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Abstract

These lectures are intended as an introduction to the technique of path integrals
and their applications in physics. The audience is mainly first-year graduate students,
and it is assumed that the reader has a good foundation in quantum mechanics. No
prior exposure to path integrals is assumed, however.

The path integral is a formulation of quantum mechanics equivalent to the standard
formulations, offering a new way of looking at the subject which is, arguably, more
intuitive than the usual approaches. Applications of path integrals are as vast as those
of quantum mechanics itself, including the quantum mechanics of a single particle,
statistical mechanics, condensed matter physics and quantum field theory.

After an introduction including a very brief historical overview of the subject, we
derive a path integral expression for the propagator in quantum mechanics, including
the free particle and harmonic oscillator as examples. We then discuss a variety of
applications, including path integrals in multiply-connected spaces, Euclidean path
integrals and statistical mechanics, perturbation theory in quantum mechanics and in
quantum field theory, and instantons via path integrals.

For the most part, the emphasis is on explicit calculations in the familiar setting
of quantum mechanics, with some discussion (often brief and schematic) of how these
ideas can be applied to more complicated situations such as field theory.

*Lectures given at Rencontres du Vietnam: VIth Vietnam School of Physics, Vung Tau, Vietnam, 27
December 1999 - 8 January 2000.
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1 Introduction

1.1 Historical remarks

We are all familiar with the standard formulations of quantum mechanics, developed more
or less concurrently by Schroedinger, Heisenberg and others in the 1920s, and shown to be
equivalent to one another soon thereafter.

In 1933, Dirac made the observation that the action plays a central role in classical
mechanics (he considered the Lagrangian formulation of classical mechanics to be more
fundamental than the Hamiltonian one), but that it seemed to have no important role in
quantum mechanics as it was known at the time. He speculated on how this situation might
be rectified, and he arrived at the conclusion that (in more modern language) the propagator
in quantum mechanics “corresponds to” expiS/h, where S is the classical action evaluated
along the classical path.

In 1948, Feynman developed Dirac’s suggestion, and succeeded in deriving a third formu-
lation of quantum mechanics, based on the fact that the propagator can be written as a sum
over all possible paths (not just the classical one) between the initial and final points. Each
path contributes expiS/h to the propagator. So while Dirac considered only the classical
path, Feynman showed that all paths contribute: in a sense, the quantum particle takes all
paths, and the amplitudes for each path add according to the usual quantum mechanical rule
for combining amplitudes. Feynman’s original paper,[] which essentially laid the foundation
of the subject (and which was rejected by Physical Review!), is an all-time classic, and is
highly recommended. (Dirac’s original article is not bad, either.)

1.2 Motivation

What do we learn from path integrals? As far as [ am aware, path integrals give us no
dramatic new results in the quantum mechanics of a single particle. Indeed, most if not
all calculations in quantum mechaincs which can be done by path integrals can be done
with considerably greater ease using the standard formulations of quantum mechanics. (It is
probably for this reason that path integrals are often left out of undergraduate-level quantum
mechanics courses.) So why the fuss?

As I will mention shortly, path integrals turn out to be considerably more useful in
more complicated situations, such as field theory. But even if this were not the case, I
believe that path integrals would be a very worthwhile contribution to our understanding of
quantum mechanics. Firstly, they provide a physically extremely appealing and intuitive way
of viewing quantum mechanics: anyone who can understand Young’s double slit experiment
in optics should be able to understand the underlying ideas behind path integrals. Secondly,
the classical limit of quantum mechanics can be understood in a particularly clean way via
path integrals.

It is in quantum field theory, both relativistic and nonrelativistic, that path integrals
(functional integrals is a more accurate term) play a much more important role, for several

!References are not cited in the text, but a short list of books and articles which I have found interesting
and useful is given at the end of this article.
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1 INTRODUCTION 3

reasons. They provide a relatively easy road to quantization and to expressions for Green’s
functions, which are closely related to amplitudes for physical processes such as scattering
and decays of particles. The path integral treatment of gauge field theories (non-abelian
ones, in particular) is very elegant: gauge fixing and ghosts appear quite effortlessly. Also,
there are a whole host of nonperturbative phenomena such as solitons and instantons that
are most easily viewed via path integrals. Furthermore, the close relation between statistical
mechanics and quantum mechanics, or statistical field theory and quantum field theory, is
plainly visible via path integrals.

In these lectures, I will not have time to go into great detail into the many useful ap-
plications of path integrals in quantum field theory. Rather than attempting to discuss a
wide variety of applications in field theory and condensed matter physics, and in so doing
having to skimp on the ABCs of the subject, I have chosen to spend perhaps more time
and effort than absolutely necessary showing path integrals in action (pardon the pun) in
quantum mechanics. The main emphasis will be on quantum mechanical problems which
are not necessarily interesting and useful in and of themselves, but whose principal value is
that they resemble the calculation of similar objects in the more complex setting of quantum
field theory, where explicit calculations would be much harder. Thus I hope to illustrate the
main points, and some technical complications and hangups which arise, in relatively famil-
iar situations that should be regarded as toy models analogous to some interesting contexts
in field theory.

1.3 Outline

The outline of the lectures is as follows. In the next section I will begin with an introduction
to path integrals in quantum mechanics, including some explicit examples such as the free
particle and the harmonic oscillator. In Section 3, I will give a “derivation” of classical
mechanics from quantum mechanics. In Section 4, I will discuss some applications of path
integrals that are perhaps not so well-known, but nonetheless very amusing, namely, the case
where the configuration space is not simply connected. (In spite of the fancy terminology,
no prior knowledge of high-powered mathematics such as topology is assumed.) Specifi-
cally, I will apply the method to the Aharonov-Bohm effect, quantum statistics and anyons,
and monopoles and charge quantization, where path integrals provide a beautifully intuitive
approach. In Section 5, I will explain how one can approach statistical mechanics via path in-
tegrals. Next, I will discuss perturbation theory in quantum mechanics, where the technique
used is (to put it mildly) rather cumbersome, but nonetheless illustrative for applications in
the remaining sections. In Section 7, I will discuss Green’s functions (vacuum expectation
values of time-ordered products) in quantum mechanics (where, to my knowledge, they are
not particularly useful), and will construct the generating functional for these objects. This
groundwork will be put to good use in the following section, where the generating functional
for Green’s functions in field theory (which are useful!) will be elucidated. In Section 9, I
will discuss instantons in quantum mechanics, and will at least pay lip service to important
applications in field theory. I will finish with a summary and a list of embarrassing omissions.
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4 Topology and Path Integrals in Quantum Mechanics:
Three Applications

In path integrals, if the configuration space has holes in it such that two paths between
the same initial and final point are not necessarily deformable into one another, interesting
effects can arise. This property of the configuration space goes by the following catchy name:
non-simply-connectedness. We will study three such situations: the Aharonov-Bohm effect,
particle statistics, and magnetic monopoles and the quantization of electric charge.

4.1 Aharonov-Bohm effect

The Aharonov-Bohm effect is one of the most dramatic illustrations of a purely quantum
effect: the influence of the electromagnetic potential on particle motion even if the particle is
perfectly shielded from any electric or magnetic fields. While classically the effect of electric
and magnetic fields can be understood purely in terms of the forces these fields create on
particles, Aharonov and Bohm devised an ingenious thought-experiment (which has since
been realized in the laboratory) showing that this is no longer true in quantum mechanics.
Their effect is best illustrated by a refinement of Young’s double-slit experiment, where
particles passing through a barrier with two slits in it produce an interference pattern on a
screen further downstream. Aharonov and Bohm proposed such an experiment performed
with charged particles, with an added twist provided by a magnetic flux from which the
particles are perfectly shielded passing between the two slits. If we perform the experiment

Impenetrable
shield

Interference
pattern shifts

Figure 4: Aharonov-Bohm effect. Magnetic flux is confined within the shaded area; particles
are excluded from this area by a perfect shield.

first with no magnetic flux and then with a nonzero and arbitrary flux passing through the
shielded region, the interference pattern will change, in spite of the fact that the particles are
perfectly shielded from the magnetic field and feel no electric or magnetic force whatsoever.
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4 TOPOLOGY AND PATH INTEGRALS 15

Classically we can say: no force, no effect. Not so in quantum mechanics. Pls provide a very
attractive way of understanding this effect.

Consider first two representative paths q;(t) and q2(¢) (in two dimensions) passing
through slits 1 and 2, respectively, and which arrive at the same spot on the screen (Figure
5). Before turning on the magnetic field, let us suppose that the actions for these paths are
Slai] and S[qq]. Then the interference of the amplitudes is determined by

Sanl/h . gislaal/n _ giSlal/n (1 4 cilSkel-stul/n)
The relative phase is ¢12 = (S[qe] — S[qi])/h. Thus these two paths interfere constructively

if ¢12 = 2nm, destructively if ¢12 = (2n + 1), and in general there is partial cancellation
between the two contributions.

a0 The phases

are different

qp(®

Figure 5: Two representative paths contributing to the amplitude for a given point on the
screen.

How is this result affected if we add a magnetic field, B? We can describe this field by
a vector potential, writing B = V x A. This affects the particle’s motion by the following
change in the Lagrangian:

L(@.q) ~ L'(d.q) = L@.q) ~ -v- Ala).

Thus the action changes by

—g/dtwA(q) :—Z/dtd(;—it) - A(q(t).

