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A Guide to Feynman Diagrams

in the Many-Body Problem
Richard D. Mattuck

“(A) pedagogical jewel . . . Mattuck's fine sense of humor makes
his book, which is a labor of love, a great delight to read.”
—Physics Today

Among the most fertile areas of modern physics, many-body theory has produced a
wealth of fundamental results in all areas of the discipline. Unfortunately the
subject is notoriously difficult and, until the publication of this book, most
treatments of the topic were inaccessible to the average experimenter or non-
specialist theoretician.

The present work, by contrast, is well within the grasp of the nonexpert. It is
intended primarily as a “self-study” book that introduces one aspect of many-body
theory, i.e. the method of Feynman diagrams. The book also lends itself to use as a
reference in courses on solid state and nuclear physics which make some use of the
many-body techniques. And, finally, it can be used as a supplementary reference in
a many-body course.

Chapters 1 through 6 provide an introduction to the major concepts of the field,
among them Feynman diagrams, quasi-particles and vacuum amplitudes. Chapters
7 through 16 give basic coverage to topics ranging from Dyson’s equation and the
ladder approximation to Fermi systems at finite temperature and supercon-
ductivity. Appendixes summarize the Dirac formalism and include a rigorous
derivation of the rules for diagrams. Problems are provided at the end of each
chapter and solutions are given at the back of the book.

For this second edition, Dr. Mattuck, formerly of the H. C. Orsted Institute and the
University of Copenhagen, added to many chapters a new section showing in
mathematical detail how typical many-body calculations with Feynman diagrams
are carried out. In addition, new exercises were included, some of which give the
reader the opportunity to carry out simpler many-body calculations himself. A new
chapter on the quantum field theory of phase transitions rounds out this unusually
clear, helpful and informative guide to the physics of the many-body problem.
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Preface to the second edition

I was delighted by the extreme reactions to the first edition of this book.
One reviewer called it a ‘pedagogical jewel ... useful as a crutch for poorly-
prepared students’, while another felt that it was primarily for people who were
‘well-prepared and courageous’. The preface to the Russian edition referred
to the pinball game analogy on p. 29 as some sort of world’s record in popu-
larization, but an English critic complained that the pinball picture was
*highly offensive’ and *had no place in a serious work of science’. A student
told me that at his university, the book was known as * Feynman Diagrams for
Idiots’, while other students felt that it was only for people exceptionally well-
grounded in quantum mechanics. One critic stated that the * possibilities for
classroom use should be rather wide’, but others claimed that the book was
useless, since no detailed calculations were carried out in it.

In short, the first edition is too elementary and too advanced. Therefore,
the purpose of the second edition is to make the book more advanced and more
clementary. Toward this end, on the elementary side, a zeroth and first
chapter have been added which are on the pre-kindergarten or nursery school
level. This gives a view of the entire field based almost purely on pictures,
cartoons, and virtual movies, with essentially no mathematics.

On the more advanced side, 1 have added to many chapters a new section
showing in mathematical detail how typical many-body calculations with
Feynman diagrams are carried out. For example, chapter 3 contains the
detailed calculation of the energy and lifetime of an electron in an impure
metal. In chapter 9, the single pair-bubble approximation is used to compute
the quasi particle lifetime diagrammatically. The pair-bubble integrations are
done in detail in chapter 10 and the results employed to obtain the form of the
effective interaction in an electron gas, and the plasmon dispersion law in
chapter 13. Chapter 14 contains the calculation of the finite temperature
pair-bubble.

A number of new exercises have been added, some of which give the student
the opportunity to carry out simpler many-body calculations himself. For
example, Ex. 10.7 requires solving the K-matrix equation in ladder approxima-
tion, computing the integrals and showing that the hole lines give a negligible
contribution in the low density case.

A new chapter on the quantum field theory of phase transitions has been
added. It includes, on the kindergarten level, an analysis of the ‘staring
crowd’ transition (see p. 290) and on the more advanced level, the diagram-
matic calculation of the magnetization and transition point for the ferromag-
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vi PREFACE TO THE SECOND EDITION

netic phase. There are also new chapters on the Kondo problem and on the
renormalization group.

I'have also written several new appendices. Appendix L reviews the analytic
properties of propagators, which I make considerable use of at various points
in the text. Appendix M shows the relation between the equation of motion
and Feynman diagram methods for calculating the propagator. Appendix N
gives the basic ideas of the ‘reduced graph’ method, used in connection with
the Kondo problem.

In preparing the second edition, special thanks are due to Stud. Scient.
Nikolai Nissen for pointing out better methods for carrying out many of the
calculations, and for carefully reading and criticizing the new material.

I am also very grateful to my colleague Dr Ulf Larsen for the many fruitful
and stimulating discussions of many-body theory we have had during the last
five years, for his help in working out the chapter on the Kondo problem, and
for weeding out many of the inaccuracies which had crept into the book.

I'would like to thank Professor P. W. Atkins of Lincoln College, Oxford, for
pointing out how the book could be modified to make it of more value to
chemists.

I am much indebted to my cousin’s son, David Lustbader, B.A., for his
aid in improving chapter Zero, and to my own son, Allan, for help in pasting
together the thousands of pieces of paper which were the raw material for the
second edition. And I want to express my gratitude to my students, whose
unending stream of questions forced me to replace fuzziness by clarity through-
out the book.

And finally, a word of thanks to the many people who, by telling me how
much they enjoyed the first edition (one wrote: ‘ Please allow me to express my
gratitude for a ray of sunshine that you have cast into the windowless office of
a second year graduate student in the form of your book on Feynman
diagrams’), gave me the inspiration and fortitude to sweat my way through
the production of the second edition.

Copenhagen, 1974



Preface to the first edition

This book is written for laymen, i.e., for experimental physicists and for
those theoreticians who don’t mind getting caught reading something easy.

Most laymen are aware that many-body theory is very much in vogue
these days, and that it is producing a wealth of fundamental results in all
fields of physics. Unfortunately, the subject is notoriously difficult, and the
only previously available books on it are written on such a high level that they
are completely inaccessible to the average experimenter or non-specialist
theoretician,

The purpose of this book is to help bridge the pedagogical gap by providing
an easy introduction to just one aspect of many-body theory, i.e., the method
of Feynman diagrams. Since the word ‘casy’, along with its cousins ‘ele-
mentary’, ‘introductory’, or ‘for five-year olds’, has been applied to some
pretty formidable physics literature in the past, I had better make clear how it is
used here. It means first that, as far as I know, the present book is simpler
than anything else which has been written in the modern many-body field.
This establishes an upper bound on ‘easy’. The lower bound is fixed by the
system illustrated on p. 29. This is the classical example I have invented to
introduce the main ideas of the subject. The whole first half of the book is
derived essentially by analogy to this example.

Since this book does not fit into any of the usual categories, it may help to
prevent misunderstanding if I state clearly what it is not. It is not a many-
body ‘textbook’ in itself; it is simply an elementary introduction to the
textbooks which already exist in the field. It does not prepare the student to
plunge into the latest literature; it can only give him a glimpse of what this
literature is about. It does not train students to do many-body calculations
any more than a music-appreciation course trains students to compose
music; it can, however, help them to grasp the elegance and significance of
these calculations.

In short, it is not a text for the usual ‘eclementary course in many-body
theory’, because such a course would have as its purpose the bringing of begin-
ners to the point where they would be able to do calculations and solve real
problems in the field. It is rather intended primarily as a “home study’ book
for non-specialists trying to get some idea of what Feynman diagrams in
many-body physics are all about. In addition, it could serve as a reference in
courses on solid state and nuclear physics which make some use of the many-
body techniques. And, finally, it can be used (by those who like to start with
something simple) as a supplementary reference in a many-body course.

vii



viii PREFACE TO THE FIRST EDITION

Now a word about the organization of the book. Measured on a scale
established by the other literature in the field, it is divided into three parts:
kindergarten, elementary, and intermediate.

Chapters 1-6 constitute the kindergarten part. This provides an introduc-
tion to the major concepts of the field on a level somewhere between * Donald
Duck’ and the ‘American Journal of Physics’. The quantum diagram tech-
nique is developed by analogy to a transparent classical case. It is first
applied in detail to trivial one-particle systems; this gives the reader a feeling
for the method by showing him how it works on problems he can easily solve
by elementary quantum mechanics. The many-body diagrams are presented
using the same simple-minded approach. There is also a short introduction
to second quantization, but this is optional, and no essential use of it is made
in the first part of the book.

The kindergarten part may be read as a book in itself by people who just
want to learn enough so they no longer tremble with awe when a many-body
theoretician covers the blackboard with Feynman diagrams.

Chapters 7-16 constitute the elementary part. The topics here, ranging
from second quantization to superconductivity, are standard for most of the
other many-body books. But they are covered on a much lower, more
restricted level. This means essentially that, first of all, the only physical
properties of systems which I discuss are the energies of the ground and
excited states,and that, secondly, there is no discussion of the analytic properties
of propagators. I have instead concentrated exclusively on giving the reader
a feeling for the diagrams themselves, their physical significance, and the
various summation techniques for manipulating them. A novel feature of
the pedagogical technique here is that all calculations are done completely
diagrammatically up to the point where the diagram solution is translated
into integrals; at this point, I simply state the numerical result and refer the
reader to the appropriate book or paper for the details of the integrations.

The appendices A-J are the intermediate part of the book. They begin
with a brief summary of Dirac formalism and include a more or less rigorous
derivation of the rules for diagrams.

There are a few short exercises at the end of each chapter, and the answers
to the exercises appear at the end of the book.

Note: Optional reading is enclosed in double brackets: [ 1.

This book grew out of a series of lectures I gave to the Solid State Physics
Study Group at the University of Copenhagen during 1962-5. Of the many
people at the university who have aided me during this period, I wish
especially to thank Professor H. Hojgaard Jensen, both for giving me the



PREFACE TO THE FIRST EDITION ix

opportunity to get into the many-body field, and for the many helpful and
stimulating conversations I have had with him. I am also very grateful to
Professor M. Pihl for his criticism of the manuscript in its early stages and
for his encouragement.

I would like to acknowledge the many valuable suggestions for improving
the manuscript which were made by Professor D. J. Thouless of the University
of Birmingham and Dr. A. W. B. Taylor of the University of Liverpool.

Among my colleagues, special thanks are due, first, to Lic. Bérje Johansson
of NORDITA, for the innumerable long and lively discussions of many-body
theory we have had together, and for his reading and criticism of the entire
manuscript and, second, to Civ. Ing. F. Greisen of Danmarks Tekniske
Hejskole, for the extraordinary care with which he read the complete first
draft of the book, pointing out countless errors which would otherwise have
gone unnoticed and making many worthwhile suggestions. | am also indebted
to Mag. P. Laut for his extremely valuable criticism.

In addition, I want to acknowledge the many helpful conversations I have
had with my other colleagues, in particular Mag. C. Fogedby, Dr. B. Easlea
(University of Sussex), Mag. O. Bundsgaard (Danmarks Tekniske Hajskole),
Mag. P. Mogensen, Dr. Antonina Kowalska (University of Krakow),
Mag. P. Voetmann Christiansen, Mag. E. Brun Hansen, Mag. H. Nielsen,
Dr. D. Kobe, Mag. H. Smith, Mag. F. Berg Rasmussen, and Mag. O. P.
Hansen. I also would like to thank Professor G. E. Brown, whose lectures on
many-body theory at the Niels Bohr Institute (1960-1) constituted my initiation
into the subject. I wish to express my gratitude to Academic Press, Inc., for its
kind permission to reprint the article ‘Phonons From a Many-Body View-
point’, which appeared in Annals of Physics 27, p. 216 ( 1964), and to Mrs
Vera Rothenberg and Mrs Elin Hallden for their fine work in typing the first
draft of the book. And, finally, many thanks are due to my brother, Professor
Arthur Mattuck (M.LT.), for extremely helpful suggestions, and to Stud.
Mag. Alice Mattuck, for her careful reading and criticism of the jokes in the
manuscript,

Richard D. Mattuck
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Chapter O

The Many-Body Problem for Everybody

0.0 What the many-body problem is about

The many-body problem has attracted attention ever since the philosophers
of old speculated over the question of how many angels could dance on the
head of a pin. In the angel problem, as in all many-body problems, there are
two essential ingredients. First of all, there have to be many bodies present—
many angels, many electrons, many atoms, many molecules, many people, etc.
Secondly, for there to be a problem, these bodies have to interact with each
other. To see why this is so, suppose the bodies did not interact. Then each
body would act independently of all the others, so that we could simply
investigate the behaviour of each body separately. In other words, without
interaction, instead of having one many-body problem, we would have many
one-body problems. Thus, interactions are essential, and in fact the many-body
problem may be defined as the study of the effects of interaction between bodies
on the behaviour of a many-body system.

(It might be noted here, for the benefit of those interested in exact solutions,
that there is an alternative formulation of the many-body problem, i.e., how
many bodies are required before we have a problem? G. E. Brown points out
that this can be answered by a look at history. In eighteenth-century New-
tonian mechanics, the three-body problem was insoluble. With the birth of
general relativity around 1910 and quantum electrodynamics in 1930, the
two- and one-body problems became insoluble. And within modern quantum
field theory, the problem of zero bodies (vacuum) is insoluble. So, if we are
out after exact solutions, no bodies at all is already too many!)

The importance of the many-body problem derives from the fact that
almost any real physical system one can think of is composed of a set of inter-
acting particles. For example, nucleons in a nucleus interact by nuclear
forces, electrons in an atom or metal interact by Coulomb forces, etc. Some
examples are shown schematically in Fig. 0.1. Furthermore, it turns out that
in the calculation of physical properties of such systems—for example, the
energy levels of the atom, or magnetic susceptibility of the metal—interactions
between particles play a very important role.

It should be clear from the variety of systems in Fig. 0.1 that the many-body
problem is nor a branch of solid state, or nuclear, or atomic physics, etc. It
deals rather with general methods applicable to a/l many-body systems.

1
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Fig. 0.1 Some Many-body Systems

The many-body problem is an extraordinarily difficult one because of the
incredibly intricate motions of the particles in an interacting system. In Fig.0.2
we contrast the simple behaviour of non-interacting particles with the compli-
cated behaviour of interacting ones. Because of the complexity of the many-
body problem, not much progress was made with it for a long time. In fact
one of the preferred methods for solving the problem was simply to ignore it,
i.e., pretend there were no interactions present. (Surprisingly enough, in some
cases this ‘method’ produced good results anyway, and one of the great
mysteries was how this could be possible!)

I"'t', A lt4
—_ nt
o\ el I Bt
A B

Fig. 0.2 A. Non-interacting Particles
B. Interacting Particles

Another of the early approaches to the problem, and one which is still used
extensively today is the canonical transformation technique, described in
appendix &, This involves transforming the basic equations of the many-body
system to a new set of coordinates in which the interaction term becomes small.
Although considerable success has been achieved with this technique, it is not
as systematic as one would like, and this sometimes makes it difficult to apply.
It was this lack of a systematic method which kept the many-body field in its
cradle well up into the 1950s.
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The situation changed radically in 1956-7. In a series of pioneering papers,
it was shown that the methods of quantum field theory, already famous for its
success in elementary particle physics, provided a powerful, unified way of
attacking the many-body problem. The new key opened many doors, and in
rapid succession the idea was applied to nuclei, electrons in metals, ferro-
magnets, atoms, superconductors, plasmas, molecules—virtually everything
in sight.

From that time on, much of the most exciting and fundamental research
into the nature of matter has been based on the quantum field theory method.
One of the things emerging from this research is a new simple picture of matter
in which systems of interacting real particles are described in terms of approxi-
mately non-interacting fictitious bodies called ‘ quasi particles’ and *collective
excitations’. Another thing is new results for calculated physical quantities
which are in excellent agreement with experiment—for example, energy levels
of light atoms, binding energy of nuclear matter, Fermi energy and effective
electron mass in a variety of metals.

In this introductory chapter, we will give a physical picture of quasi particles
and collective excitations. Then in the next chapter we show qualitatively how
to describe quasi particles and calculate their properties by means of the
quantum field theoretical technique known as the method of Feynman diagrams.

0.1. Simple example of non-interacting fictitious bodies

As mentioned at the beginning, one of nature’s little surprises is that many-
body systems often behave as if the bodies of which they are composed hardly
interact at all! The reason for this is that the ‘bodies’ involved are not real
but fictitious. That is, the system composed of strongly interacting real bodies
acts as if it were composed of weakly interacting (or non-interacting) fictitious
bodies. We consider now a very simple example of how this can occur.

Suppose we have two masses, m, and m, held together by a strong spring as
shown in Fig. 0.3. That is, our system here consists of two strongly coupled
real bodies. If this contraption is tossed up in a gravitational field, the motion
of each body considered separately is very complicated because of the strong
interaction (spring force) between the bodies.

centre of mass

Fig. 0.3 Two-body System
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However, we can break up the complicated motion into two independent
simple motions: motion of the centre of mass and motion about the centre of
mass. The centre of mass moves exactly as if it were an independent body of
mass m, +m,, so it is one of the non-interacting fictitious bodies here. The
other fictitious body is a body of mass m, m,/(m, + m,)—the so-called ‘ reduced
mass'—which moves independently relative to the centre of mass. Thus the
system acts as if it were composed of two non-interacting fictitious bodies:
the ‘centre of mass body’ and the ‘reduced mass body’. (See appendix 7,
€gs. («7.11){(s.14) for details.)

0.2 Quast particles and quasi horses

The above two-body example is easy enough to understand, but finding the
weakly interacting fictitious bodies in a set of many strongly interacting real
bodies is a bit harder. We consider first the fictitious bodies called *quasi
particles’. Thesearise from the fact that when a real particle moves through the
system, it pushes or pulls on its neighbours and thus becomes surrounded by
a ‘cloud’ of agitated particles similar to the dust cloud kicked up by a galloping
horseina western. The real particle plusits cloud is the quasi particle (Fig. 0.4).

......

-—@ «—i @
real Par‘h’cle

§ A ‘;-,;.L_\o:,,\.f:-i AR R \RD"
real horse quas( horse

Fig. 0.4 Quasi Particle Concept

Just as the dust cloud hides the horse, the particle cloud *shields’ or ‘screens’
the real particles so that quasi particles interact only weakly with one another.
The presence of the cloud also makes the properties of the quasi particle
different from that of the real particle—it may have an * effective mass’ different
from the real mass, and a ‘J/ifetime’. These properties of quasi particles are
directly observable experimentally.

It should be remarked that the quasi particle is in an excited energy level of
the many-body system. Hence it is referred to as an ‘ elementary excitation’ of
the system. (See appendix &/, §+/.2.) We now consider some examples of
quasi particles.
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1 Quasi ion in a classical liquid

Imagine that we have an electrolyte solution composed of an equal number
of positive and negative ions moving about and colliding with each other as
illustrated in Fig. 0.5. Let us focus our attention on a typical (+) ion in the

+ + + e Another
- // - \\ — "
- + 'l + —'. quas.l
- v\ )/ particle
- LhatadS - ——mee”” 4
’ S +
One 4;" '\;"
quasi T -t -} Tor -
particle \\ - '," - - .

Fig. 0.5 Quasi Particles in a Liquid of Positive and Negative lons

system. As this ion moves, on account of the strong Coulomb interaction, it
will attract (—) ions to it. Some of these (—) ions will stick to the (+) for a
while, then fal) off due to collisions, then be replaced by other (—) ions, etc.
Thus, on the average, because of the interaction, this typical (+) ion (and
therefore every (+ ) ion) will be surrounded by a ‘coat’ or ‘cloud’ of (—) ions
as shown in Fig. 0.5 inside the dotted lines. And of course each (=) ion will
similarly have a coat of (+) ions. This coat of opposite charge will shicld the
ion’s own charge so that its interaction with other similarly shielded ions will
be much weaker than in the unshielded case, Thus the ions wearing their
coats will act approximately independently of each other and constitute the
quasi particles of this particular system. Many different types of systems of
interacting particles may be described in this manner, and in general we have

‘coat’ or ‘cloud’
of other particles

Sometimes this same equation is stated in a more powerful terminology
coming from quantum field theory:

real particle + quasi particle, ©.1)

‘dressed’ or ‘clothed’

or ‘physical’ or 0.2)
‘renormalized’ particle.

For example, in quantum electrodynamics a *bare’ electron interacting with
a field of photons acquires a cloud of virtual photons around it, converting
it into the ‘dressed’ electron. In a similar manner, the interaction between
real particles is called the ‘bare’ interaction, while the weak interaction
between quasi particles is referred to as the ‘effective’ or *dressed’ or ‘re-
normalized’ interaction.

‘clothing’

‘bare’ partic
particle  + or‘cloud’
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It should be noted that each bare particle is simultaneously the ‘core’ of a
quasi particle and a transient *‘member’ of the cloud of several other quasi
particles. Therefore, if we try to visualize the whole system here as com-
posed of quasi particles, we have to be careful, since each particle will have
been counted more than once. For this reason, the quasi particle concept is
valid only if one talks about a few quasi particles at a time, i.e., few in com-
parison with the total number of particles. In order to avoid this problem and
concentrate attention on just a single quasi particle at a time, it is convenient
to define quasi particles in terms of an experiment in which one adds an extra
particle to the system, and observes the behaviour of this extra particle as it
moves through the system. This is shown in Fig. 0.6 for a (+) ion.

®)

Fig. 0.6 Moving Quasi lon. (a) Extra (+) lon Skot into Ligquid. (b) (+) lon
Acquires Cloud of (=) Ions, Turning it into Quasi Ion. (¢} Quasi Ion Moves
Through System

With this intuitive picture in mind, it is possible to guess at some of the
properties of quasi particles. First, because there is in general still a small
interaction left between quasi particles, a quasi particle of momentum p will
only keep this momentum for an average time t,. This can be understood from
Figs. 0.6 and 0.5. If the quasi ion in Fig. 0.6 (b) has momentum p, it will
propagate undisturbed an average time =, before undergoing a collision with
another quasi ion in the system (that is, a quasi ion which befongs to the system,
like those shown in Fig. 0.5, not one which we shoot into the system) which
scatters it out of momentum state p. Hence

quasi particles have a lifetime, 7,. (0.3)

The lifetime must be reasonably long for us to say that the quasi particle
approximation is a good one. It can also be seen that because of the average
coat of particles on its back, the quasi particle may have an ‘effective’ or
‘renormalized’ mass which is different from that of the bare particle. (The
effective mass concept is not always applicable however.) This implies that
free quasi particles (i.e., not in an externally applied field) have a new energy

law

P .
¢ = ~— instead of ¢ =

2
= %—n (0.4)
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where m* is the effective mass. The difference

€quast — €pare = Egeur (0‘5)
particle particle
is called the “self-energy’ of the quasi particle. This comes from the interpreta-
tion that the bare particle interacts with the many-body system, creating the
cloud, and the cloud in turn reacts back on the particle, disturbing its motion.
Thus the particle is, in a sense, interacting with itself via the many-body
system, and changing its own energy.

2 Quantum system: quasi electron in electron gas

The ‘electron gas’ is a simple model often used to describe many-body
effects in metals. It consists of a box containing a large number of electrons
interacting by means of the Coulomb force. In addition, there is a uniform,
fixed, positive charge ‘background’ put into the box in order to keep the whole
system electrically neutral. In the ground state, the electrons are spread out
uniformly in the box, as shown schematically in Fig. 0.7.

Fig. 0.7 ‘Electron Gas’: Interacting Electrons Spread Out Uniformly in
Box, plus Uniform, Fixed, Positive Charge Background

Suppose now that we have a single, well-localized electron which we shoot
into the electron gas (Fig. 0.8). Because of the repulsive Coulomb interaction
between electrons, this extra electron repels other electrons away from it, so

Fig. 0.8 Extra Electron Shot into Electron Gas
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we get an ‘empty space’ near the extra electron, and repelled electrons further
away (Fig. 0.9). The empty space has positive charge, since the positive charge
background is exposed in this region. This empty region may be viewed in a
more detailed or ‘ microscopic’ way as composed of *holes’ in the electron gas.
That is, the extra electron has ‘lifted out’ electrons from the uniform charge
distribution in its vicinity, thus creating ‘holes’ in this charge distribution, and
has ‘put down’ these lifted-out electrons further away. This is shown in Fig.

0.10. Because of the exposed positive background, these holes have positive
charge.

Fig. 0.9 Extra Electron Pushes Other Electrons Away, Creating *Empty’
Region in its Immediate Vicinity

®
? &

€

Fig. 0.10 *Microscopic® View of Fig. 0.9 Showing Electrons Lifted out from
Vicinity of the Extra Electron, thus Creating * Holes'

The above definition of holein the sense of ‘ empty place’ is the one commonly
used in solid state physics. However, later on we shall re-define things so that
the hole becomes an ‘anti-particle’ analogous to those of elementary particle
physics (see §4.2).

The holes and lifted out electrons are constantly being destroyed by inter-
action with the extra electron and with the other electrons in the system, and
new holes and lifted out electrons take their place. The sum of these micro-
scopic processes, which go on all the time, is Fig. 0.9. Thus Fig. 0.9 may be
visualized as an extra electron surrounded by a *cloud’ of constantly changing
holes and lifted out electrons. This combination is called the quasi electron.
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The quasi electron moves or ‘ propagates’ through the system as shown in
Fig. 0.11.

We now notice that the positive hole cloud immediately around the extra
electron partially shields the electron’s own negative charge. Hence, if we
have two quasi electrons as shown in Fig. 0.12, and these are far enough

Fig. 0.11 Quasi Electron Propagates Through System

Fig. 0.12 Two Quasi Electrons Interact only Weakly Because of Shielding

apart so that their clouds do not overlap very much, then we see that because
of the shielding the two quasi electrons will interact only weakly. That is,
quasi electrons act nearly independently of one another. This is why metals
generally behave as if their electrons were independent : it is not real electrons
but rather quasi electrons we are looking at.

3 Single electron in a metal

Actually, the simplest quantum example of the quasi particle idea occurs
not in a true many-body system, but rather in a system containing one particle
moving in an external potential, i.e., a conduction electron in a metal. In a
perfect metal the positive ions form a regular periodic lattice (we ignore lattice
vibrations for the moment) so that the electron moves in a periodic force field
due to the attractive Coulomb interaction between the ions and the electron
(see Fig.0.13a). Inanimperfect metal, the periodicity is spoiled by the presence
of a more or less random distribution of some impurity ions in the lattice, or
the presence of some displaced ions (Fig. 0.13b).
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electron electron impurity ion

Ll 6 6 ions @@@
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®© © ® " © R o o

ta) i) Displaced ion
Fig. 0.13 (a) Conduction Electron in Perfect Metal. (b) Imperfect Metal

Since the lattice here is assumed fixed, there is no ‘moving cloud’ of lattice
ions following the electron. Nevertheless, it turns out that even these stationary
lattice ions are capable of * clothing” the electron, and we find that for a perfect
lattice, there is an effective mass, m*, and an infinite lifetime. Addition of
imperfections causes the lifetime to become finite.

4 Quasi nucleon

Despite powerful short-range forces between nucleons in a nucleus, they
behave in many respects as if they were independent of each other, as is
indicated by the success of the nuclear shell model. The nearly independent
particleshereare not thenucleons themselves, but the nucleons each surrounded
by a cloud of other nucleons, i.e., the quasi nucleons.

5 Bogoliubov quasi particles (‘ bogolons’)

These are the elementary excitations in a superconductor. We include them
here since they are called quasi particles, but actually their structure is quite
different from the ‘ particle plus cloud’ picture described above. They consist
of a linear combination of an electron in state (+k, ) and a *hole’ in (-, )

0.3 Collective excitations

As we have seen, the quasi particle consists of the original real, individual
particle, plus a cloud of disturbed neighbours. It behaves very much like an
individual particle, except that it has an effective mass and a lifetime. But there
also exist other kinds of fictitious particles in many-body systems, i.e.,
‘collective excitations’. These do not centre around individual particles, but
instead involve collective, wavelike motion of all the particles in the system
simultaneously. Here are some examples:

1 Plasmons

If a thin metal foil is bombarded with high energy electrons, it is possible
to set up sinusoidal oscillations in the density of the electron gas in the foil.
This is known as a ‘plasma wave’, and it has a frequency w, and a wavelength
A, (see Fig. 0.14a). The plasma wave may be visualized as built up of ‘holes’
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in the low-density regions and extra electrons in the high-density regions as
shown in Fig. 0.14(b). Just as light waves are quantized into units having
energy E=hw called photons, plasma waves are quantized into units with
energy E,=hw, called plasmons.

Density

(@)
Fig. 0.14 (a) Plasma Wave in Electron Gas. (b) Particle-hole Picture of
Plasma Wave

2 Phonons

Sound waves are sinusoidal oscillations in the crystal lattice of a solid. They
are quantized into collective excitations called ‘ phonons’. (See appendix &/.)

3 Magnons

In ferromagnets there are regular fluctuations in the density of spin angular
momentum known as *spin waves’. The collective excitation here is the spin
wave quantum known as the ‘magnon’.

4 Nuclear quanta

In nuclei, one finds various vibrational and rotational motions; the associ-
ated quanta are the collective excitations in this case.

In the next chapter, we will describe in a very qualitative way how to find
the properties of quasi particles and collective excitations by means of
‘propagators’ and ‘ Feynman diagrams’.

Further reading

Appendix &/
Patterson (1964).
Pines (1963), chap. 1.



Chapter 1

Feynman Diagrams, or how to Solve the
Many-Body Problem by means of Pictures

1.1 Propagators—the heroes of the many-body problem

We have seen that many-body systems consisting of strongly interacting real
particles can often be described as if they were composed of weakly interacting
fictitious particles: quasi particles and collective excitations. The question
now is, how can we calculate the properties of these fictitious particles—for
example, the effective mass and lifetime of quasi particles? There are various
ways of doing this (see appendix /) but the hero roles in the treatment of the
many-body problem are played by quantum field theoretical quantities known
as Green's functions or propagators. These are essentially a generalization of
the ordinary, familiar undergraduate Green’s function. They come in all sizes
and shapes—one particle, two particle, no particle, advanced, retarded, causal,
zero temperature, finite temperature—an assortment to suit every situation
and taste.

There are three reasons for the immense popularity propagators are enjoying
these days. First of all, they yield in a direct way the most important physical
properties of the system. Secondly, they have a simple physical interpretation.
Thirdly, they can be calculated in a way which is highly systematic and *auto-
matic’ and which appeals to one’s physical intuition.

The idea behind the propagator method is this: the detailed description of a
many-body system requires in the classical case the position of each particle
as a function of time, r((t), r;(?), ..., ry(?), or in the quantum case, the time-
dependent wave function of the whole system, ¥(r,.r,,...,ry, 7). A glance at
Fig. 0.2B shows that this is an extremely complicated business. Fortunately,
it turns out that in order to find the important physical properties of a system
it is not necessary to know the detailed behaviour of each particle in the
system, but rather just the average behaviour of one or two typical particles.
The quantities which describe this average behaviour are the one-particle
propagator and two-particle propagator respectively, and physical properties
may be calculated directly from them.

Consider the one-particle propagator first. It is defined as follows: We put
aparticleinto the interacting system at point r, at time ¢, and let it move through
the system colliding with the other particles for a while (i.e., let it * propagate’

12
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through the system). Then the one-particle propagator is the probability (or
in quantum systems, the probability amplitude—see §3.1) that the particle will
be observed at the point r, at time 1,. (Note that instead of putting the particle
in at a definite point, it is sometimes more convenient to put it in with definite
momentum, say p,, and observe it later with momentum p,.) The single-particle
propagator yields directly the energies and lifetimes of quasi particles. It also
gives the momentum distribution, spin and particle density and can be used to
calculate the ground state energy.

Similarly, the two-particle propagator is the probability amplitude for
observing one particle at r,, ¢, and another at r,, 7, if one was put into the
system at ry, t; and another at ra, 7, (see Fig. 0.2B). This also has a wide variety
of talents, giving directly the energies and lifetimes of collective excitations,
as well as the magnetic susceptibility, electrical conductivity, and a host of
other non-equilibrium properties.

There is also another useful quantity, the ‘no-particle propagator’ or so-
called *vacuum amplitude’ defined thus: We put no particle into the system at
time ¢,, let the particles in the system interact with each other from ¢, to 7,, then
ask for the probability amplitude that no particles emerge from the system at
time 7,. This may be used to calculate the ground state energy and the grand
partition function, from which all equilibrium properties of the system may be
determined.

1.2 Calculating propagators by Feynman diagrams: the drunken man propagator

There are two different methods available for calculating propagators. One
is to solve the chain of differential equations they satisfy—this method is
discussed briefly in appendix M. The other is to expand the propagator in an
infinite series and evaluate the series approximately. This can be carried out in
a general, systematic, and picturesque way with the aid.of Feynman diagrams.

Just to get an idea of what these diagrams are, consider the following simple
example (see Fig. 1.1). A man who has had too much to drink, leaves a party
at point I and on the way to his home at point 2, he can stop off at one or more
bars—Alice’s Bar (4), Bardot Bar (B), Club Six Bar (C), ..., etc. He can wind
up either at his own home 2, or at any one of his friends’ apartments, 3, 4, etc.
We ask for the probability, (2, 1), that he gets home. This probability, which
is just the propagator here (with time omitted for simplicity), is the sum of the
probabilities for all the different ways he can propagate from 1 to 2 interacting
with the various bars.

The first way he can propagate is ‘freely’ from 1 to 2, i.e., without stopping
at a bar. Call the probability for this free propagation Py(2,1).

The second way he can propagate is to go freely from 1 to bar 4 (the prob-
ability for this is Py(A, 1)), then stop off at bar A for a drink (call the probability
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for this P(A4)), then go freely from A4 to 2 (probability =Py(2, 4)). Assume for
simplicity that the three processes here are independent. Then the total
probability for this second way is the product of the probabilities for each
process taken separately, i.c., Po(A, 1) x P(4) x Po(2, A). (This is like the case
in coin-tossing: since each toss is independent, the probability of first tossing
a head, then a tail, equals the probability of tossing a head times the probability
of tossing a tail.)

\®
FRIEND'S

APARTMENT

R.D. MATTuck

Fig. 1.1 Propagation of Drunken Man
{Reproduced with the kind
P ission of The Encyclopedia of Physics)

The third way he can propagate is from 1 to B to 2, with probability
Po(B,1) P(B)Py(2,B). Or he could go from 1 to C to 2, etc., orfrom 1 to 4 to
Bto2, orfrom | to 4, come out of 4, go back into A, then go to 2, and so on.
The total probability, P(2,1) is then given by the sum of the probabilities for
each way, i.e., the infinite series:

P(2,1) = Py(2, 1)+ Po(A, 1) P(A) Po(2, A) + Po(B, DP(B)Py(2,B)+:+-
+Po(A, 1) P(A) Po(B, A) P(B) Po(2, B) ++ . (.1

This is an example of a * perturbation series’, since each interaction with a bar
‘perturbs’ the free propagation of the drunken man.

Now, such a series is a complicated thing to look at. To make it easier to
read, we follow the journal ‘Classic Comics’ where difficult literary classics
are translated into picture form. Letus make a ‘picture dictionary’ to associate
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diagrams with the various probabilities as in Table 1.1. Using this dictionary,
series (1.1) can be drawn thus:

@
+oo0 + (A) + (1)

P (®)
1 |1 ]ll +] o
1 1 0

1

Since, by dictionary Table 1.1, each diagram element stands for a factor,
series (1.2)is completely equivalent to(1.1). However it has the great advantage
that it also reveals the physical meaning of the series, giving us a *‘map’ which
helps us to keep track of all the sequences of interactions with bars which the
drunken man can have in going from 1 to 2.

Table 1.1 Diagram dictionary for drunken man propagator

Word Picture Meaning
- s ;
probability of propagation
P2
2.1 H, from 1 to 2
Po(s.r) } probability of free propagation
. fromrtos
robability of stopping off
P(X) P ' y PP g
at bar X for a drink

The series may be evaluated approximately by selecting the most important
types of terms in it and summing them to infinity. This is called partial
summation. For example, suppose the man is in love with Alice, so that £(A)
is large, and all the other P(X)’s are small. Then Alice’s bar diagrams will
dominate, and the series (1.2) may be approximated by a sum over just repeated
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interactions with Alice’s Bar:

2 2
H x * + + + (4) +-- (1.3)

Using the above dictionary, this can be translated into functions:
P(2,1) & Py(2,1)+ Po(A, 1) P(A) Py(2, A) +
+Po(A, 1) P(A) Po(A, AYP(A) Po(2, A)+-+-. (1.4)

Assume for simplicity that all Py(s,s) are equal to the same number, c, i.e.,
Po(2,1)=Py(2,A)=Po(A,1)=Py(A, A)=c. Then series (1.4) becomes

P2,1) = c+ A P(A)+ P (A)++ -
e{l +cP(A)+ [cP(A)2+ [cP(A)+- - ). (1.5)

The series in brackets is geometric and can be summed exactly to yield
1/(1 = eP(4)), so that

1 1
P& = cx(l—cP(A)) %) (.0

which is the solution for the propagator in this case.
Note that since each diagram element stands for a factor, we could have done
calculation (1.5), (1.6) completely diagrammatically:

2 3
REENIREES
1 1
= I X = <1 (|7)
The partial summation method is extremely useful in dealing with the

strong interactions between particles in the many-body problem, and it is the
basic method which will be used throughout this book.
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1.3 Propagator for single electron moving through a metal

The example here is just like the previous one, except that instead of a
propagating drunken man interacting with various bars, we have a propagating
electron interacting with various ions in a metal. A metal consists of a set of
positively charged ions arranged so they form a regular lattice, as in Fig. 0.13A
or a lattice with some irregularities, as in Fig. 0.13B. An electron interacts
with these ions by means of the Coulomb force. The single particle propagator
here is the sum of the quantum mechanical probability amplitudes (see §3.1) for
all the possible ways the electron can propagate from point r; in the crystal at
time 7, to point r, at time ¢,, interacting with the various ions on the way.
These are: (1) freely, without interaction; (2) freely from r,, t, (=" 1" for short)
tothe ion atr4 at time £, interaction with this ion, then free propagation from
the ion to point 2; (3) from 1 to ion B, interaction at B, then from B to 2, etc.
Or we could have the routes 1-4-A4-2, 1-4-B-2, etc. We can now use the
dictionary in Table 1.1 to translate this into diagrams, provided the following
changes are made: change * probability’ to * probability amplitude ', and change
the meaning of the circle with an X to ‘ probability amplitude for an interaction
with the ion at X'. When this is done, the series for the propagator can be
translated immediately into exactly the same diagrams as in the drunken man
case! Thatis, (1.2) is also the propagator for an electron in a metal, provided
that we just use a quantum dictionary to translate the lines and circles into
functions. The series can be partially summed, and from the resulting propa-
gator we obtain immediately the energy of the electron moving in the field of
the ions.

1.4 Single-particle propagator for system of many interacting particles

We will now indicate in a qualitative way how the single-particle propagator
may be calculated in a system of many interacting particles. The argument is
general, but we may think in terms of the electron gas as illustration. The
propagator will be the sum of the probability amplitudes for all the different
ways the particle can travel through the system from ry, ¢, to ry,t,. First we
have free propagation without interaction. Another thing which can happen
is shown in the *movie’, Fig. 1.2, which depicts a *second-order’ propagation
process (i.e., a process with fwoe interactions). (It should be mentioned here
that unlike the drunken man case, the processes involved in Fig. 1.2 are not
real physical processes, but rather *virtual® or ‘quasi physical’, since they do
not conserve energy, and they may violate the Pauli exclusion principle. The
reason for this is that, as we shall see later on, the sequence in Fig. 1.2 (or the
corresponding diagram (1.9)) is simply a convenient and picturesque way of
describing a certain second-order term which appears in the perturbation
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expansion of the propagator. Hence Fig. 1.2 and diagram (1.9) are in reality
mathematical expressions so we have to be careful not to push their physical
interpretation too far (see §4.6).)

JO,‘

(@ ® (o)

(d) (e)
Fig. 1.2 ‘Movie’ of Second-order Propagasion Process in Many-body
System

(a) Attime 1,, extra particle enters system.

(b) At time ¢, extra particle interacts (wavy line) with a particle in the
system, lifting it out of its place, thus creating a ‘hole’ in the system.

(¢) The extra particle, plus the ‘*hole’ and the ‘lifted-out’ particle
(*particle-hole pair’) travel through the system.

(d) At time ¢, the extra particle interacts with the ‘lifted-out’ particle,
knocking it back into the hole, thus destroying the particle-hole pair.

(e) Attime {3, the extra particle moves out of the system.

To represent this sequence of events diagrammatically, let us imagine that
time increases in the upward-going direction and we use the following diagram
elements:

r3.f r3.
} * rt r.,t (1.8)
Ly Pty
[43] propagator for ﬁropasntot for probnbnlhy amplitude for
z Pamcle propagating ole prepagating ramcle at ry interacting
— reely from ry,0) freely from #).4; with a particle at ry
= 10 3,2 to r.!; attime ¢

(Note that the hole is drawn as a particle moving backward in time. The reason
for this is in §4.2.) Then the probability amplitude for the above sequence of
events can be represented by the diagram
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g <~ ~— Particle-hole *pair bubble’: O
(1.9)

The piece of diagram:

{::z} (1.10)

is called a ‘self-energy part’ because it shows the particle interacting with itself
via the particle-hole pair it created in the many-body medium. Diagram (1.9)
may be evaluated by writing a free propagator factor for each directed line,
and an amplitude factor for each wiggly line (see Chapter 4, Table 4.3),
analogous to the drunken man case.

Another sequence of events which can occur involves only one interaction
(i.e., a ‘first-order’ process). It is a quick-change act in which the incoming
electron at point r interacts with another electron at point * and changes place
with it. This is analogous to billiard ball 1 striking billiard ball 2 and trans-
ferring all its momentum to 2. The first-order process and its analogy are
shown in Fig. 1.3. The sequence may be drawn diagrammatically

O—v @ 00 O @—v

) [l |

(a) (®) (c)
Fig. 1.3 Movie of First-order Process (Lower Drawing) and its Analogy
(Upper Drawing)
(a) Extra particle enters at time ¢,.
(b) At time 1, the particle is at point r. It interacts with a particle at r’ and
changes place with it.
(c) Extra particle leaves at time #,.
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asin (1.11): p
2

t (1.11)

h
‘Open oyster’ diagram
(closed oyster is in (1.19))

Thediagramsin (1.8)—(1.11) are called Feynmandiagrams after their inventor,
Richard P. Feynman who employed them in his Nobel prize-winning work on
quantum electrodynamics. They are used extensively in elementary particle
physics.

The total single particle propagator is the sum of the amplitudes for all
possible ways the particle can propagate through the system. This will include
the above processes, repetitions of them, plus an infinite number of others.
Thus we find

(Note: the interpretation of the ‘bubble’ diagram, just after the open oyster,
will be discussed in chapter 4.)
We can see the direct connection between the one-particle propagator and

the quasi particle by looking at all the diagrams at a particular time 7, (dashed
line):

e e
= + oo s L JERRN
(@ ©® () @

At 15, we see that various situations may exist: there may be just the bare
particle (@), or there may exist two particles plus one hole created by the second-
order sequence (c), or three particles plus two holes in (d), etc. That is, the
diagrams show all the configurations of particles and holes which may be
kicked up by the bare particle as it churns through the many-body system. If
we now compare with the picture of the quasi particle in Fig. 0.10, we see that
the diagrams reveal the content of the ever-changing cloud of particles and holes
surrounding the bare particle and converting it into a quasi particle.
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Just as in the drunken man case, the propagator here may be calculated
approximately by doing a partial sum. For example, we can sum over all
diagrams containing repeated open oyster parts since they constitute a geo-
metric series (cf. (1.7)):

@rfh;ﬁ{..

* 14 end + o e
S R

For the electron gas, this is the ‘ Hartree-Fock’ approximation. We can also
include ‘ring’ diagrams in the sum, i.e., diagrams in which the self-energy
parts are composed of rings of particle-hole pair bubbles (these are the most
important in a high-density electron gas):

Hz%@@+&+

This sum can be carried out and yields the so-called ‘random phase approxi-
mation” or *RPA’, which is extremely useful in analysing the properties of
metals.

Note that the essential thing involved in the above partial sums is the struc-
ture or topology of the diagrams, i.e., how the various lines are connected to

e —
4
_—
.+_
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each other. Thus we could sum (1.14) because each diagram consisted of
single lines connecting the same repeated part. This diagram topology is the
key to the quantum field theoretical method in the many-body problem.

1.5 The two-particle propagator and the particle-hole propagator

The two-particle propagator is the sum over the probability amplitudes for
all the ways two particles can enter the system, interact with each other and
with the particles in the system, then emerge again. The diagram series for it
is (note that the dots on the diagram for the two-particle propagator show the
points at which directed lines emerge):

MHM@JHM

A partial sum over all ‘ladder’ diagrams here:

+
4

(1.16)

L3 A
A AL A
mzH+ + 4 4+ oo (1.17)

is called ‘ladder’ approximation, and is very useful in describing nuclear
matter, and low-density systems.
The ‘particle-hole’ propagator, given by

- - e (LIB)

may be used to find the energy and lifetime of collective excitations, e.g.
plasmons.
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1.6 The no-particle propagator (‘vacuum amplitude’)

The ground state energy of a many-body system may be obtained directly
from the no-particle propagator, or ‘vacuum amplitude’. This is the sum of
amplitudes for all the ways the system can begin at time ¢, with no extra or
lifted-out particles, or holes in it (this is the undisturbed or *Fermi vacuum’
state), have its particles interact with each other, and wind up at r, with no
extra or lifted-out particles, or holes. The simplest process is where nothing
at all happens—the system just sits there. A first-order process occurs in
which two particles change places with each other as shown in the following

diagram
o

‘Oyster’ diagram
A more complicated process is shown in Fig. 1.4. The vacuum amplitude
may thus be represented by the following diagram series:

(@  (B) (e)
+G:O+ +%+--- (1.20)

(d) (e)

where “1” is for the nothing-at-all process and (d) is the picture for Fig. 1.4.
(The *double bubble’ diagram, (¢), is discussed in chapter 5.)

The vacuum amplitude series gives us a vivid picture of the ground state of
the many-body system as a sort of ‘ virtual witches’ brew’, constantly seething,
with particles and holes boiling up, bubbling, and colliding, as in Fig. 1.5.

In conclusion, we see that Feynman diagrams have many appealing features,
besides their utility as a calculational tool. One thing which was already pointed
out in §1.2 is the fact that they show directly the physical meaning of the
perturbation term they represent. Another thing is that they reveal at a glance
the structure of very complicated approximations by showing which sets of
diagrams have been summed over. In this way, they have introduced a new
language into physics, and one often sees phrases like ‘ladder approximation’
or ‘ring approximation’ even in articles in which no diagrams appear. And
finally, one cannot be immune to the Klee-like charm of the diagrams. Includ-
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. 3¢

@ ® (c)
d) (e
Fig. 1.4 Virtual Movie of Second-order Vacuum Amplitude Process

(a) Vacuum.

(b) At time ¢, interaction between two particles in system causes two
particles to be lifted out, forming two holes.

(¢) The two particle-hole pairs propagate freely through the system.

(d) Both pairs annihilated at time ¢".

() Vacuum.

DOUBLE BUBSBLE,
PAIR BUBBLE,

PARTICLES AND HOLES,
IN SYSTEM BuBBLE/S

A P
g £
s, g LI

B e, '|-||‘|--\l!:: !

Fig. 1.5 Modern View of a Many-body System in its Ground State

ing in their ranks, in addition to the above, such characters as the ‘necklace’,
the ‘potato’ and the ‘tadpole’, plus infinite numbers yet unnamed, they
constitute what might indeed be called ‘perturbation theory in comic-book
form.’



Chapter 2

Classical Quasi Particles and the Pinball
Propagator

2.1 Physical picture of quasi particle

We saw in §0.2 that the quasi particle is one type of elementary excitation in
a many-body system, and that physically it consists of a particle surrounded
by a cloud of other particles. The concept wasillustrated by examples ranging
from the quasi electron to the quasi horse. We also saw how quasi particles
may be described by means of propagators, which are calculated with the aid
of Feyman diagrams. Here we start with a brief review of the quasi particle
idea, then go on to describe the form of the propagator for a classical quasi
particle. The partial sum method of calculating the classical propagator is
discussed in detail with the aid of a pinball machine example.

For concreteness, let us think in terms of the classical quasi ion in Fig. 0.6
which consists of a bare ion plus a coat of oppositely charged ions surrounding
it. This picture led us to the general definition

‘coat’ or ‘cloud’

of other particles = pnspartics @1

real particle +

or
; ., ‘“dressed’ or ‘clothed’
. , . clothing . apini
bare’ particle+ , = or ‘renormalized (2.2)
or‘cloud .
particle

It may be remarked that if we perform a ‘Gedanken’ calculation and
imagine that the transformation in appendix («/.9) were carried out, we see
that the quasi particle co-ordinate R; will involve the real particle co-ordinate
r;, plus the co-ordinates r (j#1i) of all the other particles in the system. The
r,(j#1) then evidently describe the shifting cloud, so it is therefore proper to
call the cloud a part of the quasi particle.

We saw also that because of the small interactions between quasi particles,

quasi particles have a lifetime, 7, (2.3)

and because of their coat of other particles, quasi particles have a new energy
€= pz

2m*

25

(2.4)
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law where m* is the effective mass. Finally, we defined the self-energy, e,y by

€quast  — €pare = €yeyf. (2-5)
particle pasticte

2.2 The classical quasi particle propagator

Quasi particles in a system may be tracked down by means of the single
particle Green’s function or ‘propagator’. Let us see what this is in the
classical case. Imagine we have a many-body system, and we consider the
motion of one particle in it under the influence of a constant external force F
applied to it as shown in Fig. 2.1. Suppose the particle begins at r, at time .

b [ )
(' ®
| P
.——F':D °
>, °'m °

Fig. 2.1 Many-body System

If there are no collisions with other particles, the movement or *propagation’
of the particle to the point r, at time 1, is described by

f—r = %(5)(:2—11)2. 2.6)

But in the interacting case, collisions take place, and the particle will follow
a highly irregular path not described by (2.6). The best one can do in this
situation is to talk about the probability of the particle going from one point
to another. This leads us to define the classical propagator:

P(ry, 15,11, 1)) = probability density (= probability per unit volume)
that if a particle at rest is put into the system at point
r; at time ¢, then it will be found at r, at later
time £;. 2.7

It will be convenient, when we later take the Fourier transform, to have P
defined also for 1, < #,:

P(ry, t5,11,4) = 0, for 1 <ty. 2.8)

In Fig. 2.2 is a graph showing a qualitative picture of this propagator in the
interacting and non-interacting cases. Probability density is plotted on the



2.2] CLASSICAL QUASI PARTICLES 27

vertical axis, and 7, and an arbitrary component of r, on the horizontal axes,
In the absence of interactions, P will be a surface which is zero everywhere
except on the line r, —ry;=4(F/m)(t,—1,)?, where it equals «, i.e., the Dirac
o-function:

Po(ts, Ty 1) = 8 [(rz—n}—é(;f-;)(rrr;)z] : 2.9)

This propagator in the absence of interactions is called the free propagator.

P(ry, ty,ry 1))

non-interacting
(free)

Fig. 2.2 The Classical Propagator (Schematic—Only One Component
of vy Shown)

If interactions between particles are now allowed to occur, this surface will
spread out, as shown qualitatively. If we examine {r,—r;), the position of the
maximum value of P in the interacting case, we see that for some types of
interaction we might find that

_I/{F = " F
ry—r) = 2(;;) (t—1)* for P = maximum. (2.10)

If this is true, then {r,—r;)> behaves as the co-ordinate of a quasi particle of
effective mass m*. Look now at the maximum height of P as a function of 1,.
Because of the ‘spreading out’ of the particle position, P, will first fall
infinitely rapidly from its value of <« at 1, =1;, then more slowly. If this slower
decay is exponential:

P03, 13 By, #y) oo € VEIT, (2.11)
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then 7 may be identified as the quasi particle lifetime; it clearly must be fairly
large if the quasi particle picture is to be useful. Thus, if we calculate P and
find that it shows the above behaviour, then the system is describable in
terms of quasi particles and their lifetime and effective mass may be
determined.

2.3 Calculation of the propagator by means of diagrams

The actual calculation of the propagator P is quite complicated, but it is
easy to illustrate all the principles involved with the aid of a simple analogue
example in which the many-body system is replaced by a set of fixed scattering
centres. (The system considered here is essentially the same as the drunken
man case in chapter 1, but it will be treafed in much more detail.)

The example involves the particle accelerator in Fig. 2.3. A pinball is
injected at the point r,, at time ¢, and propagates through the system, being
scattered at the various centres. We ask for the probability P(r,, 5,1y, 1)
that the particle reaches the point r, at time ¢,.

The scattering mechanism is assumed to be such that (1) if the pinball
strikes the shaded circle at animal 4, then there is probability P(4) that it is
scattered and 1—P(4) that it will go straight through without scattering,
(2) the probability distribution of pinball paths and velocities after scattering
at 4 must be independent of the pinball path and velocity before scattering—
that is, the pinball loses its ‘memory’ of how it got to A.

(There are many ways in which the above properties can be approximately
realized. For example, the shaded circle could be a round peg which is pushed
up so that it protrudes above the playing board surface a fraction P(4) of the
time, and is pulled in so that it is flush with the surface (hence cannot scatter
the pinball) the rest of the time. Or we could have an immovable peg (i.e.,
always protruding) within the shaded circle, having a diameter such that the
ratio of the peg diameter to that of the circle=P(4). The loss of memory
could be achieved by attaching a ‘shuffting’ device to each peg—like for
example rapidly rotating spokes. The choice of method and the *Rube
Goldberg’ details are, however, left as an exercise to the reader. They are of
no importance for our discussion!)

