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The Aharonov-Bohm Effect

An electron moving in a region
where E and B are zero, but A is
not exhibits physical effects.

Therefore A is real whereas
E and B are not.
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Experiments:

http://www.youtube.com/watch?v=sT60yzJ80qw  Single electron
http://www.youtube.com/watch?v=2J-0PBRuthc Akira Tonomura
http://www.hitachi.com/rd/research/em/doubleslit-f1.html
http://www.hitachi.com/rd/research/em/doubleslit.html
http://www.hitachi.com/rd/research/em/abe.html

Simulations:

http://www.youtube.com/watch?v=OgDPK5MLVnE  Wolfram AB Demo Video
http://www.physics.brocku.ca/faculty/Sternin/teaching/mirrors/gm/abe/index.html  Brock University
http://rugth30.phys.rug.nl/quantummechanics/ab.htm  University of Groningen
People

http://www.youtube.com/watch?NR=1&feature=endscreen&v=SvyD207w24g David Bohm

http://www.youtube.com/watch?v=YJGOhI8iK3o  Yakir Aharonov
http://www.youtube.com/watch?v=6gxRq3Nncpw

Conference:
http://www.youtube.com/results?search_query=%2250+years+of+the+Aharonov-Bohm-+Effect%22&page=1
http://www.youtube.com/watch?v=YJGOhI8iK3o  Yakir Aharonov

http://www.youtube.com/watch?v=WnsrDFSjcZ0&feature=relmfu  CN Yang


http://www.youtube.com/watch?v=sT6OyzJ8Oqw
http://www.youtube.com/watch?v=ZJ-0PBRuthc
http://www.hitachi.com/rd/research/em/doubleslit-f1.html
http://www.hitachi.com/rd/research/em/doubleslit.html
http://www.hitachi.com/rd/research/em/abe.html
http://www.youtube.com/watch?v=OgDPK5MLVnE
http://www.physics.brocku.ca/faculty/Sternin/teaching/mirrors/qm/abe/index.html
http://rugth30.phys.rug.nl/quantummechanics/ab.htm
http://www.youtube.com/watch?NR=1&feature=endscreen&v=SvyD2o7w24g
http://www.youtube.com/watch?v=YJGOhl8iK3o
http://www.youtube.com/watch?v=6qxRq3Nncpw
http://www.youtube.com/results?search_query=%2250+years+of+the+Aharonov-Bohm+Effect%22&page=1
http://www.youtube.com/watch?v=YJGOhl8iK3o
http://www.youtube.com/watch?v=WnsrDFSjcZ0&feature=relmfu

This formula corresponds to the result we found for the electrostatic energy:
= §|popdV. (15.21)

So we may if we wish think of 4 as a kind of potential energy for currents in
magnetostatics. Unfortunately, this idea is not too useful, because it is true only
for static fields. In fact, neither of the equations (15.20) and (15.21) gives the cor-
rect energy when the fields change with time.

15-4 B versus A

In this section we would like to discuss the following questions: Is the vector
potential merely a device which is useful in making calculations—as the scalar
potential is useful in electrostatics—or is the vector potential a “real” field? Isn’t
the magnetic field the “real” field, because it is responsible for the force on a
moving particle? First we should say that the phrase “a real field” is not very
meaningful. For one thing, you probably don’t feel that the magnetic field is
very “real” anyway, because even the whole idea of a field is a rather abstract thing.
You cannot put out your hand and feel the magnetic field. Furthermore, the value
of the magnestic field is not very definite; by choosing a suitable moving coordinate
system, for instance, you can make a magnetic field at a given point disappear.

What we mean here by a ‘“‘real” field is this: a real field is a mathematical
function we use for avoiding the idea of action at a distance. If we have a charged
particle at the position P, it is affected by other charges located at some distance
from P. One way to describe the interaction is to say that the other charges make
some “condition”’—whatever it may be—in the environment at P. If we know
that condition, which we describe by giving the electric and magnetic fields, then
we can determine completely the behavior of the particle—with no further reference
to how those conditions came about.

In other words, if those other charges were altered in some way, but the
conditions at P that are described by the electric and magnetic field at P remain
the same, then the motion of the charge will also be the same. A “real” field is
then a set of numbers we specify in such a way that what happens at a point depends
only on the numbers at that poini. We do not need to know any more about what’s
going on at other places. It is in this sense that we will discuss whether the vector
potential is a “real” field.

You may be wondering about the fact that the vector potential is not unique—
that it can be changed by adding the gradient of any scalar with no change at all
in the forces on particles. That has not, however, anything to do with the question
of reality in the sense that we are talking about. For instance, the magnetic field
is in a sense altered by a relativity change (as are also E and 4). But we are not
worried about what happens if the field can be changed in this way. That doesn’t
really make any difference; that has nothing to do with the question of whether
the vector potential is a proper “real” field for describing magnetic effects, or
whether it is just a useful mathematical tool.

We should also make some remarks on the usefulness of the vector potential
A. We have seen that it can be used in a formal procedure for calculating the mag-
netic fields of known currents, just as ¢ can be used to find electric fields. In
electrostatics we saw that ¢ was given by the scalar integral

1 p(2)
o(1) = dres) s dvs. (15.22)
From this ¢, we get the three components of E by three differential operations.
This procedure is usually easier to handle than evaluating the three integrals in

the vector formula
_ 1 p2)e12
EQl) = Tre, / . dvs. (15.23)

First, there are three integrals; and second, each integral is in general somewhat
more difficult.
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The advantages are much less clear for magnetostatics. The integral for A4 is

already a vector integral:
1 Jj(2)dv,
AQl) = 47reoc2/ PP (15.24)

which is, of course, three integrals. Also, when we take the curl of 4 to get B, we
have six derivatives to do and combine by pairs. It is not immediately obvious
whether in most problems this procedure is really any easier than computing B
directly from

B(l) = 10 / JQ) X exs g (15.25)

%

Using the vector potential is often more difficult for simple problems for the
following reason. Suppose we are interested only in the magnetic field B at one
point, and that the problem has some nice symmetry—say we want the field at a
point on the axis of a ring of current. Because of the symmetry, we can easily get
B by doing the integral of Eq. (15.25). If, however, we were to find A4 first, we would
have to compute B from derivatives of 4, so we must know what A is at all points
in the neighborhood of the point of interest. And most of these points are off the
axis of symmetry, so the integral for 4 gets complicated. In the ring problem, for
example, we would need to use elliptic integrals. In such problems, A is clearly
not very useful. It is true that in many complex problems it is easier to work with
A, but it would be hard to argue that this ease of technique would justify making
you learn about one more vector field.

We have introduced A because it does have an important physical significance.
Not only is it related to the energies of currents, as we saw in the last section, but
it is also a “real” physical field in the sense that we described above. In classical
mechanics it is clear that we can write the force on a particle as

F=gq(E+ v XB), (15.26)

so that, given the forces, everything about the motion is determined. In any region
where B = 0 even if A4 is not zero, such as outside a solenoid, there is no dis-
cernible effect of 4. Therefore for a long time it was believed that 4 was not a
“real” field. It turns out, however, that there are phenomena involving quantum
mechanics which show that the field A4 is in fact a “real” field in the sense we have
defined it. In the next section we will show you how that works.

