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ABSTRACT

A systematic classification of Feynman path integrals in quantum mechanics
is presented and a table of solvable path integrals is given which reflects the
progress made during the last ten years or so, including, of course, the main
contributions since the invention of the path integral by Feynman in 1942.
An outline of the general theory is given. Explicit formulæ for the so-called
basic path integrals are presented on which our general scheme to classify
and calculate path integrals in quantum mechanics is based.
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1. Introduction

During this conference (May 1992) we are celebrating the fiftieth anniversary
of the invention of path integrals in quantum mechanics, which appear for the
first time on page 35 of Feynman’s thesis [8] dated May 4, 1942. By means of
his path integral [9] Feynman gave a new formulation of quantum mechanics “in
which the central mathematical concept is the analogue of the action in classical
mechanics. It is therefore applicable to mechanical systems whose equations of
motion cannot be put into Hamiltonian form. It is only required that some sort
of least action principle be available” [8]. A few years later, Feynman generalized
the path integral to quantum electrodynamics and derived from it for the first
time the “Feynman rules” providing an extremely effective method for performing
calculations in perturbation theory.

In this contribution we restrict ourselves to path integrals in quantum me-
chanics. Until fairly recently, only a few examples of exactly solvable path integrals
were known; see the books by Feynman and Hibbs [10] and by Schulman [31], which
give a good account of the state of art at the time of 1965 and 1981, respectively.
However, the situation has drastically changed during the last decade or so, and it is
no exaggeration to say that we are able to solve today essentially all path integrals
in quantum mechanics which correspond to problems for which the corresponding
Schrödinger equation can be solved exactly. (This, of course, excludes all classically
chaotic systems). It thus appears to us that the time has come to look for a system-
atic classification of path integrals in quantum mechanics. A comprehensive “Table
of Feynman Path Integrals” will appear soon [21]. In the present short contribution
we are only able to give the main idea how our classification scheme works and
which classes of path integrals are exactly solvable. Due to lack of space, we also
restrict ourselves to purely bosonic degrees of freedom. For fermionic path integrals
we have to refer to the literature [25, 33]. In the following we are not able to give a
complete list of references. A very extensive list on the literature on path integrals
comprising more than 1400 papers will be given in our monography [22] which is in
preparation.

2. Formulation of the Path Integral

Let us set up the definition of the Feynman path integral. We first consider
the simple case of a classical Lagrangian L(x, ẋ) = m

2 ẋ2 − V (x) in D dimensions.

Then the integral kernel (x ∈ IRD)

K(x′′, x′; t′′, t′) =
〈
x′′

∣∣∣ e− i H(t′′−t′)/h̄
∣∣∣x′

〉
Θ(t′′ − t′) (1)

of the time-evolution equation

Ψ(x′′, t′′) =

∫

IRD

K(x′′, x′; t′′, t′)Ψ(x′, t′)dx′ , (2)
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is represented in the form (Feynman path integral [8-10])

K(x′′, x′; t′′, t′) = lim
N→∞

(
m

2π i ǫh̄

)ND/2 N−1∏

j=1

∫

IRD

dx(j)

× exp





i

h̄

N∑

j=1

[
m

2ǫ
(x(j) − x(j−1))

2 − ǫV (x(j))

]


(3a)

≡
x(t′′)=x′′∫

x(t′)=x′

Dx(t) exp

{
i

h̄

∫ t′′

t′

[
m

2
ẋ2 − V (x)

]
dt

}
. (3b)

Here we have used the abbreviations ǫ = (t′′ − t′)/N ≡ T/N , x(j) = x(t(j)) (t(j) =
t′ + ǫj, j = 0, . . . , N), and we interpret the limit N → ∞ as equivalent to ǫ → 0, T
fixed.