For the sake of simplicity, let us leave time out of the argument to begin
with, and consider just P(r,,r,); this is the probability that if the particle
begins at r; it will finish at r, regardless of the time. From the definition of
probability, P(r,,r;) is the sum of the probabilities for all the different ways
the particle can go through the machine which begin at r, and wind up at T
For example, it could go “directly’ from r, to r, (i.e., without being scattered
on the way) or it could go from r, to the giraffe, be scattered off the giraffe
and fall to r,. Or it could scatter from the giraffe to the monkey to r,. Or it
could scatter twice on the giraffe before falling tor,. And so on.
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Typical
scattering
centre

Collimator

Test
particle

i Particle
E r6 %2 ﬁ r3 accelerator

Fig. 2.3 Classical Analogue Machine to Hlustrate the Single-particle Propagator
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We first calculate the probability that the pinball will follow any particular
path through the system. Let Py(r),r;)=probability that if the pinball leaves
r, then it travels to r, without being scattered by an animal en route (‘free
propagator’). The simplest path the pinball can follow is from r, to r, without
scattering; this has probability Py(ra,r,). Another path is from r; to the
giraffe at rg (probability=P,(rg,r,)), scattering at the giraffe (prob-
ability = P(G)), then from r; to r, (probability = Py(r,,rg)). Because the
pinball loses its memory after the scattering at rg, these probabilities are
independent of each other, and the joint probability for the whole path is
just the product of the probabilities for each part of the path:

P{(r; — rg), (scattered atrg), (fg — rp)} = Pq(vg, 1) P(G) Py(rsxg). (2.12)

(Note that a process in which the pinball goes from r, to rg, is not scattered
at rg, and continues to ry, is not included in (2.12), but in the free propagator,
Po(ry,r1).) The probabilities for the other paths are calculated in a similar
fashion,

The total probability, P(r,,r,), is just the sum of the probabilities for the
various paths. Thus we find

P(r3,11) = Py(ry, 11) + Po(rg, £1) P(G) Po(t2,¥6) + Po(Tps, T1) P(M) Po(ra, Trf) +
+Po(rg, r1) P(G) Po(rg, ¥6) P(G) Pyl 1)+ -+ (2.13)

where G=giraffe, M=monkey, etc. What we have here is evidently just a
perturbation expansion of the propagator, in which the P(A)’s play the same
sort of role that the matrix elements of the perturbation, ¥,,, play in quantum
mechanical perturbation expansions.

In order to make series (2.13) easier to interpret, we draw a ‘picture
dictionary’ to associate diagrams with the various probabilities as shown in
Table 2.1.

Table 2.1 Diagram dictionary for the pinball

propagator
Word Picture
5
P(r),r;) 'H*rl
I
Py(r), 1) | r,

PA) @
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Then the series (2.13) may be drawn thus:
r
r; r; ra
= + + G oene F + g
r r}J
I

Equations (2.14) and (2.13) are of course completely equivalent to each other,
being in one-to-one correspondence by the dictionary Table 2.1. But the
picture has the advantage of revealing the physical meaning of (2.13), showing
directly the particle shooting out from ry, undergoing various sequences of
collisions and coming finally to r,. It presents in a vivid and systematic way
the total probability as the sum of the probabilities associated with all the
possible paths or ‘histories’ the particle can have as it goes through the
system. Note that it is possible to interpret the ry, r, rg, ... on the diagrams
as being points in real space if we just re-draw the diagrams so the points lie
asin Fig. 2.3 thus:

©)
ry r O'\,\r1 r1 &\ r @ r

/[/ \\ . ¢ X e, @15

rs I Ia

It is important to observe that in terms of diagrams, ‘the sum of the proba-
bilities for all the different ways the particle can go from r; to r,, interacting
with the various scatterers’ may be translated into ‘the sum of all possible
different diagrams which can be built up out of labelled circles connected by
directed lines, beginning at r; and terminating at r,’. This is because there is
just one diagram corresponding to each physical path through the system.

How can this series be evaluated? If we assume that the Py’s are large,
say ~1 or so, and the various interaction P(A)’s are small, say ~ %, then the
higher order diagrams (i.e., terms; note that by order here we mean the total
number of interactions) will give successively smaller contributions, and just
as in ordinary perturbation theory, we can get an approximate solution by
simply summing the series up through the first- or second-order terms. Thus,
the zeroth-order approximation would be just the unperturbed case where the
particle propagates freely from r; to r,. When we add the possibility of a

(2.14)
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perturbing (scattering) interaction with the various animals just once each,
we get the first-order approximation

~ +(%)+%4>+...+(%). 2.16)

Allowing two interactions gives the second-order approximation and so on.
If, on the other hand, one or more of the interaction terms P(A)is large (i.e.,
strong scattering at A) this method is not practical, since the series converges
too slowly, and the summation must be carried out to extremely high orders
to give a good result.

However, there is another kind of approximation we can make in this
strong interaction case, an approximation that does not stop at second order,
but instead sums over diagrams to infinite order. Suppose, for example, that
only P (monkey) is large and all the other P(A4)’s are small. Then the monkey
diagrams will dominate, and the series may be approximated by the sum over
just repeated monkeys, thus:

u
+
+
+
+

2.17)

Translating each element of the diagrams into the appropriate probability, it
is easy to write down the corresponding series:

P(r,1y) & Po(rs, 1))+ Pt 1)) P(M) Po(ts, rag) +
+Po(Fars 11) P(M) Po(tps, £pg) P(M) Py(xa, tag)++ 2. (2.18)

And now we notice that this infinite series is easily summed, since it is just a
geometric progression:

P(ry,ry) = Py(rz, 1))+ Po(rar, 1) P(M) Py(ra, tag) x
X [l +P(M)P0(rM’ rM)"'P(M)zPo(l'M,I'M)Z"" "]
Po(rag, ) P(M) Py(ry,7p0) .
1=P(M)Py(rp, )

Thus, we have obtained an approximate solution for the propagator P(r,,r;)
which is valid in the strong interaction case.

= Po(l"z, l’l) + (2.19)
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This new approximation, involving the summation of a perturbation
series to infinite order over a selected class of repeated diagrams (i.e., terms)
is called * partial summation’ or ‘ selective summation’. Itis drastically different
from the ordinary perturbation approximation. It goes beyond conven-
tional perturbation theory and can be used in cases where the interaction
term is so large that the ordinary low-order perturbation approximation
won't work. It is this property which makes the new technique of great value
in tackling the strong interactions encountered in the many-body problem.
As will be seen shortly, this method of partial summation is the basic pro-
cedure underlying the calculation of the quantum mechanical propagator.

The above diagram technique may easily be extended to the time-dependent
propagator, P(ry,ry,t,—1,). (We have written £,—¢; since the force is time
independent so the propagators can depend only on time differences.) Let
Py(r;,x;,2,—t;)=probability that if the particle leaves the point r; at time 1,
then it arrives at r, at time 7; without undergoing any interaction on the way
(this is the ‘free propagator’). Let P(A) be the interaction term, assumed
instantaneous for simplicity. Then, using the convention that time increases
in the positive y direction, the new diagram dictionary is given by Table 2.2
and the diagrammatic expansion becomes

r2|"2
Iy tyy Toly Tyl Iy, 1
| I, 16
= + Tl + @rmf.w ot + e,
]l Ie: g
rphy Ity b Iy, f
r, (2.20)

(Analogous to (2.15), these diagrams may be re-drawn (at least in the one-
dimensional case) in a co-ordinate system with f as ordinate, and r as abscissa.)
Then, in writing down the corresponding series, it is necessary to remember
that 7, the time at which the scattering from 4 occurs, may be anywhere
between 1, and f,, and there is some probability that it occurs at any of these
intermediate moments. Thus, the total probability is the sum of all these
contributions, and this implies that we must integrate over all intermediate
times, r,. This leads to the series:

P(ry,ry,t—1) = Po(l'zvfl,fz"‘fi)'f"

+j (l'lc;Po(rg, rl,f(;—fl)P(G) Pg(rz, TGy fz—fc]+

[ dtrg- +j - +”J‘+ . (2.21)
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Table 2.2 Dictionary for pinball propagator

including time

Word Diagram
l‘,, IJ
P(ryr, 4—1) »ﬁ
l',, ’I
Yy
Pt e =1, }
L /98 /)

P(A) @

The unpleasant integrals parading through this expression may be removed
by noticing that they all have the form of ‘folded’ products. This means they
can be converted into simple products by a Fourier transformation. Suppose
we define the transformed propagator, Py(r,,r,, w) (w="frequency) by

+ o0
Po(rj, | IS ’l—’ I[) = %r f dw e"“"""‘) Po(fj, Iy, ID) (2.22)

with a similar expression for P(r;,r;,w). Then the first two terms of (2.21)
become (note that we can integrate over #; from — o to + « because condition
(2.8) automatically limits the integral to the region 7, — 1,):

+ co

Py(ry, 1y, 12— 1)) = 2l" I dw =X Py(r,, 1y, w)

+ @

f dtg Po(re, Ty, 16— 1) P(G) Po(ra, g, 1y — 16) =

+w + o
- f dra[z—lﬂ_ f dw'e"“‘"""‘"’Po(rG,rl,w’)] x

—® — @

+
x P(G) x [-zl; f dw e~ 10~ p () 16, w)J =
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+ @ + @
N (2}:): f deo .f da’ Py(rg, Ty, @) %
—@ -
+ o
x P(G)P(rs, rg, w) eHi@h=w f dige et
—m
276w’ — w)
+ @

- f des €100 Py(r6, 71, ) P(G) PolTz, T, ). (2.23)

Continuing thus, and finally taking the inverse transform, yields
P(r3,1y, @) = Po(ry, 1y, )+ Po(rg, 1y, ) P(G) Po(ra.rg, w)+-++. (2.24)

This is just as simple as the series (2.13) for the time-independent case. We
can use the partial summation trick on it just as before. Thus inclusion of
time in the propagator creates no special difficulties. Note that the Fourier
transformed series may be gotten directly by using a revised edition of the
‘dictionary’, Table 2.2, in which the diagrams are for transforms of the
propagators, as in Table 2.3. Hence the diagrams for (2.24) are just the same

Table 2.3 Fourier transformed pinball dictionary

Word Diagram
Iy
P(rj! ry, w) « H
r;
ry
PU(rjs Iy GJ) o« %
r;

P(A) Q%)

as those in (2.20) provided we erase all the ¢’s and put in all the w’s. Thus,

we have ra
ry ra I I 73]
w w rG
w = fw + Ig 4 Ty + 0 + w + -0, (2.25)
w w | o1
r T T n w
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We shall not actually apply this formalism to the calculation of classical
quasi particles—this would take us too far afield. Instead we go on directly
to the quantum case.

Exercises

2.1 Write the diagram series for the propagator P(ry,ry) assuming that the scatter-
ing at both the monkey and the lion are large, while alt other interactions are
small. Include all terms through second order, plus a couple of third-order
terms. How many diagrams are there in nth order?

2.2 Translate the first few terms of Ex. 2.1 into functions.

2.3 Evaluate the above propagator by partial summation assuming that all
Pyr,r)=c.

24 Assun:ing all free propagators=c, generalize the above results to include
scattering from all animals.



Chapter 3

Quantum Quasi Particles and the Quantum
Pinball Propagator

3.1 The quantum mechanical propagator

In this chapter we are going to solve the simplest existing example of a
quantum field theoretical problem. We call it the ‘quantum pinball game’
since it is the precise quantum analogue of the classical pinball machine just
discussed, and in fact gives rise to a diagrammatic series having exactly the
same form as (2.25). It is a sub-trivial problem, one which can be solved in
a microsecond by elementary quantum mechanics. It takes a little longer to
do by diagrams, but like its classical cousin in Fig. 2.3 has the great merit of
illustrating all the basic principles without immersing the reader in a morass
of mathematics. At the end of the chapter, the diagram method is applied
to a non-trivial problem, i.e., finding the energy and lifetime of an electron
propagating through a set of randomly distributed scattering centres (e.g.,
impurity atoms in a metal).

The fundamental difference between the classical propagator, P, and the
quantum propagator, G, is that P is a probability, whereas G is a probability
amplitude, with corresponding probability given by |G|* (= G*G). Thus in the
classical case, the total probability for propagation from point 1 to point 2 is
just the sum of the probabilities for each propagation process taken separately:

P(2,D) ctass1cat = P(process 1) + P(process IT) + +--.

But in the quantum case, the total probability amplitude is the sum of the
probability amplitudes for each process taken separately

G(2,1) = G(process 1) + G(process II) + +--

so that the corresponding probability is given by

P2, D) qusncum= G*G = |GD|? + |GAD|* + \G(I)* G(11) + G(ID* G(I) e
P(D P(I) interfere:ce terms

Because of the characteristic *interference terms’, the quantum probability is
not just the sum of the probabilities for the individual processes, in contrast
to the classical case.

37
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A familiar example of this is the decay of an atom, molecule, or nucleus
from a state i to a state f by means of photon emission. Suppose the atom
can either decay directly: i — f; or via the intermediate state m: i — m — A
Then we have (call 4 the probability amplitude):

PG —>f) = A% 4 = |Ali > [) + AGi > m — f)]?
= 1AG =) + |AG > m — )2 + A% > 1) Al > m — f)
+ A > m =) A (i~ 1),

which shows the interference between processes i — fand i > m —f. (See
also Feynman (1965), pp. 19, 20.)

Let us begin by defining the quantum propagator in general, then show
what it looks like in the case of free particles and quasi particles. The quan-
tum analogue of the classical propagator is (assuming that the Hamiltonian
is time-independent, so that the propagator depends only on time differences):

iG(l'z, Pl tl)lz>l| = iG+(l'2, ry,l— ‘l)

= probability amplitude that if at time ¢, we
add a particle at point r, to the interacting
system in its ground state, then at time 1, the
system will be in its ground state with an
added particle at r,. 3.1)

The ifactor is purely for decoration (a matter of convention) and the + super-
script denotes 1, > #,. (The precise meaning of the word ‘add’ here is dis-
cussed in detail in §9.2.) The probability corresponding to the amplitude (3.1)
is

P(ryry, 13— 1)) = GH(ra, 1y, 15~ 11)* GH(ra, 1y, £ —1y).

Note that it is not necessarily the ‘same’ particle which is observed at ¢, since
this has no meaning in the systems of identical particles with which we shall
generally deal. Note also that a more precise way of saying that the particle
is ‘at point ry" is to say that it is ‘in the position eigenstate 8(r—r,)".

The quantity G* defined in (3.1) is called a ‘retarded’ propagator (or
Green’s function). By definition, it is equal to zero for ¢, < ¢,. There is also
an ‘advanced’ propagator, G-, which is finite for ¢, < ¢,; this will be discussed
in chapter 4. (See appendix L for other types of retarded and advanced
propagators.)

It is actually more convenient to work with an equivalent definition of G in
terms of arbitrary single-particle eigenstates, $,(r), instead of position cigen-



3.1) QUANTUM QUASI PARTICLES 39
states. Then we have
iG*(k2, ky, t; — 1,),, 5+, = probability amplitude that if at
time 7, we add a particle in ¢, (r)
to the interacting system in its
ground state, then at time #, the

system will be in its ground state
with an added particle in ¢,, (r).  (3.2)

For t,<1;, Gt is defined so that:
I‘G".(kz,kl, '2_t1)13<l| = 0. (3.3)

A convenient choice for ¢,(r) is the eigenstates of the unperturbed single
particle Hamiltonian A, in Appendix (&.2), which we will call H,:

Hy = Zp—mz+ U(r) = —ﬁv% U@ (fiset=1)
with
Hydu(r) = e y(r). (3.9

If U(r) =0, then this is just the free particle case:

k?

H -0 9S(r)=—1—e"‘" & = — (3.5)
0 m’ 'k ’ k m .

V0

where £2=normalization volume. We shall usually set i=1. Spin has been
neglected for simplicity.

(Note regarding notation: In (3.4), the subscript & (or k,, or k,, etc.) stands
for all the quantum numbers necessary to designate an arbitrary energy
eigenstate. The particular eigenstates will be labelled with p-subscripts thus:
(D), B,,(r), (1), ..., o, for short ¢y (r), $o(r), ... (the arrangement is roughly
in order of increasing energy). In the special case where U(r) =0, k is a wave-
vector and will be written k (or k, o if spin is included).)

Definition (3.2) describes ‘propagation’ of a particle from state P, (r) to
#4,(r). Note that if ky=k,, the particle propagates in time only.

Let us first get the free propagator G§ (no perturbing interaction). Suppose
at time #, the wave function of the free particle is ¢, (r). Then we have:

P(r, 1)) = ¢, (D). (3.6)

At later time f,, by the time-dependent Schrédinger equation, we find that
the wave function has become

Y(r, 1) = ¢y (r) e~lemttrt) 3.7
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where ¢, is the single particle energy of (3.4). The probability amplitude for
the particle being in state ¢,, at time ¢, is then just the component of yi(r, r,)
along ¢,, or:

J. Arf(r, 1) pE(r) = ""“""”fd3r¢k,(r) (), (3.8)
— ey
8k;k|
whence, by definition of G*:
Gilkay, ky 1y~ 1y) = —if,,_, e~ tentim g,
= 84,0, Gglk1, 12— 1)) (3.9)
where
— i, et fore, £ 1,
Gi(k, t2— 1)) = {0 f':l“fz -1 (3.10)
and
=1, ifty>¢
0"‘"{ =0, if I: < t:. @11

The 8,,_,, factor is put in to take care of the fact that by definition (3.3), G+=0
for 1;<t,. Note also that G§=0 for r,=1,, by (3.3). (See (9.2), (9.4), end of
appendix F.) Note that for fermions, all levels up to ¢, (= Fermi energy—see
§4.2) are filled, so we can only propagate a particle with €, > €F.

Just as with the classical pinball propagator, it is convenient to work with
the Fourier transform of (3.10) (w =frequency or ‘energy parameter’):

+®
Galk,w) = —i [ dit=11)8,,, ettt g-iester—sd
-0

el (-n) ) 1 glw-m) o

= - . (3.12)

0 w— € w— €

Because of the exponential oscillating at «, this function is not well defined.

In order to get around this difficulty, we have to slightly modify the expression

for the free propagator. This is done by multiplying the propagator by the

factor exp(—8(¢, —1,)), where 8 is a positive infinitesimal such that 8 x @ = w.’
Then (3.10) becomes:

Gath,ty = 1) = — i, e-ew=0xism), (3.12)

=(-—-

@~ €

For any finite (£,—1,), we have 8 x (1, —¢,)=0, so this is just (3.10). But for
infinite (1, —1,), 8 x (t;— 1,) = 50 G{ =0. When (3.12") is placed in (3.12), we
find

1 eltw—€x+18)m 1

Gk, w) =

w—e,‘+i8_w—e.+i8=w—e,,+i8' G.13)
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In Appendix I, it is shown that the inverse transform, i.e., the Fourier transform
of (3.13), yields exactly (3.12°).

The above modification of G§ has no physical significance since f;—1¢, is
always finite in any experiment. However, it is mathematically very convenient,
because it allows us to work with well-defined integrals.

Note: The usual way of introducing the modified free propagator employs
the integral representation of the step function:

N)dw' e-lw’(l;—ll)

(3.13)

T T ) i w408
-0

This is not precisely a true step function but rather a modified step function,
which can be seen by evaluating it using exactly the same technique as in

appendix I. This yields

~8lty—1y) fi t,—1)>0
81, _[e : or (t2 = 1) (.13

0, for(r,—1,)<0

which is just (3.11), except when (f; —1;) — =, where it goes to zero. Inserting
(3.13") in (3.10) yields just (3.12). Alternatively, we can place (3.13") in (3.12),
integrate over 7,—1¢, first (which gives 276(w’—w+¢,), then over o’ and
immediately obtain (3.13).

In this transformed version, (3.13) it is seen that the free propagator
possesses poles at (i.e., infinitesimally close to) w=¢,, i.e., at the energy of the
added particle in state ¢,. This turns out to be quite general, and in fact it may
be shown that (see appendix H):

The poles of G*(k,/;w), the Fourier transform of the single-
particle propagator, occur at values of «w equal to the excited
state energies of the interacting (N + 1)-particle system minus
the ground energy of the interacting N-particle system. (3.14)

This property accounts for the extraordinary utility of the propagator in
many-body theory.

Now consider the propagator in the presence of interaction. Analogous
to the classical case in chapter 2, quantum quasi particles act like free particles
except that they have a new energy ¢ instead of ¢, and a lifetime =,. There-
fore we expect that if the added particle behaves as a quasi particle, the single-
particle propagator will have the same form as the free propagator except for
the replacement of ¢, by ¢, and the inclusion of an exponential decay factor
with time constant r,. One more thing: In a Fermi system, because of the
Pauli principle, each state can hold at most one particle. Therefore, if state &
is already partially (or fully) occupied, the probability amplitude that we can
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add an extra particle in state & will be less than 1. Hence we have to multiply
by a factor Z, < 1. This gives us:

Gk, tz—~ 1)) = —iZye™1e¥' =t g=tirtiims, (3.15)
particle

This has the Fourier transform

Claally ) = — 2% . (3.16)

’ —
parsicle w—€+ i‘l'k !

For these expressions to be sensible, it is evident that the lifetime of the quasi
particles must be long, so that the width of the energy levels, 75! (see appendix
o/ after («/.43)) is much less than the values of the energies themselves, i.e.:

%! <€ ¢ 3.17)

(A more exact condition on 7, is given in (8.21).)

Thus, if G* is calculated, and it is found that it has the above form, then
the system is describable in terms of the simple quasi particle picture. Such
systems are rewarded with the name ‘normal’. On the other hand, even if
the system turns out to be of the less co-operative ‘abnormal’ variety where
(3.16) does not hold (like for example the one-particle system of (4.39), or
the superconducting system of chapter 15), we can still get the excited state
energies by means of (3.14). .

It is still possible (in the case of normal systems) to interpret the poles of
the quasi particle propagator (3.16) as yielding the excited state energies of
the system (as in (3.14)), if the energy is regarded as being complex, with %
being its real, and i7! its (small) imaginary part:

Wpote = € —iTE'. (3.18)

Such complex energies are the same sort of thing we meet in the case of an
atom in an excited state, ¢,, with energy ¢,. In the absence of interaction with
other atoms or with radiation, the wave function is

Pult) = ge™'ee. (3.18")

If weak interactions are turned on, the energy shifts to ¢, and the atom starts
to decay out of state ¢,. Thus, the approximate wave function may be written

l,l,',(l) ~ ¢ne—l(u' I e—l/r- = ¢n e-l((..‘—l'r-'l) ¢ (3_ 18')

which has just the form of (3.18"), but with a complex energy ¢,—i7;! re-
placing the real energy ¢,. (See note after (3.70) and also after appendix
(H.10).)
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3.2 The quantum pinball game

In order to illustrate the principles involved, we will now find the propagator
for a simple system consisting of one particle in an external momentum-
conserving potential, which turns out to be the exact quantum analogue of
the classical pinball game. Of course, in a one-particle system, we cannot have
quasi particles in the ‘real particle plus cloud of other particles’ sense. How-
ever, as mentioned in connection with conduction electrons in §0.2, we may
rather loosely regard the particle as being clothed by the external potential
itself.

The quantum pinball game consists of a single free particle subjected
simultaneously to two perturbing potentials ¥y, V;, which are the analogues
of two different animal scatterers in the classical pinball game. The un-
perturbed Hamiltonian, wave functions, and energies are given by (3.5). We
take as the perturbation the ‘velocity dependent’ potential

V(p) = Vy+V, = Mp>+Lp* = —MV24 LV} (3.19)

where M, L, are real constants, and it is assumed that M > L.

This odd-looking potential, which has been chosen because of its great
mathematical simplicity, may have a traumatic effect on some readers. It is
certainly not the sort of potential one meets on the street—those are mostly
of the familiar V(r) form. Nevertheless it is quite easy to construct perturba-
tions of the form (3.19) artificially. For example, the Hamiltonian for the
centre of mass motion of a free hydrogen atom is H=p?*/(m+m,) where
m=proton mass and m,=electron mass. This may be broken up into

p? m,

= —— .____—pz‘
2m  (m.+m)m
and the second term treated as if it were a ‘perturbing potential’. In a similar
fashion, a p* term can come as a relativistic correction when we expand the
relativistic Hamiltonian:
2

Bt paddd e 2o B P
(g ¢ +p%c)" & mgc +2m0 8mj c?

4

In fact, if we regard this as the relativistic Hamiltonian for the centre of mass
motion of a free hydrogen atom, with my=m+ nm,, then we can write

p? m, 4

2m  (m,+m)m

B =
8(m+m,)3c?’

H =z (m+m,)c+ pi—

which has just the form (3.19), except for the unimportant constant term.
Examples of real velocity-dependent potentials arise in the case of an electron
in a magnetic field (¥ o« A+p), and in nuclear physics.
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The problem, then, is to find the energy of the free particle when it is per-
turbed by V(p).

Let us first look at the conventional solution of the problem. Since M>L,
we may at first neglect the L term and have V(p)x Mp? so

p2
H ~ o+ Mp?. (3.20)

Because the perturbation has the same form as the unperturbed Hy=p*2m,
the perturbed wave functions are just the old ¢,’s of (3.5) and the new energy is

& = (%ﬁ-M)kz. 3.21)

For purposes of comparison with appendix (o7.21), this result may be ob-
tained by means of the trivial ‘canonical transformation’

P oo (L 2
= 2m+Mp - H'= (2m+M)p +0. (3.22)
Hy, H, H, H,

Thus, Hy may be regarded as describing a sort of rudimentary ‘quasi particle’
having a modified energy dispersion law given by (3.21). (In this simple
example, the ‘fictitious bodies’ of («#.21) and the quasi particles of (4#.43) are
the same thing.)

Consider next the effect of adding the L term. This also has the same eigen-
functions as Hj and we find:

LV, = Lk*¢, (3.23)
from which it follows that the total energy of the particle is
. 1
€ = (Tn.l' M )k2+Lk4. (3.249)

Let us now solve the same trivial problem with the aid of the single-particle
propagator and see how we can get the above energies, ¢;, ¢, as ‘quasi par-
ticle’ energies from the poles of the propagator. This requires that we first
obtain the perturbation series for the propagator analogous to the series
(2.21) for the classical animal game case. We will get this series by the same
sort of physically intuitive argument used in the classical case. (The rigorous
mathematical way of getting the perturbation series is outlined in §3.4.)

According to the instructions in the definition of the propagator, at time ¢,
a particle is introduced into the (in this case, initially empty) system in state
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b, (r)=2*exp(ik, 1), and propagates through the system, being scattered
zero, one or more times by the external potentials:

Vi = Mp?* or V.= Lp% (3.25)

By definition (3.2) the propagator iG7(ky,ky,1;—1;) is just the probability
amplitude that the particle will be in the state ¢, (r) =2 Fexp(ik, 1) at time 1,.
Analogous to the animal case, this amplitude /G* is just the sum of the prob-
ability amplitudes for all the different ways the particle can go through the
system, beginning in state ¢,, and winding up in state ¢,

For example, the simplest way the particle can propagate through the
system is freely, without interaction. The probability amplitude for this is
just the free propagator i3, ., Gg(ky,1,—1#) as in (3.9), (3.10). Another way
is to enter in ¢, at time ¢4, be scattered into state ¢, at time t,, by the potential
Var, then continue freely in ¢, until time r,. (It may seem peculiar to say that
the particle is scattered by the potential ¥, at time 1,, or to say that the
particle is scattered several times by the potential, when the potential is
actually there the whole time. However, this is just a result of the fact that
what we are doing in such a perturbation expansion is to decompose the total
propagator into primitive components, each component being an instan-
taneous scattering by the potential. At the end we integrate over all times as
shown in (3.28), and sum over all sequences of scattering processes as in
(3.30), thus ‘putting the propagator back together again’.) The amplitude
for this second way will be, by analogy with the classical pinball case, the
product of the amplitudes for the independent processes it is composed of.
(That these processes are independent can be seen from the fact that a particle
which has been scattered into state ¢, from state ¢, cannot be distinguished
from one scattered into ¢ from another state ¢,. That is, the particle now
in ¢, has no ‘memory’ of how it got there, just as in the classical pinball case.)

The first of these independent processes, free propagation from 7, to 1, in
state ¢ , has amplitude iGg(ky, 1,,—1,), according to (3.10). The amplitude
for the second process, i.e., scattering from ¢, to ¢, by ¥, at time 1, can
be obtained from ordinary time-dependent perturbation theory as follows:
Let ¢, be the probability amplitude that at time 1y a system is in state ¢,. Then
at later time, 1, the time rate of change of any particular ¢, say c,, under the
influence of perturbation V, is given by:

6lt) = =i % Vyycpeleresd (3.26)

where V,;is the matrix clement of V' between states ¢,, ¢, (see, for example,
Dicke (1960), Eq. 14-57, with fi=1). In the process under consideration, at
time 1= t,y, the system is definitely in state ¢, so ¢;=38;,. The perturbation
V=V Hence the probability amplitude per unit time that the system under-
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goes a transition from ¢, to ¢,=d, , at time 1, (i.e., 7 here is also equal to
t M) is

ék.(' = tM) = _iVM...l = —in’rcﬁZ,(r)VM@,I(r) =
= +iM [ Brdh V2, = —IMIES,, 4, (3.27)

The 8y, x, shows that the process here conserves momentum so that the particle
still has the same momentum after scattering. The amplitude for the last
process is iG§(K,, ,—13). Hence the total amplitude is the product

[Probability

+o
ot e, = | G0 Vit G =), 329

We have integrated over 1, since the collision with V,, could have occurred
at any intermediate time f, <#p<?;. Note that the 8-function in G§ (see
(3.10)) automatically restricts the region of integration to #; <ty <?,.

Similarly, there can be an interaction with ¥, described by the matrix
element

-iVl_“ n = —l'Lk? 8,‘2,“ (3.29)

which also conserves momentum. There are also second- and higher-order
processes in which the particle collides with V,, and ¥, any number of times.
This gives us the series expansion for the propagator (set k; =k, =k because
of conservation of momentum here), after cancelling the i’s:

+®
G+(k’t2_'l) = Gl.)‘-(k’tz—tl)'*' f dtMGg(k3 tM_'l) VMuGg(ksh_tM)
+ @
+ | dGik, o~1) V,,, GEk, 12— 1)+

+J' dtht;,--~+f dipedty o4+

+J' dipgdtpedtpg -4+ -, (3.30)
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Just as in the classical pinball case, the integrals in the above series may be
eliminated by taking the Fourier transform. This yields, analogous to (2.24):

Gk, w) = Gg(k, w)+[Gg (k, W) Vg, + (G5 (k, @) Vi, +
+ IG&-]S VA;}RI+ 2[6‘313 Vﬁfn VLn+ [Gglj V12.u+
+[G§1 Vig+---. (3.31)

We now pull the same trick used in the classical case and make a dictionary
to translate the above series into diagrams. The primitive diagrams are in
Table 3.1. Compare this with Table 2.2, which is in (r, )-space, and Table 2.3
in (r,w)-space. (Equations (3.30), (3.31) could also be written out in (r, ¢)- and
(r, w)-space but in the present case this would not be very useful.)

Table 3.1 Diagram dictionary for quantum pinball propagator

(k, r)-space (k, w)-space
Word Diagram Word Diagram
kit k
iGH (K, = 1) ﬂ S L wﬂ :
kity k,
iGg(k, ,—1;) } f2 ok - i
= 0, etown K, S e S I
m m
—iV,,, @ —iV g, @
! /

With this dictionary it is easy to write out the series of diagrams corre-
sponding to (3.30) or (3.31):

k K M)
ki = ki + + + + + + + + 0, (3.32)
k k @ '

A
|
A
I

where the lines may be labelled with ¢’s to give (3.30) or w’s for (3.31). This is
evidently the sum of all possible different diagrams for this case.
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Now, since we assumed that A > L, all interactions with Vi, may be neg-
lected, and the above series may be approximated by

zta,#ly, + 0D + e (3.33)

This is the precise analogue of the partial sum over all monkey diagrams in
(2.17). And, as in the monkey case, the summation is easy, since once again
it is just a geometric series. Translating (3.33) into words with the aid of
Table 3.1 (use (k, w)-space), cancelling #’s and dropping (k,w)’s for brevity
yields

G..(kt 0)) B Gg.'*'(Ga-)z VMn+ (Ga-)3 V)%{n'*' o
= Gg[l +Gg. VM:."'(Gg‘)z V}h.’*" * ']

.G _ 1
- 1- GBL VM,. (G«T)-l - VMn

, for|G§ V.l < 1. (3.39)

This same result may be obtained conveniently in a way which saves a lot of
writing by manipulating the diagrams themselves; this is legitimate because
in (k,w)-space each diagram part stands for a factor. Thus (3.34) may be

Bl
Fhbdel

3
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which may be then translated into

1
Gk, w) % ——— 3.36
( ) (Go+)_l— VM;L— ( )

i.e., just the result (3.34). (Note: the little ‘stumps’ of line connected to @

have no value in themselves. They just show where the propagator lines are
to be attached!)
(Observe that (3.35) may be written in a very useful alternative form, i.e.

H = |J + Q{D (3.36')

This may be proved by iteration:

e

SRSRR.
R
Vel

In (k, w)-space, (3.36") may be factored into

RNR

which may be solved algebraically to yield (3.35). However, (3.36') has the
advantage of being more general than (3.35) since it may also be used when the
diagrams do not factor. For example in (k,7)-space, it yields an integral
equation instead of an algebraic one. (See exercise 3.8).)
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Finally, we substitute for G§ and for ¥, and obtain:

1 1

+ = = .
Gk, w) w—+id—Vy,, w—(e+Mk®)+id (3.37)
Comparing this with the quasi particle propagator (3.16), we find
& = e+ Mk = (z'ln-l-x"f)kz
1
e Salld (3.38)

That is, the interaction with V), has ‘clothed’ the particle, turning it from a
‘bare”’ into a ‘quasi’ particle, having modified energy dispersion law given by
€; in (3.38) and infinite lifetime. And comparison with (3.21) shows this to
be precisely the same result obtained by direct solution of the Schridinger
equation!

On second thought, when we realize that it has taken us three pages to do
by diagrams what we did directly in three lines, there appears to be little
cause for celebration. We seem to have built an elephant cannon to shoot a
horse-fly. Of course this is not true. The quantum pinball game is intended
only as a transparent example to introduce the general principles. The big
many-body game will come later. Furthermore, at the end of this chapter,
in §3.5, we apply the method to a non-trivial one-particle problem: finding the
energy and lifetime of an electron in an impure metal.

In this simple example, it is actually possible to do much better than just
the partial sum (3.33). We can in fact sum over all the diagrams of (3.32) as
follows:

ﬂ = ux[l + {x@ + }x@ + rx@2 + 2xrx@x® + ]

- .X[H }x(@+@) . {’x(@+@)’ +]

| 1

= =

- (@+@) {-(@-®)

(3.39)
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or, translating:

GH(k,w) = : = : (3.40)

=1 _ 2
{Go) (Vﬂ-fu+ Vf.n) w—(;;i+Mk1+Lk4)+ia

which gives
g = £+Mk2+f‘k4 (3.41)
2m
in agreement with (3.24). This shows that we could just as well have taken
V=V, + ¥, together from the start and represented them by a single diagram,

@. The potential was broken up into two parts just to make the parallel

with the classical pinball game more obvious.

3.3 Disappearance of disagreeable divergences
It is important to note a weakness in the above method. The geometric
series in (3.34) converges only for |G§ Vg, | < 1, which means that

w > e+ Mk?

I Mi? &1
w < Ek—Mkz.

w—ek-HS

(3.42)

But to get (3.38) we set w=¢,+ Mk?, which is just where the series begins
to diverge! This is a typical example of the sort of divergence which plagues
the diagram method. The usual household remedy is to assume that the
propagator is still valid for w in the region of divergence. Or, in more fancy
language, one assumes that the partial sum result for the propagator may be
‘analytically continued’ into the divergent region. This might be called *the
Hypothesis of the Disappearance of Disagreeable Divergences’.

In many cases one can justify this by using a different method to get the
propagator. We can do just this in the present case. All that is necessary is
to take for the unperturbed Hamiltonian of (3.4)

2
Hy = £—+Mp? (3.43)

instead of just the p?/2m in (3.5). The free propagator for this new Hj is, by
exactly the same argument leading to (3.13) just

1

G§'(k,w) = e (3.44)
w—(——- +M’k2)+55
2m
which is precisely the result in (3.37). This shows that the propagator (3.37)
is good for all w.
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Another indication that such divergences are largely spurious (Kurki-
Suonio (1965)) is that if we do the partial sum in z-space instead of w-space,
the divergence does not occur, at least not in this simple case. Thus, using
(3.30) and Table 3.1 and summing just over terms containing the V,, inter-
action, we find:

Gtk ,1,—1y)

i

i2
—ie""‘"‘"’[l+(—iVM,,) f dip+
hH

2 '
+(—1VM,‘)2 J' d’,:w I dtm"'”']
n

]

== ie-'“(h-“) [l + ( - thln) (’2 - ’l) + % ( - iVMn)z (’2 - ‘1)2 +

+3l,(—iVMn)3('z—fl)3+” ]

= —q e.u.(:,—t,) [e—l Vu..(lr-lu)] (3-45)

which is just the Fourier transform of (3.37) and converges for all values of
=iV (12— 1y).

3.4 Where the diagram expansion of the propagator really comes from

The results in this chapter were obtained by analogy with the classical
pinball case. Since such intuitive arguments may seem like voodoo to some
readers, we will now show in a rough way how the diagram expansion of G* in
this single-particle case can be gotten from the Schrodinger equation. (The
derivation for the many-body case is in the Appendices.)

The first thing to realize is that G and G* are actually Green's functions.
Recall that if we have a differential equation of the form

Lip(x, ) = f(x,1), (3.46)

where L is a linear differential operator which does not depend explicitly on
x or ¢, then the Green's function, G, associated with this equation is the
solution of

LGx—x',t—1t") = 8(x—x" (1. (3.47)

Now the unperturbed Schrédinger equation may be written

2
(+Z—;—n+ia%)¢(x,:) =0, (3.48)
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This has the form (3.46) (with f(x,t)=0), so that the associated Green’s
function obeys

(+sz+i§;)6(x—x',l—t’) = 8(x—x)(t—1). (3.49)
Fourier transforming G, we have
G(x—x',1—1") = ﬂe’"""""’G(k, t=1'). (3.50)
@2n)
Setting this into (3.49) yields
(-fiui)c(k,r—x') = 8(1—1’). (3.51)
2m ot
If we now use for G the free propagator in (3.10):
G = Gi(k,t—1') = —if,_, et (3.52)
and use the fact that
A < 50, 1(8) = 0)80x), (3.53)

we find that (3.51) is satisfied, showing that Gy is indeed a Green’s function.
In a similar way, the Schrodinger equation with a perturbing potential of
form V(V) (as in (3.19)),

[+v—2+'E—VV)]¢ t)=0 3.54

2m 'a’ ( (xv — ( . )
has the associated Green’s function equation (in k-space):
kz ) a ’ »

[—2—;1+15— V(k)] Grk,t—1") = d(1—1), (3.55)

where V(k) is the Fourier transform of V(V). The solution to this may be
written as an integral equation
+ @

Gk, t—1") = Gk, t—1)+ f dt” Gk, t— ") V(K)G*(k,t"—1"), (3.56)
as can be seen by substituting (3.56) in (3.55) and using (3.51) with G=G¢.
Finally, we obtain the perturbation expansion for G* in terms of G§ by
iterating (3.56):

+ o
Gk, t—1') = Gi(k,t—1)+ f dr” Gk, t— 1) V(K) GE(k, 1" — ') +
+® 4+ B
+ f J' dt* dt” G VGE VG +-++ (3.57)

—® —®
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which is just the series (3.30). The translation into diagrams is accomplished
immediately by using dictionary Table 3.1.

It may be remarked that the Green’s function for the many-body case
obeys an equation of type (3.47) but with L a non-linear operator.

3.5 [Energy and lifetime of an electron in an impure metal]

(This section can be skipped on first reading!)

We will now apply the propagator method to a more realistic problem, i.e.,
an electron in an impure metal. For simplicity, let us pretend that the regularly
arranged lattice ions in the metal have been removed, so that all we have left
is an electron interacting with a set of N randomly distributed impurity ions
(see Fig. 0.13B), which we assume are identical, in a volume 2. Then, as
discussed in §1.3, the propagator will be given by (1.2) or (2.25) with the
circles interpreted as scattering from the various ions:

; ) 0
(i) (J) #i
+ b+ FIUURE U N O
OO
. . O

(3.58)

where the k’s denote momentum eigenstates of a free electron as in (3.5), and
i denotes the impurity ion at position R,.

If the potential well for an impurity at the origin has the form W(r), then an
identical ion at point R, will have the potential W(r—R,). Hence the matrix
element for the transition k — 1 at ion i is given by

—iVu(R,) = %Id’ e 0T (r —R) = -(;!;le-‘“-u' R W
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where

Wi = [d>r e-10-00 W(r) (3.59)

The series (3.58) may now be written out in terms of functions as follows
(after eliminating the i’s and suppressing w’s for brevity, and noting that it is
necessary to sum over all values of the intermediate momentum, 1):

G+(k2’k1) = Gg(ki) Sx,n, o Ga(k:) i Vk;ki(Rl}GE(kl) T
i-1
+ Gg(k,) [ 2 E Li(R) GG (1) Vm(Ri)] Giky) +
+ Gg(ky) [ 22 Viu(Ry) Go(1) :;: Vu,(RI}} G(ky) + - (3.60)
[T (=1

The above G* is for a particular set of R;’s, i.e., a particular arrangement of
impurities in the system, and for each different set of R,’s, we will get a different
value of G*. Consider now an ensemble consisting of all possible arrangements
of impurities. Suppose this ensemble is random, i.e., the coordinate for the
ith imputity, Ry, is equally likely to be found anywhere in the volume 2. Let
us imagine that we compute {G*), the average value of G* for the ensemble.
Clearly, for any specific arrangement, G*# (G*). But, as is common in large
systems (see Landau and Lifshitz (1959), pp. 5-8), in the limit N — o« (with
N[Q = constant), the ratio of the mean square fluctuation ((G**) — (G*)>?) to
{G*>* will go to zero, so that we can take G*=<{G*) for all but a negligible
number of arrangements (see Kohn and Luttinger (1957), especially Appendix
B). Hence our object here will be to calculate <G*).

The average (G*) is the sum of the average of each term in the perturbation
expansion (3.60). For the second term on the right side of (3.60) we have,
noting that free propagators may be factored out when averaging since they
are independent of R,

(Ga(kz)m(k,)zvu(n,)) G Gill) 2 (5 et m) - (3.61)

The last factor here may be written

N N 2
< > erHlark )Ry Yo 5 fomitky=k) Ry = N(e-ikamkd Ry (3.61")
=1
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since each of the N terms is identical in form, so that we can just average over
one of them and multiply by N. For a random ensemble, the probability of
finding the ith impurity atom within volume d3R, surrounding the point R,
will be independent of R, and equal to d*R,/f2. Hence we have

(et —kp Ry = é J‘ 4R, e-1tks- k. R, = 5 x Q.. (362

(Note: In a one-dimensional box of length L,

+L/2
I= [ dxexp(—ikx) = 2k™*sin(kL/2).

-L2

Because of periodic boundary conditions, the wave function at x=0 equals
that at x=L, i.e., exp(ikx) =exp(ik(x+L)). Hence exp(ikL)=1, or k=2an|L
(n=integer). Thus /=L3, . Equation (3.62) is just the three-dimensional
version of this, with 2=L3. If k is continuous, the integral (3.62) yields
(27)?8(k, —k,), which is a Dirac 3-function.)

In the third term of (3.60), which represents two successive scatterings
from the same impurity, we have, using the same method as above:

3 GH(S VROV R )= 3 G3(D) LTS ettmeimnirne)

N
= E Z GS(I) Wk" W'klskjkl' (3.63)
1

It is convenient at this point to change from a sum over 1 to an integral by

Q 3
2= Gy .[ 1 (3:64)

This is legitimate in the case of a large (i.e., macroscopic) system, since the
points1in k-space are very close to each other. Thefactor £2/(2#)? is the density
of points in k-space. To see this, we note that in one dimension, k =2mn/L
(n=integer). (See just after (3.62).) Thus there are L/2= points per unit length
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in k-space in one dimension. In three dimensions we have L3/(27)*=Q/(27)?
points per unit volume in k-space. Using (3.64), (3.63) becomes

N [ ,
= 5 | Gy GO W W, B, (3.64)

The fourth term of (3.60) (two successive scatterings from different impurities)
contains the average

S G0, 3, VanR) Vi (R))

- Z Gy(1) 2l k,l W:k.

z e~itkz=N-Ry e-l(l—k,)-Rg>
L )wi

W W d’R, d°R
= ?_‘ Gs(1) %2"" NN=-1) J.—.Q—J J75e“‘h-"'“.le'“'"‘n)'ﬂl

N 2
= (b‘) ZGE(I)WJ‘,I Wi, 8y Su,
!

N 2
= (5) Ga(k,)wflg' 8.,,‘, (3.65)

Here we have used that for the random distribution, the probability that
impurity { is in d*R,, and j is simultaneously in d*R, is (d*R,/2)(d*R,/).
Also, we have assumed N> 1. Averages of higher order terms are done in a
similar way.

With the aid of these results, we can write out the series for the averaged
propagator. It helps here to introduce a couple of new diagram conventions.
First of all, since #,((R,) does not occur any more we use just an empty circle,
for the transition probability amplitude W,,. Secondly, because each group of
two or more successive scatterings at the same ion has an associated density
factor N/R2, we connect successive circles representing the same ion by dotted
lines. (Note that a single scattering also has this factor associated with it.)
Thus, taking the 8-functions into account, and letting k, =k =k,, we have for
the averaged propagator:
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P
p——
~ [
~
]
——
|
+
+
+
-
+

This may be translated with the dictionary in Table 3.2. Note that in this table,
there is no factor 2! in front of [ d*l/(27)* because all £2-! factors are
already included in the (N/€2) factor in line 4 of the table. (See e.g. exercise 3.9).

Let us now evaluate (3.66) assuming the most important processes are
single scattering, and double scattering by the same impurity. This means
that diagrams containing more than two successive scatterings off the same ion
(such as for example, the fifth diagram on the right of (3.66)) are neglected.
The partial sum may easily be carried out and yields

<Nk>= w @ x Q + g:/)- (3.67)

-
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(Note that the complete series for@ is:
\\
‘\

~ h

AY

\\\ \\
. \ W A
\\ \ .. !

= + V4 () | + ) BT

’ P ]

. ’,' o

e /

\
\\ \\
\
\ \‘ \
]
+ I+ Jo! +e (3.67)
l' e ]
/ /
/ ’
- /
/
/
v
4
\ v -

For small (N/€2), we only need to keep termse (N/$), i.e., terms representing
multiple scattering from a single impurity.) Translating (3.67) into functions

(3.68)
where
N NCEL Wl
2w = Q Wa + RJI2rP w—¢+id (3.69)

and we have used Table 3.2.
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Table 3.2 Diagram dictionary for electron Propagating through a system of
randomly distributed impurity ions

Diagram element Factor
< N > KG*(k, w))
k.o
i
{ iGi(k, w) = .
k.o w—g, 4 i6
1
k
k \\
~, \\
d v } et factor ¥
. , -—— , etc. actor — .
x ,/' / Q
. y,
k vd
. . a1
intermediate momentum, | f
(2m)?

In order to find the new energy and lifetime of the electron, we need the
complex pole of (3.68), i.e., the w which is the solution of

wo—g—2 (kw)+id =0. (3.70)

(Note: If in (3.69) we use the original sum over ], i.e., 2.1 in (3.60) instead of
§ d*1(see (3.64)), we find that, as expected from (3.14), the pole equation (3.70)
will have real solutions. This can be seen at once by plotting > (k,w)=
(NI W+ (NI) 3 | Wal*/(w~ € +i8) and y(k, w)=w—¢, vs. w and noting
that the poles occur at the intersection of 2. (k,w) and y(k,w). The complex
solutions of (3.70) arise because we have gone from a sum to an integral. The
physical meaning of this is discussed at the end of appendix H.) If Wis small,
so that > is small, then the zeroth-order approximation to w is w=e¢,. The
first-order approximation may be obtained by setting w=¢, into 5, (k, w) and
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re-solving for w, which gives
w = €k+2(k$€k) = &+ RCZ(k,Cg)'l’iImZ(k,Ek) (3.71)
“ il AN JE—

1

€ -Ty

Hence we need to find the real and imaginary parts of > (k, €).

To do this, we imagine 8 is finite to start with, then take the limit & — 0.
Multiplying numerator and denominator of the integrand of > in (3.69) by
w—¢;—id we find for the real and imaginary parts of 3 (k, ¢,):

a1 |Wal* (e —€)
27)® (& — €)* + 82

Re> (k, &) =£Wu+hm( )

N (N LWl
=g (‘)P Q27) (e~ €) 672
1 k = —| a1 Wul? 8
m3(ke)= alﬂ( ) @ )Jl il (6 — €)* + 82
dl
_17( ) 2 )3|W,.| (e — €). (3.73)

In (3.72), P stands for ‘principal part’. (We will show why the limit in (3.72)
is a principal part by illustrating with a simple case, the function 1/x. Using
the usual definition:

_“E'I?,U jdx}_lnm{ln( —8)—In(—a)+Inb —In8)=Inbla
(3.74)

Using the alternative definition in (3.72):

+d +b

(x?)
P -“lﬂjd"xz 5 a"é*_[xz+sz

-a

=lim $In(x* + 8%)|® =Inbja)
(3.75)

In (3.73) we have used the ‘squeezed Lorentzian’ definition of the 8-function.
The results (3.72, 3.73) are usually obtained with the aid of the so-called
‘well-known theorem from complex function theory’, (see, e.g., Dennery and
Krzywicki (1967), p. 64),

|
x+id

=pP ! — iwd(x) (3.76)
x
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which is short for

def(x)  (dxf(x)
,[x+i8 _PJ. x

- i f dx f(x) 8(x). (3.769

This can be applied in the present case by noting that the integral in (3.69) may
be written in the general form

A , AG,6,8,..)
faor B_—_(l ¥ =[d$ [ dosine a1 T OB

where /, ¢, 8 are the polar coordinates of 1 and the dots ... refer to all the other
variables. Only the l-variable is relevant here. If we let x=B(/) so /=B B-(x)
then | dl may be written in terms of x, allowing (3.76) to be used. Transform-
ing back to 1 again after this is done yields

AQ,. AQ, ..
Jd’I—H'—s jd=1 —urfd’lA(l, )8[B(, ...)]
(3.76"

Applying this to 3 with w=¢, gives just (3.72), (3.73).
Hence, placing (3.72, 3.73) in (3.71), we find for the electron energy and
lifetime:

N N d*l |W,|?
o = ek+gw..+( )P oy . I I 377
d3l
( )I(z )3 I Wlkl S(Gk - El) (378)

Equation (3.77) is just the result obtained from second-order perturbation
theory. Equation (3.78) is what comes out of applying the ‘golden rule’ for
transition probabilities, i.e., 7! is just the transition probability/sec for the
electron to jump from state k to I, | W] integrated over all final states I,
subject to conservation of energy as expressed by the 8-function. (For a
review of electrons in disordered systems see Leath (1970). The method above
is applied to the case where the impurity distribution is not completely random
but has ‘short-range order’ by Woolley and Mattuck (1972).)

Further Reading

Feynman (1965), chap. 1.
Bjorken (1964), §6.2.
Feynman (1962), p. 168, §2.
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Exercises

3.1 Consider a one-dimensional system with an unperturbed Hamiltonian such that
U(x} in (3.4) is a square well of width a with infinitely high walls, i.e., U(x)=0
for 0<x<a and U(x)=« for x<0, x>a. What are the cigenstates ¢,(x) and
energics €, for this system? Write out the free propagator and its Fourier
transform for this system.

3.2 The system in Ex. 3.1 is acted on by a hypothetical external perturbing potential
V(x)=Bx(p*2m+ U(x))?, where U(x) is defined in Ex. 3.1. Calculate the
transition amplitude from single particle cigenstate ¢,(x) (calculated in Ex. 3.1)
to ¢.(x) under the influence of the perturbation.

3.3 Write out the diagram series for the propagator of the system in Ex. 3.1, with
the perturbation in Ex. 3.2 and evaluate it by summing to infinite order (assume
the propagating particle is the only particle present).

3.4 What is the quasi particle energy dispersion law and lifetime in the above
system?

3.5 Carry out the Fourier transform of the first-order terms in (3.30) and show
that you get the corresponding terms in (3.31).

3.6 Use (3.53) to verify that G satisfies the equation of the Green’s function (3.51).

3.7 We have a random distribution of ions with a potential such that W,,= W/, f;,
where £, = 1 for |p| < a and f, = 0 for |p| > a. Show that the energy and reci-
procal lifetime of an electron propagating in this sytem are

.k (N N\mw? k {a+k
€§ = +(£—?)W+(!—2)-"—2[-—a+§ln(;—_—k-)] fork<a

for k> a, where k = |K|

= fork>a

What is the effective mass in the limit k<a?

3.8 Write (3.36") with lines labelled in (k, ¢)-space. (Answer: see (10.15).) Translate
into functions and show that you get an integral equation of form (3.56).

3.9 Consider the fourth-order diagram (drawn on its side to save space):

k P q T [
p = (DD~
where j # /. Calculate its average value, using the same technique as, e.g., in

(3.63) or (3.65). Show that this is the same result as you get from applying
Table 3.2 to the last diagram in (3.66).



Chapter 4

Quasi Particles in Fermi Systems

4.1 Propagator method in many-body systems

We have thus far defined the quantum Green’s function propagator for
f2> 1y, shown what it looks like for free and quasi particles, and evaluated it
by partial summation for the case of a single particle in an external potential.
In this chapter, the technique will be generalized to many-body systems.

The starting point will be a system consisting of N non-interacting fermions
in an external field. This is really a fake many-body system, ‘since, as
pointed out in chapter 0, if there are no mutual interactions between particles
the problem is actually only a one-body problem. Nevertheless, such a
‘trivial” system paves the way for the bona fide many-body case. First, it
shows us how to describe Fermi systems very simply in terms of a few particles
above the Fermi level, and a few removed particles, or *holes’ below. Second,
it allows us to introduce the language of the many-body problem, i.e., * occu-
pation number formalism’ or ‘second quantization’. We won’t really start
talking this language until the second half of the book, but it helps to learn
some of the easier words in it now. Finally, it shows us how to extend the
definition of the propagator to the case where 7, <t,. This is the time domain
where we have the apparent paradox that the particle is observed in the
system before it is put in! In this case, the Green’s function turns out to
describe the propagation of removed particles, or ‘holes’, which are repre-
sented diagrammatically by a downward-going arrow ¥.

As an illustration of a real many-body system, we will take a Fermi system
with interaction between each pair of particles (no external potential).
Examples of such systems are N electrons or nucleons in a macroscopic box.
By introducing a special diagram: }ww( for the two-body interaction, it is
again possible to represent the propagator for this case as an infinite series of
diagrams, which may be evaluated approximately by partial summation.
Some of these partial sums are listed in Table 4.1.