This integral is [dq - A(q), the line integral of A along the path taken by the particle. So
including the effect of the magnetic field, the action of the first path is
e

Sla)=Sla) - [ da-Ala),

and similarly for the second path.
Let us now look at the interference between the two paths, including the magnetic field.

eiSlanl/h y gis'lasl/h — iS[anl/h (1 + ei(S’[qzl—S’[qﬂ)/ﬁ)

¢S lan]/n (1 + ewaz) : (18)
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ABSTRACT

A systematic classification of Feynman path integrals in quantum mechanics
is presented and a table of solvable path integrals is given which reflects the
progress made during the last ten years or so, including, of course, the main
contributions since the invention of the path integral by Feynman in 1942.
An outline of the general theory is given. Explicit formulz for the so-called
basic path integrals are presented on which our general scheme to classify
and calculate path integrals in quantum mechanics is based.
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Table of Exactly Solvable Feynman Path Integrals

Quadratic Lagrangian

Radial Harmonic

Oscillator

Po6schl-Teller

Potential

Modified Poschl-Teller

Potential

Infinite square well

Liouville mechanics

Scarf potential

Reflectionless potential

Linear potential

Morse potential

Symmetric top

Rosen-Morse potential

Repelling oscillator

Uniform magnetic field

Magnetic top

Wood-Saxon potential

Forced oscillator Motion in a section Spheres Hultén potential
Saddle point potential Calogero model Bispherical Manning-Rosen potential
coordinates

Uniform magnetic field

Aharonov-Bohm

problems

Hyperbolic Scarf potential

Driven coupled

oscillators

Coulomb potential

Pseudospheres

Two-time action

Coulomb-like potentials

Pseudo-bispherical

(Polaron) in polar and parabolic coordinates
coordinates

Second derivative Nonrelativistic Poincaré disc

Lagrangians monopoles

Semi-classical expansion

Kaluza-Klein monopole

Hyperbolic Strip

Anharmonic oscillator

Poincaré plane

Hyperbolic spaces

of rank one

Hyperbolic space
+ magnetic field

+ potentials

Kepler problem
on spheres, and on

pseuodspheres

Of course, in the case of general quantum mechanical problems, more than
just one of the basic path integral solutions is required. However, such problems can
be conveniently put into a hierarchy according to which of the basic path integral is

10
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C. Grosche E Steiner

Handbook
of Feynman Path Integrals
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Preface

Our Handbook of Feynman Path Integrals appears just fifty years after
Richard Feynman published his pioneering paper in 1948 entitled “Space-
Time Approach to Non-Relativistic Quantum Mechanics”. As it is the case
with many books, its origin goes back to a course first given by one of us
(F.S.) on Feynman path integrals at the University of Hamburg during the
summer semester of 1983. The other author was one of the students attend-
ing these lectures and who eventually decided to work on this subject for his
diploma thesis. This was the starting point of our collaboration during the
1980s. At that time our main common interest was in the question of how to
solve non-Gaussian path integrals (like the one for the hydrogen atom) and,
more generally, path integrals in arbitrary curvilinear coordinates. It was in
1983, too, that one of us (F.S.) began to collect papers and preprints on path
integrals, and to set up a comprehensive list of references on this subject.
Eventually a systematic literature search was carried out (by C.G.). While
we were working in various fields, above all in quantum chromodynamics,
string theory, and quantum chaos, we conceived the idea of writing a Hand-
book on Feynman path integrals which would, on the one hand, serve the
reader as a thorough introduction to the theory of path integrals, but would,
on the other hand, also establish for the first time a comprehensive table
of Feynman path integrals together with an extensive list of references. The
whole enterprise was, however, delayed by various circumstances for several
years. Here we put forward our Handbook to the gentle reader!

The book follows the general idea as originally conceived. Chapters 1-5
have the character of a textbook and give a self-contained, and up-to-date
introduction to the theory of path integrals for those readers who have not
yet studied path integrals, but have a good knowledge of the fundamentals
of quantum mechanics as covered by standard courses in theoretical physics.
Chapter 6 makes up the largest part of this Handbook and contains a rather
complete table of path integrals in non-relativistic quantum mechanics, in-
cluding supersymmetric quantum mechanics, and statistical mechanics. To
each path integral listed in the table we attach a comprehensive list of ref-
erences which altogether make up almost 1000 references. The Introduction
in Chap. 1 is mainly of a historical nature and gives the reader some insight
into the remarkable development of Feynman’s path integral approach. Since
some of the historical facts are not so well known we thought it would be
worthwhile to present them in Chap. 1.
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6 Table of Path Integrals

157

Table 6.1. Applications of potential problems (examples)

Quadratic Radial harmonic Poschl-Teller Modified
Lagrangian oscillator potential P&schl-Teller pot.
Infinite square well Coulomb potential Scarf pots. Reflectionless pot.

Linear potential

Morse potential

Symmetric top

Rosen-Morse pot.

Repelling oscillator

Uniform magnetic field

Magnetic top

Wood-Saxon pot.

Forced oscillator

Motion in a section

Higgs oscillator

on spheres

Hultén pot.

Saddle point

potential

Calogero model

Smorodinsky-

Winternitz pot.

Manning-Rosen

potential

Uniform magnetic

field

Aharonov-Bohm

potential

Hyperbolic Scarf

potential

Driven coupled

oscillators

Natanzon potential

Hyperbolic barrier

potential

Two-time action

(polaron)

Smorodinsky-Winternitz

potentials

Hyperbolic spaces

of rank one

Second derivative

Lagrangians

Coulomb-like pots.

in polar and parabolic

Kepler problem

on (pseudo-)

coordinates spheres
Semiclassical Non-relativistic Natanzon
expansion monopoles potentials

Generating functional

Kaluza—-Klein monopole

Hyperbolic strip

Moments formula

Poincaré plane
+ magnetic field

+ potentials

Higgs oscillator

on pseudospheres

Effective potential

Dirac Coulomb problem

Hermitian spaces

Anharmonic

oscillator

Anyons

Smorodinsky-

Winternitz pots.




6 Table of Path Integrals

We present in the following table of path integrals exactly solvable path inte-
grals according to the following classification scheme:

1)

8)

9)

General Formule. This includes the different lattice definitions of path
integrals on curved manifolds, transformation formule for canonical and
time transformations, separable coordinate systems, and some perturba-
tion methods.

The General Quadratic Lagrangian. Here we list the general formulee for
quadratic Lagrangians, including many explicit examples with electric
and magnetic fields, couplings between oscillators in higher dimensions,
two-time actions, some formule concerning the semi-classical approxima-
tion, trace formula, and, of course, the harmonic oscillator in its many
appearances and modifications

Discontinuous Potentials. Here we state path integrals in half-spaces and
boxes.

The Radial Harmonic Oscillator. This section includes Besselian type
path integrafs such as the Morse oscillator, motion in radial sectors, the
Calogero model, and the general Besselian path integral, which is of the
Natanzon type, cf. Table 6.3.

The Péschl-Teller Potential. Path integrals related to the trigonometric
version of the Pdschl-Teller potential are listed.

The Modified Poschl-Teller Potential. This section contains path inte-
grals related to the Rosen-Morse and Manning-Rosen potential, hyper-
bolic barriers, and the general Legendrian path integral, which is of the
Natanzon type, cf. Table 6.3.

Motion on Group Spaces and Homogeneous Spaces. Path integrals for the
quantum motion on homogeneous manifolds are listed, including some
particular coordinate space representations, general expressions for path
integrals on group spaces, and on spheres and hyperboloids.

Coulomb Potentials. Here we list all path integrals which are of the
Coulomb type. They are related by means of a space-time transformation
to Besselian path integrals.

Magnetic Monopole and Anyon Systems. In this section path integrals
for monopoles, dyons, anyons, and applications to cosmology are cited.



156 Table of Path Integrals

10) Motion in Hyperbolic Space. Here we list path integrals for the quan-
tum motion on hyperboloids. Some emphasis is on the hyperbolic plane,
Le., the Poincaré upper half-plane (Lobachevski space). Also the cases
of magnetic fields are included, as well as the Higgs oscillator and the
Kepler-Coulomb problem in spaces of constant curvature.

11) Ezplicitly Time-Dependent Problems. Here we list some general formule
and specific examples of how to incorporate an explicit time depen-
dence in the path integral. The general feature of this dependence is
a “Galilean” -type modification of the usual potential problems.

12) Point Interactions. This section lists path integrals with point interac-
tions, i.e., which are usually described by § functions. General formule
and some examples are presented. More general examples can be con-
structed by the interested reader by simply inserting some other path
integral solution.

13) Boundary Value Problems. This section contains path integrals for the
motion constrained by impenetrable walls and boxes with general bound-
ary conditions. It generalizes Sect. 6.3, and includes the method of how
to incorporate boundary conditions and absolute value problems from
known unconstrained path integrals. Similarly to Sect.6.12 general for-
mulz and some examples are presented.

14) Coherent States. Here the important coherent state path integral is given,
together with several applications and generalizations to higher dimen-
sions. Here we use i = 1 throughout.

15) Fermions. Here the most important applications of the coherent state
path integral are listed, i.e., the path integral formulation for fermions.

16) Supersymmetric Quantum Mechanics. Some supersymmetric path inte-
gral formulations and solutions are given.

In particular, the path integrals corresponding to solutions of the harmonic
oscillator, respectively the general quadratic Lagrangian, are called Gaussian
path integrals (section 6.2), those corresponding to the solutions of the radial
harmonic oscillator are called Besselian path integrals (section 6.4), and those
corresponding to the path integral solutions of the Poschl-Teller and modified
Poschl-Teller potential are called Legendrian path integrals (Sect.6.5 and
6.6), respectively. We call the General Besselian and Legendrian path integral
solutions the Basic path integrals.