15-5 The vector potential and quantum mechanics

There are many changes in what concepts are important when we go from
classical to quantum mechanics. We have already discussed some of them in
Vol. I. In particular, the force concept gradually fades away, while the concepts
of energy and momentum become of paramount importance. You remember that
instead of particle motions, one deals with probability amplitudes which vary in
space and time. In these amplitudes there are wavelengths related to momenta,
and frequencies related to energies. The momenta and energies, which determine
the phases of wave functions, are therefore the important quantities in quantum
mechanics. Instead of forces, we deal with the way interactions change the wave-
length of the waves. The idea of a force becomes quite secondary—if it is there at
all. When people talk about nuclear forces, for example, what they usually analyze
and work with are the energies of interaction of two nucleons, and not the force
between them. Nobody ever differentiates the energy to find out what the force
looks like. In this section we want to describe how the vector and scalar poten-
tials enter into quantum mechanics. It is, in fact, just because momentum and
energy play a central role in quantum mechanics that 4 and ¢ provide the most
direct way of introducing electromagnetic effects into quantum descriptions.

We must review a little how quantum mechanics works. We will consider
again the imaginary experiment described in Chapter 37 of Vol. 1, in which elec-
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Feynman’s Paradox

A paradox is a situation which gives one answer
when analyzed one way, and a different answer
when analyzed another way, so that we are left
in somewhat of a quandary as to actually what
would happen. Of course, in physics there are
never any real paradoxes because there is one
correct answer; at least we believe that nature
will act in only one way (and that is the right
way, naturally). So a paradox in physics is only
a confusion in our understanding.



ably chosen B, can cause the electron to keep moving on 1ts assumed orbit. In the
betatron this transverse force causes the electron to move in a circular orbit of
constant radius. We can find out what the magnetic field at the orbit must be by
using again the relativistic equation of motion, but this time, for the transverse
component of the force. In the betatron (see Fig 17-4), B1s at right angles to v, so
the transverse force is g B. Thus the force 1s equal to the rate of change of the trans-
verse component p, of the momentum:

guB = ag;” . (17.8)
When a particle is moving in a circle, the rate of change of its transverse momentum
is equal to the magnitude of the total momentum times w, the angular velocity of
rotation (following the arguments of Chapter 11, Vol. I):

dp[ _
4 = ep (17.9)
where, since the motion 1s circular,
w = g (17.10)

Setting the magnetic force equal to the transverse acceleration, we have
v
qVBorbis = P P (17.11)

where B, is the field at the radius r.

As the betatron operates, the momentum of the electron grows in proportion
to B,,, according to Eq. (17.7), and if the electron is to continue to move 1n 1ts
proper circle, Eq. (17.11) must continue to hold as the momentum of the electron
increases. The value of B, must increase 1n proportion to the momentum p.
Comparing Eq. (17.11) with Eq. (17.7), which determines p, we see that the follow-
g relation must hold between B... the average magnetic field wside the orbit
at the radius r, and the magnetic field By, at the orbit:

AB,, = 2 ABom. (1712)

The correct operation of a betatron requires that the average magnetic field inside
the orbit increase at twice the rate of the magnetic field at the orbit itself. In these
circumstances, as the energy of the particle 1s increased by the induced electric
field the magnetic field at the orbit increases at just the rate required to keep the
particle moving 1n a circle.

The betatron 1s used to accelerate electrons to energies of tens of millions of
volts, or even to hundreds of millions of volts. However, it becomes impractical for
the acceleration of electrons to energies much higher than a few hundred million
volts for several reasons. One of them 1s the practical difficulty of attaining the
required high average value for the magnetic field inside the orbit. Another 1s that
Eq. (17.6) 1s no longer correct at very high energies because it does not include the
loss of energy from the particle due to its radiation of electromagnetic energy
(the so-called synchrotron radiation discussed in Chapter 36, Vol. I). For these
reasons, the acceleration of electrons to the highest energies—to many billions of
electron volts—is accomplished by means of a different kind of machine, called a
synchrotron.

17-4 A paradox

We would now like to describe for you an apparent paradox. A paradox is a
situation which gives one answer when analyzed one way, and a different answer
when analyzed another way, so that we are left in somewhat of a quandary as to
actually what should happen. Of course, in physics there are never any real para-
doxes because there is only one correct answer; at least we behieve that nature will
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CHARGED
METAL SPHERES

PLASTIC DISC

Fig. 17-5. Will the disc rotate if the
current [ is stopped?

COIL OF WIRE

LOAD

Fig. 17-6. A coil of wire rotating in a
uniform magnetic field—the basic idea

of the ac generator.

act in only one way (and that 1s the right way, naturally). So in physics a paradox
1s only a confusion in our own understanding. Here is our paradox.

Imagine that we construct a device like that shown in Fig. 17-5. There 1s a
thin, circular plastic disc supported on a concentric shaft with excellent bearings,
so that it 1s quite free to rotate. On the disc 1s a cotl of wire in the form of a short
solenoid concentric with the axis of rotation. This solenoid carries a steady current
I provided by a small battery, also mounted on the disc. Near the edge of the disc
and spaced uniformly around 1ts circumference are a number of small metal spheres
mnsulated from each other and from the solenoid by the plastic material of the disc.
Each of these small conducting spheres is charged with the same electrostatic
charge Q. Everything is quite stationary, and the disc is at rest. Suppose now that
by some accident—or by prearrangement—the current n the solenoid 1s inter-
rupted, without, however, any intervention from the outside. So long as the current
continued, there was a magnetic flux through the solenoid more or less parallel
to the axis of the disc. When the current is interrupted, this flux must go to zero.
There will, therefore, be an electric field induced which will circulate around in
circles centered at the axis. The charged spheres on the perimeter of the disc will
all experience an electric field tangenual to the perimeter of the disc. This electric
force 1s 1n the same sense for all the charges and so will result in a net torque on the
disc. From these arguments we would expect that as the current in the solenoid
disappears, the disc would begin to rotate. If we knew the moment of inertia of
the disc, the current n the solenoid, and the charges on the small spheres, we could
compute the resulting angular velocity.

But we could also make a different argument. Using the principle of the con-
servation of angular momentum, we could say that the angular momentum of the
disc with all 1ts equipment is initially zero, and so the angular momentum of the
assembly should remain zero. There should be no rotauon when the current 1s
stopped. Which argument 1s correct? Will the disc rotate or will it not? We will
leave this question for you to think about.

We should warn you that the correct answer does not depend on any non-
essential feature, such as the asymmetric position of a battery, for example. In
fact, you can imagine an 1deal situation such as the following: The solenoid 1s
made of superconducting wire through which there is a current. After the disc has
been carefully placed at rest, the temperature of the solenoid 1s allowed to rise slowly
When the temperature of the wire reaches the transition temperature between
superconductivity and normal conductivity, the current in the solenoid will be
brought to zero by the resistance of the wire. The flux will, as before, fall to zero,
and there will be an electric field around the axis. We should also warn you that the
solution 1s not easy, nor 1s 1t a trick. When you figure it out, you will have dis-
covered an important principle of electromagnetism.

17-5 Alternating-current generator

In the remainder of this chapter we apply the principles of Section 17-1 to
analyze a number of the phenomena discussed in Chapter 16. We first look 1n more
detail at the alternating-current generator. Such a generator consists basically of a
coil of wire rotating in a uniform magnetic field. The same result can also be
achieved by a fixed coil in a magnetic field whose direction rotates in the manner
described in the last chapter. We will consider only the former case. Suppose we
have a circular coil of wire which can be turned on an axis along one of 1ts diam-
eters. Let this coil be located 1n a uniform magnetic field perpendicular to the axis
of rotation, as in Fig. 17-6 We also imagine that the two ends of the coil are
brought to external connecttons through some kind of sliding contacts.

