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Abstract

These lectures are intended as an introduction to the technique of path integrals
and their applications in physics. The audience is mainly first-year graduate students,
and it is assumed that the reader has a good foundation in quantum mechanics. No
prior exposure to path integrals is assumed, however.

The path integral is a formulation of quantum mechanics equivalent to the standard
formulations, offering a new way of looking at the subject which is, arguably, more
intuitive than the usual approaches. Applications of path integrals are as vast as those
of quantum mechanics itself, including the quantum mechanics of a single particle,
statistical mechanics, condensed matter physics and quantum field theory.

After an introduction including a very brief historical overview of the subject, we
derive a path integral expression for the propagator in quantum mechanics, including
the free particle and harmonic oscillator as examples. We then discuss a variety of
applications, including path integrals in multiply-connected spaces, Euclidean path
integrals and statistical mechanics, perturbation theory in quantum mechanics and in
quantum field theory, and instantons via path integrals.

For the most part, the emphasis is on explicit calculations in the familiar setting
of quantum mechanics, with some discussion (often brief and schematic) of how these
ideas can be applied to more complicated situations such as field theory.

∗Lectures given at Rencontres du Vietnam: VIth Vietnam School of Physics, Vung Tau, Vietnam, 27
December 1999 - 8 January 2000.

†rbmack@lps.umontreal.ca
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1 Introduction

1.1 Historical remarks

We are all familiar with the standard formulations of quantum mechanics, developed more
or less concurrently by Schroedinger, Heisenberg and others in the 1920s, and shown to be
equivalent to one another soon thereafter.

In 1933, Dirac made the observation that the action plays a central role in classical
mechanics (he considered the Lagrangian formulation of classical mechanics to be more
fundamental than the Hamiltonian one), but that it seemed to have no important role in
quantum mechanics as it was known at the time. He speculated on how this situation might
be rectified, and he arrived at the conclusion that (in more modern language) the propagator
in quantum mechanics “corresponds to” exp iS/h̄, where S is the classical action evaluated
along the classical path.

In 1948, Feynman developed Dirac’s suggestion, and succeeded in deriving a third formu-
lation of quantum mechanics, based on the fact that the propagator can be written as a sum
over all possible paths (not just the classical one) between the initial and final points. Each
path contributes exp iS/h̄ to the propagator. So while Dirac considered only the classical
path, Feynman showed that all paths contribute: in a sense, the quantum particle takes all
paths, and the amplitudes for each path add according to the usual quantum mechanical rule
for combining amplitudes. Feynman’s original paper,1 which essentially laid the foundation
of the subject (and which was rejected by Physical Review!), is an all-time classic, and is
highly recommended. (Dirac’s original article is not bad, either.)

1.2 Motivation

What do we learn from path integrals? As far as I am aware, path integrals give us no
dramatic new results in the quantum mechanics of a single particle. Indeed, most if not
all calculations in quantum mechaincs which can be done by path integrals can be done
with considerably greater ease using the standard formulations of quantum mechanics. (It is
probably for this reason that path integrals are often left out of undergraduate-level quantum
mechanics courses.) So why the fuss?

As I will mention shortly, path integrals turn out to be considerably more useful in
more complicated situations, such as field theory. But even if this were not the case, I
believe that path integrals would be a very worthwhile contribution to our understanding of
quantum mechanics. Firstly, they provide a physically extremely appealing and intuitive way
of viewing quantum mechanics: anyone who can understand Young’s double slit experiment
in optics should be able to understand the underlying ideas behind path integrals. Secondly,
the classical limit of quantum mechanics can be understood in a particularly clean way via
path integrals.

It is in quantum field theory, both relativistic and nonrelativistic, that path integrals
(functional integrals is a more accurate term) play a much more important role, for several

1References are not cited in the text, but a short list of books and articles which I have found interesting
and useful is given at the end of this article.
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1 INTRODUCTION 3

reasons. They provide a relatively easy road to quantization and to expressions for Green’s
functions, which are closely related to amplitudes for physical processes such as scattering
and decays of particles. The path integral treatment of gauge field theories (non-abelian
ones, in particular) is very elegant: gauge fixing and ghosts appear quite effortlessly. Also,
there are a whole host of nonperturbative phenomena such as solitons and instantons that
are most easily viewed via path integrals. Furthermore, the close relation between statistical
mechanics and quantum mechanics, or statistical field theory and quantum field theory, is
plainly visible via path integrals.

In these lectures, I will not have time to go into great detail into the many useful ap-
plications of path integrals in quantum field theory. Rather than attempting to discuss a
wide variety of applications in field theory and condensed matter physics, and in so doing
having to skimp on the ABCs of the subject, I have chosen to spend perhaps more time
and effort than absolutely necessary showing path integrals in action (pardon the pun) in
quantum mechanics. The main emphasis will be on quantum mechanical problems which
are not necessarily interesting and useful in and of themselves, but whose principal value is
that they resemble the calculation of similar objects in the more complex setting of quantum
field theory, where explicit calculations would be much harder. Thus I hope to illustrate the
main points, and some technical complications and hangups which arise, in relatively famil-
iar situations that should be regarded as toy models analogous to some interesting contexts
in field theory.