In the case of general quantum mechanical problems, more than just one
of the basic path integral solutions is required. However, such problems can
be conveniently put into a hierarchy according to which of the basic path
integrals is the most important one for its solution. This classification scheme
is listed in Table 6.1.
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8.1.1 Postulate I

The probability P (b, a) of a particle moving from point a to point b is the square
of the absolute value of a complex number, the transition function K (b, a):

P(b,a) = |K(b, a)|* (8.1)
8.1.2 Postulate Il
The transition function K (b, a) is given by the sum of a phase factor &'5/#, where
S is the action, taken over all possible paths from a to b:

K(b,a)y=) kel 8.2)

paths
where the constant £ can be determined by:
K(c,a)=)_ K(c,b)K(b,a) (8.3)
paths

where we sum over all intermediate points b connecting a and c.
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3 CLASSICAL LIMIT 13

q(®

qm

t

Figure 2: Two neighbouring paths.

However, this argument must be rethought for one exceptional path: that which extrem-
izes the action, i.e., the classical path, g.(t). For this path, S[q. + 1] = S[g.] + o(n?). Thus
the classical path and a very close neighbour will have actions which differ by much less than
two randomly-chosen but equally close paths (Figure 3). This means that for fixed closeness

paths interfere q

cl

constructively

paths interfere

destructively

t

Figure 3: Paths near the classical path interfere constructively.

of two paths (I leave it as an exercise to make this precise!) and for fixed , paths near the
classical path will on average interfere constructively (small phase difference) whereas for
random paths the interference will be on average destructive. '

Thus heuristically, we conclude that if the problem is classical (action > &), the most
important contribution to the PI comes from the region around the path which extremizes
the PI. In other words, the particle’s motion is governed by the principle that the action is
stationary. This, of course, is none other than the Principle of Least Action from which the
Euler-Lagrange equations of classical mechanics are derived.
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Mass of a Baseball http://hypertextbook.com/facts/1999/ChristinalLee.shtml

How much does a baseball weigh?

Mass of a Baseball

The Physics Factbook™
Edited by Glenn Elert -- Written by his students
An educational, Fair Use website

topic index | author index | special index

o . Result Standardized
Bibliographic Entry .
(w/surrounding text) Result
Objectives of the Game. Rules of Baseball. Major "It shall weigh not less than five nor more than 5 14 142149
League Baseball Enterprises, 1998. ounces avoirdupois" g
The Cultural Encyclopedia of Baseball. North Carolina: || "The final weight is required to be between 5 ounces and 149-149
McFarland & Company, 1997. 5% ounces" 9
Adair, Robert K. The Physics of Baseball. New York, "... are required to change the motion of the 5 1/8 ounce 145
1990. ball from a speed of 90 mph ...." ¢
Author's measurement of a Wilson Baseball (Model
"142.54 g" 142.54 g

A1001).

Baseball was invented around the last quarter of the 1800s. In the game of baseball, we all know that the ball is the main object in the
game. A baseball is a small, round, and hard. The weight of a baseball must be between 5 and 5 ¥ ounces (142 to 149 grams) and its
circumference from 9 to 9 % inches (22.9 to 23.5 centimeters).

The formation of the ball begins with a %2 ounce (14 g), 2.9 inch (7.4 cm) diameter cork core. A layer of black rubber is then applied
followed by a layer of red rubber each weighing 7 of an ounce (25 g). Afterwards, 121 yards (111 m) of blue-gray wool followed by 45
yards (41 m) of white wool yarn are added to the outside. The ball is then wrapped in cowhide covering held together by 216 stitches
and some rubber cement. Red stitches are placed on the ball to allow pitchers to throw curve balls. Curve balls curve since the air
resistance on the stitches is non-uniform.

From my experiment of weighing a baseball, the result came out to be 142.54 grams which fits within the accepted range of 142 to
149 grams.

Christina Lee -- 1999

Related pages in The Physics Factbook:

http://hypertextbook.com/facts/1999/Christinalee.shtmli

1of2 4/26/12 2:39 PM
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Likewise, the function x*(x,t) characterizes
the experience, or, let us say, experiment to
which the system is to be subjected. If a different
region, 7'’ and different Lagrangian after ¢, were
to give the same x*(x,¢) via Eq. (16), as does
region R", then no matter what the preparation,
¥, Eq. (14) says that the chance of finding the
system in R" is always the same as finding it
in 7/, The two ‘‘experiments” R’ and "' are
equivalent, as they yield the same results. We
shall say loosely that these experiments are to
determine with what probability the system is
in state x. Actually, this terminology is poor.
The system is really in state y. The reason we
can associate a state with an experiment is, of
course, that for an ideal experiment there turns
out to be a unique state (whose wave function is
x(x, £)) for which the experiment succeeds with
certainty.

Thus, we can say: the probability that a
system in state y will be found by an experiment
whose characteristic state is x (or, more loosely,
the chance that a system in state y will appear
to be in x) is

2

’ f (2, O, f)dx (17)

These results agree, of course, with the prin-
ciples of ordinary quantum mechanics. They are
a consequence of the fact that the Lagrangian
is a function of position, velocity, and time only.

6. THE WAVE EQUATION

To complete the proof of the equivalence with
the ordinary formulation we shall have to show
that the wave function defined in the previous sec-
tion by Eq. (15) actually satisfies the Schroedinger
wave equation. Actually, we shall only succeed
in doing this when the Lagrangian L in (11) is a
quadratic, but perhaps inhomogeneous, form in
the velocities #(£). This is not a limitation, how-
ever, as it includes all the cases for which the
Schroedinger equation has been verified by ex-
periment,

The wave equation describes the development
of the wave function with time. We may expect
to approach it by noting that, for finite ¢, Eq. (15)
permits a simple recursive relation to be de-
veloped. Consider the appearance of Eq. (15) if

R. P. FEYNMAN

we were to compute ¢ at the next instant of time:

1 &
V(xey1, t+€) = eXP[—ﬁ‘ 2 S, x,-)]
Rt

f==—00

d.’XJk dxk_l
X._.
4

(159

This is similar to (15) except for the integration
over the additional variable x; and the extra
term in the sum in the exponent. This term
means that the integral of (15’) is the same
as the integral of (15) except for the factor
(1/A4) exp(i/#)S(%xq1, xx). Since this does not
contain any of the variables x; for ¢ less than £,
all of the integrations on dx; up to dx;_1 can be
performed with this factor left out. However,
the result of these integrations is by (15) simply
Y(xr,-t). Hence, we find from (15%) the relation

Y(xet, tHe)
=f exp[%S(ka, Xx) ]zlz(xk, Hdx,/A. (18)

This relation giving the development of ¢ with
time will be shown, for simple examples, with
suitable choice of 4, to be equivalent to
Schroedinger’s equation. Actually, Eq. (18) is not

exact, but 1s only true in the limit ¢—0 and we
shall derive the Schroedinger equation by assum-
ing (18) is valid to first order in e. The Eq. (18)
need only be true for small ¢ to the first order in e.
For if we consider the factors in (15) which carry
us over a finite interval of time, T, the number
of factors is T/e. If an error of order € is made in
each, the resulting error will not accumulate
beyond the order é(T/¢) or Te, which vanishes
in_the limit.

We shall illustrate the relation of (18) to
Schroedinger’s equation by applying it to the
simple case of a particle moving in one dimension
in a potential V(x). Before we do this, however,

we would like to discuss some approximations to
the value S(xiy1, x;) given in (11) which will be
sufficient for expression (18).

The expression defined in (11) for S(xiy1, ) is
difficult to calculate exactly for arbitrary e from
classical mechanics. Actually, it is only necessary
that an approximate expression for S(x41, ;) be
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which may not be zero. The question is still
more important in the coefficient of terms which
are quadratic in the velocities. In these terms
(19) and (20) are not sufficiently accurate repre-
sentations of (11) in general. It is when the
coefficients are constant that (19) or (20) can be
substituted for (11). If an expression such as
(19) is used, say for spherical coordinates, when
it is not a valid approximation to (11), one
obtains a Schroedinger equation in which the
Hamiltonian operator has some of the momentum
operators and coordinates in the wrong order.
Equation (11) then resolves the ambiguity in the
usual rule to replace p and ¢ by the non-com-
muting quantities (%/2)(9/9q) and g in the classi-
cal Hamiltonian H(p, ¢q).

It is clear that the statement (11) is inde-
pendent of the coordinate system. Therefore, to
find the differential wave equation it gives in
any coordinate system, the easiest procedure is
first to find the equations in Cartesian coordinates
and then to transform the coordinate system to
the one desired. It suffices, therefore, to show the
relation of the postulates and Schroedinger’s
equation in rectangular coordinates.

The derivation given here for one dimension
can be extended directly to the case of three-
dimensional Cartesian coordinates for any num-
ber, K, of particles interacting through potentials
with one another, and in a magnetic field,
described by a vector potential. The terms in
the vector potential require completing the square
in the exponent in the usual way for Gaussian
integrals. The variable x must be replaced by
the set x® to x®K where x®, x®, x® are the
coordinates of the first particle of mass m;, x@,
x®, x® of the second of mass m., etc. The
symbol dx is replaced by dx®dx® . . .dx®0, and
the integration over dx is replaced by a 3K-fold
integral. The constant A4 has, in this case, the
value A = 2nher/m)}(2rhei/my)t- - - Qrhel/my)t
The Lagrangian is the classical Lagrangian for
the same problem, and the Schroedinger equation
* resulting will be that which corresponds to
the classical Hamiltonian, derived from this
Lagrangian. The equations in any other coordi-
nate system may be obtained by transformation.
Since this includes all cases for which Schroed-
inger’s equation has been checked with experi-
ment, we may say our postulates are able to
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describe what can be described by non-relativistic
quantum mechanics, neglecting spin.