Due to the rotation of the coil, the magnetic flux through it will be changing.
The circuit of the coil will therefore have an emf in1t. Let S be the area of the coil
and # the angle between the magnetic field and the normal to the plane of the co1l.*

for a Surface area.
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The Vector Potential

EM Field Carries Momentum

Vector potential A => Photons



V. SUMMARY AND CONCLUSION

The spherical orrery is a useful device for demonstrating
and investigating principles of celestial mechanics. The
physics of this device is more closely analogous to celestial
mechanics than that of an earlier cylindrical orrery in which
particles orbit a rod. Phenomena that are easily investigated
include Kepler’s laws, precession, adiabaticity, molecular
drag, and collisions. The use of videotape allows the phe-
nomena to be shown to large audiences. An improved
vacuum will allow longer orbital decay times which will
facilitate the investigation of resonant perturbations applied
for long periods. This type of perturbation is responsible for
the Kirkwood gaps in the asteroid belt, much of the fine
structure in Saturn’s rings, and may also lead to dynamical
chaos.

ACKNOWLEDGMENTS

CS acknowledges support from the National Science
Foundation Research Experiences for Undergraduates Pro-
gram. DA and SR acknowledge support from National Aero-
nautics and Space Administration (NASA). KV and BW ac-
knowledge support from the Research Corporation Cottrell
College Science Award Program and the NASA Joint Ven-

ture Program. The authors acknowledge valuable discussions
on orbital mechanics with Mihaly Horanyi and initial experi-
mental work by Greg Newton.

T, Biewer, D. Alexander, S. Robertson, and B. Walch, ‘“Electrostatic or-
rery for celestial mechanics,”” Am. J. Phys. 62, 821-827 (1994).

2W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes (Cambridge U.P., Cambridge, 1986), p. 553.

3H. Winter and H. W. Ortjohann, ““Simple demonstration of storing mac-
roscopic particles in a Paul trap,”” Am. J. Phys. 59, 807-812 (1991).
“For a recent review of particle traps, see D. A. Church, ““Collision mea-
surements and excited-level lifetime measurements on ions stored in Paul,
Penning, and Kingdon ion traps,”” Phys. Rep. 228, 253-358 (1993).

3] Binney and S. Tremaine, Galactic Dynamics (Princeton, U.P., Princ-
eton, 1987), Chaps. 2 and 3.

¢J. A. Bums, ‘‘Elementary derivation of the perturbation equations of ce-
lestial mechanics,” Am. J. Phys. 44, 944-949 (1976); errata, 45, 545
(1976).

™. Horanyi, J. A. Burns, M. Tatrallyay, and J. G. Luhmann, ‘‘Toward
understanding the fate of dust lost from the Martian satellites,”” Geophys.
Res. Lett. 17(6), 853—-856 (1990).

8The uncertainty in the charge-to-mass ratio is determined by the measured
spread in charge (*18%), the measured spread in particle diameter
(9%), and the spread in wall thickness which is not known,

°B. Walch, M. Horanyi, and S. Robertson, ‘Charging of dust grains in
plasma with energetic electrons,”” Phys. Rev. Lett. 75, 838—841 (1995).

Model EDC1000, Electrim Corporation, Box 2074, Princeton, NJ 08543.

UModel FX-620, Sony Corporation. It is important for the camera to have a
manual focusing ability.

Thoughts on the magnetic vector potential
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We collect together several ideas that we have found helpful in teaching the magnetic vector
potential A. We argue that students can be taught to visualize A for simple current distributions and
to see A as something with physical significance beyond its bare definition as the ‘“thing whose curl
is B.”” © 1996 American Association of Physics Teachers.

I. INTRODUCTION

Despite the beautiful symmetry between electric and mag-
netic fields, the ways in which we teach these two concepts
could scarcely be more different. In our introductory physics
courses (“‘freshman physics”” in a typical American college),
students acquire a reasonable understanding of the electric
field E and the electrostatic potential ¢; by contrast, their
understanding of the magnetic field B is hazy at best, and
they probably do not meet the magnetic potential A at all. By
the end of their next course in electromagnetism (“‘junior E
and M”’), students generally have a reasonable understand-
ing of the magnetic field B and have met the magnetic po-
tential as a mathematical artifact used to express B as
B=VXxA. Nevertheless, they still have almost no idea of

what A really is, much less any picture of what A looks like
in even the simplest situations. Even after a graduate course
in electrodynamics, many students probably could not say
much more about A than that it is the vector whose curl is B.

In this paper, we focus on the vector potential A and argue
that there is much that can be said to improve students’ un-
derstanding of it. Many of the ideas we discuss have ap-
peared before (often in this journal), and some are hinted at
in some of the popular textbooks. Nevertheless, it seems
clear from the textbooks and from our discussions with nu-
merous colleagues that these ideas are not widely recognized
and are certainly not incorporated into most courses in elec-
tromagnetism. Given the increasing importance of the vector
potential in modern physics (superconductivity, the

1361 Am. J. Phys. 64 (11), November 1996
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Aharonov—-Bohm effect, Josephson junctions, SQUIDS, etc.)
anything we can say to help our students master the concept
seems worth emphasizing.

Perhaps the most obvious difficulty in teaching the vector
potential is that it requires a knowledge of vector calculus.
One can define the scalar potential ¢ as the potential energy
per unit charge and give a remarkably good feeling for ¢
without ever using vector calculus. Typical introductory

simple charge distributions and of the rate of change of ¢ as
—E without ever mentioning the equation E=—V¢. By con-
trast, it is very hard to teach the vector potential until our
students understand the meaning of the curl (as in B=V X A).
For this reason alone, the vector potential is beyond the reach
of almost all freshman physics courses. Obviously, we can-
not deny this problem, but we do believe that there is much
we can do to improve students’ understanding of A once

A second obstacle to our students’ understanding of the
vector potential is the still prevalent view that A is merely a
mathematical fiction whose only role is to express B as
VxA. Curiously, the founder of our subject, Maxwell
himself,* advocated in 1865 a quite opposite view, which
we shall echo, that the vector potential can be seen as a
stored momentum per unit charge in much the same way that
¢ is the stored energy per unit charge. Indeed, one of Max-
well’s several names for the vector potential was *‘electro-
magnetic momentum.”” An equivalent view, that A can be
seen as the appropriate field momentum per unit charge, was
stated by Thomson® in 1904 and was forcefully advocated by
Konopinski* in an article in this journal in 1978. (There is a
long history of distinguished articles on related topics in this
journal.%)

The modern view, that A is an artifact devoid of physical
significance seems to originate with Heaviside (in 1886),°
who described the potentials as ‘‘highly artificial quanti-
ties,”” and Hertz (in 1893),” who disparaged the components
of A as ‘‘magnitudes which serve for calculation only.”
These views can be found in almost any modern textbook on
electromagnetism. Perhaps the strongest statement is due to
Rohrlich,” who says:

These functions, known as potentials, have no physical

meaning and are introduced solely for the purpose of

mathematical simplification of the equations.