The Hartree and Hartree-Fock are the crudest of the approximations and
yield quasi particles with infinite lifetimes. The RPA yields the energy and
lifetime of quasi particles in a high-density electron gas, while the ladder
approximation is good for low-density systems like nuclear matter. Only the
Hartree and Hartree-Fock will be discussed in detail in this chapter; the

latter two are in chapter 10.
64
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Table 4.1. Some important partial sum approximations

Types of diagrams

summed over Name of approximation
Bubbles Hartree
Bubbles and open oysters Hartree-Fock
Rings Random phase approx. (RPA)
Ladders Ladder approximation

4.2 Non-interacting Fermi system in external potential: particle-hole picture

Let us first talk about the particle-hole way of describing Fermi systems.
Suppose we have a single particle in a potential U(r), with energy eigenstates
éi(r) (=, bpy---) and energies given by (3.4) (see note on notation after
(3.5)!). The energy levels may be represented as in Fig. 4.1, where for sim-
plicity the system is assumed non-degenerate.

The ground state of the single particle has energy ¢,,. If we now put N—1
other particles into the system (with no mutual interaction), as for example
when filling up atomic energy levels with electrons, we find that by the Pauli
principle there can be no more than one particle in each state. The lowest
energy for the whole system will occur when each state is filled in turn, starting
from the bottom, as shown in Fig. 4.1(a) for the case N=5. The highest filled
single-particle level is called the Fermi level, and has energy ey.

In the case where U(r) =0, the particles are free, and the k-subscript means
momentum, or, more precisely, wavenumber. Then, in the ground state, the
free particles fill a sphere in k-space having radius ky=+/(2me), where kg
is called the Fermi momentum. The filled sphere is called the Fermi sea. The
surface of this sphere is the Fermi surface. 1f U(r)#0, then k is just a set of
three indices (we are neglecting spin for simplicity) which in general can no
longer be interpreted as momentum components. The Fermi surface is then
no longer spherical and kr becomes the vector kz. (Any reader unfamiliar
with the above should see Raimes (1961), chap. 7.)

The various excited states of the system are formed by removing a particle
from a state below the Fermi level and placing it in a state above, as shown for
example in Fig. 4.1(h). The empty state, e.g., the state py in Fig. 4.1(), is
called a ‘hole’. This is just the hole defined in connection with Fig. 0.10,
except that here it is in ‘p’-space instead of real space.

To avoid the strain of drawing all the particles which were not transferred
in forming the excited state, it is convenient to refer everything to the ground
state, Fig. 4.1(a), and just record changes from the ground state. To draw this,
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we remove the filled Fermi sea from the picture, yielding Figs. 4.1(c) and
4.1(d). This is called ‘ particle-hole description’. Note that the Fermi sea is
physically still present—it has only been removed from the drawing of the
system,

—— g — —e—
Py _— _

Ps ———— —_— —_— —_—

ke=ps —@—es2er —@— 6 @ —— o —— ¢
s —e— —e— —_ e
Py —e— —_—a — —O—
PP —@—e —@— _ —_
P—O—e¢ —O—

(2) Ground (b) Excited (¢) Ground (d) Excited
state state state state

Ordinary picture In particle-hole picture

Fig. 4.1 Non-interacting Fermi System

Observe that the *hole’ in Fig. 4.1(d) is not the same as that in Fig. 4.1(b),
since a Fermi sea particle has been removed from the empty statein p; in order
to produce this new type of hole. That is, the hole in Fig. 4.1(d) is a *minus
particle’ or ‘anti-particle’ rather than just an ‘empty place’. Thus it is
analogous to a *positron’ in Dirac’s electron theory. This new type of hole can
also be defined in position space instead of ‘p’-space if we imagine that in
Fig. 0.10, the undisturbed electron gas (coloured grey) is removed from the
entire figure, including the empty places (coloured white) where the old holes
are. Thus, each of the empty places will now be coloured ‘minus grey’
(evidently a job for the surrealist painter Salvador Dali!) which indicates the
presence of an anti-particle.

Note that ‘particles’ in the new sense exist only above the Fermi surface.
In cases where there is a possibility of confusion, we will distinguish between
‘particle-hole’ type particles and ordinary particles by writing the ‘p’ in
italics, thus:

particle: particle in particle-hole sense. Exists only above Fermi
surface.

particle: ordinary particle. Exists above and below Fermi
surface. 4.1)
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Since a hole in state ¢, is actually removal of a particle from the system,
the hole represents energy e removed. Hence the hole energy is negative
and we have

eole = — ¢ (4.2)

The shape of the hole wave function in space will be exactly the same as the
shape of the wave function of the removed particle. This is analogous to
removing a single piece from a completed jig-saw puzzle: the ‘hole’ thus
created in the puzzle has exactly the same shape as the removed piece. Thus
the time-dependent wave function for a hole in state ¢, is (see §7.5, just after
(7.77) for rigorous proof):

l;l’(f)hme = (ﬁk{’—‘(_““, €, < €f. (4.3)

If we now associate the sign change in the €, 7 term with the f instead of the ¢,
the hole may be viewed as a particle moving backward in time. This should
not be regarded as theoretical grounds for constructing a time machine, but
simply as a convenient mode of description. It was originated by Feynman
in his theory of positrons.

4.3 [A primer of occupation number formalism (second quantization)]

(This section can be skipped on first reading!)

Although we shall not make any essential use of it until after chapter 7, it
is a good idea for orientational purposes to inject a few words here on the
occupation number formalism or ‘second quantization” as it is often called.
This formalism is a sort of ‘census-taking’ notation which is extremely
convenient for keeping track of what is going on in a many-particle system.
The details are in chapter 7.

The total wave function for the ground and excited states of a system of
non-interacting particles is, (see appendix (%/.3)), the product of single-
particle wave functions. However, because we are dealing with identical
fermions, this product must be antisymmetrized and the proper wave function
is the Slater determinant

1 ‘f’kl(l'l) s ‘f’k!{l'w)

¢’k.,.....&-.~(?h - N) \/{N)

: - (4.4)
| ralr) - - Pry(rn)

where the ¢,'s are the single-particle states of (3.4). If the particles are allowed
to interact with each other, or with an external perturbing potential, then the
exact wave functions of the system are no longer (4.4) but a linear combination
of @’s thus:

Yy, 0fy) = 2 Ak......ku(pkh....ky(rls‘-'!rN)- (4.5)

Boeean BN
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Thatis, the ®;, . ., for the non-interacting system are the basis states used
to describe the interacting system.

Now these are rather clumsy expressions to carry around, so it would be
desirable to have a more compact way of writing them. This may be gotten
by noting that since all particles are indistinguishable, the essential informa-
tion in (4.4) is just how many particles there are in each single-particle state,
Therefore, we could equally well specify the state of the non-interacting system
by writing P as

¢’(|. ooy kN(rl’ .. "rN) = ¢ﬂp|o’lmn R TS .(rl’ o0y rN) (4'6)

For short, we shall represent this as
L [[9Y FROURY FE (4.6")

meaning: n,, particles in state ¢, n,, in ¢,,, etc., where n,=0 or | by the
Pauli principle. This is called ‘occupation number notation’. It is similar
to the shell notation for atoms, where (15)2(25)%(2p)! means two electrons in
the 1s state (one in the spin up and one in the spin down state), two in the
2s state, etc.

For the ground state in Fig. 4.1(g) we have in occupation number notation

¢kx=m.kz-=pz. ky=py. kampy, ks=ps = “m’ ]m' Ipv ]m’ lw Ops’ 0,,, om' -+40,0,...5.

4.7
The excited state in Fig. 4.1(b) is

¢"l"Ph"l"’Ph ks=pa, ke=ps, ks=ps = lllm levom’ ch’ lm' opc’opv' ]m' opo’ oD (4‘8)

For brevity, from now on we will drop the p's and just use the numerical
subscripts. Then
b= Inl,nz,ng,...,n,....). (4.9)

For example, (4.7) becomes
¢0 = Ill’ 12: 139 l4v 15.06,07,08, .. ->-

It is important to note that just as the original Slater determinants form a
complete orthogonal set of basis functions, so do the states in occupation
number notation and we have

WMyeee By iy eonyy > = fd’r,.....d’r,vx
X (p:.'. Y [N .(rl: LR rN) x

x¢n|. Y TN .(rh te -'rN)
= Bpmpere o Brmpe e (4.10)
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Just as in (4.5), the |m,..., m;,...> may be used as the basis states for
describing the interacting system’s wave function thus:
Y= 3T Au. .. l0eeon 0 4.1
RlyeeoMigeee
Now in most cases of interest, only a few of the particles change their
position from that in the ground state, since we deal primarily with only
weakly excited states. Hence, carrying along all the unchanged 1’s in a wave
function like (4.8) is about as useful as taking along every picce of clothing
one owns, on a two-day trip. The excess baggage may be avoided by regarding
the ground state (4.7) as the ‘zero’ or so-called ‘Fermi vacuum’ of our
description, and recording in the |...) only changes from the ground state.
Thus, the ground state is written as though it has no particles in it:

@, = |0> (‘Fermi vacuum’) 4.12)

corresponding to Fig. 4.1(c). The excited state of Fig. 4.1(b) according to this
viewpoint is a particle (see (4.1)!) above er and a hole below, as shown in
Fig. 4.1(d), with the corresponding state vector

@ = |1519 @.13)

where 4, p, stand for hole, particle. This is called ‘particle-hole’ notation.
Quantum mechanical operators have a new form in the occupation number
formalism. Imagine that we have initially a single-particle system in its
lowest energy eigenstate ¢,(r) (=¢,,(r)). In occupation number notation

this is
¢inillnl = ¢1 = 11000...). (4.14)

If the system is now acted on by some perturbing operator V(r,p), it may
undergo a transition, say, to state ¢, so that

Ppoat = $3 = [001000...5. (4.15)

Thus, when written in this formalism, the effect of the operator V appears as
the destruction of a particle in ¢, and the creation of a particle in ¢5. This
suggests that if we define two primitive operators—c, (which is short for ¢,,),
which destroys a particle in ¢,(=4,,) and ¢!, which creates a particle in ¢,—
it may be possible to write all operators as various combinations of these
primitive ones.

This is indeed the case. Look first at the detailed expression for the effect
of the ¢'s:

ciimung, ..ony . D> = nny,ng, . m—1,..0

C?l Inl,nz,. oy Mpyes > = (l —n,) |n1,n2.. oM+ 1,. ..> (4.]6)
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where the factors in front mean that ¢, cannot destroy a particle in ¢, if there
is no particle there to start with, and ¢!, cannot create another particle in an
already occupied state. (A factor of + 1 has been left out for simplicity—see
chapter 7.) For example:

c;|11111000...> = |{1101100...)

¢2|0000...> =0

6 [00...1,...> = §,4]00...>

§|11111000...> =0

100...> = [0100...>

c},100...0,...> = |00...1,,...>. 4.17)

In the particle-hole notation, it is necessary to introduce hole creation and

destruction operators, b}, b, and similarly particle operators a}, ay, as follows:

if k, < kg, then ¢, destroys a particle under the Fermi level, thus creating a hole.
Hence

fork; > kp, ¢, =a, (particle destruction operator)
k; < kg, ¢; = b} (hole creation operator)

and
fork; > kg, ¢} =a} (particle creation operator)

k; < kp, ¢4 =b, (holedestruction operator). 4.18)

This change to particle-hole operators may be expressed compactly as the
transformation
¢ = ekl-kr a; +0kr-—kc bYI

C‘; = Ok,_,,,a',+ 0,,,_,‘, b, (4.19)

where
0,=1forx>0; 8,=0forx <0.

Simple examples of how the particle-hole operators work are:

alloy = 15,  a|1D = 8,00,  byal|12) = |12, 15, 1),
BYI0> = [1,  by|1h> = 5,105,  a;|0> = 5,|0) =0,
a1 =0, bjthH=o0. (4.20)
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In order to express other operators in terms of the ¢'s (or a’s and b’s), it is
simply required that: if @°" is the operator in the old notation, and 0°* is
the same operator in the occupation number (or particle-hole) formalism,
then 0° must give the same matrix elements when sandwiched between
states in occupation number (or particle-hole) formalism that ©°" gave when
sandwiched between Slater determinants. Consider first a one-particle case,
where the Slater determinant is just ¢,. Then we must have

€00...1,...]0°¢|...1;...0 = {¢;| OV |$p
(= [#rwomemar=0,). @21
A bit of Buddhistic contemplation shows that
0 = ¥ O0pnclc, (4.22)
does the trick, since "
Colpaoeeel 1,0 = "Zm@,,,,,(... L. ehen] 000
= E Opn im Sy = Oy 4.23)

where (4.17) and (4.10) have been used. Equation (4.22) can be converted to
particle-hole formalism by (4.18). This result turns out to hold also for
systems with an arbitrary number of particles.

The Hamiltonian for an arbitrary system may be expressed in cccupation
number or particle-hole formalism. Suppose the system Hamiltonian in old
Neanderthal notation describes a system in an external perturbing potential:

Hhans. = 3, [Z+ve] +5 v @20
[ S NEUUT W ——
H, H, (perturbation)

and the single-particle states ¢, satisfy

2
[2an+ U(r)] b = ex i (4.25)
Then it is found that (see chapter 7):
Hy=Ygcle= 3 ala+ T ebibl
x k>ke k<ke

Hl = E anar'nan"' z anatnb;"' E Vnwbman+

m,n>kp m>kp m<ke
n<kr n>ky
+ 3 Vbnbl. (4.26)

m,n<ky
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For a system of mutually interacting particles with old Hamiltonian

N7
Hyg = Z It 2 V@) 4.27)
——— [ —)
Hy H) (perturbation)
we find
Hy= 3 ekaIak+ > ekbkbl: with € = klem
k>kr k<kp

H=% Y Viwmdda,a+t ¥ Vimalala,bl+

kb, m,a>kp dom>kp

na<ky
++d X Vi bbbl 5} (4.28)

k. t.m,n<ky

with V.., as defined in (4.42).
It should be carefully remembered that in the case of systems with inter-
action, the wave functions are given by the linear combination (4.11).

4.4 Propagator for non-interacting Fermi system In external perturbing potential

Up to now we have worked with a propagator defined only for positive
time differences, i.c., for #,>7,. This was adequate for solving the super-
simple quantum pinball problem, but fails when we try to use it on more
complicated cases. To treat the general situation, it is necessary to extend
the definition to times 7, <¢,. This of course sounds peculiar, since it seems
to describe a particle propagating backward in time. However, as explained
in connection with (4.3), such ‘time-machine’ particles are not science fiction
but simply removed particles or *holes’. That is, a particle moving backward
in time from #, to 1, (1, < #;) is just a hole moving forward in time from 7, to 1.

This leads us to the definition

iGlka, by t2= 1)y n, = IG (ko by, 13— 1y)

= (—1) x probability amplitude that if at time ¢, we
remove a particle in state ¢,, from (i.e., if
we add a hole in ¢,, to) the interacting
system in its ground state, then at time ¢,
the system will be in its ground state with
a particle removed from (i.e., an added

hole in) ¢, (4.29)
Analogous to (3.3), for £,> #; (but not for t,=1,!), G~ is defined so that
iG(k2, k1, 12— 111,51, = 0. (4.30)

Thus, G~ is just the hole propagator. (The factor of (—1) here compared
with (3.1) comes because we have fermions—see chapter 9. Note that G-
is called an ‘advanced’ propagator or Green’s function.)
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The use of the word hole in the sense of ‘removed particle’ is more general
than the way it was used in §4.2. There we dealt with the non-interacting
system, so a particle could be removed only from k <kp and therefore all
holes had k<ky. However, in the ground state of the interacting system, by
(4.11) there is a finite probability of finding particles above k. Hence we
can remove a particle or create a hole (in this more general sense) above
k=kpg. If the ‘hole propagator’ G~ is, as above, defined as being the propa-
gator for t, <1, then the free Gy has k <k but the exact G~ can have any k.

In the case of a free hole, an argument like that in (3.8) applied to the
single hole state in (4.3) yields (note that (3.8) and Gy in (3.9) describe particle
propagation, since €, > €x)

if, et for g, 1 e <e
Gstk, ty—t;) = {"Vnmne i 2 F I, € <e€p

i, fort, =1, (see(9.2),(9.4),endof appendix F) (30
with Fourier transform
1
Golk,w) = - €, < €f. (4.32)

w—e,—id’

Suppose now that we turn on an external perturbing potential ¥(r) (this
is distinct from U(r) which is part of the unperturbed Hamiltonian), and
wish to find, say, the single-particle propagator G*(k, ky,t2—1;) or
Gt(ks, ky,w). This will be the sum of the amplitudes for all the ways the
particle can move through the system interacting zero or more times with
V(r). Previously, we wrote down the series for the propagator and translated
it into diagrams. Now we turn the trick and pull the hat out of the rabbit,
i.e., write down the diagrams first, then translate them into the numerical
series. To do this, we need a modified dictionary, analogous to Table 3.1
with downward directed lines for the hole propagators, as shown in Table 4.2.
Observe the reversed time order for the hole propagator diagrams! This is
of course due simply to the fact that r, <t for holes. The reason why these
diagrams are labelled * Goldstone method’ is discussed in §9.5.

The interaction amplitude, V,,, merits some discussion. It is given by

Vio = [ 1) V(e p) (o). 4.33)

The four possibilities shown in Table 4.2 mean: (a) scattering of a particle
(remember (4.1)!) from state ¢, to ¢, (b) the potential scatters a particle out
of state ¢, where €, < e, into state ¢, €, > e, thus simultancously creating
a particle in ¢, and a hole in ¢;, (¢), etc. [Note that these four possibilities
correspond to the four interaction terms in the particle-hole Hamiltonian
for this case (4.26).]

Of course, the particle which emerges in state k after interaction, is not
necessarily the same particle which entered in state 1, since this has no meaning
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in a system of indistinguishable particles. Nevertheless, for the sake of verbal
simplicity, it is customary to describe interactions as if particles were dis-
tinguishable; the reader should always bear in mind that this is just a manner
of talking.

With the aid of Table 4.2, the diagrammatic series for G* may be drawn as
the sum of all possible different diagrams which can be built up out of sequences
of interaction dots connected by particle and hole lines, beginning in state k,
and ending in state k,:

1 2% 93 12 15

f
k2 kz k2 , kz kz
{ k1 P
= + 01 + 1q + 1 + + + + oo
k ke bk k S
1 I ] kl 1 ! kl

h L 4 h 4 (4.34)

o @ 3) @ ® ©

(Note that the first diagram disappears if k5 ky, by (3.9).) The physical
significance of the hole lines in the diagrams may be understood by looking
at the fourth diagram. A particle enters the system in state k, (=4,) at
time ¢;. At time ¢’, the potential knocks a particle out of the state / into state
k thus creating a particle in k; and a hole in /. At time ¢, the particle in &, is
knocked into the hole in / causing mutual annihilation; the particle in %,
continues propagating until ¢,.

It should be pointed out that many diagrams in this series violate the Pauli
exclusion principle. For example, when k,=k,, in diagram 4 we have two
particles in the same state, k,. The reason why such diagrams must be
included is discussed at the end of Appendix G (see also §4.6).

[1t is amusing to do the ‘book-keeping’ on these processes by means of the
particle-hole notation, with H, as in (4.26). We have the sequence:

(1) Put in particle in state k, at time ¢,:

al, 0> = |13,>
(2) At¢’, one of the terms in H, acts on system creating particle in k,, hole
inl:
Vk; Ialz b‘; I li]) = Vk;’ l lill l’;’ 1;;)
(Note that if k,=k,, we have a},|13,,19> which equals zero by (4.20).
Nevertheless, the diagram which includes this process (number (4) in

(4.34)) does not have the value zero! It is, as just mentioned, an
exclusion-principle-violating diagram, and it must be kept (see §4.6).)
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(3) Atr, H, acts again, destroying hole in /, particle in k,:

Vi 6163, [V, 1115,, 15, 18] = Vi Vi, |12
(4) At r,, take particle out:

Vit Vi | 180] = Vi1 Ve, 10).] (4.35)

The above diagram series may be written out in words by means of the
dictionary Table 4.2. This gives in (k, )-space (cancel the i's):

Gty ki, t2—1y) = Gilkey, 1,—1y) ks ks

+ o
+ f dt Gi(ka, t2—1) Viy i, Gk, 1= 1) +
=

+ 3 _J: d:_j: dieos (4.36)

or in (k,w)-space (leave out w’s for brevity):
GHlky, ky) = 8, 5, G§ (k) + G (k1) Vieyz, G (k2)
+,,§ Gg(k1) Ver, G3 (@) Vi, o G k) +
4

+‘ 2.’2 G3(ky) Vi, Go (1) Viy 1 G (k) 4+ 4.37)

where we have remembered to sum over all possible intermediate states,
4, 1, etc., since, for example, the single diagram with q on it actually stands for
an infinite number of diagrams, each one with a different value of q. (The
notation g >k is short for ¢, > ¢, etc.)

[The time integrations in (4.36) are automatically restricted by the d-func-
tions found in G* and G~. Thus, in the third diagram in (4.34) since all lines
are particle propagators, we see that f; <t<t'<¢,. In the fourth diagram,
since the [line is a hole propagator, ¢ must be > ', and we find: if n<t<t,
then — <¢’<t, while if 1, <t < w, then —w <1’ <1, (Strictly speaking, in
the Goldstone method, diagrams are *‘time-ordered’ (see §9.5) so that for
diagram (4), t, <t’<t, t; <t<1,. There will be other diagrams like (4), but
with — o <’ <1, and/or 1, <1< , which may be added to (4) to obtain the
stated region of integration.)

However, when the time integrations here are actually performed, one is
dismayed to discover the page jumping with exponentials oscillating at «
just as in (3.12). The remedy is to change the integration limits from + o to
+ o(l — i) where 7 is a positive infinitesimal like the 8 in (3.12'): it is such
that 9 x w=c0. The justification for these new limits lies in the rigorous
derivation of the propagator expansion (see Appendix E, especially (E.11)).
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One might imagine that these modified limits would cause trouble in
Fourier transforming from (4.36) to (4.37). That is, we would expect that the
limits +  were required in order to get the 3-functions, like §(w—w’) in
(2.23). However, one finds that the sort of integral which arises, i.e., of form

T
f drexp (idet),
Ty

where Ty =—o(l —ip) and T, =+ (1 —iy), is also a legitimate 8-function,
s0 this causes no difficulty.]

And now an easy example showing how to evaluate G* by partial summa-
tion. Suppose ky=ky=k (k>kg), and the potential is such that V;,, and
Vi (m < kp—remember this is short for ¢, < ¢f) are large, and all the other
V’s are small. Then the propagator in (4.34) may be approximated by the
sum of the following diagrams:

k,w =
(4.38)

1
_’n\\.

or
1
I+ -_—
T = G = Ve Vs Gt )
1
_ . (4.39)
. I Vkml2
w-atid) -

'This result is evidently not of the quasi particle form (3.16). However, by
(3.14), the poles of G* give the excited state energies of the perturbed system.
Thus, dropping the i8’s (they have no significance in this simple calculation)
yields

|

2
w—e =LVl _ o (4.40)
W—E¢€,
:which gives
’ €t €,
w = € = S+ 3/ (= en)+ 41 VimlY
¢ €k+€m

n =~ 75— ~3Vi(ex—€m)*+ 4| Viml ). (4.41)
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These reduce respectively to e, e, in the weak interaction case, when ¥;,,~0,
and are also valid in the strong interaction case when ¥}, is of the order of
or greater than the separation between the levels, ¢,—¢,. Note that it is
necessary to go to infinite order to get (4.41). If we just go to any finite order,
the poles are still at the unperturbed energies, ¢,, €,,!

The result (4.41) will be recognized by experts as just the formula for the
new energies of a single particle two-level system placed in a perturbing field.
Of course, we could have predicted this result from the beginning since we've
really got a single particle system here, because by assumption the particles
don’t interact with each other. Again, as mentioned in connection with the
quantum pinball game, this should not be regarded as a demonstration that
the ‘powerful’ diagram technique merely provides a complicated method for
getting trivial results, but rather as a super-simple illustration of the general
principles.

In the next section we go on to the real many-body problem.

4.5 Interacting Fermi system

Imagine now that we've got a genuine many-body system consisting of N
fermions interacting by means of two-body forces V(|r;—r)|), depending just
on the interparticle distance |r,—r;|. For simplicity, assume there are no
external fields, so that the single particle states are just ¢, =2 texp(ik-r)
with €, =k2/2m as in (3.4) and (3.5). Our object is to construct diagram-
matically the perturbation expansion of the propagator for this system,
evaluate it by partial summation and examine the result for quasi particle
behaviour.

The first thing we need is the transition probability amplitude for a process
in which two particles, one in state ¢, the other in state ¢, collide with each
other and are scattered into states ¢, ¢, respectively. Analogous to the
interaction amplitude V¥, in (4.33), this is just the matrix element

Vi = [ &t [ 30 $HOH@) V(=) 6 $slt) = Viggm.  (4.42)
As we saw in (1.8) in (r,7)-space, such an interaction may be represented
diagrammatically by a wiggly line:
k 1

where the left intersection or * vertex’ shows the scattering of one particle from
m to k, and the right vertex shows the scattering of the other from n to L
(Note: the majority of writers draw the above interaction with a dashed line;
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However, we shall always use the wiggle (4.43).) [The 4 comes from H, in
(4.28). It is eliminated by (4.60).] Using the particle-hole description, this
may be drawn in more detail, thus:

1 k 1 k m 1
M wn Wn ceen kgcvwvw{:l. (4.44)
n m

(a) ©®) ©

k

Diagram (@) just pictures ordinary scattering of two particles from states
m,n to k,1. In (b) a particle in ¢, collides with a particle below the Fermi
surface in state ¢,. It knocks the particle out of ¢,, thus creating a hole in ¢,
and a particle above the Fermi surface in state ¢;. At the same time the
original particle undergoes a transition to state ¢;. And so on. [Note that
the diagrams (4.44) correspond precisely to the interaction terms in the
Hamiltonian for this case, (4.28).]

p®- It is extremely important to note the labelling convention used in
Viima: k=line out of left vertex, 1=line out of right vertex, m=line into left
vertex, n=line into right vertex. A mnemonic aid is to remember the tango
dance step: left out, right out, left in, right in.

The interaction V(jr—r’|) conserves linear and spin momentum since it
depends only on |r—r’|, therefore cannot move the centre of mass of the two
colliding particles or flip their spins. Thus

k+l=m+n; oy+0;= 0,+0, (4.45)

If the arrows in (4.44) are interpreted as giving the direction of ‘momentum
flow’, then (4.45) shows that the momentum flowing into the interaction
jequals the momentum flow out. It is convenient to incorporate this into the
labelling as follows:

m-q n+q
}'M')‘MN{ = -ixiVm—q.tﬁq.m.n
m q n
= —ix1V, (4.46)

where the form ¥, is justified in (7.70). (Observe that the momentum transfer,
q, in (4.46) is defined as momentum into left vertex minus momentum out of
left vertex. That is, for matrix element V.., the momentum transfer is
qg=m—k(=1—nby momentum conservation). The element ¥;,n, correspond-
ing to diagram (4.43) twisted through 180°, has momentum transfer
q'=n—1=—q. Hence, since by (4.42) Viinn=Vium> We have V =V_.) All
this implies that no matter how complicated the chain of collision processes is,
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the momentum at the beginning of the chain is equal to the momentum at the
end. This can be seen, for instance, in the second-order diagram:

173 k q
"
k-q¢ 1+q 1 (4.47)
t
n Kt o4

This is analogous to the flow of current in a network without sources or sinks,
so that the flow of current into the network=current out. Hence it is only
necessary to deal with propagators G(k,1, 1, —¢,) such that k=1,

It is important to note here that although the collisions conserve momentum,
they do not conserve energy. For example, at the lower interaction of (4.47)
we see that the energy flow into the interaction (in units of #2/2m) is k2412,
while the energy flow out is (k—g)%+(/+4)%. Hence we are dealing here with
virtual scattering processes, not real ones.

We may now construct the perturbation series for the single-particle
propagator, G*, as the sum of all possible different diagrams which can be
built up out of sequences of interactions (4.43), connected by particle and
hole lines, with a particle entering the system in state k and leaving in k.
One such sequence is just that in (4.47). It depicts a particle in k being scattered
into k—q and simultaneously knocking a particle out of 1into l+q (.e.,
creating a particle in 14+q and a hole in I). At later time ¢’, the particle in
k —q knocks the particle in 14q back into the hole state 1 (thus annihilating
the particle-hole pair) and is itself scattered into state k. This is a second-
order process, because it involves two interactions.

There are also several first-order sequences which can occur. Although
these are simpler than (4.47) because they involve only one interaction, they
are more difficult to interpret physically. Let us see what first-order processes
can be constructed using the interaction in (4.44). Since one particle enters
in k and one leaves in k, by conservation of momentum the only possibilities
are

k 1k 11 kK 1,
k: o il k: il 1: " ::k 1: :
1 3

k
k
@ @

1 X Ik k 1 k1
k: ::1 K 1:: (k vk @)

) (6) ™ ®
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Such diagrams as

k k 11
N ; :
k}vwvvl\;\l N k}'\'ﬂ y etC (4 49)

are not allowed since they have a particle and a hole in the same state, 1, which
is impossible—by definition, particles exist only above kp and holes only
below. It can also be shown that diagrams (1), (3), (5) and (7) above do not
occur. [The argument for this requires use of the interaction Hamiltonian,
Hy, asin (4.28). The term in H, corresponding to diagram (1) is

Viwiahalaa,. (4.50)
When this acts on the state with one incoming particle in ¢,, we find
Vimaalagza)|1§) =0 (4.51)

by (4.20). Diagrams (3), (5) and (7) are similarly eliminated. Note that the
term in H, corresponding to diagram (2), for example, is

Vinibral a; bl (4.52)
which gives, by (4.20):
Virbral ap bl 112> = Vi, |18 # 0.] (4.53)

(Note: Let us not make the mistake of thinking that in diagrams (1)-(4) in
(4.48), “nothing has happened’ just because the particles and holes emerge
in exactly the same momentum state in which they entered. This would only
be true if we were dealing with classical particles. In the present quantum
case something has indeed happened, i.e., two particles in states k,l enter and
interact with each other, but instead of being scattered into new states different
from k,l, they are simply scattered into the same states, k,1. This is the same
as what occurred in the quantum pinball game, where the potential Vit
scattered the particle from the state k into the same state k.)

The possible first-order processes may then be drawn using (4.48)—(2), (4),
(6) and (8). This can be done in only one way, e.g., by in each case attaching
the outgoing 1 line to the incoming one (otherwise we would have a particle
and a hole entering and leaving the diagram, which would violate the definition
of the single-particle propagator, or we would have to introduce more inter-
action lines, making it a higher-order process). Thus we find:

(a) Bubble diagrams (b)
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7 ) ey
? or or . (4.55)
kY k43 i1k i1k

© Open oyster diagrams @)
(closed oyster appears in (0.23))

The bubble processes can be physically interpreted as follows: a particle
enters in k, knocks a particle out of state 1 (]1] <kf) at time ¢, then knocks the
particle instantaneously back into 1 at time ¢, then continues freely in state k.
Thus the hole which is created in 1 lasts only zero seconds, and there is no
accompanying particle. Of course it is impossible to draw instantaneous
processes like this, and the bubble picture is purely schematic. This process
is also called ‘forward scattering’, since the particle emerges in the same
direction (i.e., momentum state) as it entered. (Note again that by the argu-
ment after (4.53), something has really ‘happened’ in these forward scattering
processes!)

This bubble process undoubtedly sounds so bizarre that it may seem far-
fetched to consider it physical. The fact is that, while in the classical pinball
case, each diagram described a real physical process, the quantum diagrams
describe only what might be called ‘quasi-physical’ processes. This will be
discussed further in the next section, §4.6. At the end of Appendix G, it is
proved rigorously that the bubble is a legitimate diagram.

The open-oyster processes are just like the bubbles, except that a quick-
change act occurs in which at time ¢ the incoming particle simultaneously
(a) strikes the particle in 1, () creates an instantaneous hole in 1 and (¢) is
exchanged for the particle in 1. Diagrams (4.55) are often called ‘first-order
exchange diagrams’, and the process is referred to as an ‘ exchange scattering’.
The instantaneous hole lines in the bubble and open oyster are called * non-
propagating’ lines.

Note that the situation shown in (4.54, 55) is general, i.e., whenever the
interaction (4.43) occurs in a diagram, there is also another diagram possible
in which the two outgoing (or incoming) particles have exchanged momentum.
This is usually drawn thus:

For example, diagram (5) in (4.63) is the exchange of diagram (4).
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Let us see how one evaluates these diagrams. Consider first the bubbles.
Using dictionary Table 4.2 and (4.43):

)

+o ;
lk l: =(-1)3 f di{iGg(k, t—1,)) [—% Vklkl] x
t i<kr <,
k

1, x [iGg( t— 0] x [iG§ (k, £, - 1)], (4.56)

where we have integrated over the ‘intermediate’ time, ¢, and summed over
the ‘intermediate’ momentum, ), as in (4.36). (The extra factor of (—1) in
front comes from the fact that the diagram contains one ‘fermion loop’,
namely (). [A fermion loop is any set of directed lines, in a diagram,
which can be traversed in the direction of the arrow, returning to the start-
ing point without lifting pencil from the paper. For example, the 1,1+ q lines
in (4.47) form a fermion loop.] This is one of the annoying ‘phase factors’
which comes out of the rigorous mathematical development of the theory
(see end of Appendix G).) Note that an additional factor of (— 1) appears
because the propagator line for the bubble is:

iGg(l, t—1) = ixie#x0 = 1, (4.57)

The Fourier transform of (4.56) may be taken just as was done in the
pinball case (2.23). This yields

1 .
ko i
i = (- D{iG§(k, w)}? —-= ¥, (—-1). (4.58)
Ko }__( ) ok, w l<§kp [ 3 klkl]

The (—1) after ¥,y comes from (4.57) and is the value of the ‘non-propa-
gating’ bubble line in (k, w)-space as well as (k, 7)-space. Note that we cannot
get (4.58) just by using the (k, w) side of dictionary Table 4.2! This is because
the bubble (and open oyster) diagrams are special cases.

It should be remarked here that if spin is included, then k is short for k,o
where o is the spin quantum number (see p. 106), and 1=1,0’. For a spin-
independent interaction, (7.70) holds, and the sum over o’ then produces a
factor 2 which multiplies (4.58).

In a similar fashion, the reversed bubble gives

1 k,w i
Y (= 2 ! -1 .
O..'J o (= 1) [iGo(k, w)] l;k’( 2) Vi(=1).  (4.59)
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But by (4.42), Viur=Vuu so these two diagrams are equal. This is quite
general and we may write:

If we are given a diagram, and form a new diagram from it by
twisting one or more of its interaction wiggles through 180 degrees,
then the new diagram has the same value as the original one.
Hence all twisted diagrams may be omitted if we just multiply
(4.43) by a factor of 2. (4.60)

Thus, for instance, of the diagrams

t:z> - ﬁ#; - éi? - (2::i @.61)

it is only necessary to keep the first.
In a manner similar to (4.59), the open oyster gives

FJ pal iGek, )P T (=) Vra(— D). (4.62)
k,tu 1 I<kr

The factor of 2 recommended in (4.60) has been included. If spinisincluded, so
k=k, o0, and 1=),¢’, then for a spin-independent interaction like (7.70), we
find that o’ =0. Hence there is no factor 2 from a spin sum, in contrast to the
case of the bubble (4.58).

Observe that the frequency (or ‘energy parameter'), w, associated with the
propagator line coming out of the interaction in (4.59, 62) is the same as that
entering. This is a special case illustrating the general rule called * conservation
of frequency’. It is the same thing we saw in the pinball model (2.23), (2.25),
and results from the fact that the Hamiltonian is time-independent, so the
propagators depend only on time differences. This gives rise to 8-functions
similar to the 2#8(w’ —w) in (2.23). Conservation of frequency may be
incorporated into the labelling of diagrams in k,w-space, as shown in (4.62")

k,w4 q,c¢
k-q Eg}l+q 4,62
w—e€ LB B+e ( )
k,w q)‘

All momenta and frequencies in this diagram, aside from those entering
and leaving, are called ‘intermediate’. Thus q,] and B,¢ are the intermediate
momentum and frequencies. Note that it is convenient to associate a frequency
with the wiggly line, even though the interaction itself is independent of w.
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M~ Do not make the mistake of confusing the frequency of a line with
the particle energy! For example, in the line k, w the frequency is w while the
particle energy is e, =k?/2m. Also, the frequency is conserved while the
particle energy is not.

Now we can collect the information in Table 4.2, equations (4.43, 57, 60)
to produce an unabridged dictionary for the interacting many-body fermion
system. This is shown in Table 4.3. The whole series for G* is then just the
sum of all possible diagrams such as (4.47, 54), etc. Chapter 9 will show how
to draw all the possibilities systematically, but here we will simply draw a few
representative diagrams, written in (k, w)-space for simplicity:

k,w‘ P
k,w« = 'k,w+k,w + Q + ::D + X +

) @ &) “) &)

©
. . @ .. b@ . G

Such diagrams are often called *self-energy diagrams® since they show the
particle interacting with the many-body medium, which in turn acts back on
the particle, altering its energy (see just after (0.5)). It should be noted that
many writers draw these diagrams lying down, thus:

¢=*+i+§+ﬁ+....
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The diagrams may also be interpreted physically from another point of
view. Look at the diagrams in (k, r)-space at a particular time #;:

At t, we see that besides the bare particle, there may exist in the many-body
system two ‘virtual’ particles plus one hole created by second-order process d,
ortwo particles and a hole created by second-order sequence ¢, and so on, with
the particle plus three particle-hole pairs created during the eighth-order
poodle process illustrating a typical higher-order case. That is, the diagrams
show all the particles and holes which may be kicked up by the bare particle as
it churns through the Fermi sea. Now, since the propagator given by (4.64)
describes quasi particles (as will be proved in chapter 11) it follows that the
diagrams reveal the content of the cloud of particles and holes surrounding the
bare particle and converting it into a quasi particle.
Equation (4.63) may be translated into functions by Table 4.3, giving

Gk, w) = Gg(k, w)+(—1) Gg(k, w)? % Vigo(— D+
P<Kkr

* Gg(k: w)2 E Vkmmk( o [) o (4'65)

m<kp

4.6 The *quasi-physical’ nature of Feynman diagrams

In the classical pinball game, each individual diagram in the perturbation
expansion of the propagator described a real physical process. Using ‘physical
intuition’ based on the analogy to the classical case, we developed the diagram-
matic perturbation expansion for the quantum propagator in a one-particle
system (3.32), and in non-interacting and interacting many-particle systems,
(4.34) and (4.63). Our intuitive methods are, in fact, similar to those used by
Feynman when he first introduced diagrams into quantum electrodynamics
(Feynman (1962), p. 167 ff.).

However, by now the reader is doubtless aware that Feynman diagrams
describe processes which are considerably less ‘real’ than those described by
the classical pinball diagrams. For example, in the case of a single particle in
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an external potential, it was difficult to see how a particle could be scattered
several times by a potential, despite the fact that it was in the potential the
whole time. Later on, in the non-interacting fermion system, graphs appeared
which violated the Pauli exclusion principle. And then, in the interacting case,
we met the simple bubbles which seemed to elude any common-sense physical
interpretation. Finally, we found that higher-order diagrams involved
‘virtual’, rather than real, processes.

Nevertheless, the situation is not as bad as it might seem at first sight,
For, although the individual diagrams in quantum propagator expansions
have unphysical properties, the sum as a whole does not. In fact, the full
propagator, G*, describes an actual physical experiment—for instance, the
elastic scattering of a single nucleon by a nucleus in its ground state (Thouless
(1961), p. 69). This means that the unphysical aspects arise because of the
manner in which we have decomposed the propagator into a perturbation
series. This is roughly analogous to breaking a sentence up into words: the
individual words, even though they are meaningful, are not thoughts in
themselves. It is only when they are put together to form the sentence that a
thought emerges.

Because of the unphysical properties of Feynman diagrams, many writers
do not give them any physical interpretation at all, but simply regard them as
a mnemonic device for writing down any term in the perturbation expansion.
However, the diagrams are so vividly ‘physical-looking’, that it seems a bit
extreme to completely reject any sort of physical interpretation whatsoever.
As Kaempffer (1965, p. 209) points out, one has to go back in the history of
physics to Faraday’s ‘lines of force’ if one wants to find a mnemonic device
which matches Feynman’s graphs in intuitive appeal, Therefore, we shall here
adopt a compromise attitude, i.e., we will ‘talk about’ the diagrams as if they
were physical, but remember that in reality they are only *apparently physical®
or ‘quasi-physical’.

There is still an important question left: the quantum propagator diagrams
describe only quasi-physical processes, whereas the classical pinball diagrams
describe real physical processes. How, then, can we justify obtaining the
quantum series by analogy to the classical case? Evidently, the only satis-
factory answer to this question would be to derive the diagram expansion
directly from the Schrédinger equation. This was done at the end of chapter
3 in the single-particle case. It can also be done in the many-body case, but
unfortunately the argument there is so long and labyrinthine that the average
non-specialist tends to get completely lost in it. It is for this reason that we
prefer to use the intuitive approach in the body of the text, and have postponed
the rigorous derivation to the appendix. However, for those who feel ex-
tremely uncomfortable with intuitive arguments, we offer the following
alternative:
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IMPORTANT

Those readers who wish to see the rigorous derivation of the many-body
diagrams before going any further, should leave the direct path through the
book, and instead propagate along the following detour:

§4.6—>—chapter 7 (second quantization)—~—§9.1, 9.2 (mathematical definition
of propagator)——Appendices B through G (derivation of diagrams. Note:
skip Appendix C, and all sections referring to ‘vacuum amplitude’ or *finite
temperature’)—>—=§4.7—-—etc.—>—

All others should go on from here directly to §4.7.

4.7 Hartree and Hartree-Fock quasi particles

We will now consider the simplest of all partial sum approximations for the
propagator, i.e., the Hartree and the Hartree-Fock. Imagine we have a
hypothetical system with no external potential and with an interaction between
particles which is dominated by forward-scattering processes (i.e., both
particles emerge from the interaction with the same momentum they had
when they entered). We ask for the energy dispersion law of the elementary
excitations (quasi particles) in this case. The procedure will be to calculate
the propagator approximately by picking out the most important set of
diagrams in (4.63) for this system, and sum over this set to infinite order.

Let us first write down the interaction, ¥y, in (4.43, 44). This will be
dominated by a large forward-scattering term, so we have

kamn = 8mk SM VHH+ Wk.‘mn ([II # k: n # l) (4'66)
oGt S Sl

large  small
Thus the most important interaction diagrams are the forward-scattering ones
shown in (4.48 (1), ..., (4)). The diagrams which will dominate the series
(4.63) will therefore be just those in which every interaction is of the forward-
scattering type. A few trials reveal that the only diagrams of this sort are

k k I WIIO
+ ’NJ\OI + k “+ WNO +

14

s F el il (4.67)
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those containing just bubbles, so that the propagator may be approximated
by a partial summation over repeated bubbles (see (4.67)).
Using Table 4.3 and substituting for the propagators, this becomes

: ~ 1
167k, ) = G T =(=T) T Wa-n 49
or GHK, w) = 1 (4.69)

- 3% Viwt+id
I<kp

Comparing with (3.16) reveals that we have here a live many-body quasi
particle with energy dispersion law and lifetime:

G': = €k+ Z Vklkl; T = 1/8 = oo, (470)
I<kr

The quantity 2 Vins is the “self-energy’ of the particle as described just
<kr

after (0.5). If spin is included (see after (4.58)) there is a factor 2 multiplying

Vklkl

This result has a simple physical meaning. First we note that (4.67) has
exactly the same form as the diagram series (3.33) for a single particle moving
through an external potential, with

O =(-D 1§¢ (=) Vi (= 1) “.71)

@P = =iV, 4.72)

Thus, (4.71) can be interpreted as a transition probability for ¢, — ¢4
scattering caused by an ‘effective external potential’, v;. We can find v.q
by writing out (4.71) in detail, using (4.42):

playing the same role as

S Vi = fd’rqs (r){ 5 f |4>,(r')|2V(r—r')dsr'}qbk(r). @.73)
t<kp <kp ,

Vet

Comparing with (4.33) shows that the quantity in brackets is just v.q. Since
|$4(r)]? is the density at point ' of a particle in ¢,, v.q is evidently the average
potential at point r due to all the particles in the Fermi sea. (In the present
case, since the ¢, are plane waves, v.q is independent of r.)

We now recall that for the quantum pinball propagator, the quasi particle
energy (3.38) could be obtained both by the diagram method and directly
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from the Schridinger equation using Hamiltonian (3.20). In the present
case, it's easy to write a Schrodinger equation with energy eigenvalues €, by
just using vy as external potential:

2
[§E+ b‘err(l‘)] bi(r) = e Py(r). (a.74)

[t is easily checked that this is correct by multiplying both sides by ¢%(r) and
integrating—the result is just (4.70).

In our intuitive argument for (4.74), the ¢, were given (plane waves).
However, if we regard them as eigenfunctions to be solved for, then (4.74) is
just the famous Hartree equation. Remember that by (4.73), v gy is a function
of all the ¢,’s. This means that we must calculate ¢, self-consistently, i.e.,
put an assumed ¢, in v, find a new ¢, from (4.74), put the new ¢, in vy,
calculate a newer ¢y, etc., until ¢, stops changing appreciably. In the present
case with no external potential, we find immediately that the correct ¢ is
just a plane wave. However, in a system with an external potential, like an
atom, or a molecule the whole self-consistent procedure must be carried out.
In such cases, the ¢, may correspond to atomic or molecular orbitals, and ¥
may be interpreted as scattering between orbitals, (See §11.1 for further
discussion.)

From here, it is only a baby step away to the quasi particle in Hartree-Fock
(HF) approximation. Imagine that exchange scattering is just as important
as forward scattering in our hypothetical system, i.e., that

Vk.!'mn == Smk Sm' Vk!k-'+5m! Bnk ka!k+small terms. (4-?5)

Then the open oysters must also be included in the approximation for the
propagator, and the partial sum carried out as in (3.39):

Hor B

= [11')': xq:'_'y+ x~~O+ KQ:?XW*O«]-

- [ x(w0+w>+rx(~~c:>+w)’+---}

1
- ﬂ ; (4.76)

- (w0 +e) |- (w0 )
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Translating by means of dictionary Table 4.3 yields

1
w—€— Iz.",‘ (Via— Vi) +18°

(If spin is included, multiply ¥,,,, by 2.) This also has quasi particle form with
& =&+ % (Viu— Vi)
1<k
T = @, (4.78)

This is the quasi particle energy and lifetime in HF approximation. The
Vs is the well-known *exchange term®. Analogous to what was done in the
Hartree case, we can here construct a Schrédinger equation including the
effective external ‘exchange’ potential; this turns out to be the Hartree-Fock
equation. (Note that plane waves are the self-consistent solution of the HF
equation in the present case with no real external potential, just as with the
Hartree equation (4.74).) It should be mentioned that the lifetime here is
infinite because of the crudeness of the HF approximation. Better approxi-
mations, which include sums over diagrams like (4.47), produce finite lifetimes.

Gk, w) =

4.77)

4.8 Hartree-Fock quasi particles in nuclear matter

Real-life physical systems have interactions considerably more compli-
cated than the hypothetical ‘forward plus exchange scattering® model in the
previous section. Nevertheless, the HF can be used as a very crude ‘first
approximation’ to the propagator, as we show now for the case of nuclear
matter.

Nuclear matter is not matter in a nucleus! It is a hypothetical stuff con-
cocted in the following way (see Thouless (1961), p. 20, for details): On the
basis of the ‘liquid drop’ model of the nucleus, Weizsiicker constructed the
famous ‘semi-empirical mass formula’ for nuclear binding energy:

E(N,Z) = —a1A+azA’+agzzA'*+ia4(N Z)/A (4.79)

nuclear surface Coulomb Pauli princzple
Jorces correction forces correction

where N and Z=number of neutrons and protons respectively, 4=N+Z and
the a,’s are constants determined by fitting (4.79) to known nuclear masses.
In the first term, — a, is the binding energy of a single nucleon, well inside the
nucleus (i.e., not near the surface), due to the attractive nuclear forces—it is
about —159 MeV. The second, third and fourth terms are respectively
corrections due to the presence of the nuclear surface, Coulomb forces
between protons, and the effect of the exclusion principle.

If there were no Coulomb forces, and if the number of nucleons was so
large that the nucleus was the size of, say, a coconut (making the surface term
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negligible in comparison with the first term) and if N=Z, then we would
have a simple system with binding energy proportional to the number of
nucleons, A. This hypothetical system consisting of a huge number of protons
and an equal number of neutrons interacting by purely nuclear forces (no
Coulomb forces) is called nuclear matter. It is of great interest because a
calculation of the binding energy of nuclear matter, using some model of the
nuclear force, is evidently a calculation of —a;, and can be compared with
the experimental value of —15-9 MeV.

We will assume that the nuclear interaction has the form of a simple
Yukawa potential (V, <0)

e-] r—r'|fa

V =+ al, (4.80)

=N
(Such a purely attractive interaction is clearly science-fiction, since it would
cause the nuclear matter to collapse to a point. This can be prevented by
adding a ‘hard core’ to the potential, as described in §12.4.) The quantity
a (~10713 cm) is called the ‘range’ of the interaction, since the exponential
becomes very small for [r—r'| > a.

The quasi particle energy in HF approximation may be calculated using
(4.78, 80) (Brown (1972)). Noting that the density of points in k-space is
0/(27)3, where £2 is the normalization volume, (see after (3.64)), we may con-
vert from a sum to an integral using

- i d3 ]
Er= (4.81)
so that (multiply ¥y, by 2 if spin is included)
. K? d’1
%= omt Q @2n)? (Vitr = Virwo)- (4.82)
N <ke

The transition matrix element V), is (using (3.5), (4.42, 45, 80})

Vl] ; plr—rlla

— . 4 3 3 =ikertlr =mer=ner’) -

Viimn = + o J.fd rd’r'e r=r|ja
I 4nVoa®Spst min | 4V @ 85t min

S Q +&-—mPa?] @ [T+(k+m?—2kmcos b)a?) (4.83)

where @ is the angle between k and m and we have used that 23> a®. Hence

4-,-;-Vna3 1 47Vya®
. V=gl 0 e
= ¥ Ikl = + Q [+ (1?4 k*—2klcos #)a?]

(4.84)
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Substituting these expressions in (4.82), we find that the ¥V, integral is
trivial and yields 2V, a*k3/3m. The Vy,, integral is first integrated over ¢ and 6,
which yields terms involving (k +/)a and (k~/)a. The remaining /-integration
is easily carried out with the aid of the substitutions y=(k +/)a,and z=(k— ) a,
and we obtain for the quasi particle energy
kK 2Veatk: ¥,

t't'=—

ot 3 ~ 3, Fkatkea)—Fka=kea)l,  (485)

where
F(z)= ﬁ (1+z23){In(1 +2¥)—~1]-[zIn() +2*)—2z+2tan"'z] (4.86)

This expression can be evaluated to find the effective mass in the limit when
ka and kpa are both <1, so that z<€1. In order to get a non-vanishing
contribution from [F(ka+kpa)— F(ka~kga)), it is necessary to expand the
logarithm and tan™! functions up through order z°. Keeping only terms up
through order k2 we find:

,  2Vpatk; 1 2V,a%k} .
€,~T+ 'ﬁ'&'T k3, 4.87)
from which we see that the effective mass is
m
.
= T AmVeak: (4.88)
1 4+ ——.
3w

4.9 Quasl particles in the electron gas, and the random phase approximation

A real metal consists of ~ 1023 positively charged ions arranged in the form
of a regular lattice, with ~ 1023 electrons moving more or less freely among
these ions. The ions execute oscillations about their equilibrium positions
(‘lattice vibrations®). Such a complicated system poses a nasty problem for
the many-body physicist. To make life easier, he often postulates a utopian
metal in which the ions are motionless, and the positive ion charge is smeared
out to form a fixed uniform positive background against which the electrons
move. The electrons are assumed to interact by purely Coulomb forces.
This theoretician’s pipe dream is called the ‘electron gas’. (See Fig. 0.7).

Let us first examine the electron gas in the HF approximation. The
Coulomb interaction and its transition matrix element are just the Yukawa
interaction (4.80) (with ¥, >0) and its matrix element (4.83) with Vya=e?,
a— o, ie.:

& 4né?

(a) V(r,r') = =k ®) Vitmn = E—m’ (4.89)
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where spins are left out for simplicity, and we take £2=1 cm3. That is, the
Coulomb interaction has the form of a Yukawa interaction with *infinite range’.
Alternatively, one often says that the Yukawa potential has the form of a
‘shielded’ Coulomb potential, the exp(—r/a) in (4.80) being the ‘shielding
factor’. Note also that (4.89) becomes infinite for k=m whereas (4.83)
remains finite.

The quasi particle energy may be evaluated in exactly the same way as for
the nuclear matter case. There is a slight simplification because of the fact
that the bubble term in (4.76) is cancelled by the positive charge background
(see §10.4), so that

1
H ) = (4.90)
HF (clectron gas -
-
The expression for the quasi particle energy turns out to be (take limit of

(4.85), (4.86) when Vya=e? and g — «):

. K ke[, (kE-kD), |kt+kg
R . [“ ke M=k,

] . 4.91)

We are mainly interested in quasi particles near kr, since it is primarily
these which take part in physical processes. For |k| near kg, the cffective
mass may be found by expanding ¢; about k:

1 ’ a .
i = i, +{32) G=k)+oo (492
where k= |k|.
For the non-interacting system
ki Kk
e = gt (k—kg)+oe (4.93)

Comparing (4.92) and (4.93), we may regard the effective mass as given by

ke _ (% - k]2
w = (30), o m=wef(5), 499

For ¢ as in (4.91) we obtain

m;lF(cleclrongm) = 0! (4~95)

This is of course an absurd result, and it disagrees with experiments, all of
which show m* to be of the same order of magnitude as m.
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The reason why the Coulomb interaction preduces zero effective mass at
the Fermi surface, whereas the Yukawa interaction does not, can be traced
back to the fact that the Coulomb interaction is infinite for zero momentum
transfer, as was pointed out after (4.89). The HF approximation is not
adequate to handle such singular interactions.

The physical reason for the inadequacy of HF lies in the fact that it treats
the effect of all the other particles on the test particle by means of a time-
independent average potential. But we know from §0.2 that the quasi particle
is a bare particle plus a cloud which in a sense ‘follows’ the bare particle. The
HF approximation thus gives us what might be called the *static’ part of this
cloud, but misses out on the ‘moving’ part.

The usual way of putting this is to say that the HF neglects ‘correlations’,
which means that it neglects that movement of the other particles which *is
correlated with’ (i.e., ‘follows’) the movement of the bare particle. As men-
tioned in §0.2, we would expect that these correlations would have the effect
of ‘shielding’ the interaction between particles, making it much weaker. The
diagram method which we discuss now (very briefly) gives us the way to
calculate this shielding effect. (Itshould be observed that although we consider
only the electron gas here, this is the same sort of problem one has to deal with
when trying to improve on HF calculations of atoms and molecules.)