7. DISCUSSION OF THE WAVE EQUATION

The Classical Limit

This completes the demonstration of the equiv-
alence of the new and old formulations. We
should like to include in this section a few re-
marks about the important equation (18).

This equation gives the development of the
wave function during a small time interval. It is
easily interpreted physically as the expression of
Huygens’ principle for matter waves. In geo-
metrical optics the rays in an inhomogeneous
medium satisfy Fermat’s principle of least time.
We may state Huygens’ principle in wave optics
in this way: If the amplitude of the wave is
known on a given surface, the amplitude at a
near by point can be considered as a sum of con-
tributions from all points of the surface. Each
contribution is delayed in phase by an amount
proportional to the ##me it would take the light to
get from the surface to the point along the ray of
least ttme of geometrical optics. We can consider
(22) in an analogous manner starting with
Hamilton’s first principle of least action for
classical or ‘‘geometrical’’ mechanics. If the
amplitude of the wave ¢ is known on a given
“surface,” in particular the “surface’ consisting
of all x at time ¢, its value at a particular nearby
point at time ¢+ ¢, is a sum of contributions from
all points of the surface at ¢. Each contribution is
delayed in phase by an amount proportional to
the action it would require to get from the surface
to the point along the path of least action of
classical mechanics.!®

Actually Huygens' principle is not correct in
optics. It is replaced by Kirchoff's modification
which requires that both the amplitude and its
derivative must be known on the adjacent sur-
face. This is a consequence of the fact that the
wave equation in optics is second order in the
time. The wave equation of quantum mechanics
is first order in the time; therefore, Huygens'
principle s correct for matter waves, action re-
placing time.

16 See in this connection the very interesting remarks of
Schroedinger, Ann. d. Physik 79, 489 (1926).
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The equation can also be compared mathe-
matically to quantities appearing in the usual
formulations. In Schroedinger’s method the de-
velopment of the wave function with time is

given by

(31)

which has the solution (for any e if H is time
independent)

Y(x, t+e) =exp(—ieH /)Y (x, ¢).

Therefore, Eq. (18) expresses the operator
exp{—17eH/k) by an approximate integral oper-
ator for small e.

From the point of view of Heisenberg one con-
siders the position at time ¢, for example, as an
operator X. The position x’ at a later time ¢+ e can
be expressed in terms of that at time ¢ by the
operator equation

x' =exp(teH /h)xexp — (ceH /%).

(32)

(33)

The transformation theory of Dirac allows us to
consider the wave function at time ¢+ ¢, ¥(x’, t+¢),
as representing a state in a representation in
which x’ is diagonal, while ¥(x, f) represents the
same state in a representation in which x is
diagonal. They are, therefore, related through the
transformation function (x’ Ix)g which relates
these representations:

Y, 1 = f (/| ) (,0) .

Therefore, the content of Eq. (18) is to show that
for small ¢ we can set

(x'|x)e=(1/A4) exp(ES(x’, x)/k)
with S(x’, x) defined as in (11).

(34)

The close analogy between (x’[x). and the
quantity exp(2S(x’, x) /%) has been pointed out on
several occasions by Dirac.! In fact, we now see
that to sufficient approximations the two quanti-
ties may be taken to be proportional to each
other. Dirac’s remarks were the starting point of
the present development. The points he makes
concerning the passage to the classical limit A—0
are very beautiful, and I may perhaps be excused
for briefly reviewing them here.

R. P. FEYNMAN

First we note that the wave function at x’’ at
time ¢’ can be obtained from that at %’ at time
t by

Y, ¢ = lef f

7 1
Xexp[; > S(xigs, xz)J
=0

. Xo dx; dxi_,
Xy(o', t')— — ,
A A

(35)

where we put xo=x" and x;=x" where ]e -
(between the times ¢ and #’ we assume no re-
striction is being put on the region of integration).
This can be seen either by repeated applications
of (18) or directly from Eq. (15). Now we ask, as
h—0 what values of the intermediate coordinates
xicontribute most strongly to the integral? These
will be the values most likely to be found by ex-
periment and therefore will determine, in the
limit, the classical path. If % is very small, the
exponent will be a very rapidly varying function
of any of its variables «;. As x; varies, the positive
and negative contributions of the exponent
nearly cancel. The region at which x; contributes
most strongly is that at which the phase of the
exponent varies least rapidly with x; (method of
stationary phase). Call the sum in the ex-
ponent .S; -

Jj—1

S= 2 S(xiy1, x).

fu=0

(36)

Then the classical orbit passes, approximately,
through those points x; at which the rate of
change of S with x; is small, or in the limit of
small %, zero, i.e., the classical orbit passes
through the points at which 8.5/8x;=0 for all x;.
Taking the limit ¢—0, (36) becomes in view
of (11)

S= f L&), x(0)dt. (37)

g

We see then that the classical path is that for
which the integral (37) suffers no first-order
change on varying the path. This is Hamilton's
principle and leads directly to the Lagrangian
equations of motion.
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THE PATH

INTEGRAL

Figure 8.3. Two possible paths connecting (0, 0) and (1, 1). The Fgg%gk’;?gg
ti the classical path x=1¢ i 2, whil the other, it i -

action on the classical path x=1 is m/2, while on the other, it is > THEORY

2m/3.

Consider another path
x=r (8.2.2)

which also links the two space-time points (Fig. 8.3.)

For a classical particle, of mass, say 1g, the action changes by roughly
1.6 x 10°°%, and the phase by roughly 1.6 x 10°® rad as we move from the classical
path x=1 to the nonclassical path x=7’. We may therefore completely ignore the
nonclassical path. On the other hand, for an electron whose mass is ~107> g, §S~
#i/6 and the phase change is just around a sixth of a radian, which is well within the
coherence range 6S/% <. It is in such cases that assuming that the particle moves
along a well-defined trajectory, x. (), leads to conflict with experiment.

The normalized classical action

gives the exact propagator
8.3. An Approximation to U(¢) for a Free Particle

for the free particle

Our previous discussions have indicated that, to an excellent approximation, we
may ignore all but the classical path and its neighbors in calculating U(#). Assuming
that each of these paths contributes the same amount exp(iS./#), since S is station-

ay, We gt A' measures the number of coherent paths

U(t)=A' 5" (8.3.1)

where A’ is some normalizing factor which “measures” the number of paths in the
coherent range. Let us find U(¢) for a free particle in this approximation and compare
the result with the exact result, Eq. (5.1.10).

The classical path for a free particle is just a straight line in the x-¢ plane:

’

xa (") =x’+);——; (&' —1) (8.3.2)

corresponding to motion with uniform velocity v=(x—x')/(¢—1). Since ¥ =
mv*/2 is a constant,

l 1 N2
Sc.=j Pdr=tm ST
, 2 t-t
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im(x— x’)z]

Ulx, t; x',t)=A4' 8.3.3
(x, 1:.x', ) exp[m_t,) (833)

To find A’, we use the fact that as r—¢ tends to 0, U must tend to §(x—x).
Comparing Eq. (8.3.3) to the representation of the delta function encountered in
Section 1.10 (see footnote on page 61),
Gaussian representation of Dirac delta fcn
_(x—x’)z]

A2

Nt 1
5(x—x)sll_rg(;gz—)l—/2exp[

(valid even if A is imaginary) we get

1/2
AT
2hi(t—1)

so that
Yields the exact free m \ ’ im(x—x')?
. Ux, t; X,0)=U(x, t; x")= (—) exp [—] (8.3.4)
particle propagator! 2rehit 2%t

which is the exact answer! We have managed to get the exact answer by just comput-
ing the classical action! However, we will see in Section 8.6 that only for potentials
of the form V=a+ bx+ cx*+dx+exx is it true that U(f) = A(¢) ¢*'". Furthermore,
we can’t generally find A(¢r) using U(x,0; x)=8(x—x") since A can contain an
arbitrary dimensionless function f'such that f—1 as #—0. Here f=1 because we can’t
construct a nontrivial dimensionless f using just m, #, and ¢ (check this).

8.4. Path Integral Evaluation of the Free-Particle Propagator

Although our heuristic analysis yielded the exact free-particle propagator, we
will now repeat the calculation without any approximation to illustrate path
integration.

Consider U(xy, tn; X0, to). The peculiar labeling of the end points will be just-
ified later. Our problem is to perform the path integral

I eSOV igIx(1)] (8.4.1)
Xo
where

I Z[x(1)]

X0
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Chapter 5

Last quarter in Physics 441

of P is also an eigenstate of P>. So we feed the trial solution |p) into Eq. (5.1.3)
and find

2

P
o |p>=El|p)
or
2
(E——E)|p>=o (5.1.4)
2m

Since |p) is not a null vector, we find that the allowed values of p are
p=+(2mE)'"? (5.1.5)
In other words, there are two orthogonal eigenstates for each eigenvalue E:
|E, +>=|p=(mE)"* (5.1.6)
|E, —>=|p=—(2mE)"?) (5.1.7)

Thus, we find that to the eigenvalue E there corresponds a degenerate two-dimen-
sional eigenspace, spanned by the above vectors. Physically this means that a particle
of energy E can be moving to the right or to the left with momentum |p| = (2mE)"">.
Now, you might say, “This is exactly what happens in classical mechanics. So what’s
new?” What is new is the fact that the state

|E>=Blp=(@2mE)"*)+y|p=—(2mE)"*) (5.1.8)

is also an eigenstate of energy E and represents a single particle of energy E that can
be caught moving either to the right or to the left with momentum (2mE)'/?!