Similar statements can be found, for example, in Refs. 9 and
10.
¢ do not claim that the Maxwell— I'homson view 0

stored momentum per unit charge is of immense practical
value (although we do offer some examples to show the in-
sight that it can contribute). Nonetheless, we do argue that,
by giving physical meaning to an otherwise rather abstract
notion, this view can help students to feel more at home with
and better understand the undeniably important concept of

added to mv to give the ‘‘proper’’ conserved momentum,
just as g ¢ is the quantity that must be added to mv? to give
the “‘proper’” conserved energy. In quantum theory, A (as
opposed to B) is the fundamental quantity in the Schrodinger
equation for a charged particle and in the interactions of
quantum electrodynamics.

A third difficulty in teaching the vector potential is that
much of its importance appears only later in more advanced
subjects which the students of junior E and M have often not
studied: In relativity, A combines with ¢ to form the four-
potential A =(A,/c), just as the momentum p combines with
the energy E to form the four-momentum p =(p,E/c). In the
Lagrangian mechanics of a charged particle, the generalized,
or canonical, momentum turns out to be p=mv+gA, and,
under the appropriate conditions, it is p (rather than mv)
which is conserved. That is, gA is the quantity that must be

1362 Am. J. Phys., Vol. 64, No. 11, November 1996
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jects, then these arguments for the importance of A will carry
less weight. Nonetheless, some students have studied relativ-
ity, Lagrangian mechanics, or even quantum mechanics be-
fore meeting the vector potential, and for such students these
ideas are well worth exploring. Even if your students have
not studied these subjects, the arguments can at least be men-
tioned.

In Sec. II, we describe two ways to help our students vi-
sualize, and even calculate, the vector potential for a number
of steady current distributions. While most students can
readily calculate and visualize the scalar potential ¢ of vari-
ous charge distributions, very few can do the same for the
vector potential of any current distributions. Any tricks to
help them do this seem well worth emphasizing. In particu-
lar, the formal analogy between ugJ as the source of B (as in
VXxB=u,J) and B as the source of A (as in VXA=B) al-
lows one to find the vector potential in several situations by
taking advantage of the well-known B fields of certain cur-
rent distributions. Although this point is mentioned briefly in
the fine textbooks!' of Griffiths and of Barger and Olsson,
and is clearly stated in a recent article of Carron,'? it seems
not to be as widely appreciated as it deserves.

In Sec. IlIl, we review the main arguments for the
Maxwell-Thomson view that A is the stored momentum per
unit charge, that is, that A does for momentum what the
scalar potential ¢ does for energy. Finally, in Sec. IV, we
give some examples of problems that can be solved and per-

To conclude this introduction, we need to discuss the con-
sistency of the view of A as stored momentum with the re-
quirements of gauge invariance. Since A is not uniquely de-
fined, one is bound to be a bit suspicious of the claim that A
can be interpreted as stored momentum. We shall address
this objection at the appropriate points throughout the paper,
but it may be helpful to summarize the situation now: First,
we note that many familiar physical quantities are not
uniquely defined (potential energy, the energy flow vector,
the Lagrangian, etc.) but are nevertheless physically signifi-
cant. In the cas~ of the vector potential, there are many dif-
ferent choices u. A, all corresponding to the same electro-
magnetic fields, and we shall see that each different choice of
A (that is, each different gauge) defines a different general-
ized momentum p=mv+qA. In some gauges the generalized
momentum may be conserved and in others it may not. As
one might expect, the most convenient choice of gauge is
usually one in which p is conserved. Since conservation laws
are generally associated with symmetries, this means finding
a gauge where A has the same symmetries as the underlying
problem.

II. ON VISUALIZING AND CALCULATING THE
VECTOR POTENTIAL

By the time they are in a junior E and M course, most of
our students have a reasonable picture of the way the mag-
netic field B circles around the current that produces it, and,
with the help of Ampere’s law, they can calculate the B field

M. D. Semon and J. R. Taylor 1362
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Fig. 1. (a) The B field of a current confined inside a long straight wire
circulates around the wire with magnitude given by Ampere’s law as
B = pyl/27r. (b) The B field of a long solenoid is confined inside the sole-
noid. Comparing with (a), we can immediately conclude that the vector
potential outside the solenoid circulates with magnitude A =®/27r.

for several simple current distributions. On the other hand,
they usually have very little idea how to visualize or calcu-

One approach to finding any magnetostatic A, which leans
nicely on the students’ experience in electrostatics, is to note
that, in the gauge where V-A=0, the vector potential A sat-
isfies

VA= — ol (1)

(just as the scalar potential satisfies V2¢p=—p/e,). The solu-
tion of this equation is well known to be

J(r")

A(l‘)= f—;)_ f av’ W (2)

diately find the potential A corresponding to the B field of a
long cylindrical solenoid, as shown in Fig. 1(b). This field is
uniform inside the cylinder and zero outside. Therefore, ex-
actly as B circulates around the current I in Fig. 1(a), so the
vector potential A must circulate around B in Fig. 1(b).

Quantitatively, the students all know from Ampere’s law
that the B field outside the current of Fig. 1(a) is

ol
_ Mot . . 5
B Ty [outside wire], %)
where I is the total current in the wire. It immediately fol-
lows that the vector potential outside the solenoid of Fig.
1(b) must be

A=—-——[outside solenoid], (6)
2@r

where @ is the total flux of B inside the solenoid. This is

surely a most economical and transparent derivation of the

vector potential outside a solenoid—a configuration that oc-

curs in the Aharonov-Bohm effect and many other impor-

(Again, it helps to emphasize the parallel between this and
the corresponding result for ¢.) We mention the well-known
result (2) because it makes clear that the contribution of each
J(r’) to A(r) is in the direction of J(r'). For example, if J has
the same direction everywhere (as with the current in a long
straight wire), then the same is true of A, and A has the same
direction as J. Similarly, Eq. (2) implies that if J is axially
symmetric and points in circles around its axis of symmetry
(as with the current in a circular loop or solenoid), then A

has these same two properties.
A second way to End A 1S (o recognize that (in the gauge

with V-A=0) A is determined by the two equations

VxA=B and V-A=0. (3)
Comparing these with the two Maxwell equations for B,
VxB=u,J and V.B=0, 4)

we see that B can be regarded as the ‘‘source’” of A in just

the same way that uyJ is the source of B. This analo
“Tcans that all thc students’ Nard-won eXpericnce using Xﬁ-

pere’s law to find B for given J can be applied immediately
to the problem of finding A for given B. For example, most
students in junior E and M are familiar with the way B tends
to circle around its source current J; in just the same way, it
follows that the vector potential A tends to circle around its
corresponding B.

A. Example: Vector potential for a solenoid

As a first illustration of this approach to finding A, recall
that, for a steady current in a long straight cylindrical wire,
the B field circulates outside the wire, as shown in Fig. 1(a).
Using the analogy between Egs. (3) and (4), we can imme-
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tant applications.
_W'Le Can use the same argumenf 10 IInd the vector pofenhal

inside the solenoid. If the current in Fig. 1(a) is uniform
inside the wire, then we can use Ampere’s law,
$B-dr=ul (inside), with a circular path of radius r, to show
that the B field inside the wire is B= uqlr/2ma?, where a is
the radius of the wire. In exactly the same way, Eq. (3)
implies an ‘‘Ampere’s law’’ for A, namely, $A.dr
=®(inside), and we can see that the vector potential inside
the solenoid of Fig. 1(a) circulates around the axis with mag-
nitude

br Br
A= 27Ta2=7' )

If we bear in mind that r in (7) denotes the perpendicular
distance out from the axis and we let a —x, this result gives
the vector potential for a uniform B field:

®)

a result of great importance, which appears, for example, in
the quantum theory of an atom in a uniform magnetic field
(the Zeeman and Paschen—Back effects).