How is it possible to take account of correlations diagrammatically?
Evidently the correlation effects must lie in those diagrams which were omitted
in the HF approximation. Of course it is impossible to take account of all
the omitted diagrams, but we can at least sum over the most important ones.

It turns out (as will be shown in §10.4) that in the limit of a high density
electron gas, the most important diagrams are those occurring in the following
approximation for G:

, :

dores,
(4.96)

+
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These diagrams may be summed to infinity and it is found that (see chapter 10)

H ot , (4.97)

3

where > (the self energy) is given by

- Ry R

The diagrams in (4.98) are called ‘ring’ diagrams because of their ring-like
structure. For historical reasons, this approximation for G is called the
‘Random Phase Approximation’ or ‘RPA’.

In order to interpret (4.98), we twist the top interaction wiggle in each
diagram through 180° (this has no effect on the value—see (4.61)), and factor
out a free propagator:

= (4.99)
The series in brackets

k%ﬂw*h{ﬂhmﬁu &
(a) )

(c)

+ 4o (4.100)

(d)
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is called the ‘effective interaction’. The reason for this is as follows: Diagram
(@) shows the direct or ‘bare’ interaction between two particles. Diagram (4)
shows the first particle creating a particle-hole pair in the system, and the
second particle interacting with this pair. There is thus an indirect or
‘effective’ interaction between two particles via the many-body system. The
higher order diagrams describe interactions which are more and more indirect.
We may thus write > in terms of the effective interaction:

@ = j (4.101)

which shows an electron interacting with itself via the effective interaction.

We may obtain further insight into the nature of the effective interaction
by carrying out the sum (4.99). In the limit when w=0 and g is small, this
yields (see chapter 10):

47 e®

q1+A2
This has the same form as (4.83), so that, assuming it is true for all q, it must

correspond to an effective interaction having the same r-dependence as the
Yukawa potential in (4.80):

Vea(q) = (4.102)

—Ar
Voelr) = 4 ezer . (4.103)

In contrast to the Coulomb interaction, which is ‘long range’, dropping off
as 1/r, this drops off exponentially for r>X! so it has only a short range
~X"'cem. Itis referred to as a ‘shielded’ or ‘screened’ interaction.

Such a screened interaction is just what we would expect physically on the
basis of the argument in §0.2. The real electron repels other electrons from it;
this exposes the positive charge background so that the electron is effectively
‘followed’ by a positive charge cloud of width A=, This turns it into a quasi
electron because the positive cloud *screens’ the electron’s own charge, thus
drastically reducing its interaction with the other particles of the system at
distances greater than A,

Since (4.101) with V4 as in (4.102) has the same form as the HF self-energy
in (4.90), the quasi particle energy is easily calculated by placing V,,(k—1) into
(4.82), with the V,,,, term equal to zero:

cl - k_z__ dJl 4"82
k= 2m CrPk-D7+2)
Ni<ksr

(4.104)
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The calculation of the effective mass then goes just as for the Yukawa poten-
tial. In the simple case of large A (i.e., kpA™' <1, a condition which is not
actually satisfied in the electron gas), it is found that parallel to (4.88),

m

16 mm e®
Ltk

m* =

(4.105)

which is evidently finite. Thus the inclusion of the correlation (screening)
effects represented by the ring diagrams has produced a physically reasonable
result. (The result for m* in RPA when w#0 and q is not small appears
in §10.4.)

Exercises

4.1 In a system of free particles, a hole is created in the single-particle state
#i(r)= 2127, What is the momentum of the hole?
4.2 For the five-particle system in Fig. 4.1:

(a) Evaluate ¢l cfcqycles|11111000...5.
(b) Write [1101100100...> in particle-hole notation.
(¢) FindY e, ¢} e, ]1111100....

P

4.3 Suppose we have a non-interacting system with external perturbing potential
such that Vim, Vo, Vies Ve (m<kg, 1>kg, k>ky) are large, and all other
V's are small. Find G*(k,=k, k.=k, w).

4.4 Show that for a system of fermions with a momentum-conserving interaction,
the following diagrams are not allowed:

l@ |

4.5 Consider diagram 5 on the right-hand side of (4.63).
(a) Label it, showing momentum conservation explicitly in the labelling.
(b) Show that the scattering processes at each interaction are virtual.
4.6 Translate (4.62") into functions. What variables does it depend on?
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3..J-@

o

4.7 Show that:

k,w

4.8 Suppose we have a hypothetical system in which the most important scattering
processes are the forward and exchange scattering of (4.58), (4.62) and the
double scattering in (4.62°). Find an approximate expression for the propagator
by partial summation. Do not attempt to evaluate the integrals!

4.9 Verify in detail equations (4.83) through (4.88).

4.10 Verify (4.91).

4.11 We have a system of N non-interacting Fermi particles. (a) They are acted upon
by an external perturbing potential such that V,,=4 for all k, I. Find the
propagator G*(q, p, w), p>kr, ¢> ks, by summing exactly over all diagrams.
(b) Generalize your result to the case where Vi has the form: Vau=AhS

(factorizable potential).



Chapter b

Ground State Energy and the Vacuum Amplitude
or ‘No-particle Propagator’

5.1 Meaning of the vacuum amplitude

One of the first many-body problems to be tackled by the field theoretical
diagram techniques was that of finding the ground state energy, E,, of a
system of interacting fermions. This quantity is directly related to experi-
mentally measured properties—such as for example the cohesive energy in a
metal or the binding energy in nuclear matter. Calculating it theoretically is
a tough job. The interactions are large and hard to handle, and naive
approaches simply drown one in a deluge of infinities. Thus in the nuclear
case, because of the hard core interaction, one gets Vy,,,,=c making the
interaction Hamiltonian infinite. The electron gas is equally psychotic, yield-
ing o for every order of perturbation theory higher than first.

The diagrammatic methods to be discussed in this chapter provide a neat
way of handling such delinquents as the above nuclear and electron inter-
actions. In both cases, we can perform a partial sum over an infinite series
of infinite terms and get a finite result! In order to do this, it is necessary to
have a general way of writing down the nth-order term in the ordinary per-
turbation series for E,, i.e., in

Do| H)| D,y (Pl Hy | P
Eq = Wo+<‘po|H1|¢‘o>+z< ol 1|W0>—<W| P, ... (5.
m#0 m

where Wy, W, are the ground and excited state energies of the unperturbed
Hamiltonian, and @,, ®,, are the corresponding wave functions. The general
term is hard to obtain from the time-independent theory usually used to get
(5.1). However, there is a time-dependent technique which gives a pictorial
recipe for finding the desired nth-order term; this is the method of the
vacuum amplitude expansion.

The vacuum amplitude, R(t), is defined as follows: Let P, be the ground
state of the unperturbed system as defined in (4.12) (i.e., @, is the ‘Fermi
vacuum®). Then R(?) is the probability amplitude that if the system is in @,
at time 0, and the external potential and/or interactions between particles are
allowed to act, then the system will be in @, at time ¢. That is, R(¢) is the
*Fermi vacuum to Fermi vacuum transition amplitude’.

101
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Since no particles are added to the system, and none emerges, R(t) may be
called a ‘no-particle propagator’.

Let us define the vacuum amplitude in more detail. Suppose that at =0
the system is in state @,. If there is no interaction, then the wave function at
time ¢ will be Pye~'"o! where W, is the ground state energy. If the inter-
action is now switched on at time £=0, the system will start to make transi-
tions from @, to all possible N-particle states. We ask for the probability
amplitude, R(r), that at the end of time ¢ the system is in the (time-developed)
ground state, Pge=*o!, Let the state after time ¢ be ¥(¢); this must be obtain-
able from the ground state @,, by some sort of operation, thus:

Y() = U@t)D, (5.2)

which may be regarded as the equation defining the ‘time development
operator’, U(f) (see appendix B). The probability amplitude R(r) is just the
scalar product of ®oe~"** and ¥(¢) or:

R(t) = (Poe~'™", W(1)) = f PF et ™ot U () Do dry ... dry

= (Po|U(t)| Do) e*'™o* = vacuum amplitude. (5.3)

The importance of the vacuum amplitude lies in the fact that the ground
state energy, E,, may be obtained from it with the aid of the theorem

Ey= Wo+ lim i ;lnR(t), (5.4)
t— (] —in) t

where % is an infinitesimal. This is proved in appendix C. Thus, if we can get
a diagrammatic expansion of R(f), then the diagram series for Eq, follows
from (5.4).

The diagrammatic perturbation expansion of R(r) is rather similar to the
corresponding expansion of the propagator. However, it is considerably
more complicated, because in addition to diagrams which consist of only one
piece (‘linked’ diagrams) there are also diagrams consisting of two or more
pieces (‘unlinked’ diagrams). Luckily, the logarithm of R, which appears in
(5.4), turns out to be the sum over just linked diagrams. This is the famous
‘linked cluster theorem'. Placing this result into (5.4) yields the ordinary
Rayleigh-Schrédinger perturbation series together with a general rule for
writing out the nth-order term.

Inthis chapter, we will first investigate the analogue of the vacuum amplitude
in the classical pinball machine case. Then, we will show how to calculate
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the vacuum amplitude and ground state energy diagrammatically for the case
of a single quantum particle in an external perturbing potential. Finally, the
method will be generalized to many-body systems. The application to the
electron gas and nuclear matter is in chapter 12, which may be read directly
after this chapter, for those who wish.

5.2 The pinball machine vacoum amplitude

The pinball accelerator, Fig. 2.3, used to illustrate the calculation of the
single-particle propagator may also be employed as the classical analogue for
the vacuum amplitude. Before firing, the particle is in its ‘ground state’ or
‘vacuum’ at the point O. The accelerating mechanism propels it through
the collimator, after which it undergoes a series of interactions with various
scattering centres, winding up at one of the points ry, Ty, ..., ¥s OF possibly
back at the original point O itself. (Note: In what follows, the position of the
point O will be designated by r,. The vectors ry, r,, will be variables denoting
the initial and final points of the particle, i.e., they will no longer be the fixed
points ry, ry, labelled on Fig. 2.3.)

The classical analogue of the vacuum amplitude here is the probability
P(ry=rp,12=1;r; =10, 1, =0) that if the test particle is in its ‘ground state’ at
r,=rpattime ¢, =0, thenit returnsto the ‘ground state’ at r,=r, at time #,=1.
For the sake of simplicity, let us leave time out of the argument to begin
with, and consider just P(ry=r,,r; =rp), or P(ry, rp) for short; this is the prob-
ability that if the particle beginsat the point ry =r, then it will finish atr, =r,,
regardless of the time. This P(ry,ro) may be broken up into the sum of the
probabilities for all the different ways the particle can go through the machine
and still wind up back at the point O. Thus, the first possibility is that the
trigger is not pulled at all so the particle just continues lying at O. The next
possibility is that the trigger is pulled, but not hard enough to propel the
particle out of the collimator, so that it just falls back to 0. Next, the particle
could come out of the collimator and be scattered from the giraffe’s tail back
into the collimator, rolling down to O, and so on. Let P,=probability that
the trigger is not pulled, Py(r;,r;)= probability that if the particle leaves the
point r, then it travels to r, without being scattered by any animal, and
P(A)="interaction’ term, giving the probability that if the particle arrives at
animal A4, then it is scattered. Then, assuming independent probabilities, we
find, similar to the propagator case, that P(ro,r,) is given by (Note: P(O)is the
probability that the particle is scattered away from the point O; this is just
1-P., i.e., the probability that the trigger is pulled):

P(ro,rp) = Py+P(O)Py(ro,ro)+ P(O)Py(rg,ro) P(G) Polro, rg) +
+P(OYPy(re, xo) P(L) Pyfro, rr)+ "
+ (PO)Po(rg, l'o)P(G) Po(rc, l’g) P(G) Po(l’o, rg) L A (55)
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Associating diagrams with probabilities, using Table 2.1, the above series
becomes

where stands for the scattering at O. This series may be evaluated by

pamal summation parallel to (2.17, 18, 19), but we shall not bother to do it.

When generalized to include time, using Table 2.2, the diagrammatic series
becomes (we abandon, in this particular case, the convention that time
increases in the positive-y direction!):

tg

(.7

which is equivalent to
P(’ObrO") = P,,+Po(l'o,l'o,')P(0)+

+J.d'apo(ra,l'm’G—O)P(G)Po(l'o'l'a.t—tG)P(O)"'"'- (5.8)
d

With the aid of a simple modification of the time-dependent case, it is
possible to obtain a more precise analogue to the quantum vacuum amplitude.
The modification is to allow the trigger to be pulled an arbitrary number of
times during the time interval (0,¢), instead of just no times or once at t=0.
Then in the event that the particle has returned to O before time 1, there is
the possibility that it can be shot out again and return to O again before time
t has elapsed. This may happen many times, if 7 is long enough, and can be
represented by diagrams of the following sort

1y ¢

1@ "Q” #?
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These are the so-called ‘ unlinked’ diagrams. When this type is included, the
series for P(ro,ro,?) becomes

@ L2

We go on now to the quantum mechanical case.

ey (5.10)

5.3 Quantum vacuum amplitude for one-particle system

The calculation of the quantum vacuum amplitude proceeds parallel to the
classical case just discussed. Consider the simplest situation first: a Fermi
system consisting of one particle in an external potential, with non-degenerate
energy levels—for example, an electron in a one-dimensional harmonic
oscillator potential. Let the unperturbed Hamiltonian be
p?
2m
with eigensolutions ¢,(r), €. In order of increasing energy, we label the single
particle states ¢y, ¢, ..., with corresponding energies €y, €, .... The ground
state of the system consists of one particle in ¢, and no particles in any higher
states; in occupation number formalism this is Pp=|1,,0;,0;,...>. The
corresponding ground state energy, W, is evidently just €;. The Fermi energy
is also €,. A typical excited state is one particle in ¢, and no particle in any
other state: Perciea= |01,025- -+ 14...>. In particle-hole notation, the ground
state is Po=|0), while a typical excited state consists of a hole in ¢, and a
particle in ¢: P.,.=|1%,1£). Note that in this one-particle system, there is
only one possible hole state, e.g., ¢;.

Suppose now a perturbation V(r) is added to Hy. The vacuum amplitude
in that case is the probability amplitude that if the system starts in its ground
state P, at =0, and is acted upon zero or more times by V(r), then it
will be in @ye~'¥o at time 1. By analogy with the pinball case, R(¢) will be

Hy = ——+U(r) (.11
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the sum of the probability amplitudes for all the different ways the system
can start out in @, interact with V(r) zero, one, or more times and return
to @. In the zeroth-order process, nothing at all happens as illustrated in

(5.12a):
t, .
1
4 O k 1 t and
k 1
h n

(a) Zeroth order  (b) Ist order  (c) 2nd order (d) 3rd order
(5.12)

In first order, V(r) can lift the particle out of ¢, at ¢,, thus creating a hole,
and instantaneously put it back in, destroying the hole. This is shown by
(5.126) (compare with (4.54)). In second order, at #;, V(r) can scatter the
particle up into the state ¢,, thus simultaneously creating a hole in ¢; and a
particle in ¢,, and at 1, scatter the particle back into ¢,, destroying the hole
and particle, and so on, The third-order processes are in (5.12d), and the
fourth-order ones are

14 1 g
t p 1 P 1 : & !
. 1 P 1 »p 1
2
a1 "\ /1 1 1 F
4

(5.13)

time

(Note that in the last two diagrams of (5.13), there are fwo particle lines and
two hole lines between r, and ¢;, whereas our one-particle system can have
at most one particle and one hole. However, it is easily shown that these
diagrams are exactly cancelled by unlinked diagrams of the sort in (5.17)
below. For example, because of the (—1) from the extra fermion loop, the
last diagram in (5.13) is cancelled by the fourth-order diagram in (5.17), as
is easily seen by evaluating diagrams using Table 4.2. Nevertheless, it is
necessary to retain such diagrams which violate conservation of particle
number, in order to prove the linked cluster theorem described in the next
section. The same argument holds for diagrams which violate the Pauli
exclusion principle.)
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[These processes may be conveniently described in particle-hole formalism
by using H, as in (4.26). Thus in first order:

H, acts at t;: Vllbl b“0> = V“|0>. (5.14)

In second order, H, acts at f;, creating a particle-hole pair from the Fermi
vacuum:

Vipalbl10) = Vi|15 1. (5.15)

At 1,, H, acts again, destroying the pair and returning the system to the
vacuum state:
Vieb1ax Vig |15, 15> = Vi Vi |0).] (5.16)

The diagrams in (5.12), (5.13) are often called ‘vacuum fluctuation’ or
‘vacuum polarization® diagrams, since they show all the virtual processes (see
paragraph after (4.47)) taking place in the Fermi vacuum as a result of the
perturbing potential.

It is also necessary to include higher order processes which are composed
of several complete lower order ones, like for example

1
1 O
h O 7 ! O
P 1 {2
f O A (5.17)
2nd order 4th order 5th order

These disconnected or ‘unlinked’ diagrams are the analogues of the classical
ones appearing in (5.9).

In order to draw all diagrams in nth order, draw n dots in a vertical row,
label them ¢, 15, ..., f, and connect them up in all possible ‘topologically
distinct’ (see below) ways with one line entering and one leaving each dot.
For example in third order we find the six diagrams

ts € O
1 ) O (5.18)
nQ O

Two diagrams are * topologically equivalent’ if one can be distorted into the
other without changing the vertical ordering of the dots; otherwise they are
distinct. This is illustrated by the fourth-order diagrams (note significance of
the direction of the arrows! It helps to visualize the distortions if we imagine
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the dots and lines to be buttons connected by rubber bands, carrying attached
arrow-heads; all three spatial dimensions may be used in making the deform-
ations):

@ E @ %Q@ o
(5.19)
(@) ®) ©

Finally, as in the pinball case, the diagrammatic expansion for the vacuum
amplitude will just be the sum of all diagrams such as the above:

R-l+é+porzl+0+O+O+

0 O O

(5.20)

where the | expresses the fact that in the unperturbed case, the probability
amplitude for the system staying in its ground state is 1. This is the analogue
of the P, in the classical case. Compare the above expansion with the corre-
sponding classical one in (5.10). Using Table 4.2 these diagrams may be
translated, leading to the series

t
R(t) = 1-V¥y, [ dn Gg(l, 4, —1,)—
o
[ 4

[
=2 Vip Vo 6[ d [ dty Gi(ptr—1)Ga(l,t,~ 1)+
s>1 0 1>t
[ [}
+VuVuJ.d‘1J‘ dty Go(l,6,—1,)Go(1, t2—t5)++--
0 >4 {5.21)
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We have summed over all state indices and integrated over all intermediate
times from O to ¢, since each diagram actually stands for an infinite number
of diagrams having different state indices and different ¢,, 15, ..., etc.

§.4 Linked cluster theorem for one-particle system

Examination of the many-headed monster (5.20), shows two types of heads:
the linked graphs, which are all in one connected piece and the ‘unlinked’
ones which have two or more disconnected, internally linked, parts. We now
discuss a famous theorem which enables us to perform the Herculean feat
of cutting off all the unlinked heads—the so-called ‘linked cluster theorem’.
The theorem states that

In R(¢) = Y, all linked graphs

00000,

The proof is based on the fact that (stated roughly) the contribution from an
unlinked diagram is proportional to the product of the contribution of its
various parts. Consider for example the ¥V}, Vy; term in (5.21):

(5.22)

m

0 € ' '
tz Vu Vu J. dfl dfz Go-Go- = 12 !dtl dfz
1 04> 0.1, > 1

] ¢
= V}G? I dt, j di;x3 (wheret; > or < £9)
o @

]

&[Vu a[ dn, Ga(l,r,—n)]x[vu [ d:zoa(l.:z—rz)]
[
=1 x €) «x O=_XO’ (5.23)

(we have used the fact that the Gy are time independent in this case). In
general, it turns out that the value of an unlinked diagram with n identical
links L, is just (1/n1) x L".,

A similar factorization occurs for non-identical links if we first sum over
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all possible time orders of the links. For instance, three of the diagrams in
(5.18) may be summed thus (drop i's for brevity):

) - = 3 Vi Vax Var | [ [ ety x

O Ofao xGg(k’tc-tb)Go(lt’b_‘c)Go-(l’ta"'n x

X Oty Ortat Ot to Oty + 010, Otz

= O O (5.24)

6,=1 ify>0
=0 ify <O,

The 0’s are used as a convenient way of writing the time order in the three
diagrams. For .> 1,, some concentration shows that the term in brackets=1
regardless of where 1, lies. This means the integral over ¢, is independent of

that over #, and 1., so the triple integral factorizes into two parts producing
the result shown,

Combining these results, one finds that R may be written

Rets OO L moo

where

(5.25)

-e [0 i O ' 0 " ] - eZ all linked diagrams (5.26)
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from which the linked cluster theorem (5.22) follows immediately.

5.5 Finding the ground state energy in one-particle system

The importance of this remarkable result lies in the fact that by (5.4), the
ground state energy depends only on the jogarithm of R:

d
Eo = €1+ lim fa‘ In R(f) (5.27)
t—o(l-in) 41

so that we may write it in terms of a sum over linked diagrams only, thus

. p 1
Eyg=¢+ lim ii Ol+p L 1+P + + +oeee
tea(l—ip Al g 1

(5.28)

fIn the many-body case, there is a deeper reason for the importance of the
linked cluster theorem, e.g., if we do not use it, we find that the perturbation
series for the energy appears to diverge badly as the number of particles
N — . See Brout (1963), p. 47.}

It is now possible to obtain the expression for the ground state energy by
translating the above diagrams using Table 4.2. This converts (5.28) to
(remember the (— 1) factor for the ‘fermion loop’):

]
Eo = € — lim fg‘[(—i)VuJ-dtl iGo-(],tl—f))'*'
0

t~reo(l ~in)

4 I
+ X (=i, Vle.d’lJ. dty iG{(p,t2—1)iGg(1,t;— 1)+ ).
p#l 00 >y
(5.29)

This is evaluated by substituting for the G’s from Table 4.2 which yields

) =(=1(-) Wy [dn(=1)= =ikt

. . d
E® = lim i O=Vu.

t—+o(l—in)

(5.30)
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The second term produces
4 $ .
= (=1~ T W, ¥, 6[ iy 6[ dt B,y e er—e tr-ei
p#l
[ -1
= (=DX=1P 3 Vi,V [ d [ dit—n)eterote,
p#l F

?
(5.31)

Integrating, and taking the derivative and limit yields for EQ:
d e~ fler—e)o(i-ip) 1
lim - = - Vi, V, [— + ]
1~ (1 =) d‘O ; tp 7t e,—€1) i(e,—¢)

EP = Z Vie¥n (5.32)

or

where the oscillating exponential is killed because (€1 —¢,) and the infinitesimal
7 are both positive. (Note that 7 is chosen such that 71X ®=w.) Proceeding
in this way yields the third- and fourth-order terms:

le Vm Vql le Vpl Vu

B - - 5.33
’ aawl (a1=~e&)(e—¢) & (e1—¢,)? (.33)
E = Vi Voo Vor Vir - z VieVagVa ¥ _
piri @6 @ —€) (e —¢) paz (1= ) (e —€)
VipVoaVar Vi Vip Vo Vit Yy
(e1—¢p) (e —e)2+ (a—<)
padt 1T 25 176
=S YuVuhdVa 534

ot a— ) (e1—¢p)
This is just the well-known Rayleigh-Schrédinger perturbation series carried
out to fourth order!

If this commonplace textbook result is regarded as the end preduct of the
elaborate vacuum amplitude approach, we might justifiably conclude that a
rocket launcher has been built to fire a spitball. However, the aim here is not
to do textbook-type perturbation theory, which no one has lived long enough
to carry beyond twenty-seventh order, but rather to do the more exotic type,
which is carried to infinite order. And the diagrams allow us to do this by
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providing a systematic method for writing out the ath-order term in the
expansion of Ej.

To see this, look first at the third-order terms in (5.33) and compare them
with the corresponding diagrams in (5.28). The product of the V,,, V,,, and
V), factors associated with the interaction dots in the first third-order diagram,
yields the right numerator for the first EY term (that is, provided we drop
the —i factor associated with the V’s in evaluating the vacuum amplitude
diagrams), and similarly for the second third-order diagram. This is easily
shown to be general, leading to the rule: the numerators of the ath-order
terms in the perturbation expansion of Ej are obtained from the corresponding
vacuum amplitude diagrams by associating a factor of ¥, with each interaction
vertex (i.e., dot). To get the denominators, draw light dotted horizontal lines
between successive (in time) pairs of vertices, thus

€, —¢, €~ ¢

(5.35)
1 1
€ —€q € =€
and associate a factor of
1

(5.36)

€ -— €,

all kole lines all panlcﬁ lines

intersected by dotted intersected g{ dotted
Aorizontal line horizontal lire

as shown in (5.35). The proper sign is obtained by multiplying by the factor
(= 1)*! where h=number of hole lines in the diagram. The final rule is to
sum over all particle indices. Applying these rules (which can be rigorously
proved from the vacuum amplitude expansion) yields both of the third-order
terms and it is a simple matter for the reader to show that they also produce
the correct result in the other orders. (Note that in fourth order, the last
term in (5.34) is obtained by summing the two ‘mitten’ diagrams of (5.13).)
We are now in a position to show how the perturbation series may be
evaluated approximately even if the perturbing term H, is strong, by sum-
ming to infinite order over certain types of diagrams. Imagine that the per-
turbing potential is so large that it is impossible to get a decent result by
using the usual method of cutting off the series after the first few orders. But
suppose, for example, that the potential happens to have big matrix elements
only between the ground and first excited states, 1 and 2, i.e., that V;, and V>,
are large and all others—V7,, Vi3, V3, Vi3, ...—are small. Then the per-
turbation series may be approximated by a partial sum over just those special
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diagrams in which all vertices connect * 1° lines and ‘2’ lines. This means that
E, reduces to a sum over just the following diagrams

1y 12
Eoxe+2{ 1 +2 1+ 1 (537
2
;2

The odd-order diagrams do not occur. There are sixteen sixth-order diagrams
of which three typical ones have been drawn. Using the rules and assuming
V12="V;} this expansion yields

o~ Vi) |V12]* B
Ey» €l+el—¢2 (el—ez)x2(q—ez)x(el—ez)xz
6

+ IVIZI x4
(fx—fz)x2(‘1—€z)x(€1—€z)xz(€1—€z)x(61—52)

+ |V12|6 x12
(e1—€2) x 2(e; — €2) X (€1 — €2) X 2(e; — €2) X (€1 — €3)

+l|0

Vil |Vial® | 2|48
- oo, 5.38
ag—e (g—e) (g—¢)’ (5.38)

= €l+

This can be brought into a more recognizable form by adding and subtracting
€,/2 and factoring out (e, — ¢,) yielding

_ate (g—e) 2AVial _ 2|Vial* | 4|Vaal® |
b=+ [”(el—ez)z PR T ey

The bracketed term is seen to be just the infinite series for the square root,
giving us the final result

~ 1te (ag—e) [ 4|Vlzlz]
Ey» —2—+—2— J 1+ =) (5.40)

]~ (5.39)
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Thus we have found the ground state energy in the case of a strong perturbing
interaction by means of a partial summation of the perturbation series to all
orders.

In the present case, this result is not as remarkable as it might seem at first
sight, since it will be recognized as just the same result we can obtain much
more easily by directly diagonalizing the Hamiltonian between the two levels
1 and 2 (see (7.64)). This single-particle example, like the others we have used,
is obviously much too simple to show the power of the diagrammatic method;
it should be regarded only as a transparent illustration of the general tech-
nique.

8.6 The many-body case

The single-particle example may be generalized to the many-particle case
(no external potential) by using the interaction diagrams of (4.43, 44). The
vacuum amplitude may then be built up as the sum of all possible sequences
of interactions beginning and ending in the many-body ground state, or
vacuum, thus:

R=1+O’W"‘O+®+®+ “":+@+OZO+---

oo 4Y
o0'e T

+ 4
(5.41)

The ground state energy again involves just the sum over linked diagrams
and may be written as follows:

EO=WO+M+@+®+E§+@+ Oﬁo
DD
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These diagrams may be evaluated by rules essentially the same as those for
the one particle case—these are postponed until chapter 12. Here we will
content ourselves with briefly mentioning a few popular approximations for
the ground state energy which can be made with (5.42).

The simplest approximation is the Hartree~-Fock (HF), which is just the
sum of the double-bubble and oyster diagrams;

k k
Eoyry = Wo + O""‘”‘Ol + 1® ’ (5.43)

These diagrams involve only three simple rules, so we will evaluate them
here. The rules are: (1) V., for each interaction, (2) a factor of (- for
each hole line and each fermion loop and (3) a factor of § because the graphs
are symmetric. Remembering that all lines are hole lines here, we find

EO(HF) = 2 ‘k+* 2 Vk”d_i z VIkkl‘ (5'44)
h<ks ki<ky k i<ky
The approximation which is good for the high density electron gas (random

phase approximation, or  RPA’) involves a partial sum over all * ring’ diagrams
in second and higher order

Eomen) =Wt OO + @D + X"' @*’&
T

(5.45)

In the case of nuclear matter, we have the ‘ladder approximation’ involving
a partial sum over all ladders:

Eollsdder) = W0+M +®+ @ +@* o

t
+@+%+@)+ Tdp 4 - (5.46)
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The reader who wishes to look now at the Gell-Mann-Brueckner calcula-
tion of the ground state energy of an electron gas, and the Brueckner theory
of nuclear matter, will find it possible to go directly to chapter 12 from here.

Exercises

5.1 Translate the last vacuum amplitude diagram in (5.13) into functions.
5.2 Classify each of the following diagram pairs as topologically distinct or equi-
valent:

OEGRVIY

5.3 Suppose we have a system of N non-interacting fermions in an externa) potential,
U(r). A perturbation ¥(r) is added to the Hamiltonian. Draw all diagrams up
through and including fourth order in the expansion of the vacuum amplitude.

5.4 Apply the diagram rules in the paragraphs containing (5.35, 36) to the diagrams
in (5.13), and verify that their energy contribution is given by (5.34). (Combine
the contributions from the two ‘mitten’ diagrams.)

5.5 For a system with no external potential and a momentum-conserving inter-
action, show why the fifth and sixth diagrams after the * 1’ in (5.41) do not
occur.



Chapter 6

Bird's-Eye View of Diagram Methods in the
Many-Body Problem

This chapter brings us to the conclusion of the kindergarten part of the
book. We have seen in some detail how the diagram methods of quantum
field theory work on simple one-body systems, and have obtained a glimpse
of the machinery in the many-body case. All steps were ‘justified® with the
aid of the ‘argument by monkey’, i.e., by analogy with the animal game in
Fig. 2.3. No essential use was made of the occupation number formalism
(second quantization).

Now we move on to the elementary part of the book. This will involve a
more extensive use of second quantization, more impressive juggling of

Table 6.1 Quantum field theory in the many-body problem

Field theoretic ingredient Significance in many-body theory

(1) Occupation number notation Expresses arbitrary state of many-
(chaps. 4.3, 7) body system

(2) Creation and destruction Primitive operators out of which all
operators (chaps. 4.3, 7) many-body operators are built

(3) Single particle propagator Yields quasi particle energies, par-
(Green’s function) (chaps. ticle momentum distribution,
2,3,4,8,9,10,11, 15) particle density, ground energy

(4) Vacuum amplitude (chaps. Gives ground state energy
5 12)

(5) Two-particle Green's func- Yields energies of collective excita-
tion propagator (chap. 13) tions, electrical conductivity,

other non-equilibrium properties

(6) Finite temperature vacuum Gives equilibrium thermodynamic
amplitude (chap. 14) properties of system

(7) Finite temperature propa- Yields temperature dependence of
gator (chap. 14) properties in (3)
118
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diagrams, more real many-body systems, and less monkeys. Bui before
continuing, it’s a good idea to pause for a moment and take a look at the
field as a whole. In Table 6.1 is a list of basic ingredients from quantum
field theory, and their significance in the many-body problem.

The various field theoretical quantities, (3) to (7), may be calculated either
by partial summation of Feynman diagrams, or, equivalently, by decoupling
the differential equations which they obey (see appendix M). We consider
only the former method in this book. The diagram method may be outlined
as follows:

(1) The field theoretic quantity—call it M, standing for the propagator or
vacuum amplitude, etc.—is expanded in a time-dependent perturbation series

M=MOL MO L yy@,...

where M@ is the value of M when the interaction is zero, and MD, M@, ...
give the effect of the interaction to first order, second order, etc. The expan-
sion can be carried out by the ‘intuitive’ methods we have used until now, or
by a rigorous technique requiring the use of second quantization (items (1)
and (2) in the above table). It is not assumed that the higher orders here are
small compared to the zeroth order; in fact, because of the large interactions
in many-body systems, they are large, sometimes infinite!

(2) Each term in the perturbation expansion is represented by a Feynman
diagram. For example:

(a) Single-particle propagator:

(b) Vacuum amplitude

R=I+O~O+@+Om~o::+---+®+%

(¢) Polarization propagator (special case of 2-particle propagator—see
chapter 13):

F=0+@+G~Q+®+OMQ+...
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Each one of the lines and wiggles in the diagrams has a definite factor associated
with it; by writing down these factors, the original perturbation series in (1)
can be reproduced completely. It is in principle possible to do many-body
perturbation theory without diagrams, just as it is possible to go through the
jungles of the Amazon without a map. However, the probability of survival
is much greater if we use them (see Fig. 6.1).

Fig. 6.1 Feynman Diagrams in the Amazon Jungle

{Reproduced with the
kind permission of Physics Today)

(3) The perturbation series is evaluated approximately by summing to
infinite order over certain types of diagrams (that is, by summing over the
terms in the perturbation expansion corresponding to certain types of
diagrams). This is the famous *partial® or ‘selective’ summation. The partial
sum is usually evaluated by showing that it involves a summable infinite
series, or that it is equivalent to an integral equation already solved by some-
one else. For example:

(a) Single-particle propagator: a partial sum over repeated bubble and
open oyster diagrams,

yields Hartree-Fock quasi particles.

11
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(6) Vacuum amplitude: a partial sum over just ‘ring’ graphs,

s @ e Ly

gives the ground state energy of a high density electron gas.
(c) Polarization propagator: a partial sum over repeated * pair bubbles’,

Fooﬁojﬁ)

produces the energy dispersion law for plasmons.

The crucial point here is that although it employs a perturbation series,
this technique is radically different from ordinary perturbation theory and is
generally called a ‘non-perturbative technique’. In the ordinary theory it is
assumed that the perturbation is small so that the terms in the expansion obey
the size ordering

M(O) > MW > M(!) > M(J) > eee,

In other words, the terms are arranged according to order, and we can
estimate the accuracy of the approximation by looking at the order to which
it is carried out.

In many-body theory, on the other hand, the perturbation is generally
large, and the above size ordering does not hold. As was mentioned, in some
cases the terms are individually infinite. So what we do is to re-arrange the
terms according to type, pick out the type that gives the largest contribution
and sum over terms of this type to all orders.

Of course selecting and summing the most important diagrams is generally
very difficult. In the early days of many-body theory, the terms to be summed
over were sometimes chosen simply on the basis of mathematical feasibility—
on one occasion this was justified by the statement: ‘Well, it’s certainly better
than not summing over anything!’. Today, the requirements for a good many-
body calculation are (or should be!) more stringent, since there are now several
model cases known in which the partial sum has been carried out very
accurately. In these cases, the result is correct to lowest order in a well-defined
small parameter (generally, this parameter is not directly related to the size of
the two-body interaction V., in the Hamiltonian). Two examples of this will
be discussed in detail in this book: (1) RPA (random phase approximation) in
the electron gas. The result here is correct to lowest order in r,, the average



122 A GUIDE TO FEYNMAN DIAGRAMS

distance between two electrons in the gas, and it becomes exact in the high-
density limit (r, — 0)—see chapters 10, 12, 13. (2) Ladder approximation in a
system with short-range repulsive interaction. The results are valid to lowest
order in p, the density of the system, and are exact in the low density limit
(p — 0)—see chapters 10, 12. Two other examples which we will only refer to
are: (3) Self-consistent renormalization approximation in the X-ray problem.
The result is good to lowest order in g the coupling constant between the
conduction electron and the ‘deep hole’ created by the X-ray. (See Roulet,
et al. (1969), Noziéres et al. (1969), Noziéres and de Dominicis (1969).) (4)
Renormalized parquet approximation in the theory of critical phenomena,
The results are valid to lowest order in € =4 —d (d=number of spatial dimen-
sions in the system). (See Wilson (1971a, b, ¢), Wilson (1972) and Tsuneto
and Abrahams (1972).)

If we use the above examples as models for calculations in the years to come,
then there are good grounds to be optimistic about the futute of the many-
body problem!



Chapter 7

Occupation Number Formalism
(Second Quantization)

7.1 The advantages of occupation number formalism

The occupation number language in which modern many-body physics is
written, was presented in primer form in §4.3 (which the reader should go
through now if he hasn’t already done so). We saw that its basic elements
are the system wave function |ny,n,,...,n,...> telling how many particles »,
are in each single-particle state ¢,, and the c', ¢, operators which create
and destroy particles in this state. Just enough details will be added now to
make it possible to understand how the formalism is actually used. However,
anyone who wishes to see the subject with all proofs in full regalia is advised
to look at Raimes (1972), p. 21, or Dirac (1947, 58), p. 225 fI., p. 248 fi, It will
help the reader to understand the shorthand notation in this chapter if he first
goes through appendix A.

Since simple things can sometimes get to look pretty formidable in second
quantization it's a good idea to understand why many-body physicists all use
it. The first reason is that it enables us to deal with systems containing a
variable number of particles. Since most systems we have to deal with at zero
temperature have fixed particle number, this may sound as useful as a pair
of trousers with five legs. However, it turns out to give an enormous flexibility
in the formalism if N is allowed to vary in intermediate stages of a calculation
and becomes fixed only at the end. For example, we can put in and remove
test particles at will, as in the case of the propagator. Or we can introduce
the particle-hole formalism in which the number of particles and holes is
variable. (Of course, in statistical mechanics (see chapter 14) variable N
systems are commonplace.)

The second reason for the occupation number formalism has to do with
the symmetry properties of Fermi and Bose systems. Doing things the old
way, we always have to worry about the complicated business of keeping
the wave function properly symmetrized. But it turns out that in second
quantization, the creation and destruction operators obey certain commuta-
tion rules which have built into them all the symmetry properties of the
system. By just using these rules we are automatically free from symmetriza-
tion headaches.

123
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7.2 Many-body wave function in occupation number formalism

Imagine that we are given a system of N identical fermions (bosons are in
§7.7), which are in general interacting with each other and with an external
potential. In §4.3 we saw that such a system may be described in terms of a
set of basis states, |n,,...,n,...> in which the n; meant », particles in the
unperturbed single-particle energy eigenstate, ¢,. Actually, the single-particle
states used can be any orthonormal set—like for example position eigenstates
(see §7.6) in which case n; means », particles at the point r;. This means that
in general, |ny,...,n;,...) are not energy eigenstates of either the interacting
or the non-interacting system of particles and their choice is determined by
convenience. For the moment, we will use the same single-particle states as
in §4.3, that is, the ¢’s which satisfy the Schrédinger equation

H 9ska(r' ¥) = €, ¢ka(r ,¥)
where

H=2 1y = —T:”-v2+ U .1

P

2m
k=1

and y, o are the spin co-ordinate and quantum number respectively. In the

case U(r)=0, this has the solutions (see appendix K):

¢lm(rv Y) = :\7133 etier 7)0(7)

2
o= ;‘—m =1) (7.2)

where 7 is the spin eigenfunction. In general, o, ¥ will be suppressed for
brevity, and k will be short for k, o, and r=r, y. The energy levels for (7.1)
or (7.2) were shown schematically in Fig. 4.1(a).

If there are now N identical non-interacting fermions having Hamiltonian
(7.1), the Hamiltonian and Schridinger equation become

N
Ho = ‘21 HI’ Ho @(r,, eoey I'N) = E¢(l’1, .eny I'N) (7.3)

where

H = %4' Um); Hid, = &, ds, (7.4)
Equation (7.3) has the solution

N
¢k1. e kn(rl’ ossy rN) = l[[| ¢k|(rl)’ E= z €y (7-5)
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However, since the system consists of identical fermions, the wave function
must be antisymmetric, i.e., change sign when any two particle co-ordinates
are interchanged. This is accomplished by forming a new @ given by the sum

...k (F1s - Ex) = Wlﬁi S 7o Pl ) buntr)] - (16

or

'f’k,(fl? br,(r2). .. ¢k,(l:N)
Brew (l'l.) Prn(T2) .+ - Py '(l'N)

In the first form, P is the permutation operator which interchanges the r,’s
in all possible ways (starting from some standard order), and yp= —1 for an
odd number of interchanges, and + 1 for an even number. The last form is
the well-known Slater determinant; the fact that =0 when any two ks are
equal means that there can’t be more than one particle in any state (exclusion
principle). The filling of states proceeds as in §4.2, and the energy of any set
of filled states is just given by (7.5).

A tricky thing about (7.7) is its sign. For example, in a two-particle system
with one particle in state ¢,, (=4, ; see note on notation after (3.5)!), and the
other in ¢, the wave function is Py, (k=3 (=EPy3) or Dy, o3, k=1 (EP31).
Since the particles are identical, these obviously represent the same state, but
by (7.7) they differ by a minus sign. To remove this ambiguity, we always
write @ with the &’s in standard order given by

Dy, <ky<. . .<kns (7.8)

with associated + sign. Thus, ®5; will never appear again.
As pointed out in §4.3, a compact way of writing @ is

‘pk.. .. .,Im(rlr- cuTN) = (N—,); .7

¢k|.k:. . k,.(l'h"z. sy l'N) = (pn,, I T .(1‘1,1'2' ooy rN)
= <l'1, | TSNS § Y |n,, eonyMyyes .>, (7.9)

where the last expression is just another way of writing the middle one. The
n, give the number of particles in the single-particle state ¢,,(r) of (7.2). We
assume for the moment that the number of particles is fixed so that

? n = N. (7.10

For brevity, the r’s will generally be left out so that (7.9) becomes:

q)kl.kz.....ku = ¢n;.nz.....m.... = lnl,nZs'”!nh"‘>° (7'11)

Those familiar with the Dirac formalism (see appendix A) will recognize
(7.11) as a state vector in an abstract space while the uninitiated may regard
it as simply shorthand for (7.9). Simple examples of (7.11) appeared in (4.7, 8).
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There is nothing occult about (7.9) or (7.11). It may be regarded either as
a new notation for the same old wave function or as a simple change of variable
from the ks to the occupation numbers, »,. In fact, this change may be
written out explicitly; it is

n =;=§: Sy, 1- (7.12)
For example, if the wave function for a two-particle system is
Dyt kyws = |110213040505...> (7.13)
then
n = Jé 81 = 81,1+ 8, =1 (7.14)

and soon. Thechange from @, . i, to |#;,n,,...,0,...) is a trivial unitary
transformation in which the transformation matrix is a product of unit
matrices. To see this, consider the N=2 case with one particle in state ¢, and
the other in ¢,. Then by (7.11):

|00...l,...l,...) =¢k|—i.kzﬂl' (7.]5)
This means the *transformation’ is just
[00...1,... .0 = 3 8,10k, /Pry ks (7.16)
ky<ks

showing the transformation coefficients are just the unity matrix. In particular,
it should be noticed that the change to occupation numbers is nor in any
sense a unitary transformation from ‘position space’ to ‘occupation number
space’. This may be emphasized by just including the r’s in (7.16):

Do.o,..othreents,.. F1TD) = k%‘ 8xy, 1%k, 1Pk, 1 (F1,72). a.1n
1 2

It is important to remember that the |ny,...,n;,...> are orthogonal and
normal because the @, .. ,, are, and we may write this in the various equi-
valent ways

IS TN YIOURN I T TAORN  PR
= Poyynrse.unson Prsgmayeo .. )
= f /23 YUY L3 V1. PR | JTRUONS %) |- S ( T, %))
= Byt my On e v+ Bt mgs s on (7.18)

Up to this point we have been dealing with systems containing a fixed
number of particles and have made a relatively trivial change of variables in
the wave function. Now we take the important step, and, even though the
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particle number in the real system is fixed, allow N to be variable, running
from 0 to . This generates the set of basis functions in Table 7.1.

Table 7.1 Complete set of basis functions used in second quantization

N Dyraenin = |ny,ng. .m0
0 &, 1000..>
| B,0,P...  [100..D, [0100...5, [00100..,...

2 By Py, Pys,...  |1100...5, [101000...5, |01100..,...

.

The state @y or |000...> with no particles at all in it is called the ‘true
vacuum’. The set of all |ny,...,m;,...)> (or Dy, .. x,) in Table 7.1 is a com-
plete orthogonal set of basis functions in an extended Hilbert space in which
the number of particles is variable. This Hilbert space may be pictured as
follows:

- 100100... 5 - |o1100... >
I'," .
Extended o0...
Eli;bert — LA [0100... > .
pace [100...
” (7.19)

This set is often called °occupation number basis’, and the whole formalism
is sometimes referred to as ‘occupation number representation’. Note care-
fully that we did not get this new basis by unitary transformation (like, for
example, is done in going from position to momentum basis). We got it
instead by (1) a trivial (although convenient) change of variable from the
ks to the n/’s, (2) extending the Hilbert space to an arbitrary number of
particles (this is non-trivial). Furthermore, because of the fact that any
convenient set of single-particle states may be used, the occupation number
basis is not unique. For this reason, it is a good idea to refer to ‘energy
occupation number basis’, meaning the single-particle states are energy
eigenstates, or ‘position occupation number basis’ (position eigenstates—see
§7.6), etc. In each case, however, every basis vector has definite values of the
n—i.e., n;is a good quantum number.

Only systems of independent fermions without perturbing interactions of
any sort have been considered thus far. In the presence of such interactions,
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the |ny,...,m,...> are no longer eigenstates of the total Hamiltonian for the
system and the correct eigenstates must be obtained as the linear combination

¥-= ¢0+z Akl (pkl"' )Y Akl. k:¢k|- Kt
ky ky<ky

= X Ag..on.d8nean, oD, (7.20)

MipeeeyMpuee

7.3 Operators in occcupation number formalism

It was pointed out in §4.3 that all operators in this new formalism may be
expressed in terms of the creation and destruction operators ¢}, ¢, defined in
(4.16). Actually, these definitions left out a factor of + 1 which is necessary
because of antisymmetry. That is, ¢}, ¢, must have the property that, if they
act in such a sequence on the wave function that their net effect is to exchange
two particles, then the wave function must change sign. (An example of such
a sequence is:

[1100...> - [0110...> - |1010...> = |1100...).)
Some thought shows that the proper definition is
iny,..ony..> = (=5 U=n)|ny,....n+1,..)>
gty > = (=180, .. on—1,..> (7.21)

where
(- 1)21 - (_ l)[m+nz+. - bmieg] (7.22)

That is, we get a factor of (—1) for each particle (i.e., each occupied state)
standing to the left of the state / in the wave function. For example,

clee0py..>=0, cY...,1;..>=0
c;{11111000...> = +|11011000...)
¢}|1110100...) = —[11111000...)
cdeseleacle [1100...) = clesele,c}|0100...)
=clesclel(—1)[01100...>= -+
= =|1100...> (particle exchange). (7.23)

One of the nice properties of the ¢! operators is that by applying them
repeatedly to the ‘true vacuum’ state (state with no particles in it), it is possible
to generate all other states, thus:

Pr ks, . ke = Chyhyee ], [000..D

or
It 712s .0 = ()™ (™. 10000...). (7.24)
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For example
[011000...> = €D (H (D (c})®...100...>
= c}c}00...). (7.25)

Another important property of the ¢!, ¢, operators is that they are * hermitian
adjoints’ of each other. This can be seen by constructing matrices for them,
using the |nyn,,...,1,...>’s as basis states

2

06000
R P

(m,nz,...,n',,...[qlm,n;,...,n,,...)=(—1)2'x<...0,...| 0l1
..1;...1 1010

<m,nz,...,n’,,...|cf [myn2.nyy. > = (-D% % ¢.0;...] |0
Conli] T

oio|]...1;...

(1.27)

so that
= (¢))! (7.28)

where t means hermitian adjoint. This further shows that cl, ¢; are non-
hermitian and are therefore not observables.

It is, however, easy to construct a hermitian operator from ¢%, ¢;. Multiply-
ing the above matrices shows that

(C C')\t = C‘ (7.29)
so that ¢!, ¢;is hermitian. This combination:

A= chep; N = Z‘} ce) (7.30)
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is an extremely important observable called the number operator (N=total
number operator). To understand its properties, let it operate on some
typical state vectors:

C?{C‘ ,nbn2l veey ll! ve '> = (_ 1)2( ctl Inl) 02400y 0‘, . ‘)
= (- 1)2(+2.'¢ Inl’ LIV PR
= (+ l) Inl,nz, veay 1,,. . .>.

Similarly
c’,c, |n1,n2, cany 0-, .. .> =0 ]nl, N2y .. .,0,-, oDy

so that in general
cerlny, .oy > = mlng,..uny, . 5. (7.31)

Thus, the eigenvalue of the number operator for the state ¢, 1s just the occupa-
tion number for that state. Hence, in the occupation number basis, all number
operators are diagonal and the total system wave functions Iny,ng,... 0.0
are just the simultaneous eigenfunctions of the number operators, Ay, A,,...,
Agy.e..

The ¢}, ¢, operators obey the following important *fermion commutation

rules’:
1) [er, CI]+
3 e ely =0, @) [chefly = 0. (7.32)

These can be easily proved from the definitions in (7.2D:

ercl+cle; = 8

]

itk |nyye ey . D = (—l)z'nkcllnl,...,n,,...,nk—l,...)
= (- I)E”Z'nkn,lnl,...,n,—1,...,nk—l,...)
CkCily ey gty > = (= 1)y, el om—=1,..,m,..)
= (=)= nmny,..om—1,.. . me—1,...)
(1.33)

where the extra (—1) on line four comes from the fact that there is one less
particle to the left of state k. Adding the two equations yields the second rule
in (7.32); the other rules may be established in a similar fashion.

The importance of the above sets of ‘ anti-commutation’ relations lies in the
fact that all the antisymmetry properties are built into them. Therefore, by
using them in the right places, we don’t have to worry either about the sym-
metry of the wave functions themselves, or even about the awkward (-%
factors. A simple example of this is to evaluate the matrix element
{Do| cx.ct|Poy where P, is the ground state of the non-interacting Fermi
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system (see (4.7)), and it is assumed that k, /> kg. Calculating in the ordinary
way we have

(Dol crch| P> = (= 1) (Do} e |Por 1>
= (=M, = 8y, (7.34)

where N is the number of particles in the system. Using the commutation
relations

(DPo| ex | Po> = {Po| Siy—chck |Pod = 8= Polcicr |Po>
— 5, (1.35)

where the last term vanishes since ¢, |Po) =0 (because k > kg but |y has no
particles above kg). In this way the (— 1)Z factor is avoided.

Let us now consider how to express the usual quantum operators in terms
of ¢!, ¢;. Itis a good idea to review the argument used in §4.3. We require
equality between the matrix elements of the operator as computed in occupa-
tion number formalism and in the old cave-man formalism. For example,
in a one-particle system, the operator @(r, p) with matrix elements

Oy = <018 = [ 6100, P) (1) d°r (7.36)
has the occupation number form
o = ‘f_‘,l@k, Cl Cy. (7.37)

This is easily checked, as in (4.23):
£00...1,...|@¢|00...1,...> = 2‘,[0,,,<00...l,...|clc,|00...l,...>
K
=3 0,85,
k!

=0, (7.38)

Equation (7.38) may be generalized to the N-particle case. Suppose we
have an operator

N
0= ’2' Ox;,po) (7.39)
like for example the external potential:
N
V(l'l yeeey rN) = {E] V(I"). (7.40)

Such operators are called ‘one-body’ operators since they are a sum of
operators each of which acts separately on one particle. Then it can be shown
(the proof is difficult—see Dirac (1947), pp. 230, 251) that (7.37) still holds,
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with &, still given by (7.36). (See exercise (7.10).) Thus we have the valuable

result that in occupation number formalism, the single-particle operators have

a form independent of N. (Compare with (7.39) which involves N explicitly.)
In a similar way, it can be shown that the ¢ two-body® operator

N
0= i‘IEl O, i1 P, (7.41)
)
like for instance the interaction potential
V(.. nty) =4 I.le V(r—r), (7.42)
(1))
becomes
0°* = i kz oklmnctlcz CmCn (743)
imn
where

Oum = [ &r [ 7 1O S EV00, T 0. 0) O hr)  (7.44)

(note reversal of order in k, [ indices of the ¢i's!). We remark here that the
results (7.37) and (7.43) also hold true in the case of bosons.

7.4 Hamiltonian and Schréidinger equation in occupation number formalism

Let us translate into second quantized form the Hamiltonian for a system
of N identical fermions in an external potential U(r) (bosons give the same
result). Assume that the particles interact by means of a two-body force of
form (7.42), and that there is in addition an external perturbing potential
V(r). In the stone-age notation this is

H= Z [%+ U(n)] +14 % V(r,—r,)+;; Va,p). (7.45)

—

v Y

Hy H, H,

The first term has the form of the one-body operator, 0 in (7.39). Hence by
(7.36, 37):

2
Hy= 3% <¢k|p_+ U@ I cley. (7.46)
ki 2m

If the ¢, are chosen to be eigenstates of p%/2m+ U(r), with eigenvalues ¢,,
then this becomes (see appendix A.22):

Hy = kzl: &ducle, = Zk: ecle. (7.47)
Similarly, H, is translated by (7.43) into
H 1= * 2 Vklmn ctl CI €mCn (7'48)
ktmn
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where

Vira = [ @1 [ 37 SOV VE-1) 8@ i) (7:49)
and H, becomes by (7.37)

H, = Z Vieeker, Vi = J d*rg3() V(x,p) :(r). (7.50)

(Note that in (7.49, 50), the [ d3r is short for integration over r and sum over
spins.) Hence in the occupation number formalism H is:
H= Z exclo+d 2 Viimaciclemen

k. m,n

+kzl VuClC‘. (7.51)

For practice, let us solve the Schrddinger equation, H¥ = E, in occupa-
tion number formalism in some trivial cases. Suppose first that both Vp,=0
and V,,=0. Then we have

H|‘F)=2k:¢,‘clc,¢|¥'>=E[¥’>. (7.52)
The ordinary form of this is (7.3). It is easy to see that the solution is
1¥) = ny,ny, .. 0myy .0 (7.53)
since by (7.31):
ij cley|myyee iy ) = % I AT TR RS (7.54)

The energy eigenvalues are evidently
E= 2,‘; €My (7.55)

which is the sum of the individual particle energies and is exactly the same
result as in (7.5).

