

j

L L L L
i dt i dt i dt i dt

L L
i dt i dt

LLN i dti dt

j

e e e e

e e

e e
=

=

� � � �= +

� �+

��=�

� � � �

� �
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( ) ( ) ( ) ( )

( ) ( )

( ) ( )

02 11 11 23 02 12 12 23

02 13 13 23

02 1 1 23

, , , ,

, ,

3 , ,

1

j j

i i i i
f x x f x x f x x f x x

i i
f x x f x x

i iN f x x f x x

j

e e e e

e e

e e
=

=

= +

+

=�

� � � �

� �

� �

 

 

 
The final relationship in Table 2 is approximately proportional to the transition amplitude, 

i.e., 

 ( ) ( ) ( ) ( ) ( )02 1 1 23 02 1 1 23
3 3, , , ,

1 1

, ;
apprx apprx

j j j j
i i i iN Nf x x f x x S x x S x x

f i
j j

U i f T t t C e e C e e
= =

= =
= − ≈ =� �� � � � , (32) 

where C is some constant, and what we designated as a function f in Table 2, in order to 
emphasize its independent variables, is actually an approximation to the action S. 
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Since U is proportional to the sum of the phasors, we can multiply the RHS of (32) by any 
constant we like and the proportionality still holds.  To aid us in taking limits to get an integral, 
we multiply (32) by ∆x1, and get 

 ( ) ( ) ( )02 1 1 23
3 , ,

1
1

, ;
apprx apprx

j j
i iN S x x S x x

j

U i f T C e e x
=

=

′≈ ∆� � � , (33) 

where C� is a new constant.  Taking the limit where ∆x1� dx1 means taking the number of paths 
N��.  And thus, 

 

( ) ( ) ( )

( ) ( )

02 1 1 23

1 1
02 1 1 23

1 1

23

02

, ,

1
1

, ,

1 1

, ; lim

.

apprx apprx
j j

R Rapprx apprx

L L

i iN S x x S x x

j

tx x x x Li i i dtS x x S x x t

x x x x

N
U i f T C e e x

C e e dx C e dx

=

= =

= =

→∞
′≈ ∆

�′ ′= ≈

�

� �

� �

�� �

 (34) 

where our discrete values x1j have become a continuum x1, and it is implicit that the L of the last 
part of (34) is that over the appropriate path corresponding to each increment of dx1.  (34) is still 
only approximately proportional to the amplitude because time is still discretized in ∆t intervals 
and we limit the integration range to xL > x1 > xR.  Before extending those limits, however, we 
must consider a slightly more complicated set of paths. 

8.3 From Simple Discrete Paths to the General Case 

In Figure 7 we introduce one more time interval between the initial and final events, 
resulting in nine discrete paths. 

 

Repeating the logic from the previous section (use Table 2 as an aide), the phasor of the first 
path (02�11�21�33) is simply 

 

�
( )0 2 1 1 1 1 2 1 2 1 3 33 3

1 1 2 1 3 3

0 2 1 1 2 1

 1 s t
p a t h
o n ly

.

ii

L L L
i d t i d t i d t

e e

e e e

φ φ φφ → → →+ + +=

� � �= � � �

 (35) 
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Figure 7. Nine Discrete Paths
between Two Events
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We repeat this for the other eight paths, approximate L along subpaths as before, and take k 
below to indicate the kth ∆x2 segment.  This results in a phasor summation from all paths at event 
f (= 33) [compare with last row, last column of Table 2 and (32)] proportional to the amplitude, 
i.e., 

 ( ) ( ) ( ) ( )02 1 1 2 2 33
3 3 , , ,

1 1

, ;
apprx apprx apprx

j j k k
i i iN N S x x S x x S x x

j k

U i f T C e e e
= =

= =

≈ � � � � � . (36) 

Note that (36) depends on the discrete values of both x1 and x2.  So, as we did with (33), we can 
multiply (36) by one or more constants without changing the proportionality.  We choose to 
multiply by ∆x1 and ∆x2.  We follow by taking limits where ∆x1� dx1 and ∆x2� dx2 (i.e., 
N��), [compare with (34)] which results in 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