To construct the complete orthonormal eigenbasis of H, we must pick from
each degenerate eigenspace any two orthonormal vectors. The obvious choice is
given by the kets |E, +) and |E, — ) themselves. In terms of the ideas discussed in
the past, we are using the eigenvalue of a compatible variable P as an extra label
within the space degenerate with respect to energy. Since P is a nondegenerate
operator, the label p by itself is adequate. In other words, there is no need to call
the state |p, E=P?/2m), since the value of E=E(p) follows, given p. We shall
therefore drop this redundant label.

The propagator is then

Ut = J IpY<pl e F P dp

o0

=J lpY<pl e 7> dp (5.1.9)

o0
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Exercise 5.1.1. Show that Eq. (5.1.9) may be rewritten as an integral over E and a sum
over the + index as

uo= ¥ j [(—z;l%]w a)<E, a| e F/" dE

Exercise 5.1.2.* By solving the eigenvalue equation (5.1.3) in the X basis, regain Eq.
(5.1.8), i.e., show that the general solution of energy E is

expli2mE)"*x/#] + exp[ — i(2mE)"*x /]

WE(x)=B (27rﬁ)1/2 Y (27Th)l/2

[The factor (2z#)~'/* is arbitrary and may be absorbed into § and 7.] Though w:(x)
will satisfy the equation even if E<0, are these functions in the Hilbert space?

The propagator U(¢) can be evaluated explicitly in the X basis. We start with
the matrix element

U(x, t; x')=<x] U(t)Ix’>=J (XIpY plx’y e P2 gy

=27rih ” eiP(X_X')/ﬁ, e-ipzt/Zmﬁ dp
1/2
(o) e (5.1.10)

using the result from Appendix A.2 on Gaussian integrals. In terms of this propa-
gator, any initial-value problem can be solved, since

v(x, t)= J U(x, t; x)y(x', 0) dx’ (5.1.11)
Had we chosen the initial time to be ¢’ rather than zero, we would have gotten
y(x, t)= J Ulx,t; x,)wp(x', t) dx (5.1.12)

where U(x, t; x', t')=<{x| U(t—t')|x"), since U depends only on the time interval t—¢'
and not the absolute values of ¢ and ¢'. [Had there been a time-dependent potential
such as V(1)=V, e " in H, we could have told what absolute time it was by looking
at V(¢). In the absence of anything defining an absolute time in the problem, only
time differences have physical significance.] Whenever we set ¢ =0, we will resort to
our old convention and write U(x, ¢; x', 0) as simply U(x, t; x).

A nice physical interpretation may be given to U(x, ¢; x', t') by considering a
special case of Eq. (5.1.12). Suppose we started off with a particle localized at
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154 X' =Xxp, that is, with w(x/, ') = 8(x'— x{). Then
CHAPTER 5

y(x, )= U(x, t; xo, t') (5.1.13)
Chapter 5

In other words, the propagator (in the X basis) is the amplitude that a particle
starting out at the space-time point (xp, ¢') ends with at the space-time point (x, ¢).
[It can obviously be given such an interpretation in any basis: {@| U(¢, ')|®") is the
amplitude that a particle in the state |@’) at ¢ ends up with in the state (@) at t.]
Equation (5.1.12) then tells us that the total amplitude for the particle’s arrival at
(x, t) is the sum of the contributions from all points x" with a weight proportional
to the initial amplitude y(x', t') that the particle was at x’ at time ¢'. One also refers
to U(x, t; xp, t') as the “fate” of the delta function y(x', t') = d(x'— xp).

I Time Evolution of the Gaussian Packet I

There is an unwritten law which says that the derivation of the free-particle
propagator be followed by its application to the Gaussian packet. Let us follow this
tradition.

Consider as the initial wave function the wave packet

—x'2/2A2

t=0 packet vx.0=c"" :”Az)./4 (5.1.14)

This packet has mean position (X» =0, with an uncertainty AX =A/2'?, and mean
momentum p, with uncertainty %/2'/?A. By combining Eqs. (5.1.10) and (5.1.12) we

get
—1/2 2
_| 12 lh_f)] ) |:“(x—p0t/m) ]
¥ ) [” (A+mA P21 + ifit/mid)
=> wavefunction XeXp[%"(x—‘—;'%)] (5.1.15)

The corresponding probability density is

=> ili _ I : {_[X“(Po/m)flz}
probability - L B TG (5.1.16)

The main features of this result are as follows:
(1) The mean position of the particles is

_pot _<P)t
m m

<X
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In other words, the classical relation x = (p/m)t now holds between average quanti-
ties. This is just one of the consequences of the Ehrenfest theorem which states
that the classical equations obeyed by dynamical variables will have counterparts in
quantum mechanics as relations among expectation values. The theorem will be
proved in the next chapter.

(2) The width of the packet grows as follows:

2.2 1/2
A(®) A (1+ #t )

W B 5’/—2 m’A*

AX() = (5.1.17)

The increasing uncertainty in position is a reflection of the fact that any uncertainty
in the initial velocity (that is to say, the momentum) will be reflected with passing
time as a growing uncertainty in position. In the present case, since AV(0)=AP(0)/
m=7#/2"’mA, the uncertainty in X grows approximately as AX ~7t/2'>mA which
agrees with Eq. (5.1.17) for large times. Although we are able to understand the
spreading of the wave packet in classical terms, the fact that the initial spread AV(0)
is unavoidable (given that we wish to specify the position to an accuracy A) is a
purely quantum mechanical feature.

If the particle in question were macroscopic, say of mass 1 g, and we wished to
fix its initial position to within a proton width, which is approximately 107> cm, the
uncertainty in velocity would be

AV(0) ~

e 107" cm/sec
m

It would be over 300,000 years before the uncertainty A(f) grew to 1 millimeter! We
may therefore treat a macroscopic particle classically for any reasonable length of
time. This and similar questions will be taken up in greater detail in the next chapter.

Exercise 5.1.3 (Another Way to Do the Gaussian Problem). We have seen that there exists
another formula for U(¢), namely, U(f)=e """ For a free particle this becomes

U(,)=exp[i<h_2’ d_2>]= 5 i("'_’) dz” (5.1.18)

n\2m dx*)] Zon!'\2m/ dx*

Consider the initial state in Eq. (5.1.14) with p,=0, and set A=1, ' =0:

—x2/2

v(x,0) =W

Find y(x, r) using Eq. (5.1.18) above and compare with Eq. (5.1.15).
Hints: (1) Write w(x, 0) as a power series:

o0 _1 n_2n
V(e 0= ¥ C
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so that

im(x— x’)z]

Ulx, t; x',t)=A4' 8.3.3
(x, 1:.x', ) exp[m_t,) (833)

To find A’, we use the fact that as r—¢ tends to 0, U must tend to §(x—x).
Comparing Eq. (8.3.3) to the representation of the delta function encountered in
Section 1.10 (see footnote on page 61),

N 1 (x—x')?
5(x—x)sll_lg(7—tz2—)l—/2exp{— A2 ]

(valid even if A is imaginary) we get

1/2
AT
2hi(t—1)

so that

im(x— x’)z]

12 ¢
m
Ukx,t; x,00=U(x, t; xX)=|——| ex
x ) ( )< ) p[ 2%t

Py (8.3.4)
which is the exact answer! We have managed to get the exact answer by just comput-
ing the classical action! However, we will see in Section 8.6 that only for potentials
of the form V=a+ bx+ cx*+dx+exx is it true that U(f) = A(¢) ¢*'". Furthermore,
we can’t generally find A(¢r) using U(x,0; x)=8(x—x") since A can contain an
arbitrary dimensionless function f'such that f—1 as #—0. Here f=1 because we can’t
construct a nontrivial dimensionless f using just m, #, and ¢ (check this).

8.4. Path Integral Evaluation of the Free-Particle Propagator

Although our heuristic analysis yielded the exact free-particle propagator, we
will now repeat the calculation without any approximation to illustrate path
integration.