Another extremely easy example involves N free particles in the perturbing
potential

V(p) = Mpi+Lp* = —MV34LV! (7.56)
of (3.19). We have from (3.27) and (3.29) that
Vkl = [Mk2+IJc“] 8,‘,. (7.57)

Hence, using (7.51):

= k2
H= 2 s Lot T (MR + Lk Bycle,

- Z( )c;c,‘,uz (MK + Lk el ., (7.58)
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which evidently is just the Hamiltonian of a set of particles with single-particle
energy

2
G = ;Tn+Mk2+Lk4 (7.59)

exactly as in (3.24). The eigenfunctions of (7.58) are just (7.53) and the
eigenenergies are

E=3Xen,. (7.60)
k

A third example is for a one-particle system subjected to an external
perturbing potential ¥(r). The Schrédinger equation is

HY = (Hy+V)¥ = EW

with
Hodr = exdy, (7.61)
which yields the secular equation for the energy:
det[(e,~E)3,+ V] = 0. (7.62)

In the ultra-simple case where all Vy=0 except V,, and V,,, this becomes

—E V,, =0

(GI—E)(Gz—E)... qu EG—E vee =

which has the solutions

E=¢ (i#p,q) (7.63)
otherwise:
E= "’zﬂ'iw{(e,-e,)zml V. 3. (7.64)

Let us see how this goes in the occupation number formalism. We have

Hl% = [; EkCICk'l'E VMCIC,] I% = E,W}. (765)
Since there is only one particle
|¥) = ; A4;100...1,...0. (7.66)

Putting this in (7.65) and multiplying on the left by <00... 1;...] gives
ZAlHy-Es)) =0 (7.67)
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where

Hj= 000 Lpss B oslpnd
Y S P ) .7 I;...>+:TjI Vii oo lindieker] oo Loy

k

= EIJSU-i- VU- (7’68)

which evidently yields just (7.62).

The real many-body case we shall deal with most often is one in which
the external potential is zero and the interaction potential depends only on
the distance between pairs of particles. In this case, H has the form in (7.51)
with ¥, =0, and €, ¢, given by (7.2). Let us work out the form of ¥, in
this case. Using (7.49) and (7.2), remembering k =k, o, and summing over
spin variables (see appendix K) yields

- ' g
Vkohfc;.mcr;,nm = ‘L;Q?_B;‘ﬂ j (J”r d}l“ V(r_r')L,—l[(k—m}-r-l{l—u)‘r]

) -
— ..i'.lfl&fdl P V(p) e—ilk-m)-p J ‘13 1’ e—ik—mtl-n)r
QZ

=3°‘['; 80‘33‘ Q-2 Vk—m98t+l,m+n {?69)

where V,_,, is the Fourier transform of ¥(p) given by:

View= | d* pe-t=mro V(p). (1.69)

(Note that the inverse transform is
Vip)= d3ke+i=-mrp V, _ 7.69"
(p) (Zw}lj e k-m+) ( )

Observe that in (7.69) we have used the fact that (see after (3.62)):

I= ‘ d’re-te-or = 0§, (Kronecker 8). (7.697)

Equation (7.69) may be written

Vniq, o1, n—a, a2 mos, nos = Q! San as501 a4 Vq' (7.70)

The 8-functions express conservation of spin angular momentum (since V
does not involve spin) and linear momentum (since ¥ depends only on r—r’
and therefore cannot move the centre of mass). Note that the interaction
terms in (7.51) also conserve particle number since they involve equal numbers
of creation and destruction operators.
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The Coulomb case where V(r—r)=e?/|r’ ~r] yields (see argument leading
to (4.89)):

80, 030020, dme?
Vkag....,nm = ‘ob 20 Ikzm|28k+l'm+"
or
4re? 1
Vvon 01030, = 80; 03801 a4 qz x 0 (7.711)

This will be used in chapter 12 in the discussion of the electron gas.

7.5 Particle-hole formalism

In §4.3 it was shown how a lot of excess baggage in the occupation number
scheme could be avoided by taking the ground state of the non-interacting
Fermi system as the ‘vacuum’, and recording changes from this in terms of
particles and holes. Since this was done in some detail, only a few comments
will be added here,

First of all, since *particles’ in the particle~hole formalism exist only above
the Fermi level ¢ and holes exist only below, we may write:

l‘hol« # kpanlcle' (7-72)

Second, in the simple examples worked out in (4.20) we neglected the proper
sign, which must come from the (— 1)% factor in (7.21). In practice, one can
avoid this problem by just enlarging the commutation rules for the ¢!, ¢; in
(7.32) to take care of holes. Using (7.32) together with the definition of the
a's and b's in (4.18, 19), one can write out a complete set of rules for all these
operators.;

[ax, ab)y = 8, law aly = [al,a'lh =0
(b, b;t:]-l- = smp (Do bp]+ = [blfm b;]+ =0
[aktbm]-l- = [a, b’n]+ = [als bm]-l- = [al. brtu]+ =0 1.73)

where (7.72) is used to get the last line. For example, suppose we want to
evaluate 0| 5,5}|0>, where [0} is the Fermi vacuum. To try to include the
(—1)% factor here would be a confusing business. But (7.73) makes things
easy:

0| 8,b1|0> = (O} 8y—bL5;|0) = 8y, (1.74)

where, analogous to (7.35), the last term=0 because there are no holes in
the Fermi vacuum. (The general rule in evaluating matrix elements like
(7.74) is to employ the commutation relations to bring systematically all
destruction operators ay, b, to the right where they operate on the Fermi
vacuum and produce zero. This can become very tedious—a much simpler
method using Wick’s theorem is discussed in appendix F.)
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Re-writing the many-body Hamiltonian (7.47, 48, 50) in particle-hole
scheme is straightforward. Making use of the definition (4.18, 19) and rules
for the &’s in (7.73) yields

Hy= 3 - 3 &blb+ T eala. (1.75)
k<ke k>ke

k<kr

The operator b} b, is just the hole number operator, so the second term shows
explicitly that the holes have negative energy. The first term is just the energy
of the Fermi vacuum. Similarly

Hl = % Z kamua alaman"'i z Vklma?laltambz

k,b,m,n>ke kidim>ke
n<kp
+% = Viimabiby b5} (7.76)
kd.m.n<ks
and
Hy= 3 Vmahaet T Veahdl
m,n>ke m>kp
n<kr
+ 3 Viabmat 2 Vonbmdl (1.7
m<kr man<kp,

n>kp

With the aid of (7.75), we can deduce an equation for the hole wave function.
Suppose we have a system of N non-interacting particles filling the Fermi sea
up to ¢, and remove N, of them, thus creating N, holes (but no particles).
Then (7.75) becomes

Hy* =Wo— 5 ablb,

k<kp
where
Wo= 3 ¢ and Sblb=
k

k<kp

Aside from the constant term, W,, and the minus sign before ¢,, this has just
the form of (7.47), if we imagine that (7.47) describes N, particles, all in states
below kr. Hence we can reason backwards (Heisenberg (1931)) and conclude
that H5°' in ordinary notation must be

Na 12
Hgou = WD <+ z [—2—;—‘ - U(r,)],

[£2}

i.e., just like H, in (7.45) except for the W, (which just shifts the energy zero)
and the minus sign. The corresponding wave equation for the single hole is

[;; + U(r)]qb.,(r) = —adu(n), (7.788)
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showing that the hole wave function is just that of the particle, while its energy
is the negative of the particle energy. (See also Kittel (1967), p. 274 1)

Finally, it may be remarked that for the same reason that the hole energy is
negative we find

hole momentum = -k (for U = 0)
hole spin = —a.

hole charge = —particle charge (7.78b)

7.6 Occupation number formalism based on single-particle position eigenstates

The treatment up to now has been based on single-particle states which
are eigenstates of the single-particle Hamiltonian, i.e., the energy operator.
However, there is no law against using any convenient set of single-particle
states—like for example, eigenstates of the single-particle momentum or
position operator. Because of its utility, we will discuss the case of a scheme
based on the position operator, .

The single-particle position operator has the eigenvalue equation

#3(r—R) = RS(r—R) (1.79)

where the eigenvalue R is at any point in space and 8 is the Dirac §-function
describing a particle precisely at the point R. In (7.3) we find the total energy
operator, Hy for N particles, and in (7.7) we find the antisymmetrized eigen-
function for this operator. In a similar way, we have here the total position
(i.e., centre of mass) operator for N particles

N
R = ,Z| £ (7.80)

with eigenfunction

1 8(rl—R1)...8(r,:,—R1)

Pry Ry BTy By) = DL (7.81)

8(r;—-Ry)... 8(r;,—R~)

(This is of course not an eigenstate of H,!) For simplicity spin has been
omitted.
The transition to occupation number scheme is made by (cf. (4.6) or (7.9)):

¢R1. Ry...Ry = ¢n...m.. v eon Bz

SHT T NN S (7.82)
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where n,, means: a,, particles in the single-particle state 8(r—x,), that is, n,,
particles at the point x (again n,,=0 or 1 for Fermi system). Thus,
IPess e osPyy,...> describes the distribution of particles in space.

Similarly, the creation and destruction operators here are: c},, c,, which
respectively create and destroy a particle at the point x,. These operators
are usually written in an unfortunate form which makes them look as though
they were ordinary wave functions:

P1(x,) = cl,: creates particle at point x;

Ji(x;) = c,,: destroys particle at point x;. (7.83)

The ¢'(x), ¥(x) are the basic field operators of quantum field theory. The
combination

p(x) = YH(x) §(x) (7.84)

is the number operator for this case, and has eigenfunctions (7.82). Since
its eigenvalues are the number of particles at the point x, it is evidently just a
density operator.

It is easy to show that the $'(x,), Y(x,), are related to the ¢!, ¢; of (7.21) by
the same transformation which connects the eigenfunctions 6(r—R) to the
éi(r) of (7.1). Thus, we have

3(r—x;) = %: Ay $ilr)

or
[00...1,00...> = X A4,]00...1,00...)>
k
or
ct,[000...) = 3 4,¢}]000...),
k
whence

Px,) = % Apcl

P(x;) = % Ak (7.85)
The coefficient Ay is
Ap = [ Pres@se-x) = 1. (7.86)

By using this transformation, it is easy to show that the Hamiltonian (7.51)
(assume no external perturbing potential) may be written in terms of the field
operators like this:

H= J' 43x¢*(x)[-2'invg+ U(x)] )+
+1 f j dB3Ixd3x Y)YV (x—X) g(x)P(x). (7.87)
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For example, substituting (7.85) into the first term of H (call x=x,):

Ho= [@x3 duc[ - R4V atie, @89
k,
and using (7.86), we find
Hy = kz' cle; J. d3x,bi(x;) € P7(x;)
= ? GkCl Cx (7.89)

same as in (7.47).
The transformation (7.85) allows us to break ¢!, ¢ up into *particle’ and
‘hole’ parts, thus:

Px) = 3 Apal+ T Aub,
k>kp k<ky
= han (%) +hnore(x1)
P(x;) = Pote(X:) + Ypan. (X)) (7.90)
where Y1, (x,) creates a particle at point Xy, Prote(X;) destroys a hole, etc.

7.7 Bosons

The occupation number story can easily be re-written with the boson as
protagonist. The results we get are just like those for phonons presented in
appendix (4.37)-(4.42), since phonons are an example of bosons. We find:

(1) The @y, . 4\(ry,...,x) Of (7.6) becomes replaced by the symmetrized
In,t...
Pustnonlieeati) = [ (P S (40 Pt .- b

U ( TR %) E—F'¢ SIS o I S N

where: n=01273,... (7.91)
(2) The ct, ¢, operators are re-defined by

Ailnom.d> = i+ n,.on+1,..)

alm...n. > = /nging,..on—1,..). (1.92)
(3) The commutation relations, (7.32) are replaced by
(@ lennel). = crel—cle; = 8y
® leral- =0,
(€) (e}, cfl- = 0. (7.93)
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(4) There are no holes in the boson case, hence no particle-hole formalism.

(5) The one- and two-body operators are the same as in the fermion case,
hence also the expression for the Hamiltonian. (Thisis nottrue for phonons,
where the interaction terms may involve the product of any number of
creation and destruction operators (see Van Hove, 1961, p. 24, and also
chapter 16).)

Further reading

Raimes (1972), p. 21 .

Landau and Lifschitz (1958), p. 215 fT.
Dirac (1947, 58), p. 225 ff., p. 248 fT.
Schweber (1961), chap. 6.

Schrieffer (1964a), appendix, p. 257.

7.1
1.2

1.3
74
7.5

7.6

9.7

7.9
7.10

7.1

Exercises

Find ¢, ¢}¢,|111000...

Find <'P|N’[5”), wherc ¥5=A[100...>+ B|111000...>, and N is in (7.30).
(Remember that ¢¥|=[%> (see appendix (A.18)), and use (7.18).)

Verify the commutation rules (7.32) in the special case where |¥) is as in Ex.
7.2 above (i.e., show, for example, that (¢, ci+cle)| ¥ > =0, etc.).

Werite out the Hamiltonian in second quantized form for the system described
in Ch. 3, Ex. 3.1. Choose the states ¢,(x) as the single-particle eigenstates.

The system of Ch. 3, Ex. 3.1, is subjected to the perturbation of Ch. 3, Ex. 3.2.
Find the form of the perturbation in occupation number formalism.

Calculate the interaction term in occupation number formalism for a fermion
system (no external potential) in which the interaction between particles has
the form A8(r;—rj). Neglect spin.

Verify the particle-hole commutation rules in (7.73).

Verify (7.75).

Use occupation number formalism to prove the first line of (7.78b).

Verify that for a two-particle system, the matrix elements of the two-body
operator @° in (7.43) between the two-particle states <0 ...1,...1,...| and
[0...1,...1,...> are the same as the matrix elements of ¢ in (7.41) taken between
the corresponding two-particle Slater determinants. (Use argument analogous
to the one-particle case (7.36)-(7.38).)

Prove that the components of the total spin operator, S, in second quantized
form are (use appendix K):

Sx:;Z{C:TCk1+c:1L‘tr1
x
"%Z [C:; Ck;““‘-'t‘; it
x
1> leby aq—cly o]
3 kt Cky —Cky Cr )l
L

Sy

Sl

I



Chapter 8

More about Quasi Particles

8.1 Introduction

Our first application of occupation number formalism will be to bring into
focus some parts of the quasi particle picture which were left hazy in the semi-
qualitative talk in the first half of the book. For one thing, we recall that in
appendix &/ (which the reader should look at now if he hasn’t already done so)
it is stated that in most many-body systems, one can transform from the
original Hamiltonian with strong interactions between particles,

H= ‘2 HO(phrl)'*'* E V(rhrjoplvpl)’

(or H= Zk acle+d T V,‘,,,,,,c',clc,,.c,,) (8.1)
Jomn
to a Hamiltonian of the form
H = Eg+3 AL A+ £(..., Ag,..., AL,..). (8.2)
T R ’ A
small

This latter expression describes a set of approximately independent ele-
mentary excitations of energy ¢, above a ground state of energy E,, interacting
weakly by means of the small term, f. This is illustrated for collective excita-
tions by the phonon transformation. However, in general is it too difficult to
go from (8.1) to (8.2) by means of a canonical transformation, and therefore
we introduced the quantum field theoretical method of getting e, directly from
the poles of the propagator G(g,w). In particular, all our quasi particle
examples were solved by the field theoretic method.

In order to appreciate precisely the relation between the canonical trans-
formation and quantum field theoretical methods, it would be valuable to
have a simple example showing how the transformation (8.1) - (8.2) goes in
the case of quasi particle excitations in Fermi systems. In §8.2 we introduce
just such an example, a soluble model system with a ‘pure Hartree’ Hamil-
tonian which can be easily calculated exactly both by the field theoretic and
the transformation method. Both methods give the same answer: The ele-
mentary excitations turn out to be a set of # quasi particles and an equal
number of quasi holes, together with an interaction term.

142
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In §8.3, we will do a crude calculation of the lifetime of quasi particles and
show that this lifetime is inversely proportional to the square of the distance
from the Fermi surface. Hence the quasi particle picture breaks down if we
are too far from the Fermi surface.

Another limitation on the quasi particle picture is that the picture is invalid
in the time interval just after the bare particle is introduced into the system,
since it takes some time for it to get dressed. This requires adding a correction
term to the propagator, which will be discussed in the last section.

An important point which can generate considerable confusion is that the
word quasi particle, in the case of Fermi systems, is used in two different
senses. The word quasi particle as we use it here means an elementary excita-
tion above the ground state in the sense of (8.2), and there are two types of
fermion quasi particles: quasi particles and quasi holes. However, there is an
‘intuitive’ definition of quasi particle introduced by Landau (Abrikosov
(1965)), which is very close to the picture of the classical quasi-ions in
Fig. 2.1. Landau visualizes the whole interacting system in its ground state
as filled with quasi particles up to the Fermi surface. There are N Landau
quasi particles, one for each bare particle. Excited states are formed by
lifting Landau quasi particles out of the Fermi sea, thus creating quasi particles
and holes, same as those we deal with.

This picture is fine provided we are acutely aware of its limitations: first, it
makes sense only for Landau quasi particles near the Fermi surface, since the
lifetime is otherwise too short. Thus even though we say ‘N Landau quasi
particles’, this has only formal meaning, since we can really only talk about
those with |k| near k. This also implies that if n, is the number of Landau
quasi particles in state k, the statement: ‘The function n,=0 for |k|>kp,
and =1 for |k| <kz" has meaning only near k¢. Finally, even though we talk
of the ground state as ‘filled with N Landau quasi particles up to kg’, we
cannot get the properties of the ground state from such a model; in particular,
the ground state energy is not equal to the sum of the encrgies of the Landau
quasi particles.

8.2 A soluble fermion system: The pure Hartree mode!

Imagine that we have an N-fermion system with no external potential, and
with a pure forward-scattering interaction between particles of the form

Viiman = Vit Sk Onts (8.3)

(cf. (4.66) where we had an approximate forward-scattering interaction).
Placing this in the general Hamiltonian (7.51) yields

H= % ‘kcick‘l“}%: Vimchelexer. 8.9)
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For a system with the full H in (7.51), we can get only approximate solutions
for the energies of quasi particles. But with the simple model H in (8.4), we
can get exact solutions, as will be seen.

This model H will be called the ‘pure Hartree’ Hamiltonian, since, as we
shall show, the only terms in it are those giving rise to the ‘Hartree effective
field’ discussed after (4.73). Our object is to get a solution to the problem in
the form of (8.2), i.e., the ground state energy plus a set of approximately
independent elementary excitations (quasi particles in this case) above the
ground state. We first do this by the straightforward diagrammatic method,
then get the same result by the canonical transformation technique.

The interaction (8.3) has only the simple forms

k 1 k 1 k 1 k 1
}'wwn{ }~wwv< >-~w~{ M (8.5)
k 1, k 1, k 1. k& 1
where we have used (4.44). Hence the only graphs occurring in the series for
the ground state energy (5.42) are

k 1 k k k
Eo= Wo+ O + [O’WW‘O + @:l
(et k 4,
since a little experimenting shows that none of the other graphs in (5.42) can
be drawn using only (8.5). (Note that just as in (4.54), (4.55), the propagator
lines in these diagrams are all hole lines. Observe also that the diagrams in
brackets violate the exclusion principle since there are simultaneously two
hole lines in state k.) This may be evaluated with the aid of (5.44) giving
Eo= 3 a+3 X Viw 8.6)
k<kr ki<ke

(The k=1 graphs cancel, as seen from (5.44). The prime means k#1.)

Now let us get the quasi particle energies, ¢, from the poles of the Green’s
function. In this case, the propagator is given exactly by the sum over just
bubble graphs:

b fetbo 23

= 4 + + +

kil okl K rrrnn)
1

since none of the other diagrams in (4.63) can be drawn using only (8.5).
(Compare this with (4.67) where the propagator is only approximately given
by the sum over bubble graphs.)

+ .

s (8.7

b
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Series (8.7) was summed in (4.67) and gives the result (4.70), for quasi
particle energy

&=+ X Viur, k> ke
I1<ks

= . (8.8)
In the case of quasi holes we just sum

1 o {0
‘H k|+k¥v~0+1w+x+

(8.9)

k{ k
+ * + |k Pk |
k k k{w“O 1

The bracketed diagrams cancel and we get the result:

& =&+ X Vg, k < kg
I<kp

7, = o, (8.10)

Finally, we need the interaction between quasi particles (f~term in (8.2)).
This can be obtained from the various two-particle propagators defined in
§1.5. Consider the particle-particle propagator first. In the present case, this
is given exactly by the sum:

Eﬂ Hwo* e} by o

k ]
k 1
+H+ 4ot oot o
k 1

=k} k(~1}

8.11)
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The crossed ‘exchange’ diagrams in the brackets in (8.11) contribute only
when k=1, because the labels on the incoming and outgoing lines in each dia-
gram must match those of G, on the left. Since these diagrams are negative
(see exercise 13.7), they cancel all the uncrossed diagrams when k=1, so
G,=0fork=1.

We can greatly simplify (8.11) in the following way: Consider the diagram
subset consisting of more and more bubbles inserted into the first propagator,

- ol g ko o am

This can be easily summed:

mf }%«ytﬁw HH o

Similarly, we can sum over all bubble insertions in all bare propagators, leading
to a sum in which all propagators are clothed, i.e., in which all propagators are
the quasi particle propagators (8.7):

m=»“+H+ At e
kel M

In this form, we can see that the quasi particle interaction is: V= Vi, (! # k),
V=0(=k). Similar arguments applied to the particle-hole and hole-hole
propagators yield this same interaction.
We can now combine these results into a Hamiltonian of form (8.2). The
expressions for E, and ¢ are in (8.6), (8.8), and (8.10). The interaction term
Jfin (8.2) will have the form (7.48), since the quasi particles here are fermions.
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Letting A}, 4,, B}, By, be the quasi particle and quasi hole operators we find

H=|3% +} 3 Vuu] +

kekp Ki<ky

+ 2 (‘t"‘ 2 le)AzAk“ 2 (‘k+ z': le) Bl B, +
1 4

k<ky t<ky k<k I<kyp

+3 3 Vi Al ALA A, - S VB A} A, B, +

Lk>ky k>kp
1<kp
+% . Z: Vi B} B! B, B, (8.15)
<kp
l<kp

Observe that in the particle-particle and hole-hole interaction terms, it is
necessary to put in a factor § to avoid counting interactions twice when we
sum freely over k and |. Note that the (—) sign in the B} B, term is put in
because by (4.2) the hole energies (and therefore the quasi hole energics) are
negative. The (=) in the B} A} A, B, term occurs for the following reason:
The energy of a quasi particle in, say, state k, >k, includes interactions with
all particles in the filled Fermi sea. But if there is a hole in, say, state /, <k,
then the corresponding energy, V14001, does not exist, and should be sub-
tracted from the quasi particle energy. The term — Vijkg, Bl AL A By,
takes care of this subtraction (see exercise 8.5).

Now let us try to get this result by the canonical transformation method.
What we want is a transformation which takes (8.4) into something of the
form (8.15). This will be a special case of the transformation (8.1) — (8.2).
The difficulty with the transformation method is immediately obvious. Where
should we begin? Unlike the diagrammatic method, we have no cookbook
rules to guide us. However, in the present case, it turns out that the required
transformation is extremely simple—in fact it is just the transformation of
(8.4) to ordinary particle-hole operators given in (4.19):

&1 = Oy @yt O s, bY
CY‘ = 0,“._,‘,0',+ ok,_,‘, b[. (8.16)

Before carrying out the transformation, let us do a little preliminary jugg-
ling of (8.4) to get it into a more transparent form. By the commutation
rules (7.32),

cieleve = —=cleidy+elecche. 8.17)
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Substituting this in (8.4) gives

H= %‘: chlck-i§ Vixclex +
+3 )k:;' Vimclexchertd % Vikix €h cxcl €x
= % ecletd %’ Vimickexcher. (8.18)

(The second and fourth terms cancel in a Fermi system because ¢} c,c}c, has
exactly the same effect as c}c, when operating on an arbitrary wave function
like (7.20), since n;,=0, or 1 only.) Substituting the ¢;'s from (8.17) into
(8.18), using the fact that b, b} =1—b]b, and collecting terms produces

H=|3% ¢+ ¥ ka] +
k ki<kr

<kp

+ 3 (€k+ P Vkul)alak— pOy (¢k+ p)] Vuu)blbk'l'
I<kp k {<kp

k>ky <kp

+[‘l‘ Y Vimalaaha— 3 Vigala, b+
ki>ky l'c>:r
<kp

Y Vmbzbkb'.b,]. ®.19)
ki<kyr

Comparing this with (8.15), shows that the quasi particle operators 4}, 4, in
this simple case are just the ordinary particle operators a}, a,, and the quasi
hole operators are just b}, b,. Thus, we see that the result of the canonical
transformation (8.19) is the same as that obtained graphically. This shows the
equivalence of the diagrammatic and transformation methods.

It is a good idea here to show explicitly why one must be careful when using
the ‘Landau quasi particle’ model described in §8.1. Suppose we in a naive
way regard the interacting system in its ground state as ‘filled up’ to the Fermi
surface with quasi particles of energy ¢, (as given in (8.10)), in the same way
that the non-interacting system was filled up with bare particles. Then we
get for the ground state energy

Ey= 2 g+ X' Vi (8.20)
k<kp k<kp
which is wrong as seen by comparison with (8.6). The contribution from the
interaction part is twice as big as it should be. This is just another manifesta-
tion of the ‘double counting’ talked about after (0.2). It is due to the fact that
the interaction Vg, has been counted twice, once as the effective field at k
due to /, and once as the field at / due to k.
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8.3 Crude calculation of quasi particle lifetime

At the beginning, we mentioned that the quasi particle picture breaks
down if the energy is too far away from the Fermi energy. In order to
understand this, look first at the criterion (3.17). In a Fermi system, since
one deals with particle-like excitations above e (the Fermi energy of the
interacting system), and hole-like ones below, the criterion is taken relative
to the Fermi energy, i.e.:

1 < ex—ep. (8.21)
Tk

In the pure Hartree model, by (8.10), 7,=w, so this is satisfied for any .
But this is not true in general. In fact, we are now going to show that in most
Fermi systems the quasi particle lifetime obeys

1 & (=2 (8.22)
Tx

Hence, for ¢, too far from ef, 7, becomes too short to satisfy (8.21) and the
quasi particle is no longer a valid concept. Equation (8.22) will be discussed
more rigorously in chapter 11. Here we will just give a crude quasi-proof of it.

Thelifetime of a quasi particle in momentum state k will be the inverse of the
transition probability per second that the quasi particle will be scattered out
of state k by collisions with other quasi particles. Let us pretend that quasi
particle collisions are like those between real particles (they are not, actually,
since quasi particles can have a ‘retarded’, i.e., time-dependent, interaction
even when the bare particles interact instantaneously—see §10.4, also §10.6)
and calculate the transition probability out of state k, for a particle in state k,,
where |k,| > kr. In a typical interaction, the particle will collide with a particle
in state |k,| <k, and the final state will be a particle in k, and one in k,, where
by conservation of momentum

k4 = k] +k2—k3. (8.23)
The transition probability is

Wiy« [ @k [ @K Vi, krtirmi, ko bol? (8.24)

where Vy ;. , is given in (4.42).
To evaluate (8.24) we note that by the Pauli principle all states under &,
are occupied so that

k3| = ke, kol > kg (8.25)
and by conservation of energy,

K+k} = kK+42 (8.26)
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Equations (8.25), (8.26) imply together that
Ki+k3 > 2k, (8.27)

Consider first the limiting case when |ky| =kp. Then by (8.27), k3> k3. But
since |kj| <kp, this implies |k,|=kp. Similarly, |k;|=|ks|=kr. Thatis, all
momenta lie on the Fermi sphere. Suppose now that |k;|=kr+8 where
kr>8>0. Then by (8.27), |k,| >kr—3. Similarly, since |k,| <kr, we have
that in order to satisfy (8.26), |k;|, {ks| must be less than k8. Hence all
momenta lie in a shell of thickness 8= |k;| —&; around the Fermi sphere.
Assuming there’s nothing peculiar about the behaviour of ¥, the integral over
the kj-shell gives a factor o 4wk }(|k,| —k ), and the same for the ky-shell, so

Wi, < (k| —krp)2 (8.28)
But
ex,—€p < (kf=kF) = ([ky| —kg) ([ky| + k)
x 2kp(|ky| — k). (8.29)
Whence
L Wy « (e, —€p)? (8.30)
Tk

which ‘proves’ (8.22), assuming that quasi particles interact roughly like
real particles,

In this calculation, we obtained the lifetime by applying the ‘Golden Rule’ to
find the transition probability corresponding to the matrix element given by
the diagram

K, B\ /S

(8.30")

This same result may also be obtained by evaluating the imaginary part of the
proper self-energy diagram:

ky
ke k; (8.30”)

ky

as will be shown in §9.8.

Note that in the special case of the mode! interaction (8.3), we have that
k,=k;, and it is easily shown that the argument above leads to a region of
integration of zero volume, so that W=0 and the lifetime is infinite, in agree-
ment with (8.10).
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8.4 General form of quasi particle propagater

The quasi particle formula in (3.15) was good enough for describing the
‘quantum pinball’ and Hartree-Fock cases, but needs to be generalized
slightly to cope with the more complicated situations to come. Before pre-
senting the more general expression, let us recapitulate.

According to (3.2) and (4.29) the single-particle propagator or ‘Green’s
function’ is defined as

Glka, kyy t2— 1)) = Gk, kyy t2—1)1y5 0, + G (k2 Ky, 12— 1)y, (8.31)
where

iG*(ka, ky, t;— 1)) = probability amplitude that if at time 1, we
add a particle in ¢, to the interacting
system in its ground state, then at time ¢,
the system will be in its ground state with
an added particle in ¢, (8.32a)

—iG™(ky, ky, t;—1y) = probability amplitude that if at time ¢, we
add a hole in ¢, to the interacting
system in its ground state, then at time ¢,
the system will be in its ground state with
an added hole in ¢, (8.32b)

(The — sign on G~ is for fermions; bosons have a +iG™ instead.)
The form taken by G* in the free particle case was given in (3.9, 13) and

(4.31, 32). These results may be written in a compact way by introducing the
functions

=1, forx>l_ =+8, €& > €

0"{ =0, forx<1’ Sk{ -5 e < (8.33)

This gives, using (8.31), and letting t=1,—1,,
Golk,t) = —i[0,0,, ¢, &' " —0_,6,,_, "), t+#0
= <+ iB"__“, t=0 (8.34)
and

1

Gotk,0) = ~—— 7% (8.35)

(see appendix I regarding the i8-factor).

Now in chapter 3 we argued physically that in systems describable by quasi
particles, G will look like G, except for replacing ¢, by ¢;, introducing a lifetime
75, and an amplitude factor, Z, as in (3.15). However, this is not quite right,
because it neglects the fact that when the bare particle is first put into the
system, it will take some finite time, say ¢, for it to become *clothed’ so it will
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not act like a quasi particle until £, ~ ¢, > 1,. Further, it can be shown that the
quasi particle expression for the propagator is no longer valid when 1, — 1, > 7,,
where 7, is the lifetime. For this reason it is necessary to write the propagator
as the sum of a pure quasi particle part plus a correction term which will be
important for t <t, and 1> 7,.

It is also a good idea to include a ‘quasi hole’ part in the definition, similar
to the way in which the hole part was included in the free propagator (8.34, 35).
These considerations yield (setting =1, —1,), for 150:

Gmlul (ka t ) = = izk [ol au'-(r' e—““l-‘ﬂ.l, -
panticlo , -
- 0—! 8(;’—0' el .':‘" " '] + Fk, ‘)' (8.36)
where 0<Z, <1 (Z, independent of 1), ¢y is the Fermi energy of the inter-
acting system and F(k, ¢) is the correction term. Taking the Fourier transform:

Zy
Cauat (ko) = 30, = T17x

L+ F(k, w). (8.37)

It must be remembered that these are bona fide quasi particles only if the
condition (8.21) is satisfied, i.e.,
1 <€ € —¢F. (8.38)
Tk

Finally, a word about the suspicious-looking correction term, F. Sceptics
may feel that so many sins are packed into F that the quasi particle expression
is useless. This is not true, because we of course require that F does not
contain a piece cancelling the Z, term (!!). There are also certain ‘sum rules’
that it has got to satisfy (see (9.25)), but otherwise there are no particular
restrictions on it. It is presumably well-behaved, and, hopefully, small. It
can be shown to describe collective excitations in the system, but this will not
be discussed here.

Further reading

Noziéres (1964), chap. 1 (Landau theory of quasi particles).
Abrikosov (1965), chap. 1.
Falicov (1961).

Exercises

8.1 Using the rules for diagrams, Table 4.3, prove that the bracketed diagrams in
(8.9) cancel.

8.2 Verify (8.19).

8.3 The energy and lifetime of quasi particles in the electron gas are given (in RPA)
n (10.46). Taking r,=1 (high density case), calculate the order of magnitude
of how far out from the Fermi surface the quasi-particle picture is still valid.
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8.4 Verify (8.37) from (8.36).

8.5 Consider a three-particle Fermi system with interaction as in (8.4), in the excited
state |'¥>=10;0,1;5041515050g,...,>. Show using (8.4) that the energy of this
state is E=e3+ €5+ €5+ Vas+ Vg + Vag. Rewrite | in particle-hole notation
and show that H” in (8.19) yields the same energy.



Chapter 9

The Single-Particle Propagator Re-Visited

9.1 Second quantization and the propagator

In the early chapters we used an intuitive approach to the quantum propa-
gator, defining it physically and obtaining its diagrammatic perturbation
expansion by analogy to the pinball case, While such an approach is a good
way to get a foot in the front door of the field, it has obvious limitations.
Therefore, in this chapter, we are going to take a more rigorous look at the
propagator with the aid of the occupation number formalism.

By introducing creation and destruction operators cl(f), cx(f) which create
and destroy a particle at time ¢, it is possible to write a simple, compact mathe-
matical expression for the propagator. Once we get used to it, this expression
is a lot easier to work with than the verbal definition (8.31, 32), and greatly
facilitates understanding the properties of the propagator. The expression
also reveals the origin of the diagram expansion, since it may be expanded in
a perturbation series, each term of which corresponds to one of the graphs we
have been drawing.

In §9.5 we use the idea of * diagram topology’ to simplify the rules for drawing
and evaluating diagrams. These rules are then applied to the simplest example
of a true many-body calculation, i.e., a calculation in which we go beyond
Hartree-Fock and include correlation effects. The example consists of finding
the contribution to the quasi particle energy and lifetime coming from the
single pair-bubble self-energy diagram:

9.2 Mathematical expression for the single-particle Green’s furction propagator
The closed mathematical expression for the propagator, G, appears usually
in one of two forms:
Glka ki t2— 1) = —i{ Wol T{cx,(t2) L, (1)} | Pod .1)

Glra, 1, 82— 1) = —i (Wl T{ih(ra, 12 P1(rs, 1)} | Wo)- 9.2
We shall only consider the first form—the second may be analysed in a similar
way. We'll explore the meaning of each term in (9.1) and show that it is
precisely the same as (8.31, 32).

or

154



9.2) THE SINGLE-PARTICLE PROPAGATOR RE-VISITED 155

First, ¥, is the exact normalized wave function of the ground state of the
interacting N-particle system. The operators ¢,(1), c}(¢) respectively, destroy
and create a particle in state & at time ¢. More precisely, they are the ordinary
¢, ¢} transformed to ‘Heisenberg picture’, defined by (see Schrieffer (1964a),
p. 104):

ch('l) = e+lHl1 CI‘ e—'ﬂl]
cl(ty) = ettt e~lHn 9.3)
where H is the Hamiltonian of the interacting system as in (7.51)., The ex-
ponential operator in (9.3) is defined in appendix (B.3).
Finally the Wick time-ordering operator, T, is defined by
T{A(t)) B(1))...} = (—1)"x operators rearranged so that time
decreases from left to right, assuming
no two times are equal,

= (—1)"x operators rearranged so all c!'s (or
a''s or b's) stand to the left of ¢’s (or
a’s, or b"s) for the case of equal
times (see end of appendix F), 9.4)

where P is the number of interchanges of operators required to get the operators
in the proper time order, starting with the order given in the brackets. Thus,

T{ex(tD e} (1)} = e (D cli(ty) fore, > 1
= —cl () er(ts) fort, < 1y 9.5)
(Note: The factor of (—1)” is not present in the boson case.) Hence G may
be re-written
G = GH(kp, by t2— 1)) = —i{ ¥l e, (1D k() | ¥, 2> 1
= G kg, Ky, ta—1y) = +i{Wp| el (1) ex, (1D | WD, 2 < 1. (9.6)
Consider the 1, > ¢, case first, Substituting (9.3) gives
Gt = —i < Yol ettt Chy e~HUrn) o} o—tHN |y, 9.7)

B! A
Now exp(—iHt) is the time development operator (see appendix B), so that
exp(—iH1)| ¥y is the ground state at time ¢;, and c} exp(—iHn)|Wo) is
the state with one particle in ¢;, added to the ground state at time ¢,. Hence

A = Bt ] o~HN | P 9.8)

is the state of the system at time ¢, when a particle in ¢, was added at 1,.
(Note that this state is not normalized. See Nozi¢res (1964), p. 60.)
The meaning of B! is obtained from

Bt = e ™| ¥oy 9.9)
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(see appendix (A.18)). This is evidently the complex conjugate of the state
with one particle in ¢,, added to the ground state at time r,. Hence we obtain

G* = B'A = component of B along 4

= probability amplitude that the state of the system
at 15, when a particle in ¢,, was added to the
ground state at t,, is the state with one particle in
¢x, added to the ground state at time 1, 9.10)

which is evidently just a mouth-full-of-marbles way of saying (8.32a). Apply-
ing the same method to G~ in (9.6) yields (8.32b). This proves the complete
equivalence of (9.1) and (8.32). Equation (9.2) involves identical arguments
applied to the operators (r), !(r) defined in (7.83).

The formalism here reveals that the process of ‘adding a particle in state
&x,’ is not as simple as it sounds. For example, consider the special case of a
one-particle system with exact ground state

|¥o> = B|1000...>+D|0100...> 9.11)
where
|BI*+|D|?> =1, |BJ?>>0, 9.12)

and imagine that we try to add a particle in the lowest single particle state ¢,
at time #;=0. We have

cle 0| ¥y = ] |¥y> = 0+D|1100...). 9.13)

This shows that ‘adding a particle’ requires sweeping out the old piece of
particle sitting in ¢, in the B-component of | ¥,> and adding one only to the
empty place in the D-component.

Now let #,=0, t,=1, and calculate G(1,1,/) just after the particle in ¢, is
added to the system, i.e., as ¢ — 0%

lim G(1,1,0) = lim —i{¥| c)(t)c}(0) | ¥
—0* =0+

—i(Wylere] | o>
= —iD2<0100...|0100...> = —iD? 9.19)

where (7.18) has been used.

Since by (9.12), D2 is less than 1, it is clear that even immediately after the
particle is added to the system in ¢,, the probability of observing an added
particle in ¢, is less than 1 because ¢, was already occupied with prob-
ability=B2in | ¥y). In fact, if D=0, (9.14) shows G=0 (so the particle does
not propagate) simply because it is completely impossible to add a particle in
state ¢, to | Wp), i.e.: filled bus, no ride.

Of course, the one-particle system here is a special case, but it is easy to
show (by using (7.20) for ¥, instead of (9.11), and breaking it up into one

I
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part with m, =1 and another part with n,,=0) that exactly the same con-
siderations apply in the many-body case. This is the reason for inclusion of
the amplitude factor, Z,, in the quasi particle expression (8.36).

It is a good brain-building exercise to show how (9.1) boils down to the
expression for the free propagator (8.34), in the non-interacting case. The
non-imteracting Hamiltonian and ground state are given by

HO = Z Gpcch, Ho|¢o> = z €p|¢o>, I¢o> = I] 11... lpOOO...)-
4 p<kr

(9.15)
Let us calculate just G¥ setting ¢, =0, t,=1:
Gik,t) = —i(Py|et'totc, e datc] | D> B, (9.16)
In an obvious notation,
et |Po> = (= 1)V [Py, 1> O, - 9.17

Thus k& must be greater than k. Now

Ho|Po, 1)) = %‘, &Che, |Po, 1) = [pgr e,,+ek] | Do, 11> 9.18)
so that by appendix (B.7)

cre” ot | By 1> = (= 1)¥|Dgdexp { - i[pz_‘;" &+ ‘k]’} . 9.19)

Finally operating with exp(iHy¢) produces
Gé(k,t) = —if,,_., 0,e' (9.20)
confirming (8.34).
Using (9.1), it is easy to obtain the ground state expectation value of any
single-particle operator (7.37) in terms of the propagator, thus:

O | Woy =— i % akl}if‘f)l_c(l,k i) (9.20")

The propagator may also be used to find the ground state energy (see, Fetterand
Walecka (1971), p. 70, or Schultz, 1964, p. 77).

In this section, we have actually defined three types of single-particle
propagators: the ‘time-ordered’ propagator G in (9.1), the ‘retarded’
propagator G* in (9.6) and the ‘advanced’ propagator G- in (9.6). There are
two other types of retarded and advanced propagators which are particularly
useful because of their simple mathematical properties. These are defined by:

Retarded: GR(k;, k), 1,—1,) = —iol,-r,<q10|[ck3({2)’ C::,(’l)]+|qlo> (9.20")
Advanced: GA(ky, ky, 1, — 1) = +i;,-1 K Wollew, (1), C‘I,(’x)]+|q]o> (9.207)

where [ ], means anticommutator, as in (7.32). These are discussed in detail
in appendix L.
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9.3 Spectral density function

One of the most useful instruments in the toolbox of the many-body physicist
is the ‘spectral density function’ (also called the *weight function’ or * strength
function’). First of all, it is indispensable for analysing the mathematical
properties of propagators, especially their analytic properties. Secondly, it is
extremely convenient to use in many-body calculations which involve diagrams
containing ‘dressed’ or ‘renormalized’® propagators (see chapter 11). We
present a brief introduction to the subject here. There are more details in
appendices H and L. (See also Fetter and Walecka (1971), pp. 72-82, and
Pines (1961), pp. 29-34.)

The idea is similar to the spectral decomposition of a time-dependent
function f(¢) into the sum of its components at various frequencies:

+
1ty = J’ F(w) e duw (9.21)

where F(w) gives the ‘spectrum’ of f(#). The corresponding expression for
the propagator is (see appendix H), for a system with no external potential:

Gk, t) = —i J' dw AH(k, w)e "t ¢ 5 0
)

wm
= +i f dw A~(k, w) etle=mt 1 < 0 (9.22)
0

where pu is the chemical potential:

ground state energy ground state energy
i = | of interacting N —| of interacting N—1 | = EY¥ - E}-'. (9.23)
particle system particle system

The A*(k,w) is the ‘spectral density function’, analogous to F(w) in (9.21).
The Fourier transform of (9.22) yields

C o[ Aw) | AGw)
Gk, w) = fdw w—w'—p+18+w'+w-—p.-i8} ©.24)
o

which is the so-called ‘ Lehmann representation’ of the propagator, especially
useful for discussing analytic properties (see appendix L). The spectral
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density has the important properties that (see appendix H, Ex. H.2)

a A¥E,w) = 0, real
(@ - (k, w) 9.25)
®) [ ¥, )+ 4@, @))dwo = 1 (‘sum rule?).
(4]
For free particles the spectral density is a 8-function:
AF(K, ) = 3+ w—ex+p) (9.26)

which gives Gy(k,#), Go(k,w) when substituted in (9.22, 24). For quasi
particles, the 8-function gets broadened out and we find the Lorentz form

+ I (/) Z;
At 9 = L F - P+ T P00 02D
where D(k,w) is a correction required so that the sum rule is satisfied. When
this is substituted into (9.22, 24) it yields just the quasi particle propagator
(8.36). (See Schultz (1964), p. 29 ff., Fetter and Walecka (1971), p. 80 fI.)

Finally, we note that if (3.76) is applied to (9.24) we obtain the following
expressions for calculating 4% from the propagator:

Ak, w—p) = —}rImG(k,w), w>p
A p—w) = +1—1r ImGk,w), @ < p. (9.28)

9.4 Derivation of the propagator expansion in the many-body case

In chapters 3 and 4, the perturbation expansion of the propagator was
obtained mainly by analogy with the pinball case. In order to make sure that
all the arguments by monkey did not give us the idea that the diagram subject
is either (a) all kindergarten stuff, or (b) based on black magic, we gave a
rough idea of the rigorous derivation of the expansion for the single-particle
case in §3.4. The argument in the many-body case is much more compli-
cated. However, it is not necessary for understanding the rest of the book,
so it has been relegated to appendixes B through G. (We will from time
to time refer to certain parts of it, which may be read separately.) An out-
line of the argument appears in appendix B which shows how the whole
diagram expansion comes from the time-dependent Schrédinger equation.

Probably most readers who glance at the appendix now will find it suffi-
ciently repulsive-looking to keep them content with the monkey argument.
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9.5 Topology of diagrams
In order to develop general methods for working with diagrams, we need
a systematic way of drawing all graphs in nth order. This will be discussed now.
Let us begin with the simplest situation first, e.g., N fermions in an external
potential. The series for G in this case appears in (4.34). To get all nth-order
diagrams here, draw » fat ‘vertex’ dots labelled ¢, ..., ¢,, in a vertical row,
with two skinny fixed points’, labelled ¢,, ¢, as shown in (9.28'a)

°
. ° o o e
. L L] L] L] [ ] L] [ ] (] .
: °
: ° e o
® °
. ° L] L] [ ] L ] L] [ ] * o
. ° ° e o

°

(a) (®) (n=1) () (n=2)

The fat dots may have any position along the vertical relative to the fixed points.
The various possibilities are shown for n=1in (9.28'b) and for n=2in (9.28¢).
Join the dots with directed lines in all possible ‘ topologically different " (in the
Goldstone sense—see below) connected ways such that one line enters and
one leaves each dot. (Note: ‘connected’ or ‘linked’ means diagram consists
of only one piece. See appendix (G.1) f.) In (9.29) we see all possible dia-
grams through first order and five of the twelve possible diagrams in second
order:

kaf|t2

kU0

]
+
+
+
+
+
+
+
+
+

@ @& @@ @ @ ) (& Q) Q)

(9.28")

9.29)
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L 2N
™~ rJ
\
(c") (f ")

(9.29")

By ‘topologically different’ (in the Goldstone sense) we mean this: visualize
the dots and lines as wads of hardened chewing gum connected by rubber
bands with attached arrowheads. Then two diagrams are topologically
identical (in the Goldstone sense) if one can be distorted into the other without
changing the vertical ordering of the dots and points. Two diagrams are
different if they are not topologically identical. Thus (c), (f), and (4) in (9.29)
are topologically identical to respectively (c”), (f), and (/') in (9.29"). Note
that ‘all topologically different ways of joining the n dots’ corresponds to “all
physically different ways the particle can propagate through the system,
scattering n times’.

The above ‘Goldstone method® of drawing the diagrams may be greatly
simplified if we associate the full propagator, G=G"+ G (see (8.31) and
(9.6)) with directed lines instead of just G* or G~. This is the *Feynman
method’. Then in the integrals over intermediate times we automatically get
Go(t’—1)=G§ when t'>t and Go(t"—1t)=Gg when t'<t. Thus it is no longer
necessary to draw any hole lines since a directed line is a particle line for >t
and a hole line for ¢” < t. Thus the time order of the dots is no longer important.
Hence (9.29) becomes:

ka ka
# = l + + + + * i, (9.30)
ki ki

In other words, Goldstone diagrams are time-ordered, whereas Feynman
diagrams are not. (In the Goldstone method, time integrations are over the
regions allowed by the time order in the diagram, while in the Feynman
method they are from —oo(l—in) to +o(i—in). (See paragraph in [ ]
following (4.37) regarding these limits.))

This saves an enormous amount of art work—for example, the single
two dot diagram in (9.30) is topologically equivalent (in the Feynman sense)
to the 12 diagrams, (), (f), ... in (9.29)! The rule for drawing the nth-order
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diagram is now trivial—just draw n dots and two external points with a vertical
line through them all. Equation (9.30) may be translated into (omit «'s for
brevity):

Glkz, k1) = 84, 1, Golks)+ Golky) Vi, x, Golko) +

+ 3‘; Go(k1) Vox, Go(q) Vi, g Golker) ++ -~ (9.31)

Drawing diagrams in the case of mutually interacting fermions with no
external potential (see (4.63)) is considerably more difficult. To get all nth-
order Goldstone diagrams, draw n wiggly lines each with vertex dots at both
ends, and two fixed points, thus (note that the wiggles may have any vertical
position relative to the fixed points):

.
AAAAASS

M1 (9.32)

AAAAANS

Join all points to each other with directed lines in all linked topologically
distinct (in the Goldstone sense) ways such that one line enters and one leaves
each vertex point, and a line enters one external point and leaves the other.
Note that by (4.60) twisted diagrams like (4.61) are not topologically distinct
in the Goldstone sense, and only one of them should be drawn.

To illustrate, consider the second-order case. The number of distinct
linked diagrams coming out of (9.32) even in this low order is dazzling, or
perhaps depressing, depending on whether your viewpoint is aesthetic or
practical. A few typical ones are (9.33).

Sitting in seclusion with these surrealisms for a while shows that many of
them can be eliminated. First because of conservation of momentum, graphs
b, (d), (B), (1), (), (!) have a particle and a hole both in the same momentum
state. But this is impossible by (7.72). Therefore these graphs do not occur.
(Such graphs are called ‘anomalous’ or ‘momentum non-conserving’. They
do give a contribution when the system is non-isotropic, e.g. external field
present, or at finite temperatures.) Second, if we agree to use the Feynman
convention (see (9.30)) in which the full G is associated with each line and
time order has no significance, then (f)=(e), (g)=(k). Hence the only
survivors of (9.33) are (9.34) or (9.35), where (9.35) is another conventional
way of drawing the diagrams (obtained by making the diagrams out of rubber
bands and pulling at top and bottom until the main line is straight). Equations
(9.34) and (9.35) are evidently topologically equivalent in the Feynman sense.
Note that with the Feynman method, the arrows no longer designate particles
or holes but just show the direction of momentum flow. Observe the import-
ance of the arrows! Itis because of them that diagram (2) in (9.34) is topologic-
ally different from diagram 3!
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W X O
Glndordet = + kF , + + 4 ees
(@ ® © (d)
3 J
+*::D+F Z>+ ‘T+---+pP
) N (® Q)]
pP-q
+'_@p + "4‘0+ﬁ+ﬁ/~m
@ )] (9] 0
(9.33)
e
G order = + + + + +
M @ 3 @ (%) (6)
(9.34)
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Let us evaluate a typical second-order diagram using the Feynman method.
Employing Table 4.3, we have in (k, £)-space (regarding the limits on the time
integration, see paragraph in [ ] following (4.37)):

f2 + (1 —in)
v - J = -1z ({ e di[iG ok, t— 1)) [— iV, x
-q ¥ —w(l=tn)
t PLIPHY o iGyk—q, ¢ —1)] [iGo(p, 1 — 1]
[ X [1Go(p+ 4, = D] [= V] [iGolk, = 1)). (9.36)
t -

Note that the order of the times in G is always: time at end of directed line
minus time at beginning. Remember that (9.36) is really (¢) and (f)in (9.33)
lumped into one. O

The (—1) is for the fermion loop: \/. Fermion loops were defined just
after (4.56). For example, in (9.33), a, b, h have two loops, ¢, d, e, f, i, j have
one, the others have zero. (See end of appendix G.)

The Fourier transform of (9.36) is

k,w

] q,(

kg pra = (=DIGE Y [ 2L iGyk-g,0- )
Pq

w=e q"”’ Bre s Gp MiGp+a, B+I[-IVP.  (0.3)

kot b€

It is seen that the frequencies, w, ¢, B, etc., are conserved at the vertices, just
like the momentum. This comes about because of the appearance of 8-func-
tions similar to the 278(w’ — w) in (2.23) when the transform is carried out.

Note that a frequency is associated with interaction wiggles as well as
propagators. In some cases ¥, will actually depend on ¢ (this is a ‘frequency
dependent’ or, in (q,¢)-space ‘retarded’, interaction). Finally, observe that
one integrates or sums over all intermediate momenta and frequencies where
‘intermediate’ means excluding the k,  of the incoming and outgoing lines.

One more thing. We can avoid treating the ‘non-propagating’ lines as a
special case by including a convergence factor exp(iw0*) when translating
these lines into functions, where 0* is a positive infinitesimal such that
0* x 0o =0 (see end of appendix I), thus:

Le() or \=iGell,e)exp(ie0*) (9.38)

le
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(Note that this factor may also be included in Go(l, €) itself—see Schrieffer
(1964), pp. 108-9.) Hence the integral over the intermediate frequency e gives:

+o

J'ds je'*®* _ -1 for l<k¢
27'rw—-e,+i8,_ 0 for I>k¢

-0

(9.38")

(The integral is done by residues as in appendix I. The contour is closed in the
upper half-plane where the convergence factor makes the integral vanish.)
Thus, for example:

ko i 2 de. . ; 1€0+
= Gk )P >, | £ 1-Vinal Gl Ol
k,w L e 7 "
= UGk I 3 (=i (= D)
same as in (4.62).

The same factor must be used when the non-propagating line is an exact
propagator:

l,¢© or V =iG(l,e) exp (ic0*). (9.39)
Le

9.6 Diagram rules for single-particle propagator

We have now reached the point where we can present in summary form the
rules for drawing and evaluating the type of graphs which will be used in the
next two chapters. These are the diagrams describing a system of mutually
interacting fermions with no external field and they will always be drawn in
(k, w)-space, using the Feynman method. The rules are:

(1) In nth order, draw n wiggly lines with vertex dots and two external points
as in (9.32),

(2) Join all vertex dots and external points to each other with directed lines
in all linked topologically distinct (in the Feynman sense) ways, with onc
line entering and one leaving each vertex dot and a line entering one
external point and leaving the other. Two diagrams are topologically
distinct if they are visualized as made of rubber bands, and one cannot be
deformed into the other.

(3) Label each line and wiggle with a momentum, k (short for k,o, where
o=spin), and frequency w, such that the sum of momenta (and frequen-
cies) entering each vertex =sum of those leaving. Eliminateall‘anomalous’
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or ‘momentum-non-conserving® diagrams, i.e., which have a hole and a
particle in the same state. Rules (1)<(3) yield the series:

%:- +l'“o+a+‘ﬁ+p““o+m

| b0 0
P+ o

e B5

fre - -

(9.40)

(4) Evaluate graphs by means of the dictionary in Table 9.1.