02 1 1 2 2 33

2 1
02 1 1 2 2 33

2 1

2

2 1

33

02

3 3 , , ,

1 2
1 1

, , ,

1 2

1 2

, ; lim
apprx apprx apprx

j j k k

R R apprx apprx apprx
j j k k

L L

R

L L

i i iN N S x x S x x S x x

j k

x x x x i i i
S x x S x x S x x

x x x x

tx x L
i dt

t

x x x x

N
U i f T C e e e x x

C e e e dx dx

C e dx dx

= =

= =

= =

= =

=

= =

→∞
′≈ ∆ ∆

′=

�′≈

� �

� �

�

� � �

� � �

�

1

.
Rx x=

�

 (37) 

We can readily generalize (37) to any number of time slices as 

 
( )

2 1

2 1

1 2, ; .... ...

Approximation for Transistion Amplitude

n R R R

n L L L

f

i

tx x x x x x L
i dt

t
f i n

x x x x x x

U i f T t t C e dx dx dx
= = =

= = =

�= − ≈ � � � �

 , (38) 

where, as before, it is implicit that L in the integral is for the particular path that crosses the 
respective t slices at x1, x2,… xn.   

8.4 From Approximate to Exact 

To get a precise, not approximate, relation for the RHS of (38) we would have to do two 
things. 

1. Take the x range from l to infinity, i.e., xL � – � and xR � �, and 
2. Take ∆t � dt for the same T (time between events.) 

Doing this, (38) would become 
 

 

( )
integ limits along with

 symbol imply
paths between i and f

, ;

Exact Expression for Transition Amplitude

f

i

f

i

x x t L
i dt

t
f i

x x

all

U i f T t t C e x
=

=

�= − = � �

�������

�

�

 (39) 
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The symbol �, as noted earlier, represents integration over all paths.  With this, the integration 
limits designate the initial and final x values and do not imply a constraint on the x dimension 
during the integration (as was the case with (38).)  In (39) we have, at long last, obtained the 
relation of integration type #4 in Table 1, where 

 
f

i

t L
i dt

tF e �= � . (40) 

8.5 Practicality and Calculations 

Practically, for the first approximation addressed in Section 8.4, we really don’t have to take 
l to infinity, as we know that paths outside of a reasonably large range from the initial and final 
spatial locations will sum to very close to zero.  So we can live with significant, but not infinite, 
l. 

For the second approximation, we only need small enough ∆t such that taking a smaller 
value does not change our answer much. 

If we use (38), with judicious choices for ∆t and l, we can, in many cases, obtain valid 
closed form solutions for the amplitude.  We can also obtain numerical solutions with a digital 
computer by using approximations for L between time slices, as we did previously.  That is, we 
can approximate the RHS of (38) in the manner we did for the first line of (37), but extending the 
approximation of (37) from 2 to n time slices. 

9 An Example: Free Particle 
We will first determine the amplitude (and thus the detection probability density) of a free 

particle via the Schroedinger approach and then compare it to that for Feynman’s many paths 
approach. 

9.1 Schroedinger Transition Amplitude 

Recall, from Section 3.2, that, in the Schroedinger approach, a position eigenstate is a delta 
function, and as it evolves, the wave function envelope spreads and the peak diminishes.  |U|2 for 
such functions is the probability density at the final point xf, after time T, where the peak is 
located.  We should then expect |U|2 to decrease as T increases, and to equal infinity when T = 0. 