B. Another example: Vector potential for a long
straight wire

Figure 2(a) shows a current circulating uniformly around
the surface of a long conducting cylinder, that is, a solenoid.
The corresponding B field is known (from Ampere’s law) to
be zero outside the cylinder and uniform, directed along the
cylinder, on the inside, as shown in Fig. 2(a). It immediately
follows that a B field circulating uniformly around the sur-
face of a cylinder corresponds to a vector potential A that is
zero outside and uniform inside, as shown in Fig. 2(b). The
circulating B field of Fig. 2(b) is produced by a uniform
current flowing up a cylinder of radius r and back down a
coaxial cylinder of slightly larger radius r+dr, as shown in
Fig. 2(c). Thus the vector potential of Fig. 2(b) is the poten-
tial of a uniform current in the coaxial cable of Fig. 2(c).

It is easy to write down quantitative expressions for the
fields involved in this example. The B field inside the sole-

M. D. Semon and J. R. Taylor 1363


Larry
B=curl A

Larry


Larry


Larry
J=curl B

Larry


Larry


Larry


Larry


Larry


Larry



/B=;Lo]dr /A:Bdr
@ © current
B-0 N L 4 -0 ! } !
—_— - outside — > outside
T BT
N — —
(a) ||l (b) l'l (c)

Fig. 2. (a) A current circulating around a long cylinder (or solenoid) produces a B field that is uniform inside the cylinder and zero outside. (b) It immediately
follows that a B field circulating around the surface of a cylinder corresponds to a potential A that is uniform inside the cylinder and zero outside. (c) The B
field of (b) is produced by a current flowing up one cylinder and down a second, coaxial cylinder of slightly larger radius.

noid of Fig. 2(a) is well known to be ugnl, where n is the
number of turns per unit length. In terms of the current den-
sity J this is

B=pyJ dr [inside cylinder], 9)

where dr denotes the thickness of the conducting cylinder.
Therefore, the vector potential of Fig. 2(b) is

A=B dr (10)
_ pol .. .
=5 dr [inside cylinder], (11)

and A =0 outside. Here, dr is the small separation between
the two coaxial conductors, and Eq. (11) follows from (10)
because the field between the two cylinders is, according to
Ampere’s law, B= uol/27r.

From the result (11) we can easily find the vector potential
for a single cylindrical wire. Consider, first, two coaxial cyl-
inders at r=a and r=>, not necessarily close together. We
can regard this arrangement as the superposition of many
coaxial pairs, starting at r=a and ending at r=>b, in which
each pair is close together. To find A at any r between a and
b, we note that those coaxial pairs inside » contribute noth-
ing to A. Thus the total vector potential at any r between the
two cylinders is the integral of (11) from r to b:

1
A(r)= ’;—Oﬂ [In(b) —In(r)]. (12)

To find the potential for a single wire, we cannot simply
let the outer radius b in (12) tend to infinity because the term
In(b) diverges. However, if we fix b at a value larger than
the values of r in which we are interested, then In(b) is just
a constant, which we can drop, to give

A(r)=—g%lln(r), [for a<r<b]. (13)

This is the vector potential for two coaxial cylinders of radii
a and b. However, we know that the corresponding B field
for a<r<b is the same as that outside a single wire of
radius a. Since (13) is independent of b, we can now let
b—, and we conclude that the vector potential A outside a
single wire is parallel to the current [the direction predicted
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in connection with Eq. (2)] and has magnitude given by
(13).

One can find other examples of currents for which the
known form of B for a given wJ lets one write down A for
a given B. For instance, the vector potential for two antipar-
allel current sheets and for a toroidal solenoid can both be
found easily in this way. (The latter is discussed in detail in
Ref. 12))

III. THE VECTOR POTENTIAL AS
“ELECTROMAGNETIC MOMENTUM”

Whenever we define a new concept, we need to say as
much as possible—beyond the bare definition—to show our
students what the concept really is. This is desirable in its
own right, but, equally important, it gives the students a con-
text within which to place and understand the new concept.
Thus, beyond defining A as the ‘‘thing whose curl is B,”” we
need to say as much as possible about its physical signifi-
cance. We wish to argue that the Maxwell-Thomson view
that A is the stored momentum per unit charge supplies this
needed physical meaning. Throughout this section we shall
consider the motion of a single charge g in an applied elec-
tromagnetic field, given by potentials ¢ and A.

As a first indication that A is at least a candidate for stored
momentum per unit charge, we can point out that the units of
A are precisely those of [momentum/charge]. (Verifying this
makes a nice exercise for your students in handling the units
of magnetic field.) Another point that is easily made is that in
relativity, A is related to ¢ exactly as momentum is related
to energy. Even students who have not studied relativity for-
mally are almost certainly aware that momentum and energy
combine to form the four-momentum p=(p,E/c). Thus we
can at least tell them that (as they will learn later) A and ¢
combine to form the four-potential A =(A,¢/c), with A in the
‘““momentum slot’” and ¢ in the “‘energy slot.”’

connected with momentum comes from the Lagrangian me-
chanics of a charged particle in an electromagnetic field. If
our students have already learned about Lagrangians, then
we can show them that the Lagrangian
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The advantages are much less clear for magnetostatics. The integral for A is

already a vector integral:
AQ) = /1(2) LEY (15.24)
0 ri2

which is, of course, three integrals. Also, when we take the curl of A4 to get B, we
have six derivatives to do and combine by pairs. It is not immediately obvious
whether in most problems this procedure is really any easier than computing B
directly from

_ 1 J2) X e1o
BO) = gres / 2 v (15.25)

Using the vector potential is often more difficult for simple problems for the
following reason. Suppose we are interested only in the magnetic field B at one
point, and that the problem has some nice symmetry—say we want the field at a
point on the axis of a ring of current. Because of the symmetry, we can easily get
B by doing the integral of Eq. (15.25). If, however, we were to find A first, we would
have to compute B from derivatives of A, so we must know what A is at all points
in the neighborhood of the point of interest. And most of these points are off the
axis of symmetry, so the integral for 4 gets complicated. In the ring problem, for
example, we would need to use elliptic integrals. In such problems, 4 is clearly
not very useful. It is true that in many complex problems it is easier to work with
A, but it would be hard to argue that this ease of technique would justify making
you learn about one more vector field.

We have introduced A because it does have an important physical significance.
Not only is it related to the energies of currents, as we saw in the last section, but
it is also a “real” physical field in the sense that we described above. In classical
mechanics it is clear that we can write the force on a particle as

F = g(E + v X B). (15.26)

so that, given the forces, everything about the motion is determined. In any region

__where B = 0 even if A4 is not zero, such as outside a solenoid, there is no dis-
cernible effect of 4. Therefore for a long time it was believed that A4 was not a
“real” field. It turns out, however, that there are phenomena involving quantum
mechanics which show that the field A is in fact a “real” field in the sense we have
defined it. In the next section we will show you how that works.