These rules will be seen in action in §9.8. Before going on to this, however,
it is a good idea to point out that not everybody draws graphs the same way
we do here. Some graphologists use abbreviated diagrams in which the

interaction wiggles are compressed to points or little squares. Thus, for
example

to-beb fp--fe

(9.41)
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Note that each abbreviated diagram stands for several Feynman diagrams.
Those drawn with points are called ‘Hugenholtz diagrams’ (see Van Hove
(1961), p. 171, or Hugenholtz (1965)), while those with squares are ‘Abrikosov
diagrams’ (Abrikosov (1963), p. 71 ff.).

Table 9.1 Diagram dictionary for interacting many-fermion system with
no external potential (Feynman method)

Diagram element Factor
k,mJ& or %L iG(k, w)
[ Orup, = +0
k, or k,w ; — P Ok
N { 1 o) w—€,+id;  Oyop, = —8

iG(k, w) exp (iw0*)

(0t x 0 = w)

iGy(k, w) exp (iw0*)

+ o
d

(so that: J. ﬁf‘Go(k.m)x
2m

./
k,w k,w
% exp (iw0*) = *'91&,_*)
k l _ka]'mn or —qu
q < (use Vipmale) or V(e) for time-
m n dependent interaction)
Each Example:
fermion (-1
loop
Each intermediate dw
frequency w 27
Each int di k —‘i-k— for 2=1)
ach intermediate momentum, % or Gy (for 2 =

(include sum over spins)
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9.7 Modifted propagator formalism using chemical potential, B’

The formalism just described can be somewhat inconvenient in actual
calculations because, unless special precautions are taken, it may produce
approximations for G which yield the wrong total number of particles for the
system.

In order to understand this, let us first derive the relation between the
propagator G and the total particle number N. The quantity N is the expecta-
tion value of the total number operator 2 3} c} ¢, (factor of 2 for spin) in the
interacting ground state: k

N = (¥)|2 %: cle|Wo) =2 % (Wl el ek | o). (9.42)

The summand is easily expressed in terms of G(k,,k,,7,— 1)) by setting t,=1,
3 =0, ky=k,=k in (9.6), then letting ¢ approach zero from the left. This
yields

N=2Y(-i)xlim G&,t) = —2i lim f d:‘—k J‘ d—wG(k w)e™', (9.43)
- -0 —~o-J 2m)3 ) 227 T

which is the desired relation.

Suppose now that there are N, particles in the particular system we are
dealing with. Imagine that we calculate an approximate G for the system by
a partial summation over some types of diagrams in (9.40), and then place
this G in (9.43) to check and see if it yields N=N,. Evidently, G(approx.) will
be a function of Ny, because each G, entering the calculation of G(approx.)
depends on kg, and ks related to N, by

No=23 1= —2—, d3k = k}3n2, or kp= (3n Ny (9.44)
k<kp (27) A

(Note that the Fermi energy is

€ = k,z.-/Zm =

2 M7y
(3% No)® ) (9.45)

2m

Hence N will be a function of N,. But, since G is only approximate, there is
no guarantee that N will equal ¥,

It is possible to remove this difficulty without changing the formalism
developed up to now, either by using the spectral density method discussed
in §9.3 or the self-consistent renormalization of §11.1. However, it turns
out to be simpler just to modify the formalism slightly. The method of doing
this is to use the ‘grand canonical ensemble’ at zero temperature (see chapter
14 for the finite temperature case). In this method we no longer regard the
system as isolated, with definite particle number N,, but instead put it in
contact with a particle reservoir, so that it can gain or lose particles. Thus,
particle number, N, is variable throughout the calculation. The chemical
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potential of the system, p (see (9.23)), is fixed, but unknown; its value is
determined at the end of the calculation by setting the total particle number
equal to Ny. The modified Hamiltonian for this case is (Noziéres (1964),
p. 307):

H' = H—pN = Hy+ H,
where

Hg = % (e—p) ckex

H, = %k; Vitmn €€l CmCay (9.46)
where N is the total particle number operator.

The ground state of the modified unperturbed Hamiltonian, Hy, is obtained
by selecting that number of particles, and that way of filling the energy levels
which minimizes the energy. It is easily seen that this means all levels filled
up to =g, i.e., up to kl=+/(2mp). The corresponding particle number is
N=(3n%"'x 2mp)!. The free propagator for Hg is

1 u_ [+6 for e > p.

G;‘l k’ Y —fprr———rr—— =
olk, ) w— (€, —p)+id% . —56 for € < p.

(9.47)
The rules for diagrams are the same as those in Table 9.1, except that Gy is
replaced by Gf.

It will be convenient in chapter 11, where we use this formalism, to define a
new w such that w,.,=w+px. In addition, in order to get the correct result
when we do self-consistent Hartree-Fock (see exercise 11.3) it is necessary to
re-write the infinitesimal in the form 7 sign (w — p)8 or i(w — p)é for short,
where w=w,.,. These two changes yield (w=w,.,):

1
Gi(k,w) = 9.47
ath,e) w—e€+i(w—p)d ( )

Note that the poles of (9.47) are at w=¢,—i(e,—p)6 which, (if we set
w=w+ ) is the same as the location of the poles of (9.47).

With this modified formalism, it is found that G(approx.) is a function of p
so that when it is placed in (9.43), N becomes a function of p. If p is now
determined by setting

JV(H.) = I\FD (9.48)
we guarantee that G(approx.) yields the correct number of particles. (Note

that the value of p obtained from (9.48) depends on the interaction, H;. For
a non-interacting system (H, =0), the exact propagator G is just equal to G,
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and we obtain, using (9.47), (9.43), (9.48):

_ (B _ o)t
N(w) Gy~ 32 = No (9.49)
so that u=e¢f, the Fermi energy of the non-interacting system as given in
(9.45).)

9.8 Beyond Hartree-Fock : the single pair-bubble approximation |

In Hartree-Fock approximation, while the incoming particle in state k
propagates through the system, the other particles are considered to be
‘static’, i.e., remain in their original unperturbed stationary states, that is,
the eigenstates ¢, in (7.4). But in reality, we know that these particles are
perturbed by the incoming particle in such a way that their motion ‘follows’
or ‘is correlated with’ the motion of the incoming particle. That s, they actin
a dynamic rather than a static way, i.e., in a time-dependent fashion. The
simplest process showing this effect is the single pair-bubble self-energy part:

(9.50)

If we include in our approximation for G all bubbles, open oysters, and pair-
bubbles thus:

oy 1D
+::O + 4 +ee- 9.51)
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we find easily (see (10.5) for details):

o]

We will now evaluate the single pair-bubble self-energy part to see its effect on
the quasi particle energy and lifetime.

We first note in (9.50) that because of the conservation of momentum and
frequency at each vertex, the outgoing momentum and frequency equal the
incoming ones. Using the dictionary Table 9.1 we find (note: factor of 2 is for
sum over spin directions in pair-bubble):

(9.52)

0.z
(,',‘:f, 18 = %I%ﬁ iGo(k—q, w—a) x (—iVe)?
" x(—1)x2 (2 )3 dﬂ = iGo(lB) X iGo(I+q,8-+ )
\ —;:o((b“) ’
(9.53)

where —im, is the pair bubble

— fo(qua) = 3::qu 8 (9.54)

Let us start off by evaluating the frequency integral over B in the pair-bubble.
There are four cases. In the first case we have |I| > kf, |1+q| <k;. Then

o a2l ﬁ i i
O_( 1)x2x @2n)J) 27 ﬁ—¢,+i8xﬂ+a—e,.,.,,—i8 ©-33)

The integrand has poles at

p = €|—i8
B= —ate+id (9.56)
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The integral may be evaluated by contours, completing the contour in either
half of the complex S-plane. We choose the upper:

‘.3=—a+€,.’¢+l‘

9.57)
— o 'ﬁ= « - <4
We have
+o
J = J. + I =2ni Y residues (9.58)
=N T
and
d(Re'?) i i 1
S
Hence
+0© dﬂ - . .
f = 27i (Residue at the point: B = —a+¢€,,,+i8)
™
2mi ) B—=[—a+ep,+id) 1
= — | — X -
27 Bo-ateugtitr | B4 a— €, —id B—e+id
i
= (9.60)

a-e,.,.,+€,—i8 )

The next two cases are |l|, [I+q| > kg, and |1), |1+q| <k;. Here both poles
are in the same half-plane, so closing the contour in the other half-plane we
immediately see that the result is zero.

The final case is for |l] <k, |I+q| > k5. A procedure similar to that used in
the first case yields

d_8= —i

_ 9.61
27 a—e,+q+€,+i8 ( )
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Thus we get for the pair-bubble

imold, ) d?1 2i d*1 2i
—Imglq, @) = - i
ol () a—erptea+id ) Qm) a—errqte—id
1<kp I>kp (9'62)
li+ql>kyp l+q|<kp
LS ~— S L. ~ )
—fﬂa' —I':rg
Putting this result into (9.53) we have
= 1 d*q (d % i
k—q| I+q LB:J‘ qg—“(—m)* —
w—a| B+ @2m? ) 2= w—o—€_,+i8_,
X [— i g(q,o0) + i o(q,)]. (9.63)
Let us first examine the 7 #-term:
3
RIS
(2= )J (2w J 2n
rqr
litql>k,
1 1 564
x X :
w—o— €+ idi_, €—€gtatid @)
The poles here, in the «-integration are at
a = ""Ef+€“.q—fla
@x = w—Ek_q+f3k_q. (965)

The integration is done by contours just as before. We see that |k —q| must be
> kg, otherwise both poles are in the lower half-plane and we get zero. The
result is

i 2 J.djq jdal V 2 !
E::@__h (ksew) (~20) (2m)* J (2P o W €= €rpg— €4g Tid

l<kg
li+al>k, (9.66)

lk=ql>k,
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In a similar fashion, we find for the other term

B d? d3l
e 2k w) =2y [ L ’
m': iZ"(k, w)=( 2‘)J'(21r)’.[(21r)’|V¢l2w+€‘—€1+a"‘t-a“i8

1>ky, li+ql<ky
lh-al<ap (9.67)

Analogous to the Hartree-Fock result, we can interpret 24- 3(k, w) here as
coming from an effective external potential. However, in this case, the
potential is dependent on the frequency, w, hence would be time-dependent if
we Fourier transformed it. This shows the dynamical effect we mentioned
before, i.e., the other particles ‘follow’ the extra propagating particle, so the
effective potential coming from them must be time-dependent.

As indicated in (3.71), we need the real and imaginary parts of the total self
energy, Z, in order to find the new energy e, and lifetime , for quasi particles.
These can be found from applying (3.76") to 2. For 24 we find

ddq [ &1 1
ReZ24 = +2PJ‘ f V,|? 9.68
¢ 2n)* ) (27)? IVl Wt €= € q— Eryq ©-68)

I<kp, l4+q]>Kkp

k—g|>kp
dq  d°1
ImZ4 = =2 | =L | £
m |y ) Gy
t<ky, [1+q1>kp

k-a|>ky

I VGIZS(W'}‘C"““,Q— ‘._q). (9.69)

Assuming V is small, we can get a simple approximation for the contribution
of ReZ“ to the quasi particle energy by using (3.71), i.e. we place wx¢, in
(9.68). The result agrees with what one obtains from ordinary second-order
perturbation theory.

We now consider the imaginary part. Making the transformation of
variables g=n—1, 1=, k—q=k—n+1:

d*n d3l
@] ey

n>kp, I<kp, k=-n+i|>kp

Im5* = ~2n | Voctl? 80+ €= €a—€gonps). (9.70)

Let

€ = €=, € =¢€ptly, € i = €ptlpnyy ©.71)

where all £’s are positive. We now find the maximum value the 1’s may have.
To get a contribution from the 8-function, we must have

wW—€p = ’l+tu+rk—n+l- (9.72)
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Tosatisfy (9.72) itis necessary that w — e >0. For a given w — ¢y, the maximum
value 7, may have is evidently w — €7 (in which case ¢, #,_,., have their minimum
value, i.e., zero). Hence the l-integration is in a shell of energy thickness=
w— ¢ about the Fermi surface. The corresponding thickness in momentum
space for w — € <€ €5 is dl = (m/kg)(w — €¢). The same holds true for the n-
integration. Hence we have (let £2 stand for angular variables)

(kp+(mlkpHw—egp)) k

dn ' d
A . — —————
ImZA = -2 J' o f e f 40, x
kp [kp—(m/kp)w—ep))
x j dQ 12 Vin, 1,2, Q) (9.73)

Since n, 1, are in a thin shell about the Fermi surface, we can set n=/=k, and
obtain immediately

Im2Z4 o (w—ep) (9.74)

The same result is easily shown to hold true for ImZ?,
In the case where the interaction ¥ is small, so that 2 is small, we may use
(3.71), which yields for the reciprocal lifetime

1-;1 = —lmZ'(k, G‘) o (Ek—fp)z (9.75)

This extremely important result shows that in single pair-bubble approxima-
tion, the quasi particle lifetime becomes infinite as we approach the Fermi
surface. From (9.75) we see that

1’;1<€~—€p (9.76)

in agreement with the criterion (8.21), since for ¥ small, g~ ¢, exx €. (If
this criterion were not satisfied, it would make no sense to talk of quasi particles
here.) Note that our derivation here is equivalent to the ‘Golden Rule’
argument in §8.4, as was mentioned around (8.30"), (8.30).

Further reading

Fetter and Walecka (1971), chap. 3.

Pines (1961), chap. 2, pp. 26-34, 48-51.

Schultz (1964), chap. 3, pp. 13-62.

Schrieffer (1964a), chap. 5, pp. 103-36 (includes phonons).
Thouless (1972).

Thouless (1964).

Noziéres (1964), chap. 3.
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Anderson (1963), chap. 3, pp. 104-12.
Abrikosov (1965).

Klein (1962).

Mills (1969), chap 3, 4.

Exercises

9.1 Find T{ei(t)) c}(r2)ct(r2)} where 13> 15 and t3=1,.

9.2 Calculate the hole part of the propagator (9.6) in the non-interacting case, and
show that it is equal to the hole part of (8.34) (use argument like that in (9.15)-
(9.20)).

9.3 Verify that when (9.26) is substituted into (9.22, 24) we obtain the correct
expressions for the free propagators.

9.4 Show that diagrams () and (/) in (9.33) contain a particle and hole in the
same state.

9.5 Which of the following diagrams are topologically equivalent in the Feynman

y

) ()

9.6 Using labels showing momentum conservation explicitly, write out the expres-
sion for diagram (g) in (9.33), in (k, w)-space, employing Feynman convention.
9.7 Verify (9.20°).
9.8 Verify (9.61), closing the contour in the upper half-plane. Show that you get
the same result if the contour is closed in the lower half-plane.
9.9 Draw the pair-bubbles for the four cases described in §9.8. Why are the cases
| > kg, [14+q] >k and JI| <kg, |1+q| < k5 automatically zero?
9.10 Verify (9.28).
9.11 Verify (9.38").



Chapter 10

Dyson’s Equation, Renormalization, RPA and
Ladder Approximations

10.1 General types of partial sums

We have pointed out that ordinary perturbation theory is helpless when
confronted with the big, badly-behaved interactions in many-body systems.
In typical cases, like the electron gas and nuclear matter, nearly all terms in
the propagator and vacuum amplitude perturbation expansions are divergent.
To get any sensible results, one is therefore forced to use a method which
goes beyond ordinary perturbation theory, e.g., the method of partial sum-
mation. We have seen simple examples of the method in the first half of the
book.

In this chapter and the next one we are going to reveal certain general
partial summation tricks which are a routine part of most propagator cal-
culations. These tricks can have a rather disconcerting effect on the un-
initiated, since infinite numbers of infinite series of diagrams appear to
successively vaporize into thin air until only two diagrams are left! However,
the method behind the magic is extremely simple—just summing one geometric
series after the other—it is only the accompanying mumbo-jumbo that makes
things look mystical.

The general types of partial sums for calculating the Green’s function for
a system of interacting fermions with no external field are listed in Table 10.1.

The process of carrying out summations (2), (3), and (4) is often called
‘renormalization” (see (0.2)). The result of renormalizing interaction lines,
for example, is a simplified series in which no interaction lines have any
inserted ‘polarization parts’ and all interaction lines are dressed. Similar
statements hold true for renormalizing particle lines and vertices.

Superficially, the most striking thing about these summations is the enor-
mous simplification which they produce in the appearance of the series.
However, it must not be supposed on this account that it is a matter of art for
art’s sake. In fact, the really important thing is that infinite summations
performed on a series of divergent terms produce a new series in which the
terms are each finite. We will see this remarkable effect in the case of the
high-density electron gas.

Another significant feature of the general partial sums is that they have an

177
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Table 10.1 General types of partial sums

General type of diagrams
summed over Result

(1) All diagrams containing repeated  Dyson’s equation
proper (or ‘irreducible’) seif-
energy parts, (Summation is

complete)

(2) ANl diagrams with ‘polarization  ‘dressed’, ‘effective’ or ‘re-
parts® inserted in interaction normalized’ interactions
lines

(3) All diagrams with ‘self-energy ‘dressed’ or ‘renormalized’
parts® inserted in free particle particle and hole lines (self-
and hole lines consistent renormalization)

(4) All diagrams with ‘irreducible  dressed vertices
vertex parts’ inserted in place of
a vertex

immediate physical interpretation—for example, the dressed interaction is
just a screened interaction while the dressed particle line is just a quasi particle,

Finally, it should be mentioned that Table 10.1 looks a bit more impressive
than it actually is because the word “all diagrams’ in each case turns out in
practice to be replaced by ‘one or two types of diagrams’. In certain limits,
this turns out to be an excellent approximation—for instance, in the high-
density electron gas, nearly the whole contribution comes from the ‘ring’
diagrams (‘random phase approximation® or ‘RPA’) while in a low-density
fermion gas with short-range interactions, like nuclear matter, the major
contribution comes from just ‘ladder’ diagrams. And even in non-limiting
cases, the sum over just one or two types of diagrams is valuable, since it is
sufficient to remove the divergences.

10.2 Dyson's equation

The partial sum technique used in the Hartree-Fock (4.76) and single pait-
bubble (9.52) cases can be generalized to yield an extremely convenient
exact expression for the propagator whica is known as Dyson’s equation.
The partial sum was possible in those cases because we were dealing with

repeated simple parts of diagrams, like v and 22, hanging on the main
directed (k, w)-line like pearls on a string. Examination of the full propagator
(9.40) shows that it too consists of strings of repeated simple parts and can
be summed in a similar fashion.
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Let us state more carefully what is meant by a ‘simple part’ or, as it is
called in the fancy language of the literature, ‘proper self-energy part’ or
‘irreducible self-energy part’, First we define:

Self-energy part: Any diagram without external (i.e., incoming and out-
going) lines, which can be inserted into a particle (or hole) line.

Examples:

)
""““O’Q'j’ XX :D (10.1)

O @ (&) @ &)

Note that two little extra stumps of line are drawn on each part to show where
it is to be inserted in a particle line. Equation (9.40) shows these diagrams
inserted in various way into particle lines. Then we have

Proper (or ‘irreducible’) self-energy part: A self-energy part which cannot
be broken into two unconnected self-energy parts by removing one particle

or hole line.
bne s (9> m X e (10.2)

Parts which can be so broken—like diagrams 3 and 5 in (10.1)—are called
‘improper’ or ‘reducible’.
Now in (4.67) we summed over all diagrams containing the repeated proper

self-energy part () and got

Examples:

'ﬂ* ® }.._*LMO‘ . (10.3)

In (4.76) the sum over all repetitions of the two irreducible parts j»~~C) and
& gave

ﬁz — : ) (10.4)
- (0 + )
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In (9.51), (9.52) we summed over all repetitions of three irreducible parts,

prn D s < and ::D

+M+g+tp+t§+g+...+:}@:@+...

- x[.+|x(m+@+m)+|*x(mo+m+:p)u...]

1

r- ('M"O Yo :D) (10.5)

And in general it is possible to sum over all repetitions of all irreducible self-
energy parts:

I FOF‘J:QXQSE

- x[,+{x(m+@+m+g}+...)
' rx(woJ,@Jf[:{}afg,u...)’J, ]

*
@

|"_(M+®+[:D+%+...) | (10.6)

or

iy

(10.7)
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where is the sum of all proper (irreducible) self-energy parts or * irreducible

self-energy’:

6 - m+@+@+g+&+[@+@+...,

(10.83)
Translated into functions with the aid of Table 9.1 this becomes:

1
w—€— 2k, w)+i8,

—-iZ(k,w) = é} (10.10)

For non-interacting systems, Z'(k, w) =0. Note that in all of these summations,
(10.3) — (10.6), it was necessary to restrict the sum to just repeated proper
parts. If we had summed over repeated improper parts as well, diagrams
would have been counted twice, since as seen in diagrams 3, 5 of (10.1), the
improper parts themselves contain repetitions.

Equation (10.7) or (10.9) is called Dyson’s equation and is the basic equation
from which most propagator calculations start. It is exact since all the
diagrams in (9.40) are composed of either proper parts or repetitions of
proper parts, and we have summed over them all. That is, the summation
here is complete rather than just partial. But don’t be fooled into thinking
that because it is exact (10.7) is the answer to our problem! All that has been
done is to sum over repeated proper parts; the sum (10.8) over the proper
parts themselves is still left to do, and has the unfortunate quality of being
in general impossible. It can, however, be evaluated to various degrees of
approximation. For example, the Hartree-Fock is the lowest-order approxi-

Gk, w) =

(10.9)

where

mation for :

<)3> x b + < - (10.11)

It is easy to see the physical interpretation of Z(k,w) by comparing the
exact (10.7) with the Hartree approximation in (10.3), or the Hartree~Fock
in (10.4). Byanalogy with the argument around (4.73), Z(k, w) is a generalized
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‘effective field’ or ‘effective potential* which the particle in state k sees because
of its interaction with all the other particles of the system. This field is of
course considerably more complicated than the Hartree-Fock field because
of its w-dependence, which describes the motion of the quasi-particle cloud
(see second paragraph after (4.95), also after (9.67)).

It is important to note that the form of the Dyson equation in (10.7) is only
valid in the special case (with which we shall be mainly concerned) of a system
with no external potential and with diagrams calculated in (k,w)-space.
There is, however, a more general form of the Dyson equation which holds
whenever expansion (9.40) holds; the general form is (cf. (3.36"))

= ' + % (10.12)

This may be proved by iteration:
='+$-}+%}+ -’+%‘D+ + + oo

J J . O
= l+t~“O+FJ+J:D+~-‘X+ +:Z)+~-

3

(10.13)

Equation (10.12) boils down to (10.7) in the above special case because the
value of each diagram is then the algebraic product of the values of its parts;

T bbbed

Gk, w) = Go(k, w) + Gk, w) (K, w) Go(k, w), (10.14)

or
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which are easily solved to yield (10.7) or (10.9). But (10.12) is also valid when
the diagrams do not factor. For example, in (k, f)-space we find

k]
t2 t t
,Hk - k} + ® (10.15)
11} 111 K t

]
or

iG(k, 12— 11) = iGo(k, t,— 1))+

+ f J' dr' dt” iGo(k, ty— 17) (— i) Z(k, 1" — ') iG(k, ' — 1,)
(10.16)

which is an integral equation for G, unlike the algebraic (10.14).
fAnother example of (10.12) is the case of a system with an external
potential. Then it is found that

iG(k2, k3 w) = iGolka, w) 8y, 4, +
+ kzk’ iGo(k,, w) 3,“ W=D Ek'  k; w)iGk, ky; w).
' (10.17)

Note that now anomalous graphs must be included in (9.40) as mentioned
on p. 141. If G(ky,ky;w) is regarded as the (k;,4;)th element of a matrix
then (10.17) may be written as a matrix equation, for which form (10.7) holds
(Luttinger (1960b).]

The self-energy diagrams may be evaluated in a straightforward way by
using dictionary Table 9.1 (see for example (10.29)). However, we then have
to perform all the integrations over intermediate energy parameter. A short-
cut method which avoids this involves a new dictionary similar to that used
for the ground state energy diagrams, Table 12.1. The rules are described
in Thouless (1964) (p. 65), Klein (1962) and Luttinger (1961).

10.3 Quasi particles in low-density Fermi system (ladder approximation)

As an example of the calculation of the proper self-energy, we will describe
briefly the theory of Galitski (Fetter and Walecka (1971), p. 128 ff.) for a system
of particles interacting by means of short-range repulsive forces having range
a, and with average distance between particles r,. By ‘low density’ is meant
that a/ro €1. This can also be stated in terms of k since n, the number of par-
ticles/em? is equal to §7~2k; (see (9.44)) and n = 1/r3 so 1/ry ~ k. Hence the
low-density criterion is that kra< 1. Such atheory can be applied in a qualita-
tive way to the case of nuclear matter (see §12.4), where ajro~ 4, provided
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we neglect the attractive part of the nuclear potential. 1t does not hold for
He?, where ajry> 1.

Let us first analyse the self-energy diagrams to see which are most important.
Regarding the diagrams as time-ordered, we observe that whenever there is a
hole line labelled, say, p, in a diagram, there is an associated { d*p over all
|p| <kg. Particle lines, on the other hand, have [ d* p over |p| > k. Now as
mentioned above, n~k}, so low density means small ;. Thus in the low-
density case, the contribution from the hole line integrals will be very small
compared with those from the particle lines. (A more careful analysis shows
that the criterion for hole contribution < particle contribution is that k<€ 1/a,
i.e., just the low density criterion stated above. This is illustrated in detail by
exercise 10.7.) Therefore, in series (10.8), the dominant diagrams will be
those with the least number of hole lines, i.e., one. For example, the last three
diagrams in (10.8) may be neglected in the low-density limit since they have
two hole lines. We find for the sum of graphs containing just one hole line the
following (note that these graphs are time-ordered!):

é}zkwa+{:D+ + +

o f-F)

These are the ‘ladder graphs’.
The sum of ladder graphs may be carried out with the aid of the so-called
‘t’ or ‘K’-matrix. This is defined by the time-ordered graphs:

% IV (N G VN I (10.19)

The K-matrix obeys the Dyson-like integral equation

(10.18)

, U

p,e q-p,w-¢
- |+ p’, € q-pw-¢

—iVy_pr

pl€I q—pl’w—El

LA Pe q-pw-e
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as is seen immediately by iterating (just as was done in (10.13)). Translation
of (10.20) gives (note that the K-diagram is translated as —iK):

' . : dap.df' P 4 ” »
K(P € .Pﬁ‘I-w) = Vp—p‘+‘ '(ZT).; Vp'-p'GO(p »€ )Go(‘I‘P yw—¢€ )

x K(p*, €",p, €;q, w). (10.21)

This equation is solved for two special potentials in exercises 10.4, 10.7.

The K-matrix may be generalized to include hole-hole scattering by replacing
G by Gg. In the low-density case, the contribution from hole-hole scattering
is negligible. (see exercise 10.7.) For further generalization, see §10.6.

If (10.19) is substituted in (10.18) we obtain (note (—) for fermion loops):

&~ -7 1o

We first solve approximately for K, using (10.21). The result is substituted
into (10.22), and the value for X is put into the Dyson equation. This yields
a propagator having the quasi particle form (8.37), for k near kr. The results
for the quasi particle effective mass and lifetime near the Fermi surface are
m = m[1+—8-(71n2-1)k;a2]; 1 Yaae—ke2. (10.23)
1572 T

Note that the result for the lifetime agrees with (8.30) and (8.29).

10.4 Quasi particles in high-density electron gas (random phase approximation)

The electron gas was introduced in §4.9 as a theoreticians ‘dream metal’
consisting of N electrons moving against a smeared-out positive charge
background. At zero temperature, the gas is characterized by a single para-
meter, r,, which is roughly the average distance between electrons. More
precisely, r, is given by

3
rlt(el::ron) = $m(ria0 (10.24)
where n=electron density, and g, =Bohr radius =/*/me?. Several different
regions may be distinguished, as shown in Fig. 10.1.

So far, two regions have been tackled with success. The first is the high
density one where the kinetic energy (KE) of the electrons is much higher
than their mutual potential energy (PE), so the latter acts as a relatively small
perturbation. The other is the low-density region, where the PE is so much
greater than KE that the electron density becomes non-uniform, and the
points of maximum density form a body-centred cubic lattice called the
Wigner lattice.
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It is important to observe here that the low density region of a system with
long-range interaction, like the electron gas, is physically quite different from
the low-density region of a system with short-range interaction, like nuclear
matter. Hence ladder approximation is not applicable to a low-density
electron gas.

Wigner
Real metals lattice
L. T - ~ . >
0 1 10 20
A J L . v v rs
high intermediate low density
density density (KE<PE)

(KE>» PE) (KE ~ PE)

Fig. 10.1 Classification of Density Regions in the Electron Gas

The interesting intermediate density region where real metals lie, i.e., r,=
1-8-5-6, has turned out to be quite stubborn. To paraphrase E. Montroll, the
physicist here is like a mouse nibbling away at the ends of a stale cheese, unable
to get at the good part in the middle. In this section, we will have a look at the
left-hand end of the cheese (high-density limit) using the many-body technique.
Those who are interested in seeing what progress has been made in the mid-
cheese region (metallic densities) should have a look at Hedin and Lundqvist
(1969), Vashishta and Singwi (1973), Fishlock and Pendry (1973), and the
references contained in these articles.

The Hamiltonian for the electron gas in the smeared out positive back-
ground is given by

H= :Z chlck"'* k?.: Vklmc';clcmcn

+H, gg:ilive +H gm&ﬁsmve (1025)

und

where Vyy,, =V, is in (7.71). This may be simplified since the ¥ part of the
second sum cancels the last two terms, as follows: The V, may be evaluated
most easily by (7.69), dropping spin factors for simplicity:

el
g (10.26)

Vo = Vit = ‘%2 I d3rd?r
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Thus the V, term becomes:

Z deleor = < Z c c,clck——z cle

I1N2e? fd3rd’y’

(N2 N)___{')T = (10.27

{(Note: we have used (8.13) in deriving this result.) Also, we have employed
(7.30) and used the fact that N2> N in a large system. Equation (10.27)
is just the (infinite) self-energy of a static uniform negative charge
distribution, The static positive background is exactly equal to (10.27) while
the electron-background term gives a contribution which is twice (10.27) and
of opposite sign. That is, we have a uniform positive charge with an equal
uniform negative charge on top of it, and the two cancel each other. Hence
(10.25) may be re-written

H= E acla+t T Vel ochieCmtn (10.28)
w0

We shall now look for quasi particles in the electron gas, using Dyson's
equation (10.7). A typical irreducible self-energy part in (10.8) is:

q ¢
k-q, P+4q,
w—¢ B+e
q,¢
ded )
= (—l)z J'(—26—"—)’—21’60(k-q,w-e)xtGo(q+p.ﬁ+e)x
QP
(4ne’)? (10.29)

x iGo(p, B) x ——?-

Changing from a sum over q to an integral reveals that the above expression
diverges at =0 because of the ¢* in the denominator (see argument leading

to (12.19)) so that
[:Z) =00. (10.30)
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A look at the higher orders shows the same behaviour: most of the diagrams
diverge. This appears to be a slightly discouraging start. However, the
situation is saved by the partial summation method as follows: First of all, we
observe that each term in the self-energy is proportional to some power of
rs (~ 1/kg—see §10.3). To see this, consider the second-order self-energy term
in (9.66). To make the integral dimensionless, express quantities in units of
kg, i.e., set g=q'kg, € =€ k}, etc. Then we find that (9.66) ~k3 x k2 x k5 x
kr?=1, so that (9.66) has no explicit dependence on ky. Now look at a third-
order term—e.g., the fifth or sixth diagram on the right of (10.8). After doing
the frequency integrals, we find, compared with the second-order term, an
extra ¥, (~kz?), an extra energy denominator (~k7?) and an extra integral
over k (~k3), so that we have an extra factor kgt ~r,. Thus all third-order
terms are ~r,. In general, any nth-order term ~r?-2,
Next, we arrange the diagrams according to degree of divergence (=number
of factors g2 in the denominator of the integrand) and dependence on r,:

Ist order: =0 + @ =finite
9 P
2nd order: +| 4 ~J‘d°_q + \r~fd—3:1 +-.
q - q
q q = finite
\\
3rd order: + ‘ g ~r, i:’ i + ‘ ~r, ﬂ e
‘ q —w v q* _
‘ 4 d? ’ ! d’
4th order: + ’ ~rd qu + ‘ ~,-}I q:’ vee |-
() ¢ e Y. e

(10.31)
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The first-order bubble has q =0, so it vanishes by (10.28); that is, the bubble is
cancelled by the positive background. We see that the digarams can be ar-
ranged so that in each order of divergence they form a power serics in r, (see
along diagonal lines). Thus, for small r,, i.e., high-density limit, the dominant
infinite terms are just those of lowest order in r,. Hence in the high density
limit, the self-energy series is just the sum

&~ [D-] by .

= finite + 0O + (e'0) + o0 4
(10.32)

i.e., the sum over all diagrams of the repeated pair-bubble or ‘ring’ type. The
remarkable thing is that this sum over an infinite number of infinite terms can
actually be carried out, and it gives a finite result! Approximation (10.32) for
the self-energy is called the ‘random phase approximation’ or ‘RPA’, for
historical reasons.

The sum over rings is easy. Factoring out a free propagator from each
diagram in (10.32) (this is not quite straightforward for the oyster, since it is
a special case, by the rules of Table 9.1; however, it is legitimate) gives

= 4 X ArrARPA = q‘}l .

w-Y

u

(10.33)

The double wiggle is the ‘effective interaction’ in RPA, which was mentioned
in §4.9, and interpreted as a ‘screened’ interaction between two particles:

—iVermpa)y = F2ppa = o ng + “O_y

+ e
(1 2 (©)

= —————; {): ‘pair bubble".

1~ | £} ’ (10.34)
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Diagrams of form (1), (2), (3), ..., having one interaction line entering and
one leaving are called ‘ polarization diagrams’. The reason for this is that
they show how the interaction causes the medium to become °‘virtually
polarized’ in all possible ways. For example, if we regard diagram (2) in
(10.34) as drawn in (r,¢)-space, with the lower vertex of the ‘pair bubble’ at
ri, 1) and the upper at r,,#,, then for 1, <r< /¢, there are a negative electron
and a positive hole separated in space forming a *virtual dipole’. (Of course,
the position co-ordinates of the particle and hole are no longer sharp for
t> 1 but this makes no difference—the virtual dipole just becomes *fuzzy’.)
Equation (10.34) may be written in functional form as

= Ve Ve
Vermpa(q, @) = TF7, 7000 = eneald, @) (10.35)
where
—img(q, w) = ":qo Ke. (10.36)
€T w

This has the form of an interaction taking place between two charges in a
dielectric, with
erpa(q, w) = 14V, my(q, w) (10.37)

being the frequency-dependent or so-called ‘generalized’ dielectric constant.
Of course, this is no coincidence. The dielectric properties of a medium arise
just because of the polarization of the medium by a field, and (10.34) is just
the sum of diagrams representing the polarization of the electron gas by the
field of one of the electrons in the gas itself. Note that V,q(q,w) depends on
w, unlike the bare V,. If V,q is Fourier transformed to (q,#)-space, it will
thus be a time-dependent interaction; this is due to the inertia of the polariza-
tion charge.

We may evaluate my(q, w) by using the rules for graphs, Table 9.1, yielding

d3kde i x i
(27?)4 w+€-¢k+q+i8k+q €—¢k+i8k,

—imy(q,w) = 2x(—~1) (10.38)
where the factor of 2 comes from the sum over spins and the (—1) from the
fermion loop. The integral over e is in (9.55-62) and { d*k is done in §10.7. In
the limit when w=0 and q is small, it is found that

A2 6nne*  4me*k 2\ 4\"?
lgthrw =0 = 5, w0 = T 0k () (97) "
F
(10.39)

where n=electron density =472k}, ep=k3[2m.
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It is now possible to calculate V, g(qsmall,0). Setting £2=1 and omitting
spins for simplicity in (7.71), we have

4me?
V, = - (10.40)
Substituting this together with (10.39) into (10.35) yields
4me?
Vemmpay(small q,0) = qz-l-_—Tz (10.41)

(valid in the limit (Afks)? <1, i.e., r,<€1. See 10.82). Hence, assuming (10.41)
holds for all g,

Vea(r) e ?e‘*’ (10.42)

which is a shielded Coulomb interaction. (See (10.83), for a more correct
expression!) This reveals the physical significance of the effective interaction:
the bare interaction (10.40) virtually polarizes the medium, and the polariza-
tion cloud in turn shields the bare interaction converting it into the much
weaker effective interaction. (This effective interaction turns out to be just the
effective interaction between quasi particles (see Fig. 0.12), as discussed in
Falicov (1961).)

We can now go on to the evaluation of Zppa(k,w) as it appears in (10.33).
Translating this into functions with the aid of (10.35) gives

d:
S GEED) [ =D Veamrata N 1Gotk - g,0- )]

_ [ d*q (dy_ 4né " 1
(2‘”)3 27 qZ ‘RPA(q’ 7) w=y= ‘k—q+ ‘sk—q

Despite the fact that, excepting for the oyster, all diagrams in (10.32) which
we added to get this result were infinite, (10.43) is finite! This is due to the
fact that unlike the bare interaction which goes to « as q — 0, the effective
interaction remains finite as q — 0, as shown in (10.41).

Let us first examine (10.43) in the simple limit where we use the static
approximation (10.41) for Vs. With the aid of Table 9.1 we find that

(10.43)

. d3q [ 4ne? dy
—l%\(k,w)=-i (2—")3(427)‘2) ElGo(k-q’w"Y)
. d3q { 4me?
--i [ gy
fk—ql<kr
- - d’l __ d4me? (10.44)

, @ [&=1+27)

i<
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Placing this in the Dyson equation (10.9) reveals that we have a quasi particle
of energy

k? d’l 4me?

2m~ Cr (E=D12+A%] (1043)
Y <ks

s,
€ =

The effective mass for this case, in the (rather unrealistic) large A limit, was
given in (4.105).

Evaluating (10.43) using the full frequency-dependent V,.g(q,w) is an
enormously complicated business which will not be discussed here (see
Pines (1961), p. 63, for reference). When the final result for Z is substituted
back into the Dyson equation, it is found that G(k,w) has the quasi particle
form (8.37) for k near kg, with

2
& = :Tn —0-166r(Inr,+0-203) %’ <+ constant

1 (k—kp)?
— = 025273 " 2F) 10.
" 0-252r} (10.46)

Using (4.94) yields for the effective mass near the Fermi surface

m* = m[1-0-083r,(Inr,+0-203)]"!. (10.47)
Further, the criterion (8.38) for the existence of quasi particles is satisfied
since

-1 2
Ca (k—kp)
B A oy

= (k—kg)—>0, (10.48)

The result (10.46) is the quasi electron mentioned in §0.2, consisting of the
bare electron plus positive screening cloud.

10.5 The general ‘dressed’ or ‘effective’ interaction

The obvious way to generalize the concept of the ‘effective interaction in
RPA’ is to include all possible polarization diagrams (diagrams with one
interaction wiggle entering and one leaving) in the partial sum for Ve
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instead of just the *pair loops® of (10.34). Thus, we get the general effective
(or *dressed’ or ‘renormalized’) interaction:

—iVm(q,w) = 0NN = st +

+ ‘Agtg‘ + S i E i +
(10.49)
It is possible to sum (10.49) in the same manner that the propagator series

(9.40) was summed to yield the Dyson equation (10. 7). We first define the
¢polarization part’ by

Polarization part: Any diagram without external interaction lines which
may be inserted into an interaction line.

For example:

0.¢°.0.69 57 e

and the irreducible polarization part by

(10.50)

Proper (or ‘irreducible’) polarization part: A polarization part which cannot
be broken into two unconnected polarization parts by removing one
interaction line, such as:

0.0 0. .

(Note that O is not a polarization part!) According to this, diagrams (2)

and (5) in (10.50) are reducible polarization parts; the others are irreducible.
Representing the sum over all irreducible polarization parts by

~in(q,¢) = @ =O+® * G:‘{’)+@+ e (1052)
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it is easy to derive the Dyson-like equation

MAANA,

PORO000R. = — (10.53)

-9
VRS = s 4 w (10.54)

analogous to (10.7) or (10.12). The functional form of this is (for a system with
no external potential, and with diagrams calculated in (q, w)-space):

or

e £}

= . 10.55
14+ V,n(g,0) ~ e(q,w) ¢ )

Ver(q, w) =

Equations (10.53), (10.55) are the generalizations of the RPA results (10.39),
(10.35).

Note that the RPA effective interaction, which uses (} as the approxima-

tion for @, is valid only if the exchange interaction is much smaller than

the direct one. If exchange interaction is important, we must include in =
diagrams like (3) in (10.50), since it is the exchange diagram corresponding
to (2) in (10.50). Thus we must have the following approximation for :

@O@@@ 035

Using the effective interaction, the appearance of the expansion for the
proper self-energy may be enormously simplified. Consider some arbitrary
irreducible self-energy part, say the second-order exchange diagram

TR

(These are all the same diagram-—see (9.35).) In the expansion for %, besides
this diagram, there will occur a class of diagrams just the same as (10.56)
except that one of the interaction wiggles—say the upper one—has been
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replaced by something more complicated; this subset may be collected in
brackets thus:

®=}~MO+@+[:D+---+ }g+%+%
+ sreveti 4 + ... (10.57)

Since the value of a diagram for specified momenta and frequencies is the
product of the values of its parts, we can factor out the unchanged part in each
diagram in this subset, obtaining:

@+ p& e 70 G Gt
- +% 4 e (10.58)

where we have used (10.49). We can also sum over all inserts in the bottom
wiggle of the diagram in (10.58). In the same way, we may carry out all possible
sums like that in (10.57) by just replacing the true interaction by the effective
interaction in the first diagram of each such series. Thus,

| T
-0 1015 B‘:o

- 229 &,

and so on, leading to

O-1ro-D) % + @ e
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That is, we now have a much simpler series in which no interaction lines
contain any polarization parts, and bare interaction lines have become
dressed. It must be emphasized that when drawing such diagrams, no
polarization parts may be included, since these have already been included
in the sum which replaced ~~~ by 2wws, Thus, a diagram like

0-[0- (%20~
(10.61)

is strictly illegal since these diagrams have already been included in

D - D R D,u [B+ ' (06

10.6 The scattering amplitude

It is possible to go one step further than we did in §10.3 and §10.5, and
generalize the concept of the K-matrix or the effective interaction to include
all processes in which two particles interact with each other in the presence of
the many-body system. This generalized K-matrix, or generalized effective
interaction is usually called the ‘scattering amplitude’ or ‘quasi-particle
scattering amplitude’ (some authors, e.g., Landau, call it the ‘vertex part’, but
we reserve this term for an entirely different entity—see §11.4). It includes the
ordinary effective interaction and the K-matrix as special cases, and it is closely
related to the two-particle propagator (see §13.6).

The scattering amplitude is given by the series:

H=M+w+m*m+f“

V

+ +% + S XN (10.63)
A
®
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Note that although there may be any number of self-energy parts in the internal
lines of each diagram, there are no self-energy parts in the incoming or out-
going lines. Thus the scattering amplitude is really the amplitude for scattering
of two quasi particles, since if we attach incoming and outgoing quasi-particle
lines (i.c., exact propagators) to I', these lines will themselves include all
possible self-energy parts.

Observe that viewed in r-space, I' is a non-local interaction, since it is not an
interaction between a particle at r, and another at r,, but rather involves two
particles starting their interaction at r, and r, respectively, but ending it at
two other points, r; and r,.

Itis useful to note that the proper self-energy may be expressed in terms of the
scattering amplitude thus:

@M@l@@ e

{10.7 Evaluation of the pair bubble; Friedel oscillations]

We will first find the pair bubble, 7o(q, ), in the limit g < k, arbitrary w.
(The evaluation for all q, w, is in Fetter and Walecka (1971), pp. 158-163.)
We've already done part of the work involved, in (9.62). Ifiin (9.62) we change
the label « to w, and change the variables in 7§ to make the integration region
in 78 the same as in #¢ thus:

first setl+q = m, thensetm = —1 (10.65)
we obtain:

3
molqw) = =2 J d '{ : - 1 (10.66)

Qr)P |w—€ o te+id w—€te—id

M<ky
It+ql>k p

or (note that the vector q defines the z-direction):

melaw) = o f &b J' d(cos ) ) (j. di? x
x |l+‘l|>:p
1 1
x - . (10.67)

1
w-— —zi—n [2lgx+g*]+i6 w4+ ﬁ[ZIqx+q’]—i8

F(l,q,x)
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The region of integration is shown in Fig. 10.2. (This figure is cylindrically
symmetric about the z-axis.) Thus, [dl goes from ky—qx to k,, where
x=cosd. Forq<kp, the region of integration is a thin shell about the top half

q
qcos
0 X

ke

Fig. 10.2. Region of Integration (Shaded) for (10.67)

of the Fermi sphere. We may thus set /=% in the integrand and drop the ¢2
terms in the denominator. Hence the [ d/ becomes:

kp
[di="[ d@iFigx) = qxki Fikpqn) (10.68)
kp—gqx
1 1
= qxk} = - . (10.69)
w-LE 5 W+ s
m m
Now let
[ =2 (10.70)
keq
This yields
j dl = mxk ! ! (10.71)
= mxke {—x+i6 L+x-i8) ’

Substituting this in (10.67) and remembering that by Fig. 10.2 =0->m/2 so
x= +1->0, and integrating over ¢, yields:

4mmk . 1 1
(g, w) = —(W!dx x[C—x+18 - L’+x—:‘8}‘ (10.72)
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Applying (3.76) to the first integral gives

1
J’d = x+18 jdx inojdxxsg-x)

C d(x-0) 1-{
.[ x={ _——C|

= —1-{In

3
. j dxxS(L—-x) = —inl, for0<{<1
[4]

= 0, { outside (0, 1).

Similarly, for the second integral we get:

: x 1+&| .
_J.dx§+x—i8 ==14+{in|{— ——:ﬂg
for —1<{<0,
= 0 otherwise.
Adding the two results yields for m,:
k C 1+¢

where 8(x>0)=1, and 8(x <0)=0.
We now examine the static limit, i.e., =0 so {=0. Then

mk In
mo(gw) = — = 5=

w? 25;‘

199

(10.73)

(10.74)

(10.75)

(10.76)

(10.77)

(10.78)

(n=electron density), which confirms (10.39). The frequency-dependent

mo(g, w) is discussed in chapter 13, in connection with plasmons.

It is also straightforward to evaluate m(q,w) for = =0 and arbitrary q.
Starting with (10.66) and writing the l-integration limits in terms of the step
function 6, and applying (3.76), we find for the real and imaginary parts:

d31

Reny(q,0) = —4P | —— bk, — lll)[]—e(kr""‘“ﬂ)]

(2 )3 €14q

(10.79)

31
Im7(q,0) = 4= J (;;T?o(k,.-—lll)[l—ﬂ(kr— [14qD]18(e; — €145).  (10.80)
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The imaginary part is obviously zero since ¢, cannot be equal to €,,. The
second term of Re m,—call it A—can be seen to vanish by making the transfor-
mation I'= —(1+q) and noting that this yields 4 = — 4, s0 A =0. We have left

&6 iy

Re,(q,0) = ~ "
emy(q,0) = +4mk; P Gy g1t ig

(10.81)

where all vectors are measured in terms of kr. The integration is easy and
yields

k 1
Reo(g,0) = ';’—ﬂ, 1= - =dg)hn

1-4q
1+«}q”‘ (10.82)

The singularity (infinite slope) of (10.82) at g=2 (i.c., at 2k¢) has extremely
important consequences in the electron gas. When Relly(q,0) is placed in the
expression for the effective interaction (10.35), it is found that in r-space for
larger:

Vc" (’) a«c

cos(2kgr)
T’ (10.83)

(see Fetter and Walecka, (1971) p. 179). This is a much longer range inter-
action than our previous result (10.42). The oscillations of wavevector 2k,
are known as Friedel oscillations and have been observed experimentally.

Further reading

Fetter and Walecka (1971), chap. 3, pp. 105-111 chap. 4.
Schultz (1964), chap. 3, pp. 62-8, 91-105.

Pines (1961), chap. 2, pp. 52-4; chap. 3, pp. 55-69.

Pines (1963), chap. 3.

Thouless (1972).

Thouless (1964).

Abrikosov (1965), chap. 2.

Schrieffer (1964a), chap. 6, pp. 13748,

Klein (1962).

Kittel (1963), chap. 5.

Bjorken (1965), p. 284 fi. Renormalization in quantum electrodynamics
Schweber (1961), pp. 607-15} —basic definitions
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Exercises

10.1 Which of the following diagrams are self-energy parts? Of these which are
proper and which are improper?

g-ox@%

®) (©)

10.2 Write Dyson's equation diagrammatically (in k,w-space), together with an
expression for the proper self-energy, for a system of non-interacting fermions
in an external potential. Translate the result into functions. (Hint: use (9.30),
together with considerations similar to those in (10.12, 13, 17).)

10.3 Draw the first few terms in the perturbation expansion of the propagator in
RPA.

10.4 Suppose we have a system of fermions interacting by means of a repulsive
potential of the form A43(r,—ry). Using the result of Ch. 7, Ex. 7.6, find an
explicit expression for the K-matrix. (Hint: Show first that in this case, K is a
function only of q, w.)

10.5 Which of the following diagrams are polarization parts? Of these which are
proper and which are improper?

O
(a) ®) © (d)

10.6 Write the approximation to the proper polarization part sum (10,55") in terms
of the K-matrix, and translate the result into functions. (Note: You will need
the *particle-hole’ K-matrix, which is just (10.19) but with one side of the
ladder a hole line.)

10.7 (a) Solve the generalized K-matrix equation [i.e., (10.21) with G§ replaced by
Go) for K when V,_,, is approximated by a factorizable potential, i.e., V,_,. =
Auyu,.. (Hint: Try guessing the form of K. If you get stuck, go back to (10.19)
and carry out the sum directly.)

(b) In the integral which occurs in the solution for X in (a)—call this integral
I(q, w)—carry out the integration over frequency ¢”. Show that / is the sum of
two contributions: I+ coming from G§ (i.e., particles) and I~ coming from Gg
(i.e., holes).

(c) Evaluate /* and 7~ in (b) in the case w=0,q=0. Take #,=1for0<|p|<w
(w>k¢) and u, =0 for |p| >w. Use theorem (3.76).

(d) Show that in the case of low density, 7*» /-, i.e., contribution from particle
lines much greater than that from hole lines.
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10.8 Consider two electrons in a cubic box with sides of length L. Obtain order of
magnitude expressions for the kinetic and potential energy of the system in
terms of r, (see (10.24)) and use these to find a criterion for the high and low
density cases in terms of 7,.

10.9 Verify (10.79)-(10.82) in detail. Write out V,(q,0) for this case in terms of A
(see (10.39)) and find the limiting behaviour for g <2, g2 (q in units of &),
What is dV/dg at g=27



Chapter 11

Self-Consistent Renormalization and the
Existence of the Fermi Surface

11.1 Dressed particle and hole lines, or ‘clothed skeletons’

We saw in the last chapter how the series for the propagator could be
beautified by expressing it in terms of the proper self-energy, £, and then
writing Z in terms of the dressed or ‘effective’ interaction. Now we are going
to do still another face-lifting operation on Z by partially summing over all
diagrams in which there are propagator lines containing self-energy parts.
This produces a series in which no propagator lines have self-energy parts and
all free propagator lines have been replaced by clothed propagators. The
result is called ‘self-consistent renormalization’. It will be used to derive
the conditions for the existence of quasi particles, and to demonstrate how it
is possible to have a sharp Fermi surface in a strongly interacting system. At
the end of the chapter, we will discuss a further simplification of the propagator
expansion by means of a partial sum over so-called * vertex parts’.

In the series for Z, there will be subsets of diagrams like

& -+ ([ [O'O
@4
@o RO R ALy

in which each of the propagator lines has more and more self-energy parts
inserted into it. Analogous to (10.59), it is easily seen that the sum in the
brackets in (11.1) is carried out by just replacing the free propagators by the
exact propagator in the first diagram, thus:

203

@

5]
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@m% 12

The first diagram of such a series is often called a ‘skeleton’, so that the
renormalization process here consists of putting self-energy flesh on the bones
of the skeleton—a sort of butchering in reverse,

This trick can be performed on the series as a whole, leading to the simplified
SEries

-0 [T 50 -

rro N oy (11.3)
()] @ 3 @

Again, it must be remembered that no diagram may be counted twice—thus

{ {
=.:D +::Z}v~o + -

is illegal since all these diagrams are already included in diagram (3) of (11.3).

Of course, the exact propagators used in (11.3) are not known—they must
be obtained from the Dyson equation (10.7). This means that (1 1.3)and (10.7)
must be regarded as simultaneous equations to be solved “self-consistently’
for the exact propagator. That is, we first calculate (11.3) using bare propa-
gators, then substitute the result into (10.7) to get the first approximation for
the clothed propagator, then re-calculate (11.3) using this approximate
clothed propagator, etc., etc., until things stop changing and the calculation
is ‘self-consistent’. This procedure is called ‘self-consistent renormalization’.
In first order, we have

@zw©+w’withﬂ=4,+$,(ll.4)

which is the field-theoretic form of the Hartree-Fock equation in the general
case. It is thus applicable to a system with an external potential, as discussed
just after (4.74). [Regarding the proof that (11.4) is fully equivalent to the
usual Hartree-Fock equation, see Hedin (1965), p. A797, for reference.] In
the special case of no external potential, the propagator (4.77) turns out to
be the self-consistent solution of (11.4), so there is no real self-consistency
problem,
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It is also possible to renormalize simultaneously both the interactions, as
in (10.60), and the propagators, as in (11.3), leading to the series

@=W@+D+@+---. (11.5)

In the literature, the double lines are often omitted, and it is simply stated that
all interactions and propagators are dressed. A self-consistent calculation
can be carried out for example to first order in (11.5); this yields

®zm@+D (11.6)

which may be substituted in (10.7), producing

1
" - [=0 D]
This is essentially the Hartree-Fock approximation using a frequency-
dependent interaction instead of a static one. When 25xee2¢ is in RPA, this is

called the ‘time-dependent Hartree-Fock approximation’ (sce Thouless
(1972)).

(1.7

11,2 Existence of quasi particles when the perturbation expansion is valid

It was shown in chapter 10 that quasi particles exist in high- and low-density
Fermi gases. Do they exist in other systems, like an electron gas at ordinary
metallic densities, or in liquid He3? With the aid of the clothed skeleton
series (11.3), it is possible to prove that there are quasi particles in any Fermi
system with an interaction such that the perturbation expansion holds (i.e.,
such that the propagator series (9.40) is valid). These are the so-called ‘normal’
systems—the ‘abnormal’ ones, like superconductors and ferromagnets are
discussed in §15.4, and in chapter 17. We will first find the general form of G
near the Fermi energy, in a normal system, then prove the existence of quasi
particles.