We start with the Schroedinger transition amplitude relation (9), 

 /( , ; ) iHT
f fi iU x x T x e x−= �  . (41) 

Since the bra and ket here are Dirac delta functions, with the well known relation 

 
( )( )1 1

( )
2 2

i
i

p
i x xik x x

ix x e dk e dpδ
π π

+∞ +∞ −−

−∞ −∞
− = =� � �

�
, (42) 

we can re-write (41) as 

 ( )/( , ; ) ( ) ( )iHT
f ifiU x x T x x e x x dxδ δ

∞ −

−∞
= − −�

� . (43) 

(For readers unfamiliar with operators in exponents, one can express the exponential quantity as 
a Taylor series expanded about T, i.e., f(T) = e–iTH/� = 1 – iTH/�  + ½ T2H2/�2 +…  Then, operate 
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on the ket/state term by term [getting terms in iET/� to various powers], and finally re-express 

the resulting Taylor series as an exponential in iET/�.  We have taken the ket with time ti = 0 to 
make things simpler, but even if you like to think of the Hamilton operator as a time derivative, 
when it acts on that ket, it functions as an energy operator and still yields the energy.) 

For the exponential with the H operator acting on the initial state, and E =  p2/2m, (43) is 

 
2

( ) ( )

( ) ( )/ 2
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( , ; )

2 2

1 1
.
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π π

π π

′
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−∞ −∞ −∞
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� �� �� �

� �� �� �
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� �� �� �

� � �

� � �

� � �

�� �

� �

� �

  (44) 

We then re-arrange (44) to get 
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2

( )/ 2

( )/ 2
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( , ; )

2 2

1
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f i

x i i
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i
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fi
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π
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� �
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 (45) 

Using the integral formula 

 ( )2 2 / 4 Re 0, 0ax bx b ae dx e a a
a
π+∞ − +

−∞
= ≥ ≠�  , (46) 

we find 

 
2( )

2( , ; )
2

if
i m x x

T
fi

m
U x x T e

i Tπ
−

= �

�
 . (47) 

The astute reader may question whether (46), with complex a and b, converges.  It does because 
the integrand oscillation rate increases with larger |p| in such a way as to make successive cycles 
shorter.  As |p| gets very large, the cycles become so short that the contribution from each cycle 
(think area under a sine curve) tends to zero, and it does so in a manner that allows the integral to 
converge. Said another way, the smaller and smaller contributions as |p| gets large alternate 
between positive and negative values (for both real and complex portions), and thus convergence 
is assured. 

From (47), the probability density at event f is 

 
2

( , ; )
2fi

m
U x x T

Tπ
=

�
, (48) 

which, as we said it must, decreases with increasing T, and equals infinity for T = 0.  Note also, 
that increasing m increases the envelope height, and thus decreases the width (for constant area 
under the envelope = constant probability.)  In other words, the wave packet approaches more 
classical behavior, i.e., a narrower, more well defined location.  Further, if � were to go to zero, 
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the peak would be infinite, i.e., we would have a delta function and an exact particle location, as 
in classical mechanics. 

9.2 Many Paths Transition Amplitude 

We now seek to derive (47) using the many paths approach. 

A free, non-relativistic particle has Lagrangian 

 
2

21 1
2 2

( ) ( )x t t x t
L mv m

t
+ ∆ −� �= ≈ � �∆� �

, (49) 

where the RHS is an approximation between adjacent time slices.  Taking ti = 0, and l � � (see 
Fig. 6, pg 12), (38) becomes 
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 (50) 

where the underbracket notation will help us in subsequent sections. 

9.2.1 Background Math 
Look, for the moment, at the last two factors (functions fα and fβ) in the integral.  They must be 
integrated over x1, and that result is a function of x2.  When one of the two functions in such a 
procedure is a function of x2 – x1, as it is here, the integral is called a convolution integral.  (See 
http://www-structmed.cimr.cam.ac.uk/Course/Convolution/convolution.html.) 

In mathematical circles (search “Borel’s Theorem”), it is well known that the Fourier (and 
also, the Laplace) transform of such an integral equals the product of the Fourier (or Laplace) 
transforms of the two functions.  That is, for � representing Fourier transform, 

 { } { } { }2 1 1 1( ) ( )f x x f x dx f fβ α β α− =�� � � . (51) 

Note that although fα is a function of x1-xi , we can write fα(x1) because xi is fixed. 