15-5 The vector potential and quantum mechanics

There are many changes in what concepts are important when we go from
classical to quantum mechanics. We have already discussed some of them in
Vol. I. In particular, the force concept gradually fades away, while the concepts
of energy and momentum become of paramount importance. You remember that
instead of particle motions, one deals with probability amplitudes which vary in
space and time. In these amplitudes there are wavelengths related to momenta,
and frequencies related to energies. The momenta and energies, which determine
the phases of wave functions, are therefore the important quantities in quantum
mechanics. Instead of forces, we deal with the way interactions change the wave-
Jength of the waves. The idea of a force becomes quite secondary—if it is there at
all. When people talk about nuclear forces, for example, what they usually analyze
and work with are the energies of interaction of two nucleons, and not the force
between them. Nobody ever differentiates the energy to find out what the force
Jooks like. In this section we want to describe how the vector and scalar poten-
tials enter into quantum mechanics. It is, in fact, just because momentum and
energy play a central role in quantum mechanics that 4 and ¢ provide the most
direct way of introducing electromagnetic effects into quantum descriptions.

We must review a little how quantum mechanics works. We will consider
again the imaginary experiment described in Chapter 37 of Vol. I, in which elec-

it



Larry



Y

Fig. 15-5. An interference experiment with electrons

(see also Chapter 37 of Vol. |).

trons are diffracted by two slits. The arrangement is shown again in Fig. 15-5.
Electrons, all of nearly the same energy, leave the source and travel toward a wall
with two narrow slits. Beyond the wall is a “backstop” with a movable detector.
The detector measures the rate, which we call 7, at which electrons arrive at a small
region of the backstop at the distance x from the axis of symmetry. The rate is
proportional to the probability that an individual electron that leaves the source
will reach that region of the backstop. This probability has the complicated-looking
distribution shown in the figure, which we understand as due to the interference of
two amplitudes, one from each slit. The interference of the two amplitudes
depends on their phase difference. That is, if the amplitudes are C,¢*®: and Cqe’®z,
the phase difference § = ®; — ®, determines their interference pattern [see Eq.
(29.12) in Vol. I]. If the distance between the screen and the slits is L, and if the
difference in the path lengths for electrons going through the two slits is a, as
shown in the figure, then the phase difference of the two waves is given by

5 = (15.27)

a,
A
As usual, we let A = )\/27, where X is the wavelength of the space variation of the
probability amplitude. For simplicity, we will consider only values of x much
less than L; then we can set

d

a =

N &

and

6_

=75 (15.28)

>R

When x is zero, § is zero; the waves are in phase, and the probability has a maxi-
mum. When § is 7, the waves are out of phase, they interfere destructively, and the

Now we would like to state the law that for quantum mechanics replaces the
forcelaw F = qv X B. It will be the law that determines the behavior of quantum-
mechanical particles in an electromagnetic field. Since what happens is determined
by amplitudes, the law must tell us how the magnetic influences affect the ampli-
tudes; we are no longer dealing with the acceleration of a particle. The law is the
following: the phase of the amplitude to arrive via any trajectory is changed by
the presence of a magnetic field by an amount equal to the integral of the vector
potential along the whole trajectory times the charge of the particle over Planck’s
constant. That is,

Magnetic change in phase = % / A - ds. (15.29)

trajectory
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If there were no magnetic field there would be a certain phase of arrival. If there is
a magnetic field anywhere, the phase of the arriving wave is increased by the integral
in Eq. (15.29).

Although we will not need to use it for our present discussion, we mention
that the effect of an electrostatic field is to produce a phase change given by the
negative of the time integral of the scalar potential ¢:

Electric change in phase = — % / ¢ dt.

These two expressions are correct not only for static fields, but together give the
correct result for any electromagnetic field, static or dynamic. This is the law that
replaces F = g(E + v X B). We want now, however, to consider only a static
magnetic field.

want to ask for the phase of arrival at the screen of the two waves whose paths pass
through the two slits. Their interference determines where the maxima in the
probability will be. We may call ®, the phase of the wave along trajectory (1).
If &;(B = 0)is the phase without the magnetic field, then when the field is turned
on the phase will be

®, = &;(B = 0) + %/m A-ds. (15.30)
Similarly, the phase for trajectory (2) is
&y = ®3(B = 0) + %/(2) A - ds. (15.31)

The interference of the waves at the detector depends on the phase difference

a=q>1(3=0)—q>2(3=0)+‘—1/ A-ds—ﬂf A-ds. (1532)
i J oy fi J (2

The no-field difference we will call 8(B = 0); it is just the phase difference we
have calculated above in Eq. (15.28). Also, we notice that the two integrals can
be written as one integral that goes forward along (1) and back along (2); we call
this the closed path (1-2). So we have

5= 08B =0)+ %?{ A - ds. (15.33)

1-2)

This equation tells us how the electron motion is changed by the magnetic field;
with it we can find the new positions of the intensity maxima and minima at the

RS

Before we do that, however, we want to raise the following interesting and
important point. You remember that the vector potential function has some
arbitrariness. Two different vector potential functions A4 and A’ whose difference
is the gradient of some scalar function Vy, both represent the same magnetic field,
since the curl of a gradient is zero. They give, therefore, the same classical force
gv X B. If in quantum mechanics the effects depend on the vector potential,
which of the many possible A-functions is correct?

The answer is that the same arbitrariness in 4 continues to exist for quantum
mechanics. If in Eq. (15.33) we change 4 to 4’ = 4 + Vy, the integral on

A becomes
f A’-ds=7{ A-ds + vy - ds.
(1-2) (1-2) (1-2)

The integral of Vy is around the closed path (1-2), but the integral of the tangential
component of a gradient on a closed path is always zero, by Stokes’ theorem.
Therefore both 4 and A’ give the same phase differences and the same quantum-
mechanical interference effects. In both classical and quantum theory it is only the
curl of A that matters; any choice of the function of A which has the correct curl
gives the correct physics.

12 10



Larry


Larry



The same conclusion is evident if we use the results of Section 14-1. There
we found that the line integral of 4 around a closed path is the flux of B through
the path, which here is the flux between paths (1) and (2). Equation (15.33) can,
if we wish, be written as

5= 8B =0)+ %[ﬂux of B between (1) and (2)], (15.34)
where by the flux of B we mean, as usual, the surface integral of the normal com-

Now because we can write the result in terms of B as well as in terms of A4,
you might be inclined to think that the B holds its own as a “real” field and that
the 4 can still be thought of as an artificial construction. But the definition of
“real” field that we originally proposed was based on the idea that a “real” field
would not act on a particle from a distance. We can, however, give an example
in which B is zero—or at least arbitrarily small—at any place where there is some
chance to find the particles, so that it is not possible to think of it acting directly
on them.

You remember that for a long solenoid carrying an electric current there is
a B-field inside but none outside, while there is lots of 4 circulating around outside,
as shown in Fig. 15-6. If we arrange a situation in which electrons are to be found
only outside of the solenoid—only where there is A—there will still be an influence
on the motion, according to Eq. (15.33). Classically, that is impossible. Classically,
the force depends only on B; in order to know that the solenoid is carrying current,
the particle must go through it. But quantum-mechanically you can find out that
there is a magnetic field inside the solenoid by going around it—without ever going
close to it!

wall and between the two slits, as shown in Fig. 15-7. The diameter of the solenoid
is to be much smaller than the distance d between the two slits. In these circum-
stances, the diffraction of the electrons at the slit gives no appreciable probability
that the electrons will get near the solenoid. What will be the effect on our inter-
ference experiment? \

SOURCE
-

Fig. 15-6. The magnetic field and
vector potential of a long solenoid.