The self-consistent equation for the propagator is, by (10.7),

1
= ———,or Gk,w) =

*" -

1
w— € — Lk, w)— iZ)(k, w)

(11.8)
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with CZP as in (11.3). The quantities Z3, Z; are respectively the real and

imaginary parts of the proper self-energy. We will now obtain the form
of Z; near the Fermi energy by assuming it has a certain form, then showing
this assumption yields a self-consistent solution for G in (11.8), (11.3).

In order to get a clue regarding what form to assume, let us evaluate the
contribution of the first few diagrams in the self-energy expansion (10.8).
We will use the modified propagator formalism involving the chemical
potential, p, described in §9.7, since this turns out to be the easiest route to
the self-consistent result. (It will turn out that p is just €x, the Fermi energy
of the interacting system.) The bubble and open oyster diagrams have zero
imaginary part. Using the same argument as that leading to (9.74), with
Go(k, w) replaced by G4(k, w) (see (9.47')), the first of the second-order diagrams
yields:

lim Im e (w-—p)?,

@ -

Using this as a starting point, let us assume (Luttinger (1961)) that X, has
the limiting form

lim 2;(k,w) = —sgn(w—p) C{w—p)* where C; = 0, real
L]

sgn(w—p) = +1, w>p

= —]' w < i (11.9)

(Regarding the sign change at u=w, see Noziéres (1964), p. 195. Note that
this agrees with the sign of the infinitesimal in (9.47°).) Then (11.8) may be
written

1

_ . (11.10)
w— e — Zg(k, w)+isgn(w—p) Cylw—p)?

G (kw) =

We can show that (11.10) is a self-consistent solution for G by using it as
the dressed propagator in the clothed skeleton diagrams of (11.3). When
this is done we find [Luttinger (1961)]

lim Imwcc (w—p)?, (11.11)
O=bps
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and, in general

any

(11.12)

Hence, the imaginary part of the proper self-energy has the form

lim Z; ¢ (w0 —p)?

Wi

just as was assumed in (11.9). This shows that (11.10) is indeed the desired
self-consistent solution for the propagator. The form (11.10) is valid for any
system in which the perturbation expansion (9.40) is valid.

When (11.10) holds, it is easy to show that quasi particles exist in the system
(Mattuck (1964)). We will first get the single-particle excitation energies, £,
then the lifetime of the excitations, 7, and show that 7; obeys (8.38).

By (3.14) the excited energies of the system may be obtained by solving the
equation for the poles of (11.10):

w — ¢y — Zp(k, w)+isgn(w—p) Cilw—u)? = 0. (11.13)

First let us get a zeroth-order approximation for the poles. For w very near p
(the case we are interested in)} we can neglect the imaginary part and get

Wpole = Ek = €k+ER(k; Ek) (11.]4)

To obtain a first-order solution, expand Zy about the zeroth-order solution,
E,:

Zr(k,w) = Sp(k, E)+ Za(k, E) x (w—E)+--- (1.15)
and put this in the pole equation:
w— [+ Zr(k, E)]— Zr(K, E,) (w— E )+ iAsgn (w—pu) C{w—p)? = 0 (11.16)
where we have put in A to keep track of the order. Let
w = E+Aw,
to first order. Then (11.16) becomes

Aw; — Zh Aw; +idsgn (B, +Aw, — p) Co(Ey— p+ Aewy)? = 0.
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Dropping higher-order terms in A:

CA:(EJ:_F-)2
= —j —-—p) — 11.17
w, isgn(Ey— ) A ( )
Therefore (set A=1)
CGlE,—p)?
= wotw, = E.—isgn(s.-p)—%(l"Tf‘)). (11.18)
— &R
Thus the energy and reciprocal lifetime are given by
& = E, = +2Zx(k €)
732
gt = sgn(ef—p) HE—L) (11.19)

(1-Z3)

It is seen that we have true quasi particles here because the energy level width
7! is much less than the energy, in this case measured relative to . (Note
that in (8.22), energy is taken relative to e, the Fermi energy of the interacting
system. It will be seen in the next section that x and ¢} are the same.)

We can get an expression for G which is valid near the poles by substituting
(11.15) into (11.10) for the real part of Z and evaluating the small imaginary
part of X' at E,. This yields

Gkw) =
_ 1
w—(&+Zg(k, E\))— Zr(k, E)) (w— E\) +isgn(E;, — p) Cu(E, — p)?
ﬁ__—l

Ey

+ F(k, w).

(11.20)

The F(k,w) term is a correction containing everything left out of the first
term. Equation (11.20) may be written

Z .
Gk, w) = ———— + F(k, o) (11.21)
w— € + ITy
where the amplitude factor, Z, is:
Z,=[1-Zx(k, EDI . (11.22)
This has just the quasi particle form (8.37). Thus we have proved that if the
interaction is such that perturbation theory holds, then quasi particles exist

in the system. The only other assumption involved is that Z(k,w) can be
expanded in a power series.
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11.3 Existence of the Fermi surface in an interacting system

In order to appreciate the mystery concerning the existence of the Fermi
surface, look at the momentum distribution function », for a system of non-
interacting fermions (T'=0, no external potential) in Fig. 11.1. This function
is the probability that the state k is occupied by a (bare) particle. It is seen
that there is a sharp discontinuity at the Fermi surface, |k|=k. It is because
of this discontinuity that it is meaningful to say there is a surface here (in
k-space). Now, in a typical interacting system like, say, the electron gas,
the average interaction energy between any pair of particles is comparable
to the Fermi energy (V~7 eV, ez~ 5 eV in an electron gas). Naive physical
intuition would say that turning on such a strong interaction would cause
collisions, knocking particles out of the occupied states below ky to the
unoccupied ones above, resulting in a complete ‘smearing out’ of the dis-
continuity at the Fermi surface, as shown in Fig. 11.2. This is roughly
analogous to the smearing out of the water surface directly under the
Niagara falls. However, experiments on electrons in metals indicate the
presence of a discontinuity at |k| =k, which is sharp to within 1074 eV!

g

k|
kg

Fig. 11.1 Momentum Distribution Function for Non-interacting Fermions

The mystery was cleared up by Migdal (Pines (1961), p. 34) and Luttinger
(1960b). They showed that there is a discontinuity in #, in the interacting
system but that the magnitude of the discontinuity is < 1. Their argument
makes use of the fact that n, may be obtained directly from the single-particle
Green’s function. This is easily seen as follows: n, is the expectation value of

nk

k|

Fig. 11.2 Nalve Guess at Form of Momentum Distribution Function in
Interacting Fermi System
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the number operator, cfc;, in the interacting ground state |{¥g):

n, = {Wo|cl x| ¥o). (11.23)
Using the closed expression for the propagator (9.6), with ¢, =0, =1,
ky=k,, this may be expressed in terms of the propagator by

m, = —ilim G(k,?) (11.24)
=0

where 0~ means an infinitesimal time interval before t=0.

Let us evaluate (11.24) in the case of a system where perturbation theory
is valid. Then G(k,w) has the form (11.19) and G(k,7) may be obtained
from it by Fourier transform. This yields

G(k,f) = —iZi{6, 05, e B e —0_,0, g, e et} 4 F(k,f) (11.25)

where F(k, t) is the transform of the correction f(k, w).
Substituting (11.25) into (11.24) yields

e = Z0,_g,—i F(&,07). (11.26)

Assuming F(k,07) is continuous across k=k,, where k, is the momentum
corresponding to energy u, this reveals a discontinuity of magnitude Z, , on the
surface E,=p. In Fig. 11.3 we have plotted n,, assurhing isotropic interaction
(so that by symmetry, k,, is spherical). Comparing this with Fig. 11.1 we see
that it is reasonable to call k,,u respectively the Fermi surface and Fermi
energy of the interacting system. Hence, assuming the interaction is such
that a perturbation expansion may be used, the Fermi surface exists in the
interacting system.

It would be a convincing demonstration of the correctness of the above
arguments if the curve in Fig. 11.3 could be measured experimentally. Cal-
culations by Daniel and Vosko (1960) indicate that Z, , differs greatly from 1.
For example, an estimate for Na metal gives Z, ,~0-5. However, one cannot
carry out such a measurement by any low-energy methods—like, for example,
soft X-ray spectra—since these give only the quasi particle distribution
function (which is nearly that for free electrons, because the quasi particles
are nearly independent—see last paragraph in §8.1).

"k

k|
ky
Fig. 11.3 True Momentum Distribution Function in Interacting Fermi
System
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To actually measure n, requires energies which are large in comparison with
the inter-electron interaction, i.e., large enough to ‘undress’ the electrons.
This can be achieved using Compton scattering with high energy electrons
(Platzman (1972)) and the experimental results for Na show good agreement
with theory (Lundqvist (1971)).

11.4 [Dressed vertices]

So far, we have seen how to simplify the series for the proper self-energy
by ‘renormalizing’ the interactions (§10.5) and the propagators (§11.1).
This section reveals a final simplification which boils the series down to two
terms; it is carried out by renormalizing the vertices. The useful definitions
here are:

Vertex part: any diagram without external lines which may be inserted
in place of a vertex (i.e., can be connected to two particle lines and one
interaction line), such as, for example:

P T o S
(11.27)

Proper (irreducible) vertex part: a vertex part which cannot be broken
into two disconnected pieces by removing either.one particle (or hole) line
or one interaction line; for example:

An example of the replacement of a vertex by an irreducible vertex part is

vertex —_ ST «—__proper vertex
\_t} % part
—_— el

If we define the sum of all irreducible vertex parts by

@ - P o P T

(11.29)
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then it is not hard to show that the irreducible self-energy is just given by

CZ:D = per) + @ (11.31)

This is easily seen by expanding:

DDD v b,

Note that only one vertex is dressed because of the fact that dressing both
would count diagrams twice. For example

(b and é) (11.33)

look like a vertex insertion in the upper vertex and lower vertex respectively,
but this is pure optical illusion. In reality they are topologically equivalent
and are therefore the same diagram, as mentioned in (10.56). This under-
lines a necessary condition for playing the graph game: one must be com-
pletely sober to avoid double-counting diagrams!

Further reading

Pines (1961), chap. 2, pp. 314.
Falicov and Heine (1961).
Luttinger (1960c).

Thouless (1964).

Schweber (1961), pp. 607-15.
Bjorken (1965), p. 284 ff.

Exercises

11.1 Which of the following diagrams should not be included in the expansion
(11.3), and why not? Which should not be included in (11.5), and why not?

(@) (©)
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11.2 Suppose we have a hypothetical system in which the proper self-energy has
the form Zi(k,w)~ Aw+isgn(p—w)B(w—p)?, with B>0, A<0, near the
Fermi surface, where p is assumed known. Find the form of the propagator.
What is the discontinuity at the Fermi surface?

11.3 Assume that in a system with fixed chemical potential, #, the solution to the
self-consistent Hartree-Fock equation (11.4) (using the formalism in §9.7)
has the form:

1
w— &+ H{w—p)d '

Use this assumed G to calculate the self-energy Z in (11.6), place £ in (11.7)
and show that you get the assumed G back again provided that:

Gk, w) =

=+ 2 (Vau—=Vax)

tlef<ul

(Use the exp(iw0*) convergence factor in Table 9.1 when calculating the fre-
quency integral.)



Chapter 12

Ground State Energy of Electron Gas and Nuclear
Matter

12,1 Review

In chapter 5 we saw how to get a ground state energy perturbation series
for the case of a single particle in an external potential. The method made
use of the diagram expansion of the vacuum amplitude, from which the
graphical series for the energy could be obtained by taking the limit (5.4).
{The rigorous argument lying behind the pinball approach in chapter 5 is
in appendices B—>G.) It was shown how a partial sum over energy diagrams
could be carried out in the simple case where only two levels were involved,
and a brief glimpse of the many-body case was given.

Now we go into the details of finding the ground state energy in a many-
body system with no external potential. The rules for the many-body dia-
grams are pretty much the same as for the single particle case, so they will
simply be stated without fanfare, and we'll concentrate on the applications
to the electron and nuclear cases. In the electron gas case, Gell-Mann and
Brueckner (GB) showed that the ‘ring diagrams’—all individually infinite—
gave the dominant contribution in the high-density limit. They used a trick
to sum over all diagrams of a given order: this produced a logarithmic
series which could then be summed to infinity. The result was finite and
later shown to be exact. The nuclear (low density) case will be treated only
very briefly since this is a vastly more complicated problem. We’ll simply
show how a sum may be carried out over the individually infinite ‘ladder
diagrams’ with the aid of the K-matrix and illustrate by means of a simple
example how this can lead to a finite result.

12.2 Diagrams for the ground state energy

The ground state energy as presented in (5.42) appears in (12.1). In this
expression we have omitted two types of diagrams: (1) All diagrams obtained
by twisting one or more interactions through 180 degrees. This cancels the
factor of 4 in the interaction potential (see (4.60)). However, in the case where
the diagram is completely symmetric, such as the double bubble, the oyster,
and the two second-order diagrams, twisting all the interactions does not
produce a new diagram, so one factor of  is not cancelled. (2) All momentum-

214
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Eo=Wo+OwO+@+®+%
<) -0y
+®+,..+@+..., (12.0)

non-conserving (‘anomalous’) graphs (see p. 162). Examples of omitted

"B 8 2 O

Twisted Anomalous (12.2)

Note that as in §5.3, the diagrams here are Goldstone diagrams, so the time
order is important. That is, two diagrams are topologically equivalent only
if one can be distorted into the other without changing the time order of the
interactions. Thus:

. 1

(12.3)

Analogous to the cookbook rules for evaluating the propagator, we give
the recipe for solving the ground state energy problem. The actual proof
of these rules is extremely complicated and tedious, but the rules themselves
are so similar to what we have seen before that they shouldn’t produce any
traumatic effect on the reader.

Diagram rules for ground state energy (no external field)

(1) Draw N horizontal wiggles as in the propagator case but with no
external points.

(2) Join all vertices to each other with directed lines, one line into and
one out of each vertex. Do this in all connected topologically distinct
ways. (Only distortions which preserve time order allowed.)
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(3) Label each directed line with a momentum k (=k,0). Conserve
momentum at each interaction. Eliminate all anomalous graphs.
(4) Draw a light dotted horizontal line between each successive pair of

interaction wiggles, thus

(12.4)

(5) Evaluate diagrams by dictionary in Table 12.1.

Table 12.1 Diagram dictionary for ground state energy of interacting
fermion system (no external potential)

Diagram element

Factor

Dotted line:

S | $.d I

I N R

-1
[5-3]
" P
3, = sum of ¢’s for all hole lines

crossing dotted line

]
Y. = sum of ¢’s for all particle
P lines crossing dotted line

k 1
interaction: >M~w~v<
m q n

Viimn O V,

each hole line: *

each fermion loop

example: N

completely symmetric
diagram. Example: Q/:D

each particle (hole) momentum
parameter k

d3k

particle: k > kg k > kg
hole: k<kr Kk <kf
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For example, we have that

k 20! (two fermion loops, two hole lines,
(1) Double bubble = OO symmetric)
=(=1x4x I Vi (12.5)
k,i<ky

k
(2) Oyster = @ (one fermion loop, two hole lines, symmetric)
1

=(=1P¥xix T Vi (12.6)
ki<kpr
q
1 V2
3 . eeee = (=1 - 4 12.7
@ k+q ‘E‘ 1 =D 2,_2., (exte—€g—€y) 127
q (Ikl, )| < kg; |k+ql,]1-q| > kf)
k-1+q
1 Vv,V
4 B . U/ - = (=1)Pxz q " k—l+q 12.8
TN i S PN et
; b (lklnlll < kF; Ik+ql:|l-q| > kl")

The diagram method of getting the ground state energy will now be applied
to a high-density electron gas and to nuclear matter.

12,3 Ground state energy of high-density electron gas: theory of Gell-Mann and
Brueckner

The electron gas was defined in §4.9 as the theoretician’s ‘dream metal’,
consisting of N electrons moving against a uniform positive charge back-
ground and interacting by pure Coulomb forces. It was characterized by
the average inter-electron distance, r,, The Hamiltonian was (10.25). We
showed how to calculate the quasi particle effective mass and lifetime in the
high density (r,<1) limit by a sum over ring diagrams. Here the ground
state energy will be investigated in the same limit.

The simplest approximation to the ground state energy is the Hartree-
Fock, which in this case, with no external potential, is simply the energy
to first order of perturbation theory. In terms of diagrams it may be written

(see (12.1))
Eyp = Wo + OO + @ (12.9)
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This crude approximation takes no account of the fact that because of
Coulomb repulsion, electrons tend to keep away from each other, i.e., their
motions are correlated. The correlation energy, E,, is defined by:

Ec = Ecotulntion = E(exnct)-'EHF

= + + + e, (12.10)

Let us first evaluate the Hartree~-Fock energy. Using (7.75), (12.5) and
(12.6), we find that (12.9) is

Egyp= 3 &+t X WViwa— Vi) (12.11)
k<ky k,i1<kys

The first term is (putting spin sum in explicitly):

2
z‘ffmxgk;, (12.12)

B’ 2

= 2 J2 = A S Ik =

W, kZ';", A2 k*2m 2><2m><(2")3 f d3kk
o= td k<kp

where the 2 is from the spin sum, 2=crystal volume, and £2/(27)*=density

of points in k-space. The Fermi momentum, kz, may be found from

22 . R,
N=2Z 1= Gy f d*k = 5k (12.13)
k<ky
so that, using (10.24)
Wo _Qm 1(, ,N\' _ 221 rydberg
N sz"E( 7 .Q) =77 ¢lectron’ (12.14)

The term in V=V, is equal to zero by (10.28) (it is cancelled by the
interaction with the positive charge background). The last term is (spin
sums produce factor of 2):

lx @_ —E-X}x 2 2)(4‘1’!’32 d3kd?l
N T N2 @)} Q [k—1]2
ki<kp

- _0-916 rydberg

r, electron (12.15)
(see Raimes (1961), p. 171 ff.). Hence
Eyr - 221 0916 rydberg (12.16)

N r? r, electron’

Now consider the correlation energy. The first graph in (12.10) may be
cvaluated from (12.7). The spin sum gives a factor of 4. Changing from
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sum to integral, expressing all momenta in terms of the Fermi momentum
and using (12.13) yields (in rydbergs per electron):

1 _ =3 [d%q N 3 1
N )@ [ e [ ey e
ki<t n<t
ik+ql>1 la=1>1

Similarly, (12.8) gives

! -2 [2a f 3 1

N x % —+16"5f po d*k f dl(k_l+q)2><

Ikj<1 <1
k+ql>1 la—11>1
I (12.18)

*Frak-1

Look first at (12.17), The major contribution of the integrand is evidently
from small q. For small q, because of the limits on the integration region,
k and 1 lie in a shell about the Fermi surface, of thickness « g. The integrand
« ¢~! for small ¢, and [ d3k | d31 « g2, so it follows that

3
LI acfiT“oc i (12.19)
N @ )

The reason for this divergence is the long-range character of the Coulomb
interaction. A shielded Coulomb interaction of the form (10.41) would
have been finite at q=0 and would have given a finite result,

The same argument yields for (12.18).

1 v g forsmallg .
N = . * Jleg* forlargeq dq = finite

( = 0046 rydberg
electron

The reason why Q’z} diverges while % does not is that in the former

there is the same momentum q transferred at each interaction, contributing

). (12.20)
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a factor of V2« 1/g*, while in the latter there is q transferred at only one
wiggle, giving only 1/g2.
In third order we have the diagrams

q q k-1
q
EW =£D + @/ 4+ s A  eee
. : (12.21)

q

Note how they fall into classes: same momentum q at all three wiggles, at
two wiggles, or at only one wiggle. Using the same analysis as in the second-
order case reveals that for small g,

3 3 3
e, {A‘” J' Tlepo f Lleco | ‘%} (12.22)

where A, B, C are constants. Observe the dependence on r,. The three terms
come from the three types of diagrams, and we see again that the most diver-
gent term comes from the diagram with the same q at each wiggle,

The same behaviour occurs in all orders, and it is found that the perturba-
tion series for the correlation energy may be written

= 0046
ravd
dq + B(z) d_Jq

ty
!

@
rwl._A)

€0

3
+ r.Ade_? + r,B“’J‘-ﬂ—q + r.C(J)Jd’q

q

& \ d’\ B
+ o5 A“’I'a,ﬂ + rsz(‘) —-,- + r,2C“’ —, + rzD“) a
+ - (12.23)

The terms can be arranged (see diagonal lines) in such manner that in each
order of divergence they form a power series in r, (see after (10.30)). This
means that for small r,, i.e., the high-density limit, we may take just the terms
of lowest order in r,. Thus:



12.3) GROUND STATE ENERGY 221

Ecorrcl. = 0046+A(2)J“i_q+ A(S)fd q 2A(4)J.d q

B30 I )
Q{% - Q}@ . e 228

This is evidently a sum over diagrams of the ‘ring’ form, like those met in
the corresponding propagator case in (10.31).

Because of the importance of the time ordering of the interactions in
(12.24) the sum over rings here is not as straightforward as in the propagator
case. GB accomplished it by a trick which enabled them to first sum over
all diagrams within each order of perturbation theory. It was then straight-
forward to carry out the sum over all orders. The trick involves the function

Ff0) = J‘ d3pe-ilitiei+an) (12.25)
and its transform:
+ @
o) = | emFnar. (12.26)

(This turns out to be related to the lowest-order polarization part, my(q,w)
(see (10.36)) by:
2

)3
0.0 = ZX mo(a.iau)) (12.27)

GB showed that the total contribution from all ring diagrams in nth order
was given in terms of Q. (u) by

E® -2 J-q #q J‘ L l)"[ (")] (12.28)

where B, C are numerical factors.
The correlation energy is then just the sum over all orders:

Econel. . < E®
o oo46+g;

N
= 0046+ f qd’q f duZ( ”')"[C"Q"(“)] (12.29)
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In the various partial summations up to now we encountered sums of geo-
@®

metric series and square root series. In this partial sum, 3}, over rings, we

n=2

have a logarithmic series, which is easily summed to yield

+
Ecorrel. B Cr, Q1) , Cr, Q,(u)
—I_V—I = 0-M6+ﬁ;3fqd’q f du{—ln(l+ qz° )+ qzq ]

for[%%"—(u)]z <1, (12.30)

which may be evaluated to give

Ecc}:\t,rel_- = 0:06221nr,~0:096+0(r,),

where
Or)—>0 as r,—0. (12.31)

Thus, the calculation is exact in the high-density limit,

The GB argument makes the usual assumption that the result of the partial
summation is valid even in the small q region where the inequality in (12.30)
shows the series diverges (see §3.3). This has since been validated, first by
Sawada (Pines (1961), p. 201) who got the same result by a non-perturbative
method, and then by Noziéres and Pines (Pines (1961), p. 235) using a tech-
nique based on the calculation of the ‘generalized dielectric constant’
(k. w) (see (10.37)).

12.4 Brief view of Brueckner theory of nuclear matter

Nuclear matter was defined in §4.8. It was mentioned there that the binding
energy per particle (=ground state energy, if the energy zero is taken to be
that of the non-interacting system) was about —16 MeV. We will now give
a very short glimpse of how this may be calculated by the diagrammatic
method.

To do such a calculation, it is necessary to have a more realistic inter-
nucleon potential than the simple Yukawa interaction (4.80). High energy
scattering experiments indicate that the true potential looks roughly like an
infinitely hard repulsive core plus a short-range attractive tail, as shown in
Fig. 12.1. Despite its rather violent appearance, the attractive part of the
nuclear potential is ‘weak’, in a sense, since, if the nuclear matter is taken
to have a density equal to that at the centre of heavy nuclei, then the mean
separation of two nucleons is ~ 1:1 x 10713 ¢cm or about three times the hard
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core radius. This means that nuclear matter acts as a low-density fermion
gas, the hard core occupying only 35 of the total volume.

The ground state energy may be calculated by means of the expansion in
(12.1). As pointed out in §5.1, because of the hard core, V,,,,, and hence all
the terms in the perturbation series, are infinite. Nevertheless, analogous to
the electron gas case, it is possible to perform a partial sum over the most
important types of diagrams and obtain a finite result. In the electron case,

| 403)

4

04 x 10~ em™" =

Fig. 12.1 Form of Interaction Between Two Nucleons (Schematic).
V= Potential Energy, and r= Internucleon Separation

the ring diagrams dominated because of high density. In this low-density
nuclear case, the big contributors are the diagrams with only two hole lines,
as discussed in §10.3. The approximate series for the energy involving just
these graphs is

Eono+O~wo+®+<H)+@+n-
(12.32)
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The technique for summing these ‘ladder’ diagrams becomes clear by
writing out the first few in detail (see Table 12.1 and remember the factor
of 3 for symmetric graphs!)

IOW"OJ =% 3 Vy (12.33)
t)<kp
= % > Vitma Vo 1 (12.34)
il/m\/]ij 1<k, Cte—en—e,

mn>kp

mn 1
m,n,p,q>kr
1

x
(e + ¢—en—e) (64— €, —€,)

(12.35)

and so on. The sum may be carried out with the aid of a frequency-inde-
pendent K-matrix, similar to (but not identical with!) the frequency-
dependent K-matrix in §10.3:

1

Kows = Vet 3. Voot Kooy
P

P> kr

(12.36)

This is the analogue of (10.21) used in the propagator case. Writing this
equation for the special case m=i, n=j, and iterating yields

1
Kyy = Vgt Z Vo Vowr g 5
Ry
+ Z Vot Vorsa V. 1 +
Uel " plsg "”(e,+e,—e,—e,)(e,+¢,—c,—e,)

Pl sq>kr

(12.37)

Summing this over /, j<kr and comparing with (12.33, 34, 35) it is easily
found that

OO+ @ + + "'=*}'Ek Kyy (12.38)
LJ<kp
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In a similar fashion:

@ N % . @ + =t 3 Ky (1239

so that
Eo ~ Wo’i‘% Z (KUU_KUJ‘)' (12.40)
Lj<ks

Thus, the ground state energy may be expressed in terms of the X-matrix.
At first sight, this does not seem to be progress, since one would expect that
the fact that ¥y, in (12.36) is infinite implies that K, is also infinite. Remark-
ably enough, this is not true. It can be shown that even for a hard core
potential, (12.36) may be solved, and it yields a finite K. Hence (12.40) isa
well-behaved first approximation for the ground state energy.

A simple example of an infinite ¥ with a finite K is the *pairing interaction’

Vi = XOm,—nBt,.=p X = (12.41)

which means the only interactions are between particles in oppositely directed
momentum states. The y is an infinite constant. In this case, it is easily
seen that

Kony = -l—hs'"”“—sL_IL-— = finite, asy — (12.42)
_+ [P
X z 2e,—¢p)

q>kp

is the solution, which can be checked by just substituting (12.41, 42) into
(12.36), remembering that e, = e_ =k?/2m.

The method of extending the calculation to include higher-order non-
ladder diagrams omitted from (12.32) becomes clear if we note that (12.40)
looks like the ordinary first-order approximation to the energy

Eo ~ Wo+O¢m~\O + @
= Wo+y 3 (Vyy—Vus (12.43)
Li<kr

except that ¥, has been replaced by K. Let us define a new ‘effective
interaction’ equal to Kj;,, by the new interaction diagram

) S— <: = K. (12.44)



226 A GUIDE TO FEYNMAN DIAGRAMS (124
Then (12.40) may be written diagrammatically as

Evr Wo + Ow() + (12.45)

The higher-order diagrams may now be included in a fashion which guaran-
tees they are all finite by just drawing ------ instead of ~~ in the ordinary
diagrams, thus

{Note: In actual calculations on nuclear matter, one employs the ‘method
of undefined single-particle energies’ in which an arbitrary single-particle
potential is added to the unperturbed H, and subtracted from the inter-
action. This is described in the article by Goldstone in Pines (1961), p. 109.]

Further reading

Raimes (1972), chaps. 7, 8,9
Pines (1963), chap. 3.

Kittel (1963), chap. 6.
Thouless (1972).

Brout (1963).

Exercises

12.1 Verify that the last two graphs in (12.2) are anomalous.
12.2 Write out the expression for the first graph on the right side of (12.21).
12,3 Carry out the summation of the following set of energy diagrams:

12.4 Verify (12.42).



Chapter 13

Collective Excitations and the Two-Particle
Propagator

13.1 Introduction

Up to now, we have been mainly concerned with quasi-particle excitations
in many-body systems. Now we turn to the second of the two types of ele-
mentary excitations introduced in the zeroth chapter, i.e., collective excita-
tions. As pointed out there, collective excitations are the quanta associated
with collective motions of the system as a whole, such as, for instance, phonons,
which are the quanta of the sound wave. Like quasi particles, collective
excitations have particle-like qualities but, unlike quasi particles, these
qualities do not at all resemble those of the original particles of the
system,

It should be noted here that, despite the fact that collective excitations
cannot be described in terms of the ‘bare particle plus cloud’ picture used
in the quasi-particle case, we often hear such expressions as ‘dressed’
plasmon or ‘clothed’ phonon. This is due to the fact that if the collective
excitations are allowed to interact with one another (or with other elementary
excitations in the system), then a given collective excitation may become
surrounded by a cloud of other elementary excitations, thus giving rise
to the ‘dressed’ or ‘quasi’ collective excitation.

Collective excitations may be handled by means of the ‘ density fluctuation’
or ‘polarization’ propagator, F, which is a special case of the two-particle
Green’s function. Just as the quasi-particle energies and lifetimes were
found from the poles of the single-particle propagator, so the collective
excitation energies and lifetimes are determined from the poles of the polar-
ization propagator. This new propagator, F, may be expanded in a diagram
series which turns out to be just the sum over all the ‘polarization parts’
occurring in the effective interaction (10.49).

Calculation of F for a high-density electron gas in RPA (i.e., summing over
just repeated ‘pair bubbles’) shows that F describes the collective excitation
called the ‘free plasmon’. When higher-order diagrams are included, the
plasmons become ‘dressed’, and acquire a renormalized frequency dispersion

law and a finite lifetime.
227
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13.2 The two-particle Green’s function propagator

In the classical case, the two-particle propagator gives the probability
P(rqt4,313,1205,1, 1) that if one particle is introduced into the many-particle
system at point r, at time #,, and another at r; at time #;, then one of the
particles will be observed at r, at later time t2, and the other at (ry,1,). This
can be evaluated as the sum of the probabilities for all the different ways this
could happen, including the particles scattering off each other. Thus, in the
case of the accelerator in Fig. 2.3, we could write this diagrammatically as

| PR Tl

4 Tyl Fely
ra Ity | 9% 23 | 9% 9
P(l’4l¢,...,l',l,)a = + tn + + @+
ry! ryt rit | £%4
r,l, 3 l-I'l ¥ r,t, 373 rlt|33
4 A
+ [f proves + +
3
+ oo L +
P9
where the ------ line stands for the particles colliding with each other. If a
scattering probability -P, (here P,=1) is associated with --=--- , then the

diagrams may be evaluated by methods similar to those used in the single-
particle case.

On the left side of (13.1) we have used the conventional ‘ box with four tails’
diagram for the two-particle propagator. Note that we should no? associate
free propagators with the four * tails’ sticking out of the square when translating
the diagram into functions. To avoid confusion here, it helps to use a *stretched
skin’ picture for the propagator (see appendix M, and Mattuck and Theumann
(1971)), i.e., the tail-less diagram:

4
2 4 2
P4,3,2,1)= = l;\—j (13.1°)
3 1 3
1
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where a dot in the corner means ‘line emerging’ and no dot means ‘line
entering’.

The quantum mechanical two-particle propagator may be defined analog-
ously as the probability amplitude G,(r4s,...,r1¢;) that if one particle is
introduced at r; at time ¢, and another at (rs,f;), then a particle will be
observed at (r,,f,) and another at (r4,75). This' G, may be expanded dia-
grammatically, analogous to the pinball case. Evidently, G, is the sum of
the amplitudes for all possible virtual processes in which the two particles
interact with the system and with each other. Thus, abbreviating (r,f,)=1,
etc., we find equation (13.2). (Regardingthe minus signin front of the exchange
diagrams in (13.2), see exercise 13.7.)

Just as in the case of the single-particle propagator, there are other possi-
bilities corresponding to the other time orders. For example,

Gz(f3 S>> fz)

4 4

, 2 4 2
~0
~iGy(4,3,2,1) = = + + + + e
3
) 31 3
3
+ 4 e + 4 e
+%‘+L;T“‘+--.L+ Ao
4 4
, 2
- - — (13.2)
3 3
1 1
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is defined as the probability amplitude that if a particle is introduced at
(ri,7,) and a particle removed (i.e., hole introduced) at (r,,¢,), then there
will be a hole observed at (r;,7;) and a particle at (r4,£;). This may be shown
diagrammatically as follows

4 3
-iG,(4,3,2,1) = = + + l,@ + eee
L 2

This form of the two-particle propagator is called the °‘particle-hole’
propagator. 4

All possible pieces of the definition of G,, corresponding to all possible
time orders, are summarized in the closed expression:

Gy(4,3,2,1) = —i{¥o| T{(ra t) P (r3 13) Plr2 ) ¥ (ry 1)} | Vo>  (13.4)

where $'(r,1), Y(r,t) create and destroy a particle at point r at time ¢ (sce
(7.83)), | ¥y is the interacting ground state, and 7 is the time-ordering
operator, all as described in §9.2.

It is possible to derive the analogue of Dyson’s equation for G(4,3,2,1)
and to use it for determining various properties of the system (see Thouless
(1972) or Galitskii (1960)). We will discuss here only one special form of G,,
namely, the ‘polarization propagator’.

13.3 Polarization [*density fluctuation '] prapagator

It was mentioned in the introduction that collective excitations are
essentially regular variations in the density, i.e., ‘density fluctuations® in
the many-body medium. It seems plausible that such waves might be
described by a propagator which propagates a density disturbance from
one point to another, analogous to the way the single-particle propagator
propagates a single particle. It is easy to get such a propagator from G, in
(13.4) by letting (r3,13) =(r4,14) and (r;,1,)=(r3,#;). This yiclds the ‘density
Suctuation propagator’ (which is a special case of the particle-hole propagator):

FG3,1) = (=) <¥o| TH'G)43) $1 (1) (1)} | ¥o. (13.5)
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(By definition of T in (9.4), for equal times, the {t(r,#) must always stand to
the left of {i(r,#), so this has been put in explicitly.)
The physical significance of F may be seen from the fact that

P(ro t) = ll:f(l', t ) l,b(l’, t )
= plH! l/lf(l’) e~ 1H! ptiH! l/l(l’) e H!

= gHiH! lI’f(l.) '/l(r) ~—iHt (l 3.6)

is just, by (7.84) and (9.3), the operator giving the density (or strictly speaking,
number of particles) at the point ¢,¢. Hence, F may be rewritten

F(ry—ry, tr— 1) = —i Py T{p(rs, £2) p(ry, 1)} | ¥od
= —i{Wy| T{p(r,, fz)Pf(l'l,h)}l'iUo)o 13.7

where the last line follows from
plr, 1) = $H(r, ) d(r, 1) = [PHr, O, O = pl(r, ). (13.8)

Thus, F creates a ‘density disturbance’ at (ry,¢,) and propagates it to (r,,7,).
(We have assumed H is time independent, and the system is homogeneous
(no external potential) so that F depends only on space and time differences.)

The diagrammatic expansion for F is gotten immediately from that of G,
in (13.3) by just setting (r3, £3)=(r4,24) and (r;,1;)=(r,,13), i.e., by tying the
loose ends together in each diagram, thus:

068
0

This is just the series of ‘polarization parts’ (see (10.50)), and shows why F
is called the ‘polarization propagator’.

3,13

—iF(r;—r],f3"Il)E

)
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If (13.9) is transformed to (k, w)-space, then it is easily evaluated by means
of the effective interaction equation (10.49), which yields

((:N)(:w) O @ 6‘0 %(mo)

Hence, substituting (10.53) into (13.10), we find

0
% = T_—:é- (13.11)

(K, w) _ 7(k, w)
1+ Vink,w)  ek,w)

or

F(k,w) = (13.12)

where (10.55) has been used. Thus, the density fluctuation or *polarization’
propagator has been expressed in terms of the sum over irreducible polariza-
tion parts, =, and the related generalized dielectric constant, e(k,w).

13.4 Retarded polarization propagator and linear response

The time-ordered polarization propagator above is closely related to the
‘retarded polarization propagator’, defined by

FR(ry—ry, 1.~ 1) = —il(t;— 1) CHy| [p(r2, 12), plry, 1)]4 | o). (13.127)

This is the analogue of the retarded single particle propagator, G in (9.20")
just as Fin (13.7) is the analogue of G in (9.1).

The physical meaning of F® is the following: It can be shown (see Fetter
and Walecka (1971), pp. 172-75) that if we have, for example, a system with
charge e per particle, and we apply a small external scalar electric potential
$(k, w) to the system, then the change in the density of the system caused by ¢
is given to first order by

p(k, w)) = FR(k, w) ed(k, w) (13.12%)

where FR(k, w) isthe Fourier transform of the retarded polarization propagator.

That is, F® pives the linear response of the system to a small perturbation.
Now, since FA(k, w) and F(k, w) are functions of only one frequency variable,

they have the same relation to each other as the corresponding single particle



13.5) COLLECTIVE EXCITATIONS 233

propagators (see appendix L, part E). Hence we may write (see appendix
(L. 26))

Re F(k, w) = Re FR(k, w)
Im F(k, w) = sgn (w) Im FA(k, w), (13.127)

so that if we have calculated F diagrammatically, it is easy to find F® from it.
(Note that F¥ itself cannot be calculated directly from diagrams.)

13.5 The collective excitation propagator

Since quasi particles resembled free particles, physical arguments led us
to conclude (see chapter 3) that they should have a propagator like that for
free particles, except that the energy dispersion law was different and there
was a damping factor. Physical intuition is not quite as helpful in the case
of collective excitations since they do not at all resemble the free particles.
However, it is possible to guess at the general form of the collective excitation
propagator by looking at it in a well-known case, i.e., the phonon.

In a lattice with purely harmonic interatomic forces as in (1.28), phonons
describe exact eigenstates of the system. The phonon propagator appears
in the reprint (chapter 16) just after Equation (16.41), p. 284. From this we
guess that the general form of F(k,w) when the collective excitations describe
exact eigenstates of the system is:

By
—wi+ 2w, &

_ (2w)'B,  QuwyT! B,
T w—wp+i® whw,—id

Fo(k, w) = w?

(13.13)

where By is independent of w, and wy, is the frequency dispersion law of the
excitation. This is called the ‘free propagator’ for a collective excitation,
hence the subscript ‘0’. It is the analogue of the free-particle propagator
Gy in (8.35), but, unlike G,, has both positive and negative frequency parts.
And, of course, wy, is totally different from e,(=k2/2m).

If the collective excitation is not an exact eigenstate of the system, i.e., if the
free collective excitations are allowed to interact with each other (or with
other elementary excitations) then we get something analogous to quasi
particles, The interaction between excitations produces a renormalized
frequency dispersion law w, and a finite lifetime =, (fairly long, for the picture
to hold) so that (13.13) is replaced by

Farenea(, ) = = By where 1/, € w,  (13.14)

— w2+ 2wy

similar to (8.37). This is the dressed collective excitation propagator.
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According to (13.13) (or 13.14), the poles at w=w, yield the energy of the
collective excitations. This can be simply interpreted with the aid of the
retarded polarization propagator F® described in §13.4. From (13.12") it is
easy to see that the F§ corresponding to Fy in (13.13) is

(2w,‘)"1 Bk _ (2wk)"‘ Bﬁ

FR(k,w) = .
Sk, ) w—w,+i8  wtw,+id

(13.14’)

When w=uwy, F§— o which means that by the linear response equation
(13.12"), there can be finite oscillating density fluctuations in the system without
any external driving field. This is just like, e.g., resonant oscillations in an
ideal condenser, or on a frictionless guitar string. These resonant density
fluctuations are just the collective oscillations.

The general circumstances under which F(k,w) in (13.12) has the collective
excitation form (13.14) may be found by expanding F about its poles in the
same way as we did for G(k,w) in §11.2. First break up = into real+imaginary
parts

- Tatim 13.15
F(k’w) 1+Vk‘”R+inﬂI ( )

Analogous to the quasi-particle case, (11.15), define £, as the solution of
1+ Vimg(k,82,) = 0 (13.16)

and expand g about £,, assuming that =, is a slowly varying function of
w? rather than just w (this will be true in the example we will consider in the
next section):

malk, w) = wk(k,g,‘)+(9”—‘;) (= QD)4+, (13.17)
ow?/q,
Substituting into F(k,w)
Flk,w) ~ 3-fl‘x ";k’gk)x S . (13.18)
k (Z7R 22420 [ T
( aw) . 9"“'9*(@/6«»)%)9.

This evidently has the damped collective excitation form (13.14) provided

1 ™y
™ (), < 9 (1)

13.6 Plasmons and quasi plasmons

An easy place to look for collective excitations is in the high-density
electron gas since, as shown in §10.4 and §12.3, the RPA (random phase
approximation) applies. This means that the sum over all irreducible
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polarization parts may be replaced by just the first pair bubble diagram as in

(10.36):
@ = O = —img(k, w)
= —i(ﬂon+iﬂ01). (1320)
This may be substituted for = in (13.11), (13.18), giving
Frpalk,w) = —*x molk, 'Qk) ! . (13.21a)
ey
dw /g, k ¥\ (d1dw) mor/q,

We now evaluate (13.21a) using the frequency-dependent mo(k,w) (for
small k) which appears in (10.77). In the high frequency limit, { (=mw/k k)
in (10.77) is large, so we may use the expansion:

4N 2.2 1 21 . p
ln(g—_—l)— +3' +5 C$+ N C>|- (l32!b)

Placing this in (10.77), using (10.70) and retaining only terms up to {2 yields

k k3 \k? k?
rolk, w) = __':L= - (__F__)_ == - (13.21¢)

mw

where n=clectron density, and we have used (9.44). The pole equation (13.16)
is therefore (note that =, is pure real in this approximation):

4we®  nk? /41re’n
]—?-—§=0; Qk= -~

Thus, in this approximation, £, is independent of k and is equal 1o the so-
called *plasma frequency’ which is the frequency of free oscillations in a
classical electron gas (see Raimes (1961), chap. 10). In a better approximation
£, depends on k (see Exercise 13.5).

Using (13.21¢) to work out the other quantities in (13.21a) yiclds for the
polarization propagator

=wp.  (13.21d)

—nk3|m
FRPA(k,w) = m (13216)

Comparing this with (13.13), (13.14) shows that we have here the propagator
for a collective excitation of infinite lifetime, and having the plasma frequency
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(see exercise 13.5 for the k-dependence of the excitation frequency). This
excitation is called the ‘free plasmon’, and is the second of the two types of
elementary excitations in the electron gas (the first was the quasi electron).

Let us represent the free or ‘bare’ plasmon propagator by a vertical dotted
line; then its diagram expansion is, by (13.11, 20):

% ;=(}+&)+&§o+m_ (13.22)
RPA i

If higher-order polarization parts are added to the series for @, they repre-

o]
oo

sent interaction of the plasmon with other plasmons and quasi electrons,
and convert the bare plasmon to the ‘dressed’ or ‘quasi’ plasmon with a

finite lifetime. This is easily seen by including, for example, the ﬁ diagram
in the polarization propagator expansion:

@zo+g+69+60+03+93+&9+6§0+....

(13.23)
Regrouping diagrams and using (13.22) yields

0o I oo B | 956?"'*"'

1
$

! i ﬁ
+ + .~9+ ; + + oo 8 +...
N A & &

(13.24)

|1
PR G-

(13.25)

o
+
3
+
> LT QT >
t
1
>
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where the last line is the conventional way of drawing this. Thus, the polar-
ization part 8 here acts like the irreducible self-energy parts in the single-

electron propagator, and dresses the plasmon in the same way that the
addition of self-energy parts dressed the electron.

13.7 Expressing the two-particle propagator in terms of the scattering amplitude

The amplitude for the scattering of two quasi particles was shown in (10.63).
It is useful to note that by combining (10.63) with (13.2), the two-particle
propagator may be expressed in terms of the scattering amplitude thus:

- Xzﬁ 1326
Further reading

Fetter and Walecka (1971), chap. 5.

Raimes (1961), chap. 10.

Pines (1963), chap. 3.

Schultz (1964), chap. 3, pp. 99-103.

Pines (1961), chap 2, pp. 34-42; chap. 3, pp. 55-65.

Exercises
13.1 Assume that the interaction is such that the most important scattering pro-
cesses in (13.2) are those of the ladder type. Write out the series for such
processes (ignore the ‘crossed’ ladder diagrams, for simplicity) and obtain an
integral equation for G, in diagram form. Re-write the result in terms of the
K-matrix (10.19), and compare with (13.26).
13.2 Sum the series for the plasmon propagator in RPA (13.22) and show that the

result is just (13.11) with @ = O

13.3 Sum the clothed plasmon series:

(@) Before regrouping (as in (13.23)).
(b) After regrouping (see (13.24)).
(¢) Use the answer to Ex. 13.2 to prove the two results are the same.

13.4 Verify (13.14).
13.5 Verify (13.21¢).
13.6 Show that if the {~% term of (13.21b) is included in the approximation for g,

then the plasmon dispersion law becomes
2

2 2 F 2
w*=wpt < — k2,
' s m?

13.7 Use (13.4) to show why the exchange diagrams in (13.2) must have a minus sign.
{Consider the zeroth order term in the perturbation expansion of (13.4).)



Chapter 14

Fermi Systems at Finite Temperature

14.1 Generalization of the T=0 case

The problems considered until now—excited states (i.e., elementary
excitations) and ground state energy—are physically unrealistic in the sense
that they assume the many-body system is at zero temperature. This is fine
for nuclei, whose energies are large compared with ordinary thermal energies
(~:% eV), and for solids at extremely low temperatures. However, for
nuclei in hot plasmas and inside stars, or for solids in ordinary environments,
the T=0 approximation may be a very bad one. At finite temperatures, the
system will be statistically distributed over all of its excited levels. This means
that the ground state ‘average’, (¥y|...| ¥o), which was used to calculate
the 7=0 propagator, must now be replaced by an average over a grand
canonical ensemble.

For one who has just mastered the complicated graphical art for the 7=0
case, the sight of temperature rearing its ugly head might provoke the
Archimedean response: ‘Don’t disturb my diagrams!’. However, the
remarkable thing is that the diagrams are in fact not disturbed by the addition
of temperature to the problem. The T >0 graphs are drawn precisely the same
as the T=0 ones, the difference between the two cases lying solely in the dic-
tionary used to translate the lines and wiggles into words. This makes it
possible to get the whole finite temperature theory from the zero temperature
one at no extra charge.

Take, for instance, the finite temperature single-particle propagator, ¥.
This can be used to find, among other things, the temperature dependence of
the quasi-particle energy dispersion law, and of the bare particle momentum
distribution function, etc. The diagram expansion for & is the same as in
the 7=0 case; the only modification required is to associate a statistical
weighting factor with each directed line, change the time variable to imaginary
time and subtract the chemical potential . from the energy.

Another example is the grand partition function, Z, which is the key to
the equilibrium thermodynamics of a many-body system. If we can find Z,
everything—energy, entropy, pressure, etc.—can be calculated from it in a
simple way. It will be shown that Z is just proportional to the finite tem-
perature vacuum amplitude, and can be obtained from the same diagrams used
to find the ground state energy E,.

238
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14.2 Statistical mechanics in occupation number formalism

Since occupation number formalism refers to a system in which the number
of particles, N, is in general not fixed, we have to use a statistical method
tailored to the variable N problem, e.g., the method of the grand canonical
ensemble. This means that our system of particles is immersed in a reservoir
composed of the same kind of particles held at fixed temperature T. The
system can release particles or energy to the reservoir, or receive particles or
energy from it.

Suppose the system Hamiltonian, H, is given by (7.51). Since N is variable,
the eigenstates |¥;> of H, will depend on N; let us call N, the number of
particles when the system is in | ¥), and call the corresponding energy E;.
That is:

H\Y¥)> = E/|¥)), %‘.CICHW:) = N;|¥p. (14.1)

The probability that the system (regarded as a member of an ensemble) will
be found in state | ¥, is given by

e~PlE—pN]

= 3, e~PE—pNa)
n

P, =& (14.2)

where p=chemical potential, which is the energy required to remove one
particle from the system, and B=1/kT (k=Boltzmann factor). The de-
nominator of (14.2), Z, is the ‘grand partition function’, and the numerator,
pi, is the ‘grand distribution function’. It is convenient to write these
quantities in terms of the distribution operator

p = e BU—pN) (14.3)
(N stands for number operator) thus:
pi=<¥lel¥» (14.9)
|
Z=trp, &= Fdel¥D (14.5)
trp

In order to get the average value of any operator @, we just calculate the
weighted average:

<O =;<¥',I0I?’,>9’,=t;—0’f’- (14.6)
An example of this is the average energy
S E; e~BE~pN) 2
E=(H)='gegr— = - —an) (14.7
< > ; e—ﬂ(Ec—le) aB Bu )
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Equation (14.6) uses the exact many-body state vectors |¥;>. Since these
are not known, in general, one makes use of the fact that the trace is invariant
under change of representation, and transforms to a more comfortable basis,
say |®,>. The |®,) are usually chosen to be eigenstates of the non-interacting
system. Then we have

IRCAIAEAECATT Y

= he 14.8
N El: CATIN (14.8)

Let us apply the above to a rapid (although perhaps a bit weird-looking!)
derivation of some old familiar results for a system of non-interacting
fermions. The Hamiltonian and state vector are just

Hy= %: excles, l¢l> = |nf,nd,... 0y ... (14.9)

The grand distribution function is

pio = (i e FFrmeter|d;)
= e~BE(ammt _ I e Pla—pmt (14.10)
k

where u=chemical potential, and the subscript ‘0’ denotes non-interacting
system. The grand partition function may be written

Zy=trpg=Zpo= 3 [[ePewmn, (14.11)
i Afiianytahes. k

The first term in the sum has {n{,...,n},...}={0,0,0,...}, the second term

={1,0,0,0,.. .}, etc., so that

Zy = 14eBlemy g Blerm ... g oPla—p) x g=Blemp 4 ...

= l;I [14 e~flemm) (14.12)

where we have used that n,=0 or 1.

From these results one can compute the average values of operators for
the non-interacting system. For example, the average value of the number
of particles in state k of the non-interacting system is (note that p, /¢, are
diagonal in the |P,>-basis, so {(P;|p|P;)> =0 for i#j, etc.):

e = Lcledo = Z ndyooank, . deleidnd, . onk, . D> x

voemafoe.

e—ﬂ(u—p) nyt
-~ . 14.13
x H [+ e—ﬁ(ec-u)] ( )
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The only terms contributing to the sum are those for which

colthy el ank, . D> =1 (e, n = 1),
so this becomes:
—B(ex—p) ~Ble—p) nt
e e
{mde = Z

£ £ . 14.14)
1+ eFem vt

c.m... I#k

The sum over products=1 (by the same method used to prove (14.12))
leading to the final result

(o = <elexdo = —e

which is just the well-known Fermi distribution function obtained by an
elegant but rather unpleasant method. Another useful average value is

{exeldo = {1Do—<chcrdo

_ 1
== me

= fif. (14.16)
14.3 The finite temperature propagator

The zero temperature propagator for a mutually interacting N particle
system, with no external potential was:

Gk, 1,— 1) = — iKWl T{cxlr) k(1)) | o> (14.17)

which is evidently just the average or ‘expectation’ value of the operator
T{ci(t2) ci(1)} in the ground state. Hence the finite temperature propagator
may be gotten simply by averaging this same operator over an ensemble of
systems at temperature T by means of (14.6):

GT(k, 1, 1) = —i(T{cx(tz) k()

= U Tedn) ciltlp (14.18)
trp

Now our object is to evaluate this function and use it to find the system
properties. It would be nice if we could somehow expand G7 diagram-
matically like we did for G, and calculate it by partial summation. This cannot
be done with G7 as it stands; however, it is possible to do it on a modified
GT called the ‘imaginary time Green’s function’ defined by (note that we drop
the i-factor in order to agree with the convention in Fetter and Walecka (1971),
p- 227 f1)

Gk, m2—1) = ~<T{cu(r) ck(r)},
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where
O(r) = H-#N 7@ H-pN) T (14.19)

and
0<m7,m3<pB, rreal

Evidently, ¢ is obtained from G” by making the following replacements

H-—> H—pN

: (14.20)
-7
Since 7 is real, = —ir will be imaginary. Hence ¥ is called the ‘imaginary
time propagator’. Note that T in (14.19) means that the operators are
arranged so that 7 is decreasing from left to right.

The reason why ¢ can be expanded in the same diagram series as G (for
T=0)is this: As shown in appendix B, the diagram series for G comes funda-
mentally from the time-dependent Schrédinger equation. Now the distri-
bution operator p obeys the equation

g—g = —(H~uN)p (Bloch’s equation) (14.21)
as can be verified by differentiating (14.3). If this is compared with the time-
dependent Schrodinger equation, one sees the correspondence ¥« p,
Hes H—pN, it B. This suggests that by making replacements (14.20)
everywhere in sight, we can build up a finite temperature theory based on
the Bloch equation in the same way the zero temperature theory was based
on the Schrodinger equation. In particular, it turns out that if these replace-
ments are made in G, the resulting ¢ can be expanded in a perturbation
series which is the nearly identical twin of the series for the zero temperature
propagator. (See appendices, (D.14—+19), (E.15->17).)

Despite the unphysical clang of ‘imaginary time’, it is not hard to see that
it will be just about as easy to get physical information out of & as out of
G7. This is because, first of all, the only effect the H — H— puN replacement
has, is to shift the single-particle energy by p, since

Hy—pN = % (—p)chcr-

Secondly, although the result we get for & will be a function of 7, we can
always get this result in terms of real time by replacing = by it or, more
properly, by analytically continuing the result back to the real r-axis.

The variables ,, 7, are restricted to the interval (0,8) (so that 7,— =, =T is
on (—£, +P)) because 4(k, 7,—7,) is guaranteed to converge on this interval
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(Mills (1969), pp. 72-3). This can be seen by using (14.19). Considering the
7> 0 case first, we have (let #=H—puN)

-1 -1 o _
4k, 7) = z trpe, (1) cJ(0) = - Z (WlettiettH g el cl|P,5.
Inserting > ; |¥,>(¥,| at the appropriate point, thisbecomes(let £, = E, — uN,):
-1 - _
gk,7) = Z z eERE Y e | e (P el | W) (14.22)

L

Since £, ; can be arbitrarily large positive quantities, we can guarantee that
this sum is finite if the exponents are negative, i.e., if r<fand 7>0. A similar
proof holds for the = <0 case.