Each factor in the last row of (50), as one moves leftward, plays the part of fβ in the theorem 
above for the next convolution integral, where the prior convolution integral plays the role of fα.  
We get, in essence, a series of nested convolution integrals.  Using (51), you should be able to 
prove to yourself that the transform of (50) equals the product of the transforms of the 
exponential factors in (50).  If you can’t, or don’t want to bother, proving it, then just accept that 
a corollary to (51) is 
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{ }

{ } { } { } { }
3 2 2 1 1 1 2.... ( ).... ( ) ( ) ( ) ...

... .
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a

f x x f x x f x x f x dx dx dx

f f f f

ζ γ β

ζ γ β

− − −

=

� � ��
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 (52) 

9.2.2 Evaluating the Amplitude 
So, to evaluate (50), using (52), we i) transform each exponential factor fµ , ii) multiply 

those transforms together, and iii) take the inverse transform of the result to get U (actually U/C 
of (50)).  This is made simpler, because each fµ has the same form, so each transform is the same, 
i.e., 

 { } { } { }.....f f fα β ζ= = =� �� � ��  . (53) 

The Fourier transform of a function fα is 
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1 1 1

1
( ) ( ) ( )
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i pxf x f p f x e dxα α απ
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�
� . (54) 

For the fα of (50), and for convenience, taking the coordinate xi = 0, this is 
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�
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where here and throughout this section, p is merely a dummy variable allowing us to carry out 
the math.  Using (46), we find (55) becomes 
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and thus, from (50), (52), and (53), 
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The inverse Fourier transform of (57), is 
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 (58) 

In (58), we could have simply used xf in the exponent, as we have been taking xi = 0, and our 
result would have been in terms of xf.  In that case, xf would have been the distance between xi 
and xf , i.e., xf – xi.  In order to frame our final result in the most general terms, we re-introduced 
xi as having any coordinate value in (58). 

With (46) again, (58) becomes 
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By comparison with (47), we see the phase and dependence on T is the same as in the wave 
mechanics approach.  Using that comparison, we can see that the constant of proportionality is 
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i tπ
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. (60) 

And thus, the probability density at the final event f is the same as (48), i.e.,  
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2fi
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Tπ
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�
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where the equal sign is appropriate for N � �. 

Note that for v = (xf – xi)/T, the amplitude can be expressed in terms of the classical action as 

 
2

2( , ; )
2 2 2

i i i
T LT S

mv

fi
m m m

U x x T e e e
i T i T i Tπ π π

= = =� � �
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, (62) 

which agrees with (22) if A(t) there equals the root quantity.  In the Appendix, we show it does. 

9.3 The Message 

It has probably not escaped the reader that the evaluation of a free particle using Feynman’s 
many paths approach is considerably more complicated and lengthy than the Schroedinger 
approach.  This is true for most, if not all, problems in QM. 

The disadvantages of the many paths approach in QM are these. 

1. It is generally more mathematically cumbersome and time consuming than the wave 
mechanics approach. 

2. The quantity calculated is only proportional to the amplitude, and further analysis is 
required to determine the precise amplitude. 

3. The approach is suitable primarily for position eigenstates and is not readily amenable to 
more general states, so it is generally not as all encompassing in nature. 

The advantages of the many paths approach are these. 

1. The approach also applies to quantum field theory (QFT).  In a number of instances therein, 
development of the theory is more direct, and calculation of amplitudes is easier, than with the 
alternative approach (canonical quantization). 

2. Philosophically, we see that there is more than one way to skin a cat.  We learn anew that 
the physical world can be modeled in different, equivalent ways.  We learn caution with regard 
to interpreting a given model as an actual picture of reality. 

10 Quantum Field Theory via Path Integrals 

So far, we have dealt primarily with non-relativistic quantum mechanics (NRQM), but the 
many paths approach is also applicable to relativistic quantum mechanics (RQM), and as noted 
above, to quantum field theory (QFT).  (RQM is often confused with QFT.  For a comparison of 
the similarities and differences between the two, see www.quantumfieldtheory.info/Chap01.pdf.  
Further similarities and differences are illustrated in Unifying Chart 2, below.) 
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We will not go deeply into QFT, and only outline, in a broad overview, how the theory 
presented herein is applicable therein.  This should help those students who continue on to the 
standard texts for the many paths approach keep the forest in view while examining the trees. 