Consider U(xy, tn; X0, to). The peculiar labeling of the end points will be just-
ified later. Our problem is to perform the path integral

jXN eis["(‘)]/ﬁg[x(t)] (8.4.1)

X0

where

j Z[x(1)]

X0
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x(tg) x(t)) x(t2) x(t;) x(ty)

-.-./ \/ ™~ *N
Figure 8.4. The discrete approximation to a path »./
x(#). Each path is specified by N—1 numbers X /
x(t1), ..., x(ty-1). To sum over paths we must 0
integrate each x; from —oo to +00. Once all inte-
grations are done, we can take the limit N— co. to W tz eeee g tn ot

is a symbolic way of saying “integrate over all paths connecting x, and xy (in the
interval #, and fy).” Now, a path x(¢) is fully specified by an infinity of numbers
x(%), - . -, x(2), . .., x(ty), namely, the values of the function x(¢) at every point ¢
in the interval #, to ty. To sum over all paths we must integrate over all possible
values of these infinite variables, except of course x(#y) and x(¢x), which will be kept
fixed at xo and xy, respectively. To tackle this problem, we follow the idea that was
used in Section 1.10: we trade the function x(¢) for a discrete approximation which
agrees with x(¢) at the N+ 1 points t,=t,+neg, n=0,..., N, where €= (ty—1o)/N.
In this approximation each path is specified by N+ 1 numbers x(%), x(,), - . . , x(tx).
The gaps in the discrete function are interpolated by straight lines. One such path
is shown in Fig. 8.4. We hope that if we take the limit N— oo at the end we will get
a result that is insensitive to these approximations.] Now that the paths have been
discretized, we must also do the same to the action integral. We replace the continu-
ous path_definition

replace the contmuous action
,sf'(t) dt=JN%mx2dt

1]

by a discrete version

N=Vm (x40 — X :
5=y —<7) € (8.4.2)
i=0 2 €

where x;=x(t;). We wish to calculate

Ulxn, tn; Xo, to) = J exp{iS[x(1)]/ 1} 2[x(1)]

imNS (X — xi)z]
_I\lll—l;IZJIOAJ J J exP[ﬁzg €

Xdxy;- - dxy_ (843)

 We expect that the abrupt changes in velocity at the points #,+ ne that arise due to our approximation
will not matter because ¥ does not depend on the acceleration or higher derivatives.
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228 It is implicit in the above that x, and xy have the values we have chosen at the

CHAPTER 8 outset. The factor A in the front is to be chosen at the end such that we get the
correct scale for U when the limit N—co is taken. .
Let us first switch to the variables Si mple
- 1/2 -
change variables A Gaussian
€

We then want

lim A’J J I exp[ z (y'“ )]dy Cdyw-1 (8.4.4)
N-oo i=0

integrate over y0, y1, y2, ... , YN

(N—-1)/2
2k
el
m

Although the multiple integral looks formidable, it is not. Let us begin by doing the
y: integration. Considering just the part of the integrand that involves y;, we get

first integral

where

w L \12
1 in —(y— ;
J eXp{-; [(p2=y1)*+ —yo)zl} dy, =<E) e I (8.4.5)
y1 goes away!
Consider next the integration over y,. Bringing in the part of the integrand involving
¥, and combining it with the result above we compute next

. \1/2 peo
(%) J e‘(y3‘)’2)2/f . e—(Yz—yo)z/Zi dy2

— 00

. \1/2 172
"‘) o~ @32 (27”) Q0T Y6

second integral =(—2— 3

S LV
y2 goes away! =[@] eI (8.4.6)

By comparing this result to the one from the y, integration, we deduce the pattern:
if we carry out this process N— 1 times so as to evaluate the integral in Eq. (8.4.4),
it will become .-

i )(N-l)/2

(in
N1/2

_e"(J’N —y0)?/Ni

only yn and y0 remain!
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Bringing in the factor 4(2%ig/m)"¥ ~P/? from up front, we get

AN/2 1/2 Y
U= A(Zn’haz) < m ) exp[lm(xN xo)]
m 2nhiNe 2hiN ¢

If we now let N—oo, €0, Ne—ty—t,, we get the right answer provided

a-N/2
=[2” hg’] =BV (8.4.7)
m

It is conventional to associate a factor 1/B with each of the N—1 integrations and
the remaining factor 1/B with the overall process. In other words, we have just learnt
that the precise meaning of the statement “integrate over all paths” is

dx1 dX2 de—l
t _1 D O S
Jowor-im g [ ] 554
where

Normalization
(8.4.8)

Factor

8.5. Equivalence to the Schrodinger Equation

The relation between the Schrédinger and Feynman formalisms is quite similar
to that between the Newtonian and the least action formalisms of mechanics, in that
the former approach is local in time and deals with time evolution over infinitesimal
periods while the latter is global and deals directly with propagation over finite times.

In the Schrédinger formalism, the change in the state vector |y over an infin-
itesimal time ¢ is

IW(8)>—IW(0)>——HIW(0)> (8.5.1)

which becomes in the X basis

ﬁZ 62
v(x, &) —y(x, 0)_7[E§ + V(x, 0)] v(x,0) (8.5.2)
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A.2. Gaussian Integrals 659

We discuss here all the Gaussian integrals that we will need. Consider APPENDIX

I(a) =J e ™dx, a>0 (A.2.1)

This integral cannot be evaluated by conventional methods. The trick is to consider

I(a) =J e dx J

—0o0

o dy= JOO J‘OO PRLICas O dy
Switching to polar coordinates in the x-y plane,

[ee) 2
I3(a)= j J e “’’pdpd¢
0 0

=r/a

I(a)=(n/a)'"? (A22)

By differentiating with respect to @ we can get all the integrals of the form

Therefore

L,(a)= J x¥ e dx
For example,

Iz(a)=J e dy=— j e dx
. oa J_

1/2
=—ilo(a)=—1—<z) (A23)

oa 2a \a

The integrals I, (@) vanish because these are integrals of odd functions over an
even interval —oo to +o00. Equations (A.2.2) and (A.2.3) are valid even if a is purely
imaginary.

Consider next

In(a, B)= f e™m B g (A.2.4)
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660 By completing the square on the exponent, we get
APPENDIX

[es) 1/2
Io(a, B)=eP j " B2 gy B4 (5) (A.2.5)
_ a

@©

These results are valid even if @ and B are complex, provided Re a >0. Finally, by
applying to both sides of the equation

°° 1
j e “dr=—
R a

the operator (—d/da)”, we obtain
J re *dr =(—Iﬁ
0

Consider this integral with ¢ =1 and » replaced by z— 1, where z is an arbitrary
complex number. This defines the gamma function I'(z)

I"(z)=J e dr
0

For real, positive and integral z,

g I'(z)=(z—1)!

A.3. Complex Numbers

A complex variable z can be written in terms of two real variables x and y, and
i=(—1)'"? as

z=x+iy (A3.])
Its complex conjugate z* is defined to be
*=x—iy (A3.2)

One may invert these two equations to express the real and imaginary parts, x and
¥, as

x=3(z+z*, y=(z—z%)/2i (A.3.3)
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Laplace was once asked by Alexander von
Humboldt (a German scientist who, in
addition to writing an immensely popular
work on science called Kosmos, was also
responsible for making mountain climbing a
popular sport) who the great mathematician
in Germany was. Without hesitation, Laplace
said, "Pfaff". "Pfaff?" Humboldt said. "What
about Gauss?” "Gauss is the greatest
mathematician in the world” was Laplace's

reply.
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Laplace went in state to beg Napoleon to accept a copy of
his work, and the following account of the interview is well
authenticated, and so characteristic of all the parties
concerned that | quote it in full.

Lagrange had told Napoleon that the book contained no
mention of the name of God; Napoleon, who was fond of
putting embarrassing questions, received it with the
remark, “M. Laplace, they tell me you have written this
large book on the system of the universe, and have never
once mentioned its Creator.”

Laplace, who, though the most supple of politicians, was
as stiff as a martyr on every point of his philosophy, drew
himself up and answered bluntly, "l had no need of that
hypothesis.”

Lagrange exclaimed "But, it is a fine hypothesis; it
explains many things."”



TRAITE

DE

MECANIQUE CELESTE,

PAR P. SS. LAPLACE,

Membre de I'Institut national de France, et du Bureau
des Longitudes.

TOME PREMIER.

DE L’IMPRIMERIE DE CRAPELET.

A PARIS,

Chez J. B. M. DUPRAT, Libraire pour les Mathématiques,
quai des Augustins.
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Introduction

The gamma function can be thought of as the natural way to generalize the
concept of the factorial to non-integer arguments.

Leonhard Euler came up with a formula for such a generalization in 1729. At
around the same time, James Stirling independently arrived at a different
formula, but was unable to show that it always converged. In 1900, Charles
Hermite showed that the formula given by Stirling does work, and that it defines
the same function as Euler’s.
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We will work to first order in ¢ and therefore to second order in 1 [see Eq. (8.5.6) 231
above]. We expand

THE PATH
INTEGRAL

9 Pe FORMULATION
v(x+n,0)=y(x,0)+n— 4 71_ —W - OF QUANTUM
ax ox* THEORY

2
oo (g)erle g o) -5 e )
=1—% V(x,0)+- - -

since terms of order n¢& are to be neglected. Equation (8.5.7) now becomes

1/2 poo . 2 .
[ m imn _ie
v(x, &)= (277 mg) J i exp( e )[w(x, 0) P V(x, 0)y(x,0)

o

oy o
VLT _.,,]
ox 2 ox

Consulting the list of Gaussian integrals in Appendix A.2, we get

(x a)=< m )1/2[ x, 0)<27zﬁ18) ﬁ_ﬁ(ZnhiS)maz_w
yix 2rnhie 2im\ m ox*

_ig <2nhia> Vi, 0w, 0)]
fi m

or

W

> B — Vi, 0)] v(x,0) (8.5.8)

w(x, &)= w(x, 0)= "8[

which agrees with the Schrédinger prediction, Eq. (8.5.1).