-

//:\

A/ 2L

SOLENOID
LINES OF B
L —>

/L

Fig. 15-7. A magnetic field can influence the motion of electrons even though
it exists only in regions where there is an arbitrarily small probability of finding the

electrons.

We compare the situation with and without a current through the solenoid.
If we have no current, we have no B or 4 and we get the original pattern of elec-
tron intensity at the backstop. If we turn the current on in the solenoid and build
up a magnetic field B inside, then there is an A outside. There is a shift in the
phase difference proportional to the circulation of 4 outside the solenoid, which will
mean that the pattern of maxima and minima is shifted to a new position. In fact,
since the flux of B inside is a constant for any pair of paths, so also is the circula-
tion of A. For every arrival point there is the same phase change; this corresponds
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to shifting the entire pattern in x by a constant amount, say x,, that we can easily
calculate. The maximum intensity will occur where the phase difference between
the two waves is zero. Using Eq. (15.32) or Eq. (15.33) for 4 and Eq. (15.28) for
8(B = 0), we have

_ _L,q 74 .
xo=—2AL P Ay (15.35)
or
Xo = — f—l x 4 [flux of B between (1) and (2)] (15.36)

The pattern with the solenoid in place should appear* as shown in Fig. 15-7. At
least, that is the prediction of quantum mechanics.

Precisely this experiment has recently been done. It is a very, very difficult
experiment. Because the wavelength of the electrons is so small, the apparatus must
be on a tiny scale to observe the interference. The slits must be very close together,
and that means that one needs an exceedingly small solenoid. It turns out that in
certain circumstances, iron crystals will grow in the form of very long, microsco-
pically thin filaments called whiskers. When these iron whiskers are magnetized
they are like a tiny solenoid, and there is no field outside except near the ends.
The electron interference experiment was done with such a whisker between two
slits, and the predicted displacement in the pattern of electrons was observed.

In our sense then, the A-field is “real.” You may say: ‘“‘But there was a mag-
netic field.” There was, but remember our original idea—that a field is “real” if it is
what must be specified ar the position of the particle in order to get the motion.
The B-field in the whisker acts at a distance. 1f we want to describe its influence
not as action-at-a-distance, we must use the vector potential.

This subject has an interesting history. The theory we have described was
known from the beginning of quantum mechanics in 1926. The fact that the vector
potential appears in the wave equation of quantum mechanics (called the Schrod-
inger equation) was obvious from the day it was written. That it cannot be replaced
by the magnetic field in any easy way was observed by one man after the other
who tried to do so. This is also clear from our example of electrons moving in a
region where there is no field and being affected nevertheless. But because in
classical mechanics A did not appear to have any direct importance and, further-
more, because it could be changed by adding a gradient, people repeatedly said
that the vector potential had no direct physical significance—that only the magnetic
and electric fields are “right” even in quantum mechanics. It seems strange in
retrospect that no one thought of discussing this experiment until 1956, when
Bohm and Aharanov first suggested it and made the whole question crystal clear.
The implication was there all the time, but no one paid attention to it. Thus
many people were rather shocked when the matter was brought up. That’s why
someone thought it would be worth while to do the experiment to see that it really
was right, even though quantum mechanics, which had been believed for so many
years, gave an unequivocal answer. It is interesting that something like this can
be around for thirty years but, because of certain prejudices of what is and is not
significant, continues to be ignored.

Now we wish to continue in our analysis a little further. We will show the
connection between the quantum-mechanical formula and the classical formula—
to show why it turns out that if we look at things on a large enough scale it will
look as though the particles are acted on by a force equal to gv X the curl of 4.
To get classical mechanics from quantum mechanics, we need to consider cases in
which all the wavelengths are very small compared with distances over which ex-
ternal conditions, like fields, vary appreciably. We shall not prove the result in
great generality, but only in a very simple example, to show how it works. Again
we consider the same slit experiment. But instead of putting all the magnetic field
in a very tiny region between the slits, we imagine a magnetic field that extends

* If the field B comes out of the plane of the figure, the flux as we have defined it is
negative and xg is positive.
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Fig. 15-8. The shift of the interference pattern due to a strip of magnetic field.

over a larger region behind the slits, as shown in Fig. 15-8. We will take the ideal-
ized case where we have a magnetic field which is uniform in a narrow strip of
width w, considered small as compared with L. (That can easily be arranged; the
backstop can be put as far out as we want.) In order to calculate the shift in phase,
we must take the two integrals of A4 along the two trajectories (1) and (2). They
differ, as we have seen, merely by the flux of B between the paths. To our approxi-
mation, the flux is Bwd. The phase difference for the two paths is then

5 = 8(B = 0) + % Bwd. (15.37)

We note that, to our approximation, the phase shift is independent of the angle.
So again the effect will be to shift the whole pattern upward by an amount Ax.
Using Eq. (15.28),

Lx

Lx
Ax = —F A8 = - [6 — &(B = O)].

Using (15.37) for 5 — &(B = 0),

Ax = Lxg Bw. (15.38)

Such a shift is equivalent to deflecting all the trajectories by the small angle
(see Fig. 15-8), where

o0 = — =

S| >

Now classically we would also expect a thin strip of magnetic field to deflect
all trajectories through some small angle, say o/, as shown in Fig. 15-9(a). As the
electrons go through the magnetic field, they feel a transverse force gv X B which
lasts for a time w/v. The change in their transverse momentum is just equal to
this impulse, so

Ap, = gwB. (15.40)

The angular deflection [Fig. 15-9(b)] is equal to the ratio of this transverse mo-
mentum to the total momentum p. We get that
o = APz _ qWB, (15.41)
p p
We can compare this result with Eq. (15.39), which gives the same quantity
computed quantum-mechanically. But the connection between classical mechanics
and quantum mechanics is this: A particle of momentum p corresponds to a quan-
15-13
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Fig. 15-9. Deflection of a particle
dve to passage through a strip of
magnetic field.



tum amplitude varying with the wavelength X = #/p. With this equality, « and o’
are identical; the classical and quantum calculations give the same result.

From the analysis we see how it is that the vector potential which appears in
quantum mechanics in an explicit form produces a classical force which depends
only on its derivatives. In quantum mechanics what matters is the interference
between nearby paths; it always turns out that the effects depend only on how much
the field 4 changes from point to point, and therefore only on the derivatives of
A and not on the value itself. Nevertheless, the vector potential 4 (together with
the scalar potential ¢ that goes with it) appears to give the most direct description
of the physics. This becomes more and more apparent the more deeply we go
into the quantum theory. In the general theory of quantum electrodynamics, one
takes the vector and scalar potentials as the fundamental quantities in a set
of equations that replace the Maxwell equations: E and B are slowly disappear-
ing from the modern expression of physical laws; they are being replaced by 4
and ¢.

15-6 What is true for statics is false for dynamics

We are now at the end of our exploration of the subject of static fields. Already
in this chapter we have come perilously close to having to worry about what
happens when fields change with time. We were barely able to avoid it in our
treatment of magnetic energy by taking refuge in a relativistic argument. Even so,
our treatment of the energy problem was somewhat artificial and perhaps even
mysterious, because we ignored the fact that moving coils must, in fact, produce
changing fields. It is now time to take up the treatment of time-varying fields—the
subject of electrodynamics. We will do so in the next chapter. First, however, we
would like to emphasize a few points.

Although we began this course with a presentation of the complete and correct
equations of electromagnetism, we immediately began to study some incomplete
pieces—because that was easier. There is a great advantage in starting with the
simpler theory of static fields, and proceeding only later to the more complicated
theory which includes dynamic fields. There is less new material to learn all at
once, and there is time for you to develop your intellectual muscles in preparation
for the bigger task.