10.1 Particle Theory (QM) vs Field Theory (QFT) 

For the many paths approach, we want to make the jump from QM, which is a quantized 
version of particle theory, to QFT, which is a quantized version of field theory.  Unifying Chart 2 
below can help us do that.  In it, the 2nd and 3rd columns compare particle theory 
entities/concepts to corresponding field theory entities/concepts.  The upper half of the chart, as 
indicated, summarizes classical theory (non quantum, and implicitly including special relativity).   
The lower half summarizes quantum theory via approaches other than many paths.  The chart 
should be relatively self explanatory, so we will not comment much on it. 

We compare the quantum approaches of Unifying Chart 2 to the many paths approach in the 
next section. 

 
 
 
 

Unifying Chart 2.  Comparing Particle Theory to Field Theory: 
               Classical and Quantum 

 
 Particle Theory Field Theory 

 Classical Theory 

Indep variables      1D                              3D 
       t                                 t 

3D 
x,y,z,t 

Depend 
variables 

     x(t)                    x(t), y(t), z(t) 
                 position 

φ (x,y,z,t) 
field 

Dynamic 
variables 
   (functionals) 

Particle total value: 
p, E, L 

functions of , , (or , , )x x t tr r��  
 
 

Density values (per unit vol): 
����,�,� 

functions of , , , , ,x y z tφ φ�  
3 , etc.E d x= �
�  

Equations of 
motion 

F = ma 
 

or equivalently, Euler-Lagrange 
formulation, 

 

0
d L L
dt x x

∂ ∂� �− =� �∂ ∂� ��
 

f  =ρ a  (force/vol) for media;  
Maxwell’s eqs for e/m, 

or equivalently,  
for � of either, 

0
d
dt φ φ
� �∂ ∂− =� �∂ ∂� ��
� �

 

Variable 
correspondences 
particle � field 

       t  �  x,y,z,t 
      x  �  φ        

    total values  �  density values    
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 Particle Theory Field Theory 

 Quantum Theories 

 QM and RQM via 
Wave Mechanics 

QFT via Wave Mechanics = 
Canonical Quantization 

Quantum 
character 
change 

x and all dynamic variables 
 � operators 

φ and all dynamic variables 
 � operators 

New quantum 
entity 

state ψ  = 

wave function ψ 

state φ  different from  

(operator) field φ 

Note  
Fields create & destroy states.  States 

can be multiparticle ( 1 2,, ...φ φ ) 

Operators functions of , ,x x t�  functions of , , tφ φ�  

Expectation 
values of 
operators 

E Hψ ψ=  
etc. for other opers 

 

E Hφ φ=  
or for multiparticle state 

1 2 1 2, ... , ...E Hφ φ φ φ=  

Equations of 
motion 

For wave function ψ 

QM: Schroedinger eq 

RQM: Klein-Gordon, Dirac, Proça eqs 
or equivalently, 

Euler-Lagrange formulations 

For quantum field φ 

 

QFT: Klein-Gordon, Dirac, Proça eqs 
or equivalently, 

Euler-Lagrange formulations 

Macro 
equations of 
motion 

Deduced from above and expectation 
values of force, acceleration 

Deduced from above and expectation 
values of relevant quantities 

Transition 
amplitude U 

( , ; ) iHT
i if fU x x T x e x−=  

i & f are eigen states of position 

( , ; ) iHT
if fiU T eφ φ φ φ−=  

i & f states can be multiparticle 

|U|2 = probability density probability 

 

10.2 “Derivation” of Many Paths Approach for QFT 

From the next to last row of Unifying Chart 2, we see that the transition amplitude for the 
QFT canonical approach, which is essentially a wave mechanics approach for relativistic fields, 
is similar in form to that of the QM wave mechanics approach, given that we note the 
correspondence x� φ between QM and QFT.  An additional fundamental difference between the 
two is the form of the Hamiltonian H.  In QM, H is a non-relativistic function of x, dx/dt, and 
(rarely) t.  In QFT, it is a relativistic function of φ, dφ/dt, and (rarely) t. 
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Since the canonical (wave mechanics) QFT approach mirrors the wave mechanics QM 
approach, one could postulate (and Feynman probably did) that the many paths approach in QFT 
would mirror the many paths approach in QM.  (See Unifying Chart 1 in Section 7.2 for the 
corresponding QM transition amplitudes using each approach.)  Simply using the same 
correspondences x� φ  and Hnonrel � Hrel  (and thus, Lnonrel � Lrel)  for the many paths approach 
yields Unifying Chart 3. 