8.6. Potentials of the Form V =a + bx + cx* + dx + exx] General

We wish to compute

Potential

Ulx, t; x')= I SN R ()] (8.6.1)

1 This section may be omitted without loss of continuity.
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L depends on x and dx/dt (x-dot)

232 Let us write every path as

CHAPTER 8
x(t)=xa (") + y(1") X (8.6.2)

It follows that
=)+ X-clot (8.6.3)

Since all the paths agree at the end points, y(0) =y(r)=0. When we slice up the time
into N parts, we have for intermediate integration variables

X;=x(t)=xa (1) +y(tH)=xa () +y:

Since x. (¢/) is just some constant at ¢/,

dx;=dy,;
and
change variables f 9lx<t">1=f: i) (8.64)
so that Eq. (8.6.1) becomes
Ulx, 1 %) = f exp {g Slxa (1) +y(t")1}@[y<r">1 (8.6.5)

The next step is to expand the functional S in a Taylor series about x:

t
Slxa+y]= f L(xaty, xat+y)dt”
0

expand S in a sf [z(xc.,xm(iﬁ y+22 )
0 X |x 0X |xq

Taylor series +1(52{ 24 82| 08 y-z)]dtu (8.66)
2\ dx Xl 0x 0x Xl 0x Xel

The series terminates here since & is a quadratic polynominal.

The first piece L (xq, Xa) integrates to give S[xq4]= Sa. The second piece, linear
in y and y, vanishes due to the classical equation of motion. In the last piece, if we
recall

L =imx*—a—bx—cx’—dx—exx (8.6.7)
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we get 233

, THE PATH
1oy (8.6.8) INTEGRAL
2o ¢ o FORMULATION
OF QUANTUM
Py THEORY
ox O =—e (8.6.9)
X 0X
10°%
= =m 8.6.10
2 ox’ ( )

Consequently Eq. (8.6.5) becomes

. 0 . t
o 1
U(x, t; x')=exp (&) f exp [i J (— my* —cy*— ey)’z) dt"}
i)l sl \a

x D[ p(t")] (8.6.11)

Since the path integral has no memory of x., it can only depend on ¢. So

only need to find A(t) [ U(x t;x)=€"""4(z) (8.6.12)

where A(t) is some unknown function of ¢. Now if we were doing the free-particle
problem, we would get Eq. (8.6.11) with c=e=0. In this case we know that [see
Eq. (8.3.4)]

for the free particle

1/2

A(t)=( e ) (8.6.13)
, . 2rhit

same for linear potential

Since the coefficient b does not figure in Eq. (8.6.11), it follows that the same value
of A(t) corresponds to the linear potential V'=a+bx as well. For the harmonic
oscillator, ¢ =%mw?, and we have to do the integral

for the harmonic oscillator, need to do this integral

A= f exp [i/h j % m(y*— wzyz)] dr'a[y(t")] (8.6.14)
0 0

The evaluation of this integral is discussed in the book by Feynman and Hibbs
referred to at the end of this section. Note that even if the factor A(¢) in w(x, t) is
not known, we can extract all the probabilistic information at time ¢.

Notice the ease with which the Feynman formalism yields the full propagator
in these cases. Consider in particular the horrendous alternative of finding the eigen-
functions of the Hamiltonian and constructing from them the harmonic oscillator
propagator.

The path integral method may be extended to three dimensions without any
major qualitative differences. In particular, the form of U in Eq. (8.6.12) is valid
for potentials that are at most quadratic in the coordinates and the velocities. An
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234 interesting problem in this class is that of a particle in a uniform magnetic field. For

CHAPTER 8 further details on the subject of path integral quantum mechanics, see R. P. Feynman
and A. R. Hibbs, Path Integrals and Quantum Mechanics, McGraw-Hill (1965), and
Chapter 21.

Exercise 8.6.1.* Verify that

1/2
U(x, t; x', 0) = A(t) exp(iSa/#), A(1) = (2:;11)

agrees with the exact result, Eq. (5.4.31), for V(x)=—fx. Hint: Start with xq(¢")=
Xo+ vot” + 3( f/m)t" and find the constants x, and v, from the requirement that xq (0)=x'
and x (1) =x.

Exercise 8.6.2. Show that for the harmonic oscillator with

1 o 1
L =3mx’— 3mw’x’

_____m‘ta) p [(x*+x") cos ot — 2xx')]}

U(x, t; x")=A(¢) exp {Zh pra

where A(¢) is an unknown function. (Recall Exercise 2.8.7.)

Exercise 8.6.3. We know that given the eigenfunctions and the eigenvalues we can con-
struct the propagator:

eigenfunctions
In 441 we needed: Ulx, t; X', 1) =Y yu(x)*y,(x') e 500" (8.6.15)
i’ eigenvalues

Consider the reverse process (since the path integral approach gives U directly), for the case
of the oscillator.

(1) Set x=x'=¢=0. Assume that A(f)=(mw /2xifisin wz)"/* for the oscillator. By
expanding both sides of Eq. (8.6.15), you should find that E=#iw /2, 5fiw/2, 9%w /2, . . ., etc.
What happened to the levels in between?

(2) (Optional). Now consider the extraction of the eigenfunctions. Let x=x" and ¢ =0.
Find Ey. E,, |wo(x)[% and |y,(x)|? by expanding in powers of @ =exp(iot).

Exercise 8.6.4.* Recall the derivation of the Schrodinger equation (8.5.8) starting from
Eq. (8.5.4). Note that although we chose the argument of ¥V to be the midpoint x + x'/2, it
did not matter very much: any choice x+an, (where n=x"—x) for 0<a <1 would have
given the same result since the difference between the choices is of order ne=~¢*?. All this
was thanks to the factor ¢ multiplying V in Eq. (8.5.4) and the fact that || ~¢&'/? as per
Eq. (8.6.5).
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21

Path Integrals: Part II

In this chapter we return to path integrals for a more detailed and advanced treat-
ment. The tools described here are so widely used in so many branches of physics,
that it makes sense to include them in a book such as this. This chapter will be
different from the earlier ones in that it will try to introduce you to a variety of new
topics without giving all the derivations in same detail as before. It also has a list of
references to help you pursue any topic that attracts you. The list is not exhaustive
and consists mostly of pedagogical reviews or books. From the references these
references contain, you can pursue any given topic in greater depth. All this will
facilitate the transition from course work to research.

In Chapter 8 the path integral formula for the propagator was simply postulated
and shown to lead to the same results as the operator methods either by direct
evaluation of the propagator (in the free particle case) or by showing once and for
all that the Schrodinger equation followed from the path integral prescription for
computing the time evolution.

We begin this chapter by doing the reverse: we start with the operator Hamil-
tonian H=P?/2m+ V and derive the propagator for it as a path integral. We shall
see that there are many types of path integrals one can derive. We will discuss

e The configuration space path integral, discussed in Chapter 8.
e The phase space path integral.
o The coherent state path integral.

You will see that the existence of many path integrals is tied to the existence of
many resolutions of the identity, i.e., to the existence of many bases.

Following this we will discuss two applications: to the Quantum Hall Effect
(QHE) and a recent development called the Berry Phase.

We then turn to imaginary time quantum mechanics and its relation to statistical
mechanics (classical and quantum) as well the calculation of tunneling amplitudes
by a semiclassical approximation. You will learn about instantons, the transfer matrix
formulation, and so on.

Finally, we discuss path integrals for two problems with no classical limit: a
spin Hamiltonian and a fermionic oscillator.

581
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21.1. Derivation of the Path Integral

CHAPTER 21 o
Let us assume that the Hamiltonian is time-independent and has the form
P2
=—+V(X) (21.1.1)
2m
The propagator is defined by U(t) = exp( -i H t / hbar)
U(xt; x'0)=U(x, x', t) = x| exp(—é Ht)lx’) (21.1.2)
It was stated in Chapter 8 that U may be written as a sum over paths going from
(x'0) to (xt). We will now see how this comes about.
First, it is evident that we may write
3 . t N
. i _ i
factor into N steps exp(—% Ht)— [exp(—% H N)] (21.1.3)

for any N. This merely states that U(¢), the propagator for a time ¢, is the product
of N propagators U(t/N). Let us define

e=— (21.1.4)

and consider the limit N—oco. Now we can write

2mhi
momentum position

exp(—% (P?/2m+ V(X)))zexp(—i—g P2>- exp(—% V(X)) (21.1.5)

because of the fact that
oleB= At BHI/2ABI+ - (21.1.6)

which allows us to drop the commutator shown (and other higher-order nested
commutators not shown) on the grounds that they are proportional to higher powers
of & which is going to 0. While all this is fine if 4 and B are finite dimensional
matrices with finite matrix elements, it is clearly more delicate for operators in Hilbert
space which could have large or even singular matrix elements. We will simply assume
that in the limit £—0 the ~ sign in Eq. (21.1.5) will become the equality sign for
the purpose of computing any reasonable physical quantity.

position and momentum do not commute, but ...
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N steps

So we have to compute

(x| exp(——iiP2)~exp(—%g V(X))'exp(—zi—g P2>-exp(—% V(X)). XD

2mh mh
N times ~
(21.1.7)
The next step is to introduce the resolution of the identity:
resolution of ©
I= dx|x <{x]| (21.1.8)

the identity ©

between every two adjacent factors of U(z/N). Let us illustrate the outcome by
considering N=3. We find (upon renaming x, x' as x3, xo for reasons that will be
clear soon)

2 « .
Ulxs, xo, )= | TT dx,Cxs] exp(—i P2) exp(—E V(X))|x2>
n=1 th' h

X {x5| exp(—és% P2> exp(—% V(X))Ix.)

x (x| exp(—z;—gh P2) exp (—% V(X))|x0> (21.1.9)

Consider now the evaluation of the matrix element

_ 8 pa) o[ E
Xl exp( 2mﬁP) exp( P V(X))Ixn_.> (21.1.10)

When the rightmost exponential operates on the ket to its right, the operator X gets
replaced by the eigenvalue x,-,. Thus,

X exp(—zjn—g;i P2>- exp(—% V(X))lx,,_1>

= (x exp(—zjn—gh P2>|x,,_ D exp(—;f V(% .)> 1.1.11)

Consider now the remaining matrix element. It is simply the free particle propagator
from x,_, to x, in time &. We know what it is [say from Eq. (5.1.10)] or the following
exercise

. 1/2 . 2

—ig m im(x,— Xn—1)
n ———P2> — =[—] ':——] 21.1.12
<l exp(Zmﬁ IXn-17 2rwihe exp 2hig ( )
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584 Exercise 21.1.1. Derive the above result independently of Eq. (5.1.10) by introducing a
resolution of the identity in terms of momentum states between the exponential operator and

CHAPTER 21 the position eigenket in the left-hand side of Eq. (21.1.12). That is, use

|7
I J_wzﬂh|p>@| (21.1.13)

where the plane wave states have a wave function given by
(x| py=e" (21.1.14)
which explains the measure for the p integration.