1.3 Outline

The outline of the lectures is as follows. In the next section I will begin with an introduction
to path integrals in quantum mechanics, including some explicit examples such as the free
particle and the harmonic oscillator. In Section 3, I will give a “derivation” of classical
mechanics from quantum mechanics. In Section 4, I will discuss some applications of path
integrals that are perhaps not so well-known, but nonetheless very amusing, namely, the case
where the configuration space is not simply connected. (In spite of the fancy terminology,
no prior knowledge of high-powered mathematics such as topology is assumed.) Specifi-
cally, I will apply the method to the Aharonov-Bohm effect, quantum statistics and anyons,
and monopoles and charge quantization, where path integrals provide a beautifully intuitive
approach. In Section 5, I will explain how one can approach statistical mechanics via path in-
tegrals. Next, I will discuss perturbation theory in quantum mechanics, where the technique
used is (to put it mildly) rather cumbersome, but nonetheless illustrative for applications in
the remaining sections. In Section 7, I will discuss Green’s functions (vacuum expectation
values of time-ordered products) in quantum mechanics (where, to my knowledge, they are
not particularly useful), and will construct the generating functional for these objects. This
groundwork will be put to good use in the following section, where the generating functional
for Green’s functions in field theory (which are useful!) will be elucidated. In Section 9, I
will discuss instantons in quantum mechanics, and will at least pay lip service to important
applications in field theory. I will finish with a summary and a list of embarrassing omissions.
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4 Topology and Path Integrals in Quantum Mechanics:

Three Applications

In path integrals, if the configuration space has holes in it such that two paths between
the same initial and final point are not necessarily deformable into one another, interesting
effects can arise. This property of the configuration space goes by the following catchy name:
non-simply-connectedness. We will study three such situations: the Aharonov-Bohm effect,
particle statistics, and magnetic monopoles and the quantization of electric charge.

4.1 Aharonov-Bohm effect

The Aharonov-Bohm effect is one of the most dramatic illustrations of a purely quantum
effect: the influence of the electromagnetic potential on particle motion even if the particle is
perfectly shielded from any electric or magnetic fields. While classically the effect of electric
and magnetic fields can be understood purely in terms of the forces these fields create on
particles, Aharonov and Bohm devised an ingenious thought-experiment (which has since
been realized in the laboratory) showing that this is no longer true in quantum mechanics.
Their effect is best illustrated by a refinement of Young’s double-slit experiment, where
particles passing through a barrier with two slits in it produce an interference pattern on a
screen further downstream. Aharonov and Bohm proposed such an experiment performed
with charged particles, with an added twist provided by a magnetic flux from which the
particles are perfectly shielded passing between the two slits. If we perform the experiment

Impenetrable
shield

Interference
pattern shifts

!

Figure 4: Aharonov-Bohm effect. Magnetic flux is confined within the shaded area; particles
are excluded from this area by a perfect shield.

first with no magnetic flux and then with a nonzero and arbitrary flux passing through the
shielded region, the interference pattern will change, in spite of the fact that the particles are
perfectly shielded from the magnetic field and feel no electric or magnetic force whatsoever.
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4 TOPOLOGY AND PATH INTEGRALS 15

Classically we can say: no force, no effect. Not so in quantum mechanics. PIs provide a very
attractive way of understanding this effect.

Consider first two representative paths q1(t) and q2(t) (in two dimensions) passing
through slits 1 and 2, respectively, and which arrive at the same spot on the screen (Figure
5). Before turning on the magnetic field, let us suppose that the actions for these paths are
S[q1] and S[q2]. Then the interference of the amplitudes is determined by

eiS[q1]/h̄ + eiS[q2]/h̄ = eiS[q1]/h̄
(

1 + ei(S[q2]−S[q1])/h̄
)

.

The relative phase is φ12 ≡ (S[q2]− S[q1])/h̄. Thus these two paths interfere constructively
if φ12 = 2nπ, destructively if φ12 = (2n + 1)π, and in general there is partial cancellation
between the two contributions.

2(t)

q1(t)

q

Figure 5: Two representative paths contributing to the amplitude for a given point on the
screen.

How is this result affected if we add a magnetic field, B? We can describe this field by
a vector potential, writing B = ∇× A. This affects the particle’s motion by the following
change in the Lagrangian:

L(q̇,q) → L′(q̇,q) = L(q̇,q) −
e

c
v · A(q).

Thus the action changes by

−
e

c

∫

dtv · A(q) = −
e

c

∫

dt
dq(t)

dt
· A(q(t)).