The next step is to consider a generic classical Lagrangian of the form
L(q, q̇) = m

2 gab(q)q̇
aq̇b−V (q) in some D-dimensional Riemannian space IM with line

element ds2 = gab(q)dqadqb. This case, as first systematically discussed by DeWitt
[4], requires a careful treatment. The Feynman path integral is most conveniently
constructed by considering the Weyl-ordering prescription (e.g. [20] and references
therein) in the corresponding quantum Hamiltonian. The result then is

K(x′′, x′; t′′, t′) =
[
g(q′)g(q′′)

]
−1/4

lim
N→∞

(
m

2π i ǫh̄

)ND/2 N−1∏

j=1

∫

IM

dq(j) ·
N∏

j=1

√
g(q̄(j))

× exp





i

h̄

N∑

j=1

[
m

2ǫ
gab(q̄(j))∆qa

(j)∆qb
(j) − ǫV (q̄(j)) − ǫ∆V (q̄(j))

]
 . (4)

Here q̄(j) = 1
2
(q(j) +q(j−1)) denotes the midpoint coordinate, ∆q(j) = (q(j)−q(j−1)),

and ∆V (q) is a well-defined “quantum potential” of order h̄2 having the form (Γa =
∂a ln

√
g, g = det(gab))

∆V (q) =
h̄2

8m

[
gabΓaΓb + 2(gabΓa),b + gab

,ab

]
. (5)

The midpoint prescription together with ∆V appears in a completely natural way as
an unavoidable consequence of the Weyl-ordering prescription in the corresponding
quantum Hamiltonian

H = − h̄2

2m
g−1/2∂ag1/2gab∂b + V (q)
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=
1

8m

(
gabpapb + 2pagabpb + papbg

ab
)

+ V (q) + ∆V (q) , (6)

with pa = − i h̄(∂a + 1
2Γa), the momentum operator conjugate to the coordinate qa

in IM. Of course, choosing another prescription leads to a different lattice definition

in Eq. (4) and a different quantum potential ∆̃V . However, every consistent lattice
definition of Eq. (4) can be transformed into another one by carefully expanding
the relevant metric terms (integration measure- and kinetic energy term).

Indispensable tools in path integral techniques are transformation rules. In
order to avoid cumbersome notation, we restrict ourselves to the one-dimensio-
nal case. For the general case we refer to Refs. [18-20] and references therein.
We consider the path integral (3) and perform the coordinate transformation x =
F (q). Implementing this transformation, one has to keep all terms of O(ǫ) in (3).
Expanding about midpoints, the result is

K
(
F (q′′), F (q′); T

)
=
[
F ′(q′′)F ′(q′)

]
−1/2

lim
N→∞

(
m

2π i ǫh̄

)1/2 N−1∏

j=1

∫
dq(j)·

N∏

j=1

F ′(q̄(j))

× exp





i

h̄

N∑

j=1

[
m

2ǫ
F ′2(q̄(j))(∆q(j))

2 − ǫV (F (q̄(j))) −
ǫh̄2

8m

F ′′2(q̄(j))

F ′4(q̄(j))

]
 . (7)

Note that the path integral (7) has the canonical form of the path integral (4). It is
not difficult to incorporate the explicitly time-dependent coordinate transformation
x = F (q, t) [21, 22]. Then

K
(
F (q′′, t′′), F (q′, t′); t′′, t′

)
= A(q′′, q′; t′′, t′)K̃(q′′, q′; t′′, t′) , (8)

with the prefactor

A(q′′, q′; t′′, t′) =
[
F ′(q′′, t′′)F ′(q′, t′)

]
−1/2

× exp

{
i m

h̄

[ ∫ q′′

F ′(z, t′′)Ḟ (z, t′′)dz −
∫ q′

F ′(z, t′)Ḟ (z, t′)dz

]}
, (9)

and the path integral representation for the kernel K̃ given by (F̄(j) = F (q̄(j), t̄(j)),

t̄(j) = 1
2
(t(j) + t(j−1)))

K̃(q′′, q′; t′′, t′) = lim
N→∞

(
m

2π i ǫh̄

)1/2 N−1∏

j=1

∫
dq(j) ·

N∏

j=1

F̄ ′

(j)

× exp

{
i

h̄

N∑

j=1

[
m

2ǫ
F̄ ′ 2

(j)(∆q(j))
2 − ǫV (F̄(j))

− ǫh̄2

8m

F̄ ′′ 2
(j)

F̄ ′ 4
(j)

− ǫm

∫ q̄(j)

F ′(z, t)F̈ (z, t)dz

]}
. (10)
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It is obvious that the path integral representation (10) is not completely satis-
factory. Whereas the transformed potential V (F (q, t)) may have a convenient form

when expressed in the new coordinate q, the kinetic term m
2 F ′2q̇2 is in general nasty.