But there is the danger in this process that before we get to see the complete
story, the incomplete truths learned on the way may become ingrained and taken
as the whole truth—that what is true and what is only sometimes true will become
confused. So we give in Table 15-1 a summary of the important formulas we have
covered, separating those which are true in general from those which are true for
statics, but false for dynamics. This summary also shows, in part, where we are
going, since as we treat dynamics we will be developing in detail what we must just
state here without proof.

It may be useful to make a few remarks about the table. First, you should
notice that the equations we started with are the frue equations—we have not
misled you there. The electromagnetic force (often called the Lorentz force)
F = g(E + v X B)is true. Itis only Coulomb’s law that is false, to be used only
for statics. The four Maxwell equations for E and B are also true. The equations
we took for statics are false, of course, because we left off all terms with time
derivatives.

Gauss’ law, v - E = p/e,, remains, but the curl of E is not zero in general.
So E cannot always be equated to the gradient of a scalar—the electrostatic po-
tential. We will see that a scalar potential still remains, but it is a time-varying
quantity that must be used together with vector potentials for a complete descrip-
tion of the electric field. The equations governing this new scalar potential are,
necessarily, also new.

We must also give up the idea that E is zero in conductors. When the fields are
changing, the charges in conductors do not, in general, have time to rearrange
themselves to make the field zero. They are set in motion, but never reach equili-
brium. The only general statement is: electric fields in conductors produce cur-
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Gauge transformations

Electric and magnetic fields can be written in terms of scalar and vector potentials, as
follows:

E

—Vo¢— 2 (385)

B - V x A. (386)

However, this prescription is not unique. There are many different potentials which can
generate the same fields. We have come across this problem before. It is called gauge

invariance. The most general transformation which leaves the E and B fields
unchanged in Eqgs. (385) and (386) is

O
¢ — ¢+ e (387)
A — A — V. (388)

This is clearly a generalization of the gauge transformation which we found earlier for
static fields:

¢ — ¢+c, (389)
A — A — Vi, (390)

where c is a constant. In fact, if v(r,%) — 1(r) + c ¢ then Eqgs. (387) and (388)
reduce to Egs. (389) and (390).



Fock 1926
A: Al + Vf,

1 of
c ot

= @1

€
pP=p1 ;f,
and

¢’ — wer'n'ip/h

In present-day notation we write
A—-A'=A+Vy,

1 oy
c dt’

Y— ' =rexp(iex/hc).

OP' =
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From Lorenz to Coulomb and other explicit gauge transformations

J. D. Jackson?
Department of Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley,
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The main purposes of this paper are (i) to illustrate explicitly by a number of examples the gauge
functions x(x,t) whose spatial and temporal derivatives transform one set of electromagnetic
potentials into another equivalent set; and (ii) to show that, whatever propagation or nonpropagation
characteristics are exhibited by the potentials in a particular gauge, the electric and magnetic fields
are always the same and display the experimentally verified properties of causality and propagation
at the speed of light. The example of the transformation from the Lorenz gauge (retarded solutions
for both scalar and vector potential) to the Coulomb gauge (instantaneous, action-at-a-distance,
scalar potential) is treated in detail. A transparent expression is obtained for the vector potential in
the Coulomb gauge, with a finite nonlocality in time replacing the expected spatial nonlocality of the
transverse current. A class of gauges (v-gauge) is described in which the scalar potential propagates
at an arbitrary speed v relative to the speed of light. The Lorenz and Coulomb gauges are special
cases of the v-gauge. The last examples of gauges and explicit gauge transformation functions are
the Hamiltonian or temporal gauge, the nonrelativistic Poincaré or multipolar gauge, and the

relativistic Fock—Schwinger gauge. © 2002 American Association of Physics Teachers.

[DOI: 10.1119/1.1491265]

I. INTRODUCTION

The use of potentials in electromagnetism has a long his-
tory. The tortuous path to an understanding that the vector
and scalar potentials are not unique and that different poten-
tials describing the same physics are connected by something
called a gauge transformation has been treated by Okun and
me elsewhere.' If a given situation in electromagnetism is
attributed to a scalar potential ®(x,#) and a vector potential
A(x,t), the physically meaningful and unique electric and
magnetic fields E(x,7) and B(x,r) are determined from the
potentials according to

1 dA(x,t)
E(x,t)=—V<I>(x,t)—; o

B(x,t)=VXA(x,t). (1.1)

Here we are using Gaussian units and considering phenom-
ena in vacuum or as microscopic fields with localized
sources. The expressions (1.1) are constituted so that they
satisfy the homogeneous Maxwell equations automatically.
Because the gradient of a scalar function has zero curl, it is
clear that the magnetic field is unchanged if we add to A the
gradient of a scalar function. Of course, such an addition
changes the expression for the electric field. We must there-
fore modify the scalar potential, too. These changes are
called a gauge transformation. Specifically, we have new
potentials, ®'(x,¢) and A’ (x,1),

A’ (x,1)=A(x,t)+ Vx(x,t),

1 dx(x,t)
c Jdr

(1.2)

' (x,1)=D(x,1)

where the scalar function y(x,t) is called the gauge function.
The potentials A’(x,r), ®'(x,t) are fully equivalent to the
original set A(x,t), ®(x,t), yielding the same electric and
magnetic fields, but satisfying different dynamical equations.
The chief purposes of this paper are to demonstrate some
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gauge transformations explicitly and to show explicitly that
potentials in those different gauges, though different in de-
tail, always yield the same electric and magnetic fields.

As is described in the textbooks cited in Refs. 2—4, com-
mon choices of gauge are V-A=0, called the Coulomb
gauge, and the relativistically covariant 9,A*=0 (V-A
+(1/c)(d®/dt)=0), called the Lorenz gauge.5 There are
many other gauges, but the textbooks rarely show explicitly
the gauge function y that transforms one gauge into another.

solutions for the potentials in the Lorenz gauge. We also
exhibit the corresponding equations in the Coulomb gauge,
focusing on the nonlocality of the source for the vector po-
tential. The direct solution is deferred to Sec. IV. In Sec. III
the gauge function x(X,#) to go from the Lorenz gauge to the
Coulomb gauge is constructed and used to calculate the
Coulomb-gauge vector potential. The results (3.10) and
(3.16) or (3.17), are surprisingly explicit and compact, with
only one time integral over a finite range of the source’s time
t" (t—R/c<t'<t), replacing the spatial nonlocality of the
source with a temporal nonlocality. We return to the original
equation for the Coulomb-gauge vector potential in Sec. IV
and show that its straightforward solution can be transformed
into that obtained in Sec. III more directly and simply
through the gauge function.

In Sec. V we derive the electric and magnetic fields from
the Coulomb-gauge potentials and show that they are the
well-known expressions, causal and propagating with speed
c, despite the instantaneous nature of the scalar potential.
This ground has been traveled before in this journal by Brill
and Goodman® and recently by Rohrlich.” There is also Prob-
lem 6.20 in my book.> Our discussion here is different and I
think more transparent because of the form of our solution
for Ac. Some aspects of Brill and Goodman come close. In
Sec. VI we discuss briefly the quasistatic limit of the vector
potential in the Coulomb gauge and its use to obtain a La-
grangian for the interaction of charged particles that is cor-
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