This integral is
∫

dq · A(q), the line integral of A along the path taken by the particle. So
including the effect of the magnetic field, the action of the first path is

S ′[q1] = S[q1] −
e

c

∫

q1(t)
dq ·A(q),

and similarly for the second path.
Let us now look at the interference between the two paths, including the magnetic field.

eiS′[q1]/h̄ + eiS′[q2]/h̄ = eiS′[q1]/h̄
(

1 + ei(S′[q2]−S′[q1])/h̄
)

= eiS′[q1]/h̄
(

1 + eiφ′

12

)

, (18)
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ABSTRACT

A systematic classification of Feynman path integrals in quantum mechanics
is presented and a table of solvable path integrals is given which reflects the
progress made during the last ten years or so, including, of course, the main
contributions since the invention of the path integral by Feynman in 1942.
An outline of the general theory is given. Explicit formulæ for the so-called
basic path integrals are presented on which our general scheme to classify
and calculate path integrals in quantum mechanics is based.
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Table of Exactly Solvable Feynman Path Integrals

Quadratic Lagrangian Radial Harmonic Pöschl-Teller Modified Pöschl-Teller

Oscillator Potential Potential

Infinite square well Liouville mechanics Scarf potential Reflectionless potential

Linear potential Morse potential Symmetric top Rosen-Morse potential

Repelling oscillator Uniform magnetic field Magnetic top Wood-Saxon potential

Forced oscillator Motion in a section Spheres Hultén potential

Saddle point potential Calogero model Bispherical Manning-Rosen potential

coordinates

Uniform magnetic field Aharonov-Bohm Hyperbolic Scarf potential

problems

Driven coupled Coulomb potential Pseudospheres

oscillators

Two-time action Coulomb-like potentials Pseudo-bispherical

(Polaron) in polar and parabolic coordinates

coordinates

Second derivative Nonrelativistic Poincaré disc

Lagrangians monopoles

Semi-classical expansion Kaluza-Klein monopole Hyperbolic Strip

Anharmonic oscillator Poincaré plane Hyperbolic spaces

of rank one

Hyperbolic space Kepler problem

+ magnetic field on spheres, and on

+ potentials pseuodspheres

Of course, in the case of general quantum mechanical problems, more than
just one of the basic path integral solutions is required. However, such problems can
be conveniently put into a hierarchy according to which of the basic path integral is

10
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Mass of a Baseball
The Physics Factbook™

Edited by Glenn Elert -- Written by his students
An educational, Fair Use website

topic index | author index | special index

Bibliographic Entry
Result

(w/surrounding text)
Standardized

Result

Objectives of the Game. Rules of Baseball. Major
League Baseball Enterprises, 1998.

"It shall weigh not less than five nor more than 5 ¼
ounces avoirdupois"

142–149 g

The Cultural Encyclopedia of Baseball. North Carolina:
McFarland & Company, 1997.

"The final weight is required to be between 5 ounces and
5¼ ounces"

142–149 g

Adair, Robert K. The Physics of Baseball. New York,
1990.

"… are required to change the motion of the 5 1/8 ounce
ball from a speed of 90 mph …."

145 g

Author's measurement of a Wilson Baseball (Model
A1001).

"142.54 g" 142.54 g

Baseball was invented around the last quarter of the 1800s. In the game of baseball, we all know that the ball is the main object in the
game. A baseball is a small, round, and hard. The weight of a baseball must be between 5 and 5 ¼ ounces (142 to 149 grams) and its
circumference from 9 to 9 ¼ inches (22.9 to 23.5 centimeters).

The formation of the ball begins with a ½ ounce (14 g), 2.9 inch (7.4 cm) diameter cork core. A layer of black rubber is then applied
followed by a layer of red rubber each weighing ! of an ounce (25 g). Afterwards, 121 yards (111 m) of blue-gray wool followed by 45
yards (41 m) of white wool yarn are added to the outside. The ball is then wrapped in cowhide covering held together by 216 stitches
and some rubber cement. Red stitches are placed on the ball to allow pitchers to throw curve balls. Curve balls curve since the air
resistance on the stitches is non-uniform.

From my experiment of weighing a baseball, the result came out to be 142.54 grams which fits within the accepted range of 142 to
149 grams.

Christina Lee -- 1999

Related pages in The Physics Factbook:

Mass of a Baseball http://hypertextbook.com/facts/1999/ChristinaLee.shtml

1 of 2 4/26/12 2:39 PM
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Laplace was once asked by Alexander von 
Humboldt (a German scientist who, in 
addition to writing an immensely popular 
work on science called Kosmos, was also 
responsible for making mountain climbing a 
popular sport) who the great mathematician 
in Germany was. Without hesitation, Laplace 
said, "Pfaff". "Pfaff?" Humboldt said. "What 
about Gauss?" "Gauss is the greatest 
mathematician in the world" was Laplace's 
reply.
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Laplace went in state to beg Napoleon to accept a copy of 
his work, and the following account of the interview is well 
authenticated, and so characteristic of all the parties 
concerned that I quote it in full. 

Lagrange had told Napoleon that the book contained no 
mention of the name of God; Napoleon, who was fond of 
putting embarrassing questions, received it with the 
remark, “M. Laplace, they tell me you have written this 
large book on the system of the universe, and have never 
once mentioned its Creator.” 

Laplace, who, though the most supple of politicians, was 
as stiff as a martyr on every point of his philosophy, drew 
himself up and answered bluntly, "I had no need of that 
hypothesis." 

Lagrange exclaimed "But, it is a fine hypothesis; it 
explains many things."
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