Here the so-called “time-transformation” comes into play which leads in combina-
tion with the “space-transformation” already carried out to general “space-time
transformations” in path integrals. The time-transformation is implemented [7] by
introducing a new “pseudo-time” s′′ by means of

s′′ =

∫ t′′

t′

ds

F ′2(q(s), s)
. (11)

A rigorous lattice derivation is far from being trivial and has been discussed by many
authors. Recent attempts to put it on a sound footing can be found in Refs. [3,
11]. A convenient way to derive the corresponding transformation formulæ uses the
energy dependent Green’s function G(E) of the kernel K(T ) defined by

G(q′′, q′; E) =

〈
q′′
∣∣∣∣

h̄

H − E − i ǫ

∣∣∣∣q
′

〉
= i

∫
∞

0

dT ei(E+iǫ)T/h̄ K(q′′, q′; T ) . (12)

For the path integral (7) one obtains the following transformation formula (here we
consider the time-independent case only)

K(x′′, x′; T ) =

∫
∞

−∞

dE

2π i h̄
e− i ET/h̄ G(q′′, q′; E) , (13)

G(q′′, q′; E) = i
[
F ′(q′′)F ′(q′)

]1/2
∫

∞

0

ds′′K̂(q′′, q′; s′′) , (14)

with the transformed path integral K̂ given by

K̂(q′′, q′; s′′) = lim
N→∞

(
m

2π i ǫh̄

)1/2 N−1∏

j=1

∫
dq(j)

× exp

{
i

h̄

N∑

j=1

[
m

2ǫ
(∆q(j))

2 − ǫF ′2(q̄(j))
(
V (F (q̄(j))) − E

)

− ǫh̄2

8m

(
3
F ′′2(q̄(j))

F ′2(q̄(j))
− 2

F ′′′(q̄(j))

F ′(q̄(j))

)]}
. (15)

Further refinements are possible and general formulæ of practical interest and
importance can be derived. Let us note that also an explicitly time-dependent
“space-time transformation” can be formulated similarly to the formulæ (13-15),
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c.f. Refs. [21, 22]. By the same technique also the separation of variables in path
integrals can be stated, c.f. Ref. [16]. But this will not be discussed here any further.

3. Basic Path Integrals

In this Section we present the path integrals which we consider as the Basic
Path Integrals.

3.1. Path Integral for the Harmonic Oscillator

The first elementary example is the path integral for the harmonic oscillator.
It has been first evaluated by Feynman [9]. We have the identity (x ∈ IR)

x(t′′)=x′′∫

x(t′)=x′

Dx(t) exp

[
im

2h̄

∫ t′′

t′

(
ẋ2 − ω2x2

)
dt

]

=

√
mω

2π i h̄ sin ωT
exp

{
imω

2h̄

[
(x′2 + x′′2) cotωT − 2x′x′′

sin ωT

]}
. (16)

We do not state the expansion into wave-functions (∝ Hermite polynomials) which
can be done by means of the Mehler formula, nor the corresponding Green’s function.

The path integral for quadratic Lagrangians can also be stated exactly (x ∈ IRD)

x(t′′)=x′′∫

x(t′)=x′

Dx(t) exp

(
i

h̄

∫ t′′

t′
L(x, ẋ)dt

)

=

(
1

2π i h̄

)D/2
√

det

(
− ∂2SCl[x′′, x′]

∂x′′

a∂x′

b

)
exp

(
i

h̄
SCl[x

′′, x′]

)
. (17)

Here L(x, ẋ) denotes any classical Lagrangian at most quadratic in x and ẋ, and

SCl[x
′′, x′] =

∫ t′′

t′
L(xCl, ẋCl)dt the corresponding classical action evaluated along

the classical solution xCl satisfying the boundary conditions xCl(t
′) = x′, xCl(t

′′) =
x′′. The determinant appearing in Eq. (17) is known as the van Vleck-Pauli-Morette
determinant (see e.g. Refs. [4, 28] and references therein). The explicit evaluation of
SCl[x

′′, x′] may have any degree of complexity due to complicated classical solutions
of the Euler-Lagrange equations as the classical equations of motion.