Unifying Chart 3.  Comparing QM to QFT for the Many Paths Approach 

 Quantum Theories 

 QM and RQM via 
Many Paths 

QFT via 
Many Paths 

Transition 
amplitude 

0

/

1

( , ; ) lim

( )

j

T

N
iS

i f
j

L
x f

xi

i dt

N
U x x T e

e x t

=→∞
∝

�=

�

�

�

� ��
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0

/
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( )

j

T
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iS

j

f

i

i d x

i f N
U T e

e xµφ

φ

φ φ

φ

=→∞
∝

�=

�

�

�

�

�

�

 

Note Above is from Unifying Chart 1 in 
Section 7.2 

Above is a simplified example for a 
single scalar field. 

 

In the RH column above, all paths, comprising all configurations of the entire field φ over all 
space between its initial and final configurations, are added (integrated).  S here is the action for 
the entire field.  � is the (relativistic) Lagrangian density for the field, which, integrated as it is 
above over all space d3x, yields L. 

Of course, the many paths transition amplitude of Unifying Chart 3 is, at this point, only a 
guess.  However, decades of research, first by Feynman and then by many others, have proven 
that it is completely valid. 

To summarize, briefly 

Unifying Chart 4.  Super Simple Summary 

Correspondences x � φ 
          Hnonrel � Hrel 

 

Wave mechanics amplitude QM � QFT canonical quantization QFT 

Many paths amplitude QM � QFT functional quantization QFT 

 

10.3 Time Slicing in QFT 

Using the same correspondences as in Unifying Chart 4, and the time slicing approximation 
for QM of (38), we find, for QFT, 
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QFT Approximation for Transition Amplitude
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 , (63) 

where the subscripts refer to different time slices, not to different fields.  This example is for 
only a single field. 

The exact form of the transition amplitude, obtained from (39), is given in Unifying Chart 3, 
and is repeated here, 
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0( , ; ) ( )

QFT Exact Expression for Transition Amplitude

T
f
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i d x
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φ
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10.4 More Ahead in Path Integral QFT 

Of course, we have only scratched the surface of the many paths approach to QFT.  There is 
a great deal more, including some fairly fundamental concepts.  However, hopefully, all of the 
above will provide a solid foundation for that, by explaining more simply, more completely, and 
in smaller steps of development what traditional introductions to the subject often treat rapidly 
and in somewhat less than transparent fashion. 

–––––––– 

If you find errors (typographical or otherwise), or have suggestions on how to make anything 
herein easier to understand, please help those who come after you by letting me know, so I can 
make appropriate corrections/modifications.  I can be reached via the email address in the home 
page, Pedagogic Aids to Quantum Field Theory6 (www.quantumfieldtheory.info), for which this 
material is a sub-section.  Thank you. 

Distribution of this material to others is encouraged though subject to (fairly liberal) copyright 
restrictions.  These can be found at the above link as well. 

        Copyright of 
Robert D. Klauber 
Minor corrections: Oct 24, 2011, 
June 7, 2011, April 30, 2009, May 9, 
2009 

Appendix 
From (20), with x=xpeak, 
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We note that (20), and thus (65), are derived from the general wave packet relation (see ref 2) 
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At our initial event, take t=ti = 0, so the above becomes 
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If (67) is a delta function centered at xi = 0, then, from the definition of the delta function, 
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Comparing (68) to (67), we see that for an initial delta function measured at xi 

 ( ) 1g p = . (69) 

Using (69) in (65), we obtain 
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With the integral formula 
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we find 
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