Resuming our derivation, we now have

(x] exp (—ﬁ P2)~ exp(—%S V(X))|x,,_ N

]1/2 [im(x,,—x,,_.)2
exp| ————
2he

i€
—|:27Tiﬁ8 ]exp(—; V(Xn—1)> (21.1.15)

Collecting all such factors (there are just two more in this case with N=3), we can
readily see that for general N

NN 12
U(xn, Xo, 1) = i
(e, Xo, 1) (2m‘h8> |:j nl;[l’ (Z”iﬁg) x]

Noim(x,—X,-1)* i€ ]
X ——— V(x,- 21.1.16
CXP[’Z,I e 7 (xn-1) ( )

If we drop the V terms we see that this is in exact agreement with the free particle
path integral of Chapter 8. For example, the measure for integration has exactly N
factors of B™' as per Eq. (8.4.8), of which N—1 accompany the x-integrals. With
the V term, the integrand is just the discretized version of exp(iS/#):

Noim(x,—x,-1)" i€ ]
V(x, -
e 5, P v
. N 2
—expig ¥ [’"("” ’i"“) —V(x,,_l)] (21.1.17)
/A 2¢



We can go back to the continuum notation and write all this as follows:

U(x, x', t)=f[@x] exp[éJ~ L(x, x) dt] (21.1.18)
0

Where configuration space path integral

m 172 N-1 m 172
f[@x]=}gr:o (27rih8) J[ nl;[i (Znihg) dx,,] (21.1.19)

The continuum notation is really a schematic for the discretized version that preceded
it, and we need the latter to define what one means by the path integral. It is easy
to make many mistakes if one forgets this. In particular, there is no reason to believe
that replacing differences by derivatives is always legitimate. For example, in this
problem, in a time g, the variable being integrated over typically changes by
0(&'%) and not ((¢), as explained in the discussion before Eq. (8.5.6). The works
in the Bibliography at the end of this chapter discuss some of the subtleties. The
continuum version is, however, very useful to bear in mind since it exposes some
aspects of the theory that would not be so transparent otherwise. It is also very
useful for getting the picture at the semiclassical level and for finding whatever
connection there is between the macroscopic world of smooth paths and the quantum
world. We will take up some examples later.

The path integral derived above is called the Configuration Space path integral
or simply the path integral. We now consider another one. Let us go back to

{xnl exp(—zfn—gh Pz)- exp (—% V(X))- exp(—ﬁ Pz)- exp(—% V(X)) o xe)

~ —

N times
(21.1.20)

Let us now introduce resolutions of the identity between every exponential and
the next. We need two versions

insert two 1=r dx|x) x| (21.1.21)
resolutions o
° g
of the identity 1=f_ 2—7f—hlp> <pl (21.1.22)

where the plane wave states have a wave function given by

(x| py=e""" (21.1.23)

585

PATH
INTEGRALS:
PART II


Larry
configuration space path integral

Larry


Larry


Larry


Larry
insert two
resolutions
of the identity

Larry



586 Let us first set N=3 and insert three resolutions of the identity in terms of
CHAPTER 21 p-states and two in terms of x-states with x and p resolutions alternating. This
gives us

U(xs, X0, 1) = J[.@p@x] {x3| exp (—21781% P2)| 2
X { ps| exp (—% mx ))I X2 {x,| exp (—ﬁ P 2)I )2
% {pl exp(—% V(X))|x1><xl| exp(—% P2)|p1>

x (i exp(—’f V(X)>|Xo> (21.1.24)

where

forsae I

— 00 — o0 e

dp,,
dx, 21.1.25
J n=127Hh nl_[l x ( )

2N— 1 times

Evaluating all the matrix elements of the exponential operators is trivial since each
operator can act on the eigenstate to its right and get replaced by the eigenvalue.
Collecting all the factors (a strongly recommended exercise for you) we obtain

N(—ig , i i€
Ulx, x', 1)=j[9P9X] CXP[Z (—pn+_pn(xn_xn—l)__ V(Xn—1)>] (21.1.26)
=1 \2mfi [ 7

This formula derived for N=3 is obviously true for any N. In the limit N> oo, i.e.,
&£—0, we write schematically in continuous time (upon multiplying and dividing the
middle term by ¢), the following continuum version:

phase space path integral
Ux, X', 1) = J[@p@x] exp':é j [px— #(x, p)] dt] (21.1.27)
0

where # =p?/2m+ V(x) and (x(), p(¢)) are now written as functions of a continuous
variable ¢. This is the Phase Space Path Integral for the propagator. The continuum
version is very pretty [with the Lagrangian in the exponent, but expressed in terms
of (x, p)] but is only a schematic for the discretized version preceding it.

In our problem, since p enters the Hamiltonian quadratically, it is possible to
integrate out all the N variables p,. Going back to the discretized form, we isolate

if H ~ p~2, then recover configuration space path integral

if not, then must use the phase space path integral
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the part that depends on just p’s and do the integrals:

N 20 . .
HJ df;" eXPK—pripn(xn—xn-l)ﬂ

o P\ o
N m )1/2 [im(x,,—x,,_l)z}

- o onm 21.1.28
Il (2m‘hg exp 2ie ( )

If we now bring in the x-integrals we find that this gives us exactly the configuration
space path integral, as it should.

Note that if p does not enter the Hamiltonian in a separable quadratic way, it
will not be possible to integrate it out and get a path integral over just x, in that we
do not know how to do non-Gaussian integrals. In that case we can only write down
the phase space path integral.

We now turn to two applications that deal with the path integrals just discussed.

The Landau Levels

We now discuss a problem that is of great theoretical interest in the study of
QHE (see Girvin and Prange). We now explore some aspects of it, not all having to
do with functional integrals. Consider a particle of mass p and charge g in the x-y
plane with a uniform magnetic field B along the z-axis. This is a problem we discussed
in Exercise (12.3.8). Using a vector potential

=g(_yi+xj) (21.1.29)

we obtained a Hamiltonian

_[P+g YB/2c] P gXB/2c)
2u 2u

H

(21.1.30)

You were asked to verify that

0= PtaYB/D  p_ p _px/2e) (21.1.31)
qB
were canonical variables with [Q, P]=i#. It followed that H was given by the formula

2
H=P—+1ym3Q2 (21.1.32)
2u 2

and had a harmonic oscillator spectrum with spacing #w,, where

wo=¢qB/uc (21.1.33)

587

PATH
INTEGRALS:
PART I



Riemann zeta function

C(n)=1+ 3 +-!-+...=i

generalizes this

sum to complex n


Larry
Riemann zeta function

Larry


Larry


Larry
generalizes this sum to complex n

Larry



Riemann Hypothesis

Im(z;

Trivial zeros
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Why should you care?

Millennium Prize Problems

P versus NP problem
Hodge conjecture
Poincaré conjecture
Riemann hypothesis
Yang—Mills existence and mass gap
Navier—Stokes existence and smoothness
Birch and Swinnerton-Dyer conjecture
V*T*E

$ 1,000,000

boring reasons
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Why does the Clay Foundation care?

“distribution of prime numbers”

Riemann Hypothesis

Some numbers have the special property that they cannot be expressed as the
product of two smaller numbers, e.qg., 2, 3, 5, 7, etc. Such numbers are called
prime numbers, and they play an important role, both in pure mathematics and
its applications. The distribution of such prime numbers among all natural
numbers does not follow any regular pattern, however the German
mathematician G.F.B. Riemann (1826 - 1866) observed that the frequency of
prime numbers is very closely related to the behavior of an elaborate function

Us) =1+ 1/2° + 1/3° + 1/4° + ...

called the Riemann Zeta function. The Riemann hypothesis asserts that all
interesting solutions of the equation

is)=0

lie on a2 certain vertical straight line. This has been checked for the first

1,500,000,000 solutions. A proof that it is true for every interesting solution
would shed light on many of the mysteries surrounding the distribution of prime
numbers.

In the opinion of many mathematicians, the
Riemann hypothesis, and its extension
to general classes of L-functions,
is probably the most important open

problem in pure mathematics today.
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First three non-trivial zeros

14.135
21.022

25.011
o) (b |

2_

\/\/ L V \/ \/v

http://www.claymath.org/

http://en.wikipedia.org/wiki/Riemann_hypothesis
http://mathworld.wolfram.com/HilbertsProblems.html

http://mathworld.wolfram.com/SmalesProblems.html
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