3.2. Path Integral for the Radial Harmonic Oscillator

In order to evaluate the path integral for the radial harmonic oscillator, one
has to perform a separation of the angular variables, see Refs. [14, 29]. Here we are
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not going into the subtleties of the Besselian functional measure due to the Bessel
functions which appear in the lattice approach [11, 14, 20, 29, 34], which is actually
necessary for the explicit evaluation of the radial harmonic oscillator path integral.
One obtains (modulo the above mentioned subtleties) (r > 0)

r(t′′)=r′′∫

r(t′)=r′

Dr(t) exp

[
i

h̄

∫ t′′

t′

(
m

2
ṙ2 − h̄2 λ2 − 1

4

2mr2
− m

2
ω2r2

)
dt

]

=
√

r′r′′
mω

i h̄ sin ωT
exp

[
− mω

2 i h̄
(r′

2
+ r′′

2
) cotωT

]
Iλ

(
mωr′r′′

i h̄ sin ωT

)
, (18)

where Iλ(z) denotes the modified Bessel function.

3.3. Path Integral for the Pöschl-Teller Potential

There are two further basic path integral solutions based on the SU(2) [2,
24] and SU(1, 1) [2] group path integration, respectively. The first yields the path
integral identity for the solution of the Pöschl-Teller potential according to (0 <
x < π/2)

i

∫
∞

0

dT ei ET/h̄

x(t′′)=x′′∫

x(t′)=x′

Dx(t) exp

{
i

h̄

∫ t′′

t′

[
m

2
ẋ2 − h̄2

2m

(
κ2 − 1

4

sin2 x
+

λ2 − 1
4

cos2 x

)]
dt

}

=
m

h̄

√
sin 2x′ sin 2x′′

Γ(m1 − LE)Γ(LE + m1 + 1)

Γ(m1 + m2 + 1)Γ(m1 − m2 + 1)

×
(

1 − cos 2x<

2

)(m1−m2)/2(
1 + cos 2x<

2

)(m1+m2)/2

×
(

1 − cos 2x>

2

)(m1−m2)/2(
1 + cos 2x>

2

)(m1+m2)/2

× 2F1

(
− LE + m1, LE + m1 + 1; m1 − m2 + 1;

1 − cos 2x<

2

)

× 2F1

(
− LE + m1, LE + m1 + 1; m1 + m2 + 1;

1 + cos 2x>

2

)

(19)

with m1/2 = 1
2 (λ±κ), LE = −1

2 + 1
2

√
2mE /h̄, and x<,> the larger, smaller of x′, x′′,

respectively. 2F1(a, b; c; z) denotes the hypergeometric function. Here we have used
the fact that it is possible to state closed expressions for the (energy dependent)
Green’s functions for the Pöschl-Teller and modified Pöschl-Teller potential (see
below), respectively, by summing up the spectral expansion [27].
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3.4. Path Integral for the Modified Pöschl-Teller Potential

Similarly one can derive a path integral identity for the modified Pöschl-
Teller potential. One gets (m1,2 = 1

2 (η ±
√
−2mE /h̄), Lν = 1

2(−1 + ν), r > 0)

i

∫
∞

0

dT ei ET/h̄

r(t′′)=r′′∫

r(t′)=r′

Dr(t) exp

{
i

h̄

∫ t′′

t′

[
m

2
ṙ2 − h̄2

2m

(
η2 − 1

4

sinh2 r
−

ν2 − 1
4

cosh2 r

)]
dt

}

=
m

h̄

Γ(m1 − Lν)Γ(Lν + m1 + 1)

Γ(m1 + m2 + 1)Γ(m1 − m2 + 1)

×
(
cosh r<

)
−(m1−m2)(

tanh r<

)m1+m2+
1
2

×
(
cosh r>

)
−(m1−m2)(

tanh r>

)m1+m2+
1
2

× 2F1

(
− Lν + m1, Lν + m1 + 1; m1 − m2 + 1;

1

cosh2 r<

)

× 2F1

(
− Lν + m1, Lν + m1 + 1; m1 + m2 + 1; tanh2 r>

)
. (20)

3.5. General Formulæ

For the classification of solvable path integrals, one also requires a few ad-
ditional formulæ which generalize the usual problems in quantum mechanics in a
specific way. Here one has e.g.

i) Explicitly time-dependent problems according to e.g. V (x) 7→ V (x/ζ(t))/ζ2(t),
ii) Incorporation of δ-function perturbation according to V (x) 7→ V (x)−γδ(x−a)

(one dimension), and
iii) Boundary problems with impenetrable walls (half-space, infinite boxes) which

can be derived from ii) by considering the limit γ → ∞.

i) For the first class of problems, there is a general solution provided ζ(t) has a
specific form. For ζ(t) = (at2 + 2bt + c)1/2 one finds the general formula

x(t′′)=x′′∫

x(t′)=x′

Dx(t) exp

{
i

h̄

∫ t′′

t′

[
m

2
ẋ2 − 1

ζ2(t)
V

(
x

ζ(t)

)]
dt

}

=
(
ζ ′′ζ ′

)
−D/2

exp

[
im

2h̄

(
x′′2 ζ̇ ′′

ζ ′′
− x′2 ζ̇ ′

ζ ′

)]
Kω′,V

(
x′′

ζ ′′
,
x′

ζ ′
;

∫ t′′

t′

dt

ζ2(t)

)
, (21)

with ζ ′ = ζ(t′), ζ ′′ = ζ(t′′), etc. Here ω′2 = ac − b2 and Kω′,V denotes the path
integral

Kω′,V (z′′, z′; s′′) =

z(s′′)=z′′∫

z(0)=z′

Dz(s) exp

{
i

h̄

∫ s′′

0

[
m

2
ż2 − m

2
ω′2z2 − V (z)

]
ds

}
.

(22)
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Another class of time-dependent problems has a time-dependence according
to V (x) 7→ V (x − f(t)). Here one gets [6] (q′ = x′ − f ′, f ′ = f(t′), etc.)

x(t′′)=x′′∫

x(t′)=x′

Dx(t) exp

{
i

h̄

∫ t′′

t′

[
m

2
ẋ2 − V (x − f(t))

]
dt

}

= exp

{
im

h̄

[
ḟ ′′(x′′ − f ′′) − ḟ ′(x′ − f ′) +

1

2

∫ t′′

t′
ḟ2(t)dt

]}

×
q(t′′)=q′′∫

q(t′)=q′

Dq(t) exp

{
i

h̄

∫ t′′

t′

[
m

2
q̇2 − V (q) − mf̈(t)q

]
dt

}
, (23)

Eqs. (21,23) are special cases of Eq. (8) (note that Ḟ ′(q, t) = 0 in (23) and therefore
an additional term in the prefactor A(t′′, t′) appears).

ii) In the second class of general formulæ we consider the incorporation of δ-function
perturbations, i.e. a δ-function as an additional potential located at x = a with
strength γ. However, here only a closed formula for the corresponding Green’s
function can be stated; an explicit result for the propagator can only be obtained
in the simplest, or in some exceptional cases. One obtains [17]

i

∫
∞

0

dT ei ET/h̄

x(t′′)=x′′∫

x(t′)=x′

Dx(t) exp

{
i

h̄

∫ t′′

t′

[
m

2
ẋ2 − V (x) + γδ(x − a)

]
dt

}

= G(V )(x′′, x′; E) +
G(V )(x′′, a; E)G(V )(a, x′; E)

h̄
γ − G(V )(a, a; E)

. (24)

Here G(V )(E) denotes the Green’s function for the unperturbed problem (γ = 0).
Possible bound states are determined by the poles of G(E), i.e. by the equation
G(V )(a, a, En) = h̄/γ.

iii) The third class of general formulæ is obtained if we consider in Eq. (24) the limit
γ → ∞. This has the consequence that an impenetrable wall appears at x = a.
The result then is for the motion in the half-space x > a

i

∫
∞

0

dT ei ET/h̄

x(t′′)=x′′∫

x(t′)=x′

Dhalf−spacex(t) exp

{
i

h̄

∫ t′′

t′

[
m

2
ẋ2 − V (x)

]
dt

}

= G(V )(x′′, x′; E) − G(V )(x′′, a; E)G(V )(a, x′; E)

G(V )(a, a; E)
. (25)
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Possible bound states are determined by the poles of G(E), i.e. by the equation
G(V )(a, a, En) = 0. Furthermore, for the motion inside a box with boundaries at
x = a and x = b one obtains (a < x < b)

i

∫
∞

0

dT ei ET/h̄

x(t′′)=x′′∫

x(t′)=x′

Dboxx(t) exp

{
i

h̄

∫ t′′

t′

[
m

2
ẋ2 − V (x)

]
dt

}

=

∣∣∣∣∣∣

G(V )(x′′, x′; E) G(V )(x′′, b; E) G(V )(x′′, a; E)
G(V )(b, x′; E) G(V )(b, b; E) G(V )(b, a; E)
G(V )(a, x′; E) G(V )(a, b; E) G(V )(a, a; E)

∣∣∣∣∣∣
∣∣∣∣
G(V )(b, b; E) G(V )(b, a; E)
G(V )(a, b; E) G(V )(a, a; E)

∣∣∣∣
. (26)

4. A Table of Exactly Solvable Feynman Path Integrals

We are now in the position to present a systematic classification and a list of
exactly solvable Feynman path integrals. Of course, due to lack of space, an actual
table cannot be presented in this contribution. We therefore list the name of the
potential, respectively the name of the quantum mechanical problem, and the basic
path integrals to which the path integrals in question can be reduced.

In our table we order the quantum mechanical problems according to their
underlying basic path integral. Of course, this classification is closely related to the
classification scheme based on Schrödinger’s factorization method as reviewed by
Infeld and Hull [23], respectively the related classification scheme of Gendenshtĕın
[12] based on supersymmetric quantum mechanics.

Our classification is according to the following classes

i) The general Lagrangian which is at most quadratic in x and ẋ (the harmonic
oscillator being the simplest and best known example),

ii) The radial harmonic oscillator,

iii) The Pöschl-Teller potential,

iv) The modified Pöschl-Teller potential,

v) Explicitly time-dependent problems,

vi) Path integrals with δ-function perturbation,

vii) Path integrals with infinite boundaries (infinite walls and boxes).

Because of limited space, our table includes only the classes i)-iv). A com-
plete list will be given in [21].
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Table of Exactly Solvable Feynman Path Integrals

Quadratic Lagrangian Radial Harmonic Pöschl-Teller Modified Pöschl-Teller

Oscillator Potential Potential

Infinite square well Liouville mechanics Scarf potential Reflectionless potential

Linear potential Morse potential Symmetric top Rosen-Morse potential

Repelling oscillator Uniform magnetic field Magnetic top Wood-Saxon potential

Forced oscillator Motion in a section Spheres Hultén potential

Saddle point potential Calogero model Bispherical Manning-Rosen potential

coordinates

Uniform magnetic field Aharonov-Bohm Hyperbolic Scarf potential

problems

Driven coupled Coulomb potential Pseudospheres

oscillators

Two-time action Coulomb-like potentials Pseudo-bispherical

(Polaron) in polar and parabolic coordinates

coordinates

Second derivative Nonrelativistic Poincaré disc

Lagrangians monopoles

Semi-classical expansion Kaluza-Klein monopole Hyperbolic Strip

Anharmonic oscillator Poincaré plane Hyperbolic spaces

of rank one

Hyperbolic space Kepler problem

+ magnetic field on spheres, and on

+ potentials pseuodspheres

Of course, in the case of general quantum mechanical problems, more than
just one of the basic path integral solutions is required. However, such problems can
be conveniently put into a hierarchy according to which of the basic path integral is
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the most important one for its solution. For instance, in the path integral solution
for the ring potential (an axially symmetric Coulomb-like potential), this hierarchy
puts the radial harmonic oscillator path integral solution first, because it requires
a space-time transformation to transform the Coulomb terms into oscillator terms.

It is obvious that all potential problems can be generalized to more compli-
cated problems, i.e one can add an additional explicit time-dependence, implement
a δ-function perturbation, respectively consider problems in half-spaces and infinite
boxes, c.f. Eqs. (21-26). The construction of examples is left to the reader and can
be found in [21, 22].

5. Summary

In this short contribution we have sketched our approach towards a “Table of
Solvable Feynman Path Integrals”[21]. We do not claim completeness; however, we
have done our best to gather as many information as possible. The last ten years or
so have seen a lot of activity in solving path integrals and only a few problems seem
to be left open to await an exact solution (for instance, the square well problem, all
related problems with finite discrete potential steps, and an analysis with periodic
potentials; see however Ref. [15], where periodic δ-functions are considered).

Since Feynman’s beautiful paper [9] and his classic book written with Hibbs
[10], several textbooks on path integration have been published [1, 5, 13, 26, 30-32,
35]. Now the time seems to be ripe for a comprehensive summary and critical review
including a systematic classification and extensive bibliography which we are going
to complete soon [21, 22].

It is our hope that such a compilation of our present knowledge will help to
spread the results achieved into the physical and mathematical community, making
them available for critical consideration and further progress, with the ultimate goal
of a comprehensive and complete path integral description of quantum mechanics
and quantum field theory, including quantum gravity and cosmology.
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