Theimaginary time propagator obeys the so-called ‘ quasi-periodic boundary
condition’ on the interval (-8, +8):

%k, 7) = —9(k,7+8) for —f<r<0. (14.23)

This is proved with the aid of the theorem that tr AB=tr B4 as follows (for
—B<7<0):

Ik,7) = %tre"’?q{(ﬂ) )

tre(r)e?f cl(0)

NI =

tre#Ae* e, () e#M c1(0)
%__J
= ¢t +8)

= —9(k,7+B). (14.29)

N[~

The restriction of = to the interval (— 8, 8) causes trouble when going over
to the equivalent of (k,w) space, since the Fourier transform requires integra-
tions from 7= —c—>+4 . The difficulty is eliminated by adding still another
propagator to the menagerie—call it %,,,—which is just 4 periodically repeated
from — o to + . This is given by the Fourier series:

Gprllr) = 5 > eor G (14.25)
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where
1 7
4k, w0,) = 3 I dre!®*4(k, 7) (14.26)
-8
™
w,=—é-' n=0 =1, +2,.... (14.27)

The function ¥k, ) is equal to ¢ on the interval (— 8, +8) and repeats on

(B.38), (38,58), ..., (—3B, =B, ..., etc. The Fourier transform of ¥,.,(k,7) is
evidently just 9k, w,).

Substituting (14.23) into (14.26) shows that even n terms equal zero, so that
(14.27) is replaced by

_ @nthm
A

(In the case of bosons, the odd n terms are eliminated.) Note that with the aid
of (14.23) we can also show that (14.26) becomes

Wy

(14.28)

8
Gk, w,) = f dre!™ g(k, ) (14.28)
o

Let us now look at the free imaginary time propagator. Using (14.19) and
the fact that c,(7)=c,exp(—7(e,—p)) for the non-interacting system (this is
just (F.7) with replacements (14.20)), and employing (14.15), (14.16) gives

Golk, 72— 71) = = [Be,m, [} =00y e, frle G =00 (14.29)

The physical meaning of (14.29) may be seen by comparing it with the
ordinary T=0 free propagator in (8.34). Aside from the shift of energy zero
by g, and the it — 7 change, the essential difference is the replacement of
Oer—cprs Dcme, by the statistical factors fit, fi~. These factors smear out the
0-functions, as shown in Fig. 14.1. Interpreting a ‘hole’ now not as an
empty state below &k but in a more general fashion (see paragraph following
(4.30)) as that part of ¥, for 7, <7, it is seen that

For T>0 it is possible to have a hole and particle both in the
same k-state. (14.30)

If 9, is now periodically repeated (from now on we drop the label ‘per”)
by (14.25), then its Fourier transform is obtained by substituting (14.29) into
(14.26), yielding

Gk, ) = —

— 14.31
lw,—€x+p ( )
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with w, as in (14.28). Because of the iw, appearing in it, o(k, w,) (or %(k,w,)
is called an ‘imaginary frequency propagator’.

Oc—p
A Je

®

F1G. 14.1 Statistical Factors for the Particle (f+) and Hole (f-) Parts of the
Free Imaginary Time Propagator

€

(]
]
) %N\Q
S
|
n
m

As discussed in appendix E, section 3, ¥ may be expanded in a perturba-
tion series which is the twin brother of the one for G in the 7=0 case. From
this it follows that 4 may be expressed in the same diagrams as G was:

= }OFJ@%@F? FV

(14.32)

where now ‘anomalous’ diagrams (see after (9.32)) must be included because
of (14.30). This series may be evaluated by means of the finite temperature
dictionary in Table 14.1. (See appendix (D.13, 19) regarding missing i-factor
in front of ) Note that the imaginary frequency non-propagating lines in
Table 14.1 require a convergence factor, exp(iw,0*) analogous to that in the
T=0 case, Table 9.1. The frequency sum:

l i l +® e[m.oo
=S Gukw)eor = S £ _ 14.32°
BZ otk, w,)e Bziw,—ekw fi (14.32)

A=—x Aw—@®

may be carried out with the aid of (14.54).
Dyson’s equation has the same graphical form as in (10.7), so that

1
) . 14.33
g(k, wn) fw,— 6+ T Z(l‘, w,) ( )
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A simple example of this is the finite temperature Hartree~Fock approxi-
mation in which the irreducible self-energy, Z, is given by (10.11). Evaluating
this with the aid of Table 14.1 produces (multiply ¥,,,, by 2 if spin is included)

Zkw,) = prOPw +

p, Wy

1 +o
- Z .,E Z (=1~ Vips) = Vorrp) Go(p, w))

(g ]

= Z (Vkpkp"' Vpkkp)f;- (14.34)

Substituting this in (14.33) shows that we have the finite temperature
analogue of the Hartree-Fock quasi particle, with energy

€& = e+ 5; Vipkp— Vpiap) (€8 + 1)1, (14.35)
4]

The effective field seen by the particle in k is modified by the fact that some of
the particles causing this field are now above the Fermi surface on account
of the finite temperature. This is reflected in the statistical factor on the
right. Thus the quasi-particle energies have acquired a dependence on
temperature through the B=1/k7-factor—a good example of the rather
bizarre-sounding concept of ‘temperature-dependent energy levels’ in
quantum mechanics. (The true levels are not temperature dependent, of
course.)

Note that when 70, f; —>8(u — €,). If now N is fixed during the calculation,
so that p= e (see §9.7), then f, =60(er —¢,) and (14.35) reduces to (4.78) as it
should.

The above energy expression (14.35) may be made ‘self-consistent’ by
replacing €, by ¢, in the exponential on the right of (14.35), giving us a messy
equation to be solved for ¢,. Graphically, this means that for the irreducible
self-energy we are using the first two terms of (11.3), i.e.:

@ % |~w~© + & (14.36)

14.4 The finite temperature vacuum amplitude
The zero temperature vacuum amplitude was defined by

R(1) = <Dy| U(t)| Do) et (14.37)
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For our present purposes we need the explicit expression for this in terms of
the operator, U, as it appears in appendix (E.13), with 7,=0:
R(1) = <Py| O(1)|Po)
= <¢0| e'”°'e"”' |¢o) (14.38)

where appendix (D.1) has been used.
The finite temperature vacuum amplitude would then be given by

RT = <O, (14.39)

where ( )y means average over ensemble of nmon-interacting systems at
temperature 7. As was the case with GT in (14.18), R is not very useful. A
more convenient function is obtained by making the replacement (14.20),
yielding

R(B) = COB)o = (Pt g=PH-uNY, (14.40)

We now notice that the grand partition function is proportional to Z#(8)
since
Z = e PEHN = (r[ePHmuM [(B))
Zy = tre BHreN (14.41)

so that
Z|Zy = <OB)o = R(P). (14.42)

Hence, by (14.7), we can easily get a formula for the average energy:
0 ]
(E)= —531320—53111@(13): (14.43)
which is evidently the 70 counterpart of the zero temperature theorem
(5.4):

Eg= Wo+i[‘% In R(t)] (14.44)

s co(1—t)

As shown in appendix (E.19), #(8) may be expanded in a perturbation
series which is identical in form to that for R(¢) in the T=0 case. This means
that the 7=0 diagram expansion still holds good for the 7> 0 case:

BE=1+ OO + @ +{) ) + & " @ +OZO+...

+ : : Hoe (Z‘Z}: +‘ (14.45)
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Note that it is necessary to include anomalous diagrams. Examples of the
evaluation of these diagrams, using Table 14.1, are:

Ko = (- 112 f dr 5, (= Viu) (~Fo) (~f7).(1446)
1
K @ k = (=1 5 (= Vi) (= Vi) SE =S =17
1 8 8
x 6[ dry J drye(o— g (14.47)

The expansion for (£) may be derived from (14.45) with the aid of (14.43);
again the linked cluster theorem holds, and we find

(Ey=(E> + OO + & +(}:@+%.+@ +CZO+...‘

(14.48)

A new dictionary is required to evaluate these—the reader is referred to
Bloch (1962) for details and examples.

[14.5 The pair-bubble at finite temperature]

We will now show the finite temperature machinery in full operation, using
it to calculate the pair-bubble at 75 0. Recall that the 7=0 pair-bubble’s
value appears in (10.66), and at the end of this section we will demonstrate that
our present result reduces to (10.66) in the 7—0 limit, as it should.

Let us first draw the pair-bubble and translate it with the aid of Table 14.1
(note that there is a factor (— 1) difference between our pair-bubble and that in
Fetter and Walecka (1971), pp. 271-75):

1+q,
q Ol-quHO(Q;wl)
w,+ w,;

2J‘ d3l 1 3= 1 1
2nP B, iw,— (e, —p) i, +iw—(€1,4— 1)
(14.49)
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(-1 from fermion loop, factor of two for spin sum). The sum over »n is
evaluated as follows: First define the function F(w) by

1 1

Flw) = w—(e—p) @+iv—(erq—p)

(14.50)

Thus, F(iw,) is just the summand in (14.49). We now use Poisson’s formula,
(which is valid for any F(w)) which does not have poles on the imaginary axis),
to convert the sum to a contour integral:

+o . _ﬁ
> F(iw,) = m§ dw Flw) f(w), (14.51)
c

where f(w) is the Fermi function (=(exp(Bw)+ 1)~?) and where the contour C
surrounds the imaginary axis as shown in Fig. 14.2. Equation (14.51) follows
immediately from the residue theorem when we note that f(w) has poles all
along the imaginary axis at iw,, i.e.

—w when w=—@n+l), n=0 1, +2,.... (14.52)

1
S = 5o B

If we now look at contour C’ in Fig. 14.2, we see that the integral around C’
will be equal to the sum of the residues from the poles on the imaginary axis
(=integralaround C) plus the residues from the poles of F(w) at w=¢,~ p2 and

w — plane

Cl

(3

b

b

)

b

)

b

b

w=¢ — )
[l = ]

b
\J

Fig. 14.2 Contours used in the Finite Temperature Calculation



14.5] FERMI SYSTEMS AT FINITE TEMPERATURE 251

w=¢;,,~pu—iw, Since the integral around C’ goes to zero when C’—>w we
have:

$=0= $ dw F(w)f(w)+2ni 3 Residues of F(w)/(w)
c c at poles of F(w). (14.53)

Utilizing (14.51) then gives us a simple formula for evaluating sums like (14.49):

l +o
- Z Fliw,) = sum of the residues of F(w) f(w)
B ne—c at the poles of F(w). (14.54)

Applying (14.54) to (14.49) we have

Res Flw)f(w) at (w=e,—p,)=€‘_y+f; f:::::)' — (14.55)
Res Fw)f(w) at (w = €rpq—p—iwy) = Sersa—p—iwi) (14.56)

€laq—p—iw— (e—p) '

Now, since by dictionary Table 14.1 both w, and ,+ w, are proportional to
odd integers, it follows that w, is proportional to an even integer. Hence

Slerg—p—iw) = fle,—p). (14.57)

Substituting this in (14.56), and using (14.56, 55, 54, 49) yields for the finite T
pair-bubble (let f; =f (e, — p)):

&l Si~five

(2‘)"')3 iw‘ —€|+¢+€‘ )

Hy(q,w;) = —2f (14.58)

This can be brought into a more convenient form by adding and subtracting
Jif14q in the numerator, yielding:

d*l S 1 =) =Sl —f140)

(2‘11’)3 iwl_fu,q‘*‘fl

IIyq,w,) = 2 (14.59)

Substituting 1+ q——1in the first term and noting that /_, =/, and e_,=¢,, we
find

&1
@n)?

f,(l-—fm)[. ! -- ! . (14.60)

'w’-G"*'G“‘G lw,—€,+q+€,

I1(q,w) = 2J.

Expression (14.60) is the imaginary frequency pair-bubble. But, since
experiments are done at real frequencies, we want the real frequency version of
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this. This can be obtained by the method in appendix L, since the pair-bubble
is actually a polarization propagator and depends on only a single frequency
(see appendix L, part E). Thus, using (L.51), (L.39),and (L.40), we find for
the real frequency finite T pair-bubble:

73(q, w) = fHw)Ty(q, w+i8)+f~(w) [T(q, w — i8) (14.61)

where we have analytically continued iw, to w +i8 and w —i8.
Finally, let us take the 7—0 limit of this and compare it with 74(q. ) in
(10.66). We have

7Qw) =2 4 {0.,.[ l l ]

(2n)? w—€+ €4, +i8 - o+ —e,,+id
aQ<p

€Qeg>H

1 |
8_. - . (14.62
+ [w—e,+e,+,—i8 w+€,—c,,,q—i8]] )

Using (3.76") to find the real and imaginary parts of this, we find that it may be
written in the form

4’1 1 !
T-0(q. ) = 2 - 14.63
737%q. w) ) [m-€'+€|+q—i8 w—¢,+q+£,+i5} ( )
a<H

Qeg>8

(since (14.63) has the same real and imaginary parts as (14.62)). This result
is for fixed chemical potential, 2. If we fix N instead, then u= ¢, and (14.63)
becomes just (10.66). Note that there are no u’s appearing in the denominators
since they have cancelled.

Further reading

Fetter and Walecka (1971), chaps. 7, 8, 9.
Schultz (1964), chap. 5.

Thouless (1972).

Luttinger (1960a).

Abrikosov (1965), chap. 3.

Bloch (1962).

(The non-perturbative method of finding the finite temperature propagator
makes use of the differential equation for the propagator. This method is
described briefly in appendix M, and in detail in Ter Haar (1962), Parry (1964),
Kadanoff (1962).)
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Exercises

14.1 Express the average particle number, N, in terms of the grand partition
function.

14.2 Use the resuit of Ex. 14.1 to find an equation for the chemical potential p in
terms of the average particle number (given to be Ny) in a non-interacting
Fermi system at temperature 7.

14.3 Verify (14.29).

14.4 Verify (14.31).

14.5 Translate into finite temperature functions (in k, w,-space) the fourth diagram
on the right of (14.32).

14.6 Verify (14.51) by calculating the residues.

14.7 Show § =0 for Fas in (14.50).

cl
14.8 Show that (14.62) and (14.63) have the same real and imaginary parts.
14.9 Verify (14.32").



Chapter 15

Diagram Methods in Superconductivity

15.1 Introduction

It is well known that below a certain critical temperature, 7.~ 1-10°K, a
large number of metals and alloys undergo a transition to a new phase called
the superconducting state (see Rikayzen (1965), chap. I, or Tinkham (1962)
for a review). The spectacular physical properties of this phase, such as zero
electrical resistance and perfect diamagnetism, have made it one of the great
centres of interest in modern many-body physics.

The intense interest in superconductivity is not confined merely to metals.
For one thing, Bohr, Mottelson, and Pines (1958) have demonstrated that
even-even nuclei show characteristics of the superconducting phase (in
particular, an energy gap—see below). This is also true of nuclear matter
(Fetter and Walecka (1971), p. 383 f.). There is evidence that the interior of
neutron stars is superconducting (Baym (1969)) . In addition, a great flurry of
activity has been stirred up by the discovery that liquid He?® becomes a neutral
superconductor at temperatures below 2:7x1072°K (Osheroff (1972),
Anderson and Brinkman (1973), Leggett (1973)). And finally, much attention
has been devoted to the possibility of developing revolutionary high tempera-
ture superconductors using organic materials and metal-dielectric combina-
tions (Ginzburg (1968)). So superconductivity is a real grab-bag, filled with
goodies for all kinds of physicists.

The mechanism responsible for superconductivity is now known to be the
effective attractive interaction between two electrons due to the exchange of
‘virtual’ phonons. As a result of this attraction, the electrons become
‘paired’ in states of opposite momentum and spin. That is, the super-
conducting ground state is a superposition of just non-interacting states like,
for example, |0k,1, O_g,3s 1xg4s 1gpss +-.D, in which the single-particle states,
®.4x1» Py are either both occupied or both empty. On account of the pairing,
the clementary excitations of the system (‘bogolons’) turn out to have an
energy dispersion law of the form E, = [(k%/2m* —eg)2+ 42]F instead of the
usual E, =k2/2m*—e;. Thus, a minimum ‘gap energy’, 4, is required to
excite the system; this makes the superconductor immune to the sort of
scattering which gives rise to electrical resistance in the normal case.

In the nuclear case, pairing is caused by attractive forces originating in the
exchange of mesons between two nucleons. In He? the attractive forces are

254
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due to exchange of ‘spin fluctuations’ or ‘ paramagnons’ (critically damped
spin wave quanta found in nearly-ferromagnetic materials) between two He?
atoms, with parallel spins and p-state pairing (Layzer and Fay (1974)). In
metal—dielectric combinations, and in organic materials, pairing forces are
expected to originate via the creation of particle-hole excitations (i.e., excitons).

There are several ways of getting ground and excited energies, Ey and Ej,
for a superconductor. The original Bardeen, Cooper, Schrieffer (BCS)
derivation, which will be briefly reviewed, involves a variational solution of
the Schrédinger equation for a gas of electrons with mutual instantaneous
attractive interactions. (The actual interaction is retarded.) It is also possible
to get Ey, E; by a diagrammatic method, and it is this method which we will
concentrate on here.

The diagram method for superconductors is not the one we have been using
up to now. We shall first show that powerful though they may be, the
usual graphical methods do not have enough muscle to handle the super-
conducting case. In fact, we'll see that because of the pairing, the ordinary
graphical perturbation expansion breaks down completely in the case of a
superconductor.

There are several equivalent ways out of this tragedy. The one which we
will describe involves a matrix propagator, G(k,«) which has the pairing
already built into it. This has the form:

G= (ﬁ'(m fc(—k&))' (5.1

where G is the ordinary propagator and F is the so-called anomalous propa-
gator, which gives the probability amplitude for the creation or destruction
of a pair of particles in the system. The matrix G can be expanded in
diagrams just like G, and can be used to find the bogolon energy, E;.

The advantage of the diagram method in superconductivity is that it can
take into account the retarded nature of the electron-phonon-electron
interaction. This allows it to tackle problems which are inaccessible to the
ordinary BCS method and provides the basis for a much more general
formulation of the theory of superconductivity.

15.2 Hamiltonian for coupled electron—-phonon system

In the examples up to now, our Utopian model metal was a box containing
a smeared out static positive background (representing the positive ions)
against which the electrons moved. For our present purposes, this is much
too idealized. In order to explain superconductivity, we need to also take
account of the fact that the positive ions which form the crystal lattice can
vibrate about their equilibrium positions. That is, it is necessary to put the
lattice vibration quanta or phonons into our box,
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The Hamiltonian for a system of non-interacting phonons is (see (o7.41)):

H=ZSQ[BB,+3), (h=1) (15.2)
q

where £, is the frequency of the phonon of momentum q and polarization
direction A (9=q,A), and B},B,, are the phonon creation and destruction
operators. Phonons have what might be roughly described as one ‘longi-
tudinal polarization’ mode of vibration with frequency Q% and two ‘trans-
verse’ modes, with frequencies 7, 27", If we use a model in which a
lattice of positive ions, interacting by Coulomb forces, vibrates against a static

QV —~— _Q;

\ .Qq'

L] q
qDebye
Fig. 15.1 Frequency Dispersion Law for Longitudinal and Transverse Modes
of Bare Phonons

negative charge background representing the electrons (this is not the same
as the simple ‘spring coupling’ model of Fig. .1 because of the long range of
the Coulomb force!), and neglect coupling between ions and electrons, we
find that the modes have the appearance shown in Fig. 15.1, where
qDebye"’l A,

The frequency

Q, = \/(4nZ2 2 NIM) (15.3)

where Ze=ion charge, N=ions/cm? and M =mass of ion, is the ion * plasma®
frequency (cf. (13.21d)). This is the natural frequency of oscillation of the ions
if they are smeared out to form a continuous jelly vibrating against a fixed
uniform negative charge background (‘jellium’ approximation). The fact that
Q7 >, as q— 0 is physically incorrect; we should have 20, as
q — 0. This odd behaviour is due to the fact that interaction of ions with
electrons has been neglected ; when this is taken into account, the longitudinal
phonons become ‘dressed’ with an electron cloud, and their frequency
becomes renormalized so that £, « g for small q (see appendix J).
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Let us now allow the electrons and phonons in the box to interact. Then
the Hamiltonian may be written (neglecting phonon-phonon interaction)
H = Hgee + Heoutomb + Hiree + Hejecrron-s (15.4)

electron phonon phenon
where
Hfree = Z chl aCk, 0 (155)

electron k.o

HCoulomb = *k k;l( VK cl’-—K. o Cl+K. o ck,a Cx' o (See (7'71)) (l56)

WKy
0,0

Hueo = E Q4(B} B,+1) (15.7)
phonon
Helectron- = Z gq[B +B—q] CI a Ck, o° (15-8)
phonon kK .q

Tor the derivation of (15.8), the reader is referred to Schultz (1964), p. 107 ff.,
or Schrieffer (1964a), p. 89 ff. We have written it in jellium approximation,
where only longitudinal phonons couple to electrons and g, is

& = 4—"iz A/(Zf;];{) (15.9)

with £, given by (15.3). Equation (15. 8) describes a process in which an
electron scatters from state k — k' with the emission or absorption of a
phonon of wavenumber q.

15.3 Short review of BCS theory (see Rikayzen (1965) chap. 4, for details)
(a) The BCS Hamiltonian

It would be idle for us to hope that if we simply stare at Hamiltonian (15.4)
long enough, it will reveal the secret of superconductivity. One must look to
nature for clues. Some of the important clues coming from experiment (see
Lynton (1962), p. 109 fT.) are: (1) Superconductivity occurs in an enormous
variety of metals and alloys. (2) The binding energy of the superconducting
phase is very tiny—around 10~8 eV/atom. (3) The phenomenon appears to
come from electrons in a thin shell around the Fermi surface. The shell
thickness is ~k7. where T,=superconducting transition temperature
(~1-10°K). These are called the ‘superconducting electrons’. (4) There are
strong correlations between the motions of electrons lying within a ‘coherence
length’ (~10~% cm) of each other. (5) The isotope effect, showing
T, « 1/+/(lattice ion mass), indicates that the electron-phonon interaction
is of great importance in superconductivity.

Clue (1) tells us that the details of metal structure play no decisive role in
superconductivity. This means that in first approximation we can neglect
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the periodic lattice potential and all the resulting distortions (like ‘monsters®
and ‘dog’s bones’) in the Fermi surface. Now we have seen that the inter-
action of electrons via Coulomb repulsion produces only normal quasi-
particle behaviour. Therefore we look to clue (5) for a possible interaction
of electrons via phonons which could give rise to the new sort of correlated
state described in clue (4). Physically, such an interaction could come from
the fact that (a): one electron pulls in the (+) ions in its vicinity, thus de-
forming the lattice, creating phonons (this is the electron-phonon interaction
of (15.8)), and (b): another electron is influenced by this deformation, i.c.,
absorbs a phonon. Because it is of second order, this interaction doesn’t
appear explicitly in (15.4). However, Fréhlich (1952) showed that it can be
made visible by performing a complicated canonical transformation on A
(see Kittel (1963), p. 151, or Schrieffer (1959)), which produces

Htmnsf. = Hq.uui + H(s‘hielldedj' Hell_ectron- + Hdgessed +e, (15.10)

electron
where

H =3 ¢l ¢ (e —hz—k?—e) (15.11)
Billon ~ g H ok (% = g e o

Hyressed = 3 ﬁwk(BL By +1)

phonon k

igeet = B, ek dractiotes 1512

where the ‘BCS interaction’, ¥, is given by

47 e? 2w | M, |?

qu = Vk+q, k'—g, k k' = ql l]l (15.13)

AR (e = (o

. . M
shielded  shielded electron-phonon
Coulomb electron interaction
interaction (Frohlich interaction)

The plasmon term has been dropped, since it will not concern us. In (15.11)
it is assumed that the electron energy has been renormalized by including
the first-order contributions from the interaction (15.12); i.e., the new € is
the quasi electron energy in Hartree-Fock approximation. We assume, for
simplicity, that this can be written in terms of an effective mass, m*. Note
that energy is measured relative to the Fermi energy. That is, we are using the
modified H of (9.46) for a system in contact with a reservoir. The M, is
proportional to the shielded electron-phonon coupling (see appendix J), and
w, is the longitudinal phonon frequency, renormalized by interaction with
clectrons (appendix J).
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Let us examine the BCS interaction, ¥, more closely. The average value
of hw, is ~0:025 eV, while the average value of (e — €;44) for electrons in
the thin shell about the Fermi surface (see clue (3)) is ~4x 1074 eV. Hence
on the average, the Frohlich term in %7, is negative (attractive). Now in a
metal which is always normal, the electron-phonon coupling, M,, is small,
so the Coulomb term predominates and the BCS interaction is positive
(repulsive). However, in a superconductor (i.e., a metal which is capable
of entering the superconducting state when the temperature is low enough),
M, is large, so the Frohlich term dominates and the BCS interaction is nega-
tive. This means that in a superconductor there is an effective attractive
interaction between all electrons located in a thin shell about the Fermi
surface. (Note that this attraction is always present in a superconductor
regardless of whether or not it is actually in the superconducting state.)

(b) Pairing and the reduced Hamiltonian

The effect of such an attractive interaction was analysed by Cooper. He
showed that two electrons in a superposition of two-particle states, Wips Lok
(4, | means spin up, down), where |k|>kF, with an attractive interaction
between them, would form a bound state, no matter how weak the interaction.
The bound state had a wave function ~ 10~4 cm wide, and an energy lower
than that when the electrons were non-interacting. This indicated that in
the presence of attractive interactions, the Fermi sea was unstable, and that
it was energetically favourable for the system to form some sort of correlated
state in which every k} electron was ‘paired off* with its mate in —k|
(‘ Cooper pair®). (See Fetter and Walecka (1971), p. 320 fT.)

The *pairing’ concept is clear enough for two electrons, but what does it
mean for N electrons? BCS assumed that it meant that the superconducting
ground state ¥, was not just the usual linear combination of all wave
functions |ny,ns,...,n;,...> for the non-interacting system, but rather was
composed only of wave functions in which particles occurred in Cooper
pairs. That is,

Y= 3 At o M Berge > (15.14)

RRY TYT N, SV S

where n,,=n_;,, for all k;. This may be written in abbreviated form:

|¥o> = NE A n.. NNy Np=0,1 (15.15)

where |Ny,..., Ny,...> means: N, pairsin pair state ky$, —k;|, Nzin k,t, —kal,
etc.

With | ¥y restricted in this way, it is found that the only terms in H (15.12)
which have non-vanishing matrix elements between two |Ny,...,N,,...) are
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those in which the cl,, ¢, operators also occur in pairs; this enables us to
drop all other terms and write (15.11, 12) in ‘reduced’ or *paired® form:

Heea = 2T b}by— 3 Vi bbby (Viee S Vipepeocu ) (15.16)
x Py %

where the pairing operators (these are neither fermion nor boson operators—
see exercise 15.8):

bI = CI,C'_*;; bk = C_x4Cxy (15.17)

create and destroy Cooper pairs when they operate on |Ny,...,N,,...>. Note
that the justification for the form of the first term in (15.16) is that it yields
the same result as (15.11) when it operates on a paired wave function. Observe
that in (15.16) we have incorporated the V. (k=k’) term into the unperturbed
part of H, so that ¢, is in reality e, +4V,, (e just write ¢, for brevity.)

(c) The two-particle superconductor

The superconductor ground state wave function | Wop will satisfy the
Schradinger equation

Hyy |¥od = Eo|¥o). (15.18)

Before stating the BCS solution to this equation, it is a good idea to look at
a trivial ‘two-particle superconductor’ to see how the negative interaction
term in H4 leads to a correlated ground state (clue (4)) with an energy
slightly lower than that of the normal state (clue (2)). Suppose there are two
electrons and six states, all having energy ¢, thus:

€
kit —ki kit -kl kit —k;} (15.19)
Assume V.=V (constant). Then
H.4 = 2¢ 2_‘, blb -V kEy bl b,. (15.20)

The solution for the non-interacting (¥'=0) case is (use pairing notation in
(15.15)):

91> = [14,0,0%, [ = [0,1,,0), |P3> = [0,0,1,,)
Ex = 2&'0, Ez = 2¢o, E3 = 260. (15.21)
In the *superconducting’ case we have by (15.15):

Ig’> = Al ‘lkp Os 0>+A2 Ion lkp 0>+A3 |09 00 lk;)- (15-22)
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Itis easiest to solve the problem in matrix form using the normal states as
basis. Thus

1 00
(¢,|2€02blbk|¢,)=260(0 1 o\) (15.23)
k
0 0 1
11 1
<¢,|—Vzb1,b,‘|¢,>=-v(1 1 1) (15.24)
it 11 1

In matrix form (15.18) is:

100 11 1\]/4 A,
2¢(0 1 0 —V(l 11 A2)=E Az) (15.25)
001 11 1/ \4 A;

which has the eigen-solutions
E = 2¢q, 2¢€y, 2¢9—3V. (15.26)

The last solution is seen to be 37 lower than the normal state energy—this is
the ‘superconducting’ state. The corresponding state vector is:

|y = ‘/% (100,05 + [0, 1,,, 05 +]0,0, 1,,>]. (15.27)

We see that this is a state in which the electrons are highly correlated —first,
they are always paired, and second they are in a special 1:1:1 mixture of the
three possible paired states.

(d) BCS solution for ground state energy (see Ex. 15.9)

In solving (15.18) for the real N-particle superconductor, BCS assumed
that the interaction V- in (15.16) had the simple form

Vi = V (constant), for k, k' in a shell about the Fermi surface
such that (—fiw) < ¢, € < +hw,

= (0 otherwise. (15.28)

The hw, was an average phonon energy ~ 1072 eV. They showed that to a
good approximation (exact in the N— limit) the ground state wave function
was given by (see Rikayzen (1965), chapter 4, for details)

| oy = I;[(u,‘-i- b D10, whereu, = /(1-vf) (15.29)

For example, if there were only two pair states, then:
| Wod =ty 12(01,00 1y 02|04, 12>+ 0y 12 15,00 + 0y 03[ 1y, 1), (15.297)
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The quantity v, is the probability amplitude that the pair state k{, —k| is
occupied. It is given by

l €
2 =-]1-X% 15.30)
k 2[ E, (
Ey = /(244 (15.31)
where
Ak =z V.,‘-u.-v.' (15.31')
rg

1 R
4, (for small V) = 4= Zhwcexp[—N(—o)l-,] forkin shell (15.32)
0 for k outside of shell

where N(0) is the density of states at the Fermi surface.

~d~10"%eV

7,2

€k
«——~5eV—0

Fig. 15.2 Probability that the Bare Single-particle State of Energy  is
Occupied in the Superconducting Ground State

The quantity v is plotted in Fig. 15.2. Since 4} is just the probability that
the state' k} (or —k|) is occupied, we see that there is no discontinuity at the
Fermi surface, i.e., the Fermi surface does not exist in a superconductor
(cf. chapter 11).

It should be noted that (15.29) is a mixture of states with 0,2,4,6, ...
N—-2,N, N+2, N+4, ... particles, so that N is not a good quantum number
here. This is due to the fact that we are using the modified H of (9.46) for a
system in contact with a reservoir, so the particle number is variable. However,
using (15.30, 31, 32) it can be shown that the contribution to |Wo) is extremely
large from components of (15.29) containing just around N particles, and very
small from other components, so this causes no trouble.

For the ground state energy in the small ¥ limit, BCS obtained

Ey = Eygormay—2N(0) (kw,rexp[— ]7((2)7,] (15.33)

Thus the energy is lowered by the attractive interaction.
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(e) Solution for the excited states: bogolons

The excited states of (15.18) may be obtained by diagonalizing H,4 by
means of the ‘Bogoliubov-Valatin® canonical transformation. This is
defined by

of = ugchi—viciy Bl = uxcliy+vicps, (15.34)

iy = Upar+0Bl, Coxy = WPu—vial. (15.35)

Substituting this into H,.q (with the first term replaced by (15.11)) and using
(15.30, 31) yields, after some labour (see Fetter and Walecka (1971), p. 326 fT.)

Hlyy = Ep+3 Ey(aj ap+ Bl Bi) +small terms. (15.36)
x

Comparing this with (1.43, 44) shows that we have here a set of nearly inde-
pendent elementary excitations. They are called ‘Bogoliubov quasi particles’
or *bogolons’ (see §1.3), and have number operators afay, BB and energy
given by (15.31):

2
E, = (+4}) = A/[(%—;—ep)zﬁ-d,%]. (15.37)

It is important to understand the significance of of, Bl. By (15.34), e}
creates bogolons of momentum +k, spint (since c_,; subtracts -k} from
the system, which is the same as adding k{). Similarly, Bl creates bogolons
with —k, spin}. The eigenstate corresponding to (15.37) is the 1-bogolon
state:

e = af | o> (15.38)

or
1> = BL ¥od. (15.39)

Thus, the superconducting ground state, |¥y), acts as the ‘vacuum’ for
bogolons. (See Schrieffer (1964a), p. 44 fI., for further discussion.)

The bogolon dispersion law has an ‘energy gap® at the Fermi surface
equal to 4, as shown in Fig. 15.3. This curve comes from (15.37), with 4,
as in (15.32). The ky,k, are the k-values for the inner and outer radii of the
shell about the Fermi surface described in (15.28). The discontinuities at
ky,k, come from the approximation in (15.28). They should not be regarded
as real physical effects! Note that in the case of the normal metal (4,=0)
we have Ey=|e€|=|k?2m*—er|, where the absolute value sign is used
since below kr removal of an electron with e, <0, adds energy to the system.
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Figure 15.3 shows that whereas in a normal metal it takes zero energy to
excite a quasi electron at the Fermi surface, in a superconductor it requires
a minimum energy 4 (4~kT.~ 1074 eV) to excite a bogolon. It is this fact
which accounts for the remarkable stability of the superconducting state
against the scattering of electrons which causes resistance in normal metals.

E,

superconductor
--------- normal metal

gap AnIn oo: ¢:\J',, :
ky &k

Fig. 15.3 Energy Dispersion Law for Bogolons (Greatly Exaggerated)

15.4 Breakdown of the perturbation expansion in a superconductor

In chapter 10, we saw that in a normal Fermi system it is possible to get the
quasi particle energy dispersion law from the single-particle propagator, Let
us therefore try to get the energies of the quasi particles in a superconductor
(bogolons) by the propagator method. We expect that the propagator will
look something like

1

G -
o) w-Vel+42+id

(15.40)

since this has poles which yield the bogolon energy dispersion law (15.37).

The expansion for the propagator will presumably be given by the usual
one (9.40), where the interaction is now the BCS interaction of (15.13)
(which is assumed to be attractive, since we are dealing with the super-
conducting case). However, when we attempt to carry out the calculation
of G this way, an unfortunate thing happens, e.g., we find that there are
classes of diagrams in the propagator expansion (9.40) (or equivalently, in
the proper self-energy expansion (10.8)), which produce an unstable result
when summed over. These are the classes in which a pair of particles with
momenta equal in magnitude but opposite in direction (i.e., a Cooper pair)
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multiply scatter against each other. An example of such a class is the
bracketed term in

mé -m
=D+ fparn O + ;:94-1 o +14 -1 4oee +g+---
+pWEY  pi P
pt P

(15.41)

where ~~~~~ stands for the BCS interaction, ¥ 4,. This is just a ladder sum
and may be evaluated by means of the K-matrix equation (10.20) and equation
(10.22) with total momentum q=0. For simplicity, assume V,,.= Vu,u,.,
where 1, =1 for |¢,| < w. and u,=0 for |¢,| > w, (¢, relative to ¢,). Following
the same procedure as in Problem 10.7 yields

Vu,u_,

(zwc)z —w?
wz

K(w) = (15.42)

14+ NO) V [{dn

w
f — 0 -0 ow w
+' 2 2we +2 ,}

We now make use of some results in appendix L. Since this K(w) is obtained
directly from summing diagrams, it is the ‘time-ordered’ K analogous to the
time-ordered single-particle propagator G(k,w) (see appendix L, part A, and
part E). We can easily construct the corresponding ‘retarded” K-matrix,

Vugu_,

QRw)*—w?

w?

KR(w) = (15.42")

1+NO)YV {}ln

+ ngn ((U) 7_; 02w¢-0 0..»10::]

This obeys the same relations as G® in (L.26).

We now regard X®(w) as a function of the complex variable w and examine
its behaviour in the upper half-plane. Assuming w <w, and using the fact that
In(x+iy)=In(x*+)*)* +itan*(y/x) we find that when V<0, K*(w) has a
pole at the point

Woete = +i2w, ™ NMOV, (15.43)

i.e., a polein the upper half-plane. (There is no poleif V> 0.) But this violates
the fact that the retarded propagator must be analytic in the upper half-plane
(appendix L, part C). Hence for negative V, the perturbation series leading to
(15.42) must be invalid. That is, the ordinary perturbation series is invalid in
a superconductor. (Note: this statement is strictly true only in the case of an
infinitely large superconductor-—see Mattuck and Johansson (1968),
Appendix D.)
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Itis important to note that when ¥ has its value at the transition point, i.e.,
V=0, then w,,,=0. That is, when V¥ approaches 0 from above, the pole first
appears at w=0, then moves into the upper half-plane when V becomes a
finite negative quantity.

The pole (15.43) in the upper half-plane indicates that the normal system is
unstable, and will undergo a phase transition to the superconducting state
(see §17.8 and Pines (63), p. 288 ff.). Physically, the appearance of this pole
may be interpreted as follows: The retarded K-matrix for Cooper pairs is the
probability amplitude for a Cooper pair coming out if we put a Cooper pair in.
That is, it is the ‘response’ of the system to an applied *pair field’. For V>0,
there is no pole and K* is finite. But when ¥ first becomes negative, there is a
polein K® at w=0, i.e., K® becomes infinite. This means that pairs come out
even if we don’t put any pairs in, i.e., the system spontaneously manufactures
Cooper pairs, which means a transition to the superconducting state.

The above argument is generalized to finite temperature in §15.7, where it
is used to find the transition temperature of a superconductor.

Actually, it was unnecessary to go through all these contortions—we
could have seen this result immediately from the remark after Fig. 15.2. That
is, there is no Fermi surface here, so by §11.3, the perturbation series cannot
hold. Another way of seeing this is to expand the ground state energy (15.33)
into a series:

2 1 2 2
Eo = Evorman—2N(0) (iw,)? [1- o V+2—,( e V) +] (15.44)

A true perturbation series should have the form

E = ay+a,V+a, V24, (15.45)

so each term containing ¥ goes to zero as ¥ — 0. But the terms in (15.44)
each go to « as ¥ — 0. (Of course, by (15.33) their sum is finite!) That is,
Ejy is a ‘non-analytic’ function of ¥, and cannot be expanded in a perturba-
tion series.

The difficulty here may be expressed in the general statement that the
perturbation series (which we have been using throughout this book) is
valid only when the perturbed state is qualitatively similar to (or ‘has the
same symmetry as’) the unperturbed state. This means that whenever a
system undergoes a change of phase—like gas — liquid, liquid —» solid,
paramagnet — ferromagnet, or normal metal — superconductor—since the
two states involved are qualitatively dissimilar, the perturbation series breaks
down. (For a general discussion of the theory of phase transitions, see
chapter 17.)
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These ideas can be illustrated with a simple classical case. Consider the
marble on the frictionless circular track in Fig. 15.4. The stable position of
the marble, 8(F/mg), under the influence of applied force F, and its own
weight, mg, may be developed in a perturbation series in powers of F:

- (B

(= mﬂ—xm_f;'g ) (15.46)

This series produces mathematically valid results in the region |F/mg| <1 or
—3n<B<+4m. But physically, it obviously breaks down when |6]> 6,
where the marble undergoes a ‘ phase change’, falling off the track and rolling
into corner A or B. That is, even if carried to infinite order (i.e., use tan™! F/mg
formula), the series produces the wrong result.

S,
#* e,
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Fig. 15.4 Classical System Illustrating Breakdown of Perturbation Series
when a Phase Transition Occurs

The mathematical reason why the diagram perturbation series for G breaks
down is easily seen from appendix E.12. There it is pointed out that the
series is invalid if

(Dol ¥p> = 0. (15.47)

This is just the statement that the ground state of the interacting system is
orthogonal to that of the non-interacting one, i.e., that they have different
symmetries.

15.5 A brief look at Nambu formalism

A clue regarding how to fix up the perturbation series so it will yield the
superconducting state, comes from observing that BCS were able to obtain
this state only by introducing the assumption that the superconducting wave
function was paired (15.14, 15). If this assumption could somehow be squeezed
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into the perturbation formalism, it might be possible to get the bogolon
propagator (15.40).

The way to do this (Gorkov, Nambu—see Schrieffer (1964b) and (1964a),
p. 169. Alternative methods are in Pines (1961), p. 98, Johansson (1966)) is
to introduce new ‘anomalous propagators’, F, F’, which destroy or create
a Cooper pair in the superconducting ground state. These are defined by:

Fk, 1) = —i{Wo| T{ea(t)e_ss(0)} | ¥o>, (15.48)
Fi(k, 1) = —i<Wo| T{cti,() el (0)} | ¥o>. (15.49)

The state |¥Wg) here is the ground state of the superconductor, and is con-
sidered to be of the type (15.29), i.e., the number of particles is not sharp,
but is peaked about the average value N (see after (15.32), and Schrieffer
(1964a), p. 172). Physically, F’ is the probability amplitude that if the kt
member of a Cooper pair is added to the system at time 0 and the — k| member
is added at time ¢, then the system will still be in its ground state at time .

There are two equivalent ways of fitting these new propagators into the
formalism, The first requires introducing new diagrams for F,F’. (See
Abrikosov et al., (1965).) The second, due to Nambu, uses the same old
diagrams as before, but combines F, F’ and G into a matrix propagator. (The
generalization of the matrix propagator method to arbitrary fermion phase
transitions is discussed in chapter 17.) We will discuss just the Nambu method,
very briefly.

The matrix propagator, G, is defined by

Gn Glz) _(G(kT,f) Fk,1) )

Gk, =(Gzn Gn/ \F'kt) —-G(-k|, -1

- —i ( CHol T{er ) chiO} [ Fod < Wol T{exy(?) iy} | o> ) i
CWo | T{ehiy() (0} | Wod (Wl T{chiy() c_(O)} | W)
(15.50)

The free propagator is obtained by replacing ¥, by ®,, the ground state of
the non-interacting system. This yields, after transformation to (k, w)-space:

1 0
Golk,w) = | @—xtiwd ! X (15.51)
0 w+€k+iw8

It is easy to get the perturbation expansion of G if everything is first
expressed in terms of the two-component fermion spinor operators

¥~ (gigg) = (1) ¥1= e (15.52)
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In terms of these the matrix propagator assumes the compact form:
Gyk, 1) = —i(¥o| T{¥,(k, 1) P}k, 0)} | ¥o), (15.53)
while the BCS Hamiltonian (15.10) becomes
H= %} & Vlr P+l k'Eq Y 1l P hiems V) (P73 i) (15.54)

The 7,’s here are the Pauli matrices

R R i R R O A

(Note: When (15.52) is substituted in (15.54) and the matrices are multiplied
out, we get (15.10) plus some extra terms. These are compensated by choice
of Go. See Schrieffer (1964a), pp. 174-5.) Thus, in terms of the spinor
operators, G and H have the same form as the ordinary G and H for a
normal system. Hence ¢ may be expanded employing the same dlagrams

as for G:
C=4 = +ED+F@+ $+ (15.56)

but with a new dictionary in which matrices are associated with the various
lines as shown in Table 15.1 (p. 270). (Observe that since all free propagators
are diagonal, (15.56) would not include any anomalous processes if we had
free propagators in the self-energy parts. It is necessary to use full propagators
instead, i.e., self-consistent renormalization to obtain the superconducting
phase.)

For example, the lowest-order diagram is

k,w
K,o'g $K-k = ["Go(k.w)] x d(; ;:;.,( DY b, k- T3 IGK' ') 7
k,w (15.57)

Evidently, all the partial summation tricks hold here also. The Dyson
equation is

}- $®%@w%

(15.58)
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Table 15.1 Diagram dictionary for a superconductor

(Nambu formalism)
Diagram Function
. x exp (fw0*), for
H or ~H iG(k,w) |non-propagating lines
1 0
t or } iGlk,w) = i| @metiwd
0 w+ e+ iwd
k+q k'-q
, Each vertex: 7,
k 4 Kk Wiggle: —i¥,
BCS interaction
fermion loop
Ex: (—1)x Trace of the product of G’s
M and y’s forming the loop

and the interactions and propagators may be renormalized, yielding as
before just (10.60), (11.3) or (11.5), with all diagram elements now evaluated
by means of the Nambu dictionary, Table 15.1.

The Nambu formalism yields bogolon excitations in the lowest order of
self-consistent renormalization, i.e., using the first two terms of (15.58).
That is, we must solve simultaneously the two matrix equations:

brgd-b o oo

Translated, with the aid of Table 15.1, this becomes:

k,w = l ’ .60
Gk wl-¢ 1 — 2. (k, w) (15.60)
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where we note that T involves the dressed propagator G, in contrast to
(15.57). When (15.60) is solved using the BCS interaction, it is found that

2
(15.61)

Ui + vk
w—VeE+A2+i8 w+VeE+di—id’
where u,, vy, 4, are just as in the BCS solution (15.29, 30, 32). Thus, by
using the Nambu method, we have obtained a propagator with first term of
the bogolon form (15.40).

The physical meaning of the two termsin (15.61) is easily seen by performing
the Bogoliubov canonical transformation directly on the propagator. Using
(15.35) yields

G(k,?)

Gy = Gk, w) =

—i (ol T {cxs(t) c}4(0)} | ¥o>

— iug (Wo| T{ai(0) «1(0)} | o>+

—ivg (| T{BUN) Bil0)} | ¥o>. (15.62)
(The «; B, terms=0.) The (1), Bi(?), etc., are in Heisenberg picture like the
¢’s in (9.3). Using (15.38, 39) and taking the Fourier transform produces

just (15.61), showing that the first term of (15.61) describes «-bogolons while
the second describes B-bogolons (see after (15.37)).

15.6 Treatment of retardation effects by Nambu formalism

The BCS theory, as well as the Nambu calculation we have just described,
suffer from the defect that they treat the Froéhlich interaction as static. In
reality, because it takes time for the phonon to travel from one electron to
another, this interaction is retarded (i.e., time dependent). The only way of
handling this retardation properly is to treat the phonons field-theoretically
from the very beginning. This means that instead of taking the canonically
transformed H in (15.10) as our starting Hamiltonian, it is necessary to go
all the way back to the H in (15.4), which contains the electron-phonon
interaction explicitly. Then, in order to calculate the propagator, it is
necessary to introduce special diagrams for the free phonon, and for the
electron-phonon interaction.

This programme is carried out for a normal system of interacting electrons
and phonons in appendix J. It is shown that the calculation of the electron
propagator is just like that in the no-phonon case, except that the Coulomb
interaction is replaced by a combined interaction which is the sum of the
Coulomb and retarded Frohlich interactions:

[1 >,,.w""( = Yl # "««‘“"J‘ (15.63)

combined Coulomb Frohlich
interaction interaction interaction
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The Frohlich interaction diagram shows a virtual phonon ( fssees00s ) being
sent out by one electron and absorbed by another. The diagrams are drawn
in (k,)-space to show the retardation.

The BCS interaction is just a static approximation to the combined inter-
action, as shown in appendix J. Hence, in a rough way, we may say that
when the combined interaction is predominantly positive, the system acts
normally, while if it is predominantly negative, the system is a superconductor.

The calculation of the electron propagator in the superconducting system,
taking retardation into account, may be carried out simply by replacing the
BCS interaction by the combined interaction of (15.63), in the Nambu
dictionary, Table 15.1. The calculation then proceeds just as in §15.5.

Such a computation using the retarded interaction has been carried out by
Schrieffer ez al. (Schrieffer (1964a), pp. 180-93), and it yields a frequency-
dependent energy gap which shows good agreement with the results of tunnel-
ling experiments in lead.

15.7 Transition temperature of a superconductor

It is easy to generalize the discussion of the Cooper pair X-matrix in §15.4
to finite T, and use the result to find the transition temperature. The finite T
K-matrix or scattering amplitude is (remember that energies here are relative
to the Fermi energy, u=¢; so x doesn’t appear explicitly, and note that
€,=€_p, SO U U_,=Up):

. ) d;p i +o 1 1 -1

(15.64)
Evaluating the frequency sum by the same method as in §14.5 yields

H(iwy) = Vup {1+ V

(15.65)

d3*p  tanh(Be,/2)|!
@nP " 2¢,-iw, |
Analytically continuing iw,—>w + i3 to get the retarded K-matrix (see appendix
L.39), changing to an integral over e, by introducing N(0), the density of states

in the vicinity of the Fermi surface, then using (3.76) to find the real and
imaginary parts, we obtain:

K¥w) = A (w+id)
Vu,[l+VN(0)P [ de, Bnh Berl2)
2¢,—w

-we

13-1
+iVN(0) m tanh (%a:)] .

(15.66)
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Now we saw that at T=0, the illegal pole of K® in the upper half-plane first
reared its ugly head when V¥ reached its critical value, ¥.=0. At this point,
=0 (see (15.43)). Therefore, let us look at K*(w=0). In the limit k3T < w,
we get, after approximately evaluating the integral,

-1
w(‘
K*0) = Vu, [ 14 VN(@©O)In (ZkBT)} . (15.67)

This diverges when the bracketed quantity is zero, i.e., for ¥ <0 and

T

T, = %rwwm (15.68)

which is the BCS expression for the transition temperature of a super-
conductor.

Further reading

Rickayzen (1965).

Schrieffer (1964a, b).

Beliaev (1958).

Pines (1961), chap. 3, p. 91.

Abrikosov (1965), chap. 7 (Gorkov formalism).
Thouless (1972).

Electron-phonon interaction

Appendix J.

Pines (1963), chap. 5.
Schultz (1964), chap. 4.
Pines (1961), chap. 3, p. 82.
Schrieffer (1964a, b).

Exercises
15.1 Prove that 2 3 &,b}bs and J « s Ceo give the same result when operating
I3 ko

on a paired wave function of form (15.14).

15.2 Show with the aid of (7.32) that the bogolon operators in (15.34) obey fermion
commutation relations (for example, prove that [a,,al'] =8x).

15.3 What is the energy of a superconductor in the state ai, 8, o, |¥o> ?

15.4 Verify that (15.53) is equivalent to (15.50).

15.5 Verify that (except for an infinite constant term) the first term of (15.54) is
equal to the quasi-electron Hamiltonian (15.11).

15.6 Write out the expression for the bubble diagram in (15.56) using Nambu
formalism.



274 A GUIDE TO FEYNMAN DIAGRAMS [15.7

15.7 Carry out the Bogoliubov transformation of the propagator (15.62) in detail.
15.8 Show that the pairing operators in (15.17) obey the following commutation
rules:
(@ [bx.bz l-=(Q- Cn ckt -C—u C-t;)sn
(b) {by,by). = 0 = [b}, by
(©) [be,beds = 2B bp(1 —su ).
15.9 (a) Using H;eq in (15.16) and {¥o) in (15.29), show that

<':F’o|Hml‘Po> =2 Z &« Vi- Z Vi ity Vi Vi
k ‘N
T1s

where the contribution from ¥,, is incorporated into «. (Hint: to get first
term, write | ¥, > = tu|drod + va|$r1> where a0 means no pair in k while ¢,
means there is a pair in k.) Use a similar method to get second term.

() Carry out the variation 8¢{¥o|H,o| ¥o> =0 and obtain (15.30), (15.31).

() Show that 4, satisfies: 4,.=2 —;;i"— 4,.
k 4

(d) Solve (c) for V,,- as in (15.28) and derive (15.32, 33).

15.10 Derive (15.42), (15.42"), (15.43).

15.11 Verify (15.64)—(15.68).

15.12 Show that the anomalous propagator Fin (15.48) is finite in the superconduct-
ing state, and zero in the normal (e.g., non-interacting) state. (Take r=0%.)



Chapter 16

Phonons from a Many-Body Viewpoint (Reprint)

In appendix &/ we find the phonon ground state energy and frequency
dispersion law by performing the canonical transformation (.29, 30), (=.36)
on the lattice Hamiltonian (#/.28). In the reprint on the following pages, it is
shown how the same result may be obtained diagrammatically. This provides
an extremely simple example of the application of the graphical technique to
a boson system.

First the Hamiltonian (o.28) is re-written as the sum of (1) an unperturbed
part describing a very primitive sort of collective excitation called the Einstein
phonon, and (2) a perturbation describing the strong interaction between
Einstein phonons. On account of the interaction, the Einstein phonon
becomes surrounded by a cloud of other Einstein phonons; this dresses it
and converts it into an ordinary phonon. Thus we have

bare Einstein cloud of other _ quasi Einstein
phonon Einstein phonons ~  phonon
ordinary phonon

Hence the ordinary phonon may be interpreted as a quasi particle in the
‘quasi collective excitation® sense. This is similar to (13.24) where we had
the dressed or quasi plasmon:

bare plasmon + cloud of electrons = quasi plasmon
P and other plasmons ~ quastP

]

or appendix J where we find the dressed or quasi phonon:
bare phonon + electroncloud = quasi phonon.

Phonons from a Many-Body Viewpoint*

The phonon is considered as a quasi particle consisting of an Einstcin phonon
dressed by interaction with other Einstein phonons. By exact summation of an
infinite series of self-energy graphs, the Einstein phonon propagator is evaluated,
and its poles yield the well-known phonon dispersion law. An alternative deriva-
tion shows the propagator to be also valid in regions of divergence. The vacuum
fluctuation diagrams—all of the ring type—are easily summed to get the ground
state energy. The unusual simplicity of the graphs encountered make the argu-
ments here an ideal illustration of the application of the field theoretical technique
to the many-body problem.

* Reprinted from ANNALS oF PHYSICS. Volume 27, No. 2, April 1964
Copyright © by Academic Press Inc. Printed in U.S.A.
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16.1 Introduction

In the usual field-theoretic treatments (Migdal (1958)), the phonon is
regarded as a bare particle which is converted into a clothed (i.e., quasi)
particle by collisions with other phonons or with electrons. This tends to
obscure the fact that the phonon itself is a quasi particle of a particularly
simple sort, consisting of a bare Einstein phonon dressed by interaction with
other Einstein phonons. Our object here is to develop this point of view in
some detail, showing how one can derive the phonon dispersion law and
ground state energy by exact summations over Einstein phonon self-energy
and ring diagrams. The argument is probably the simplest existing example
of the application of quantum field theory to a many-body problem, and
constitutes a pedagogically ideal illustration of the qualities which made the
graphical method famous: its power to do perturbation theory to infinite
order (thus enabling it to cope with strong couplings beyond the reach of
ordinary perturbation procedures), its highly systematic and so-called ‘auto-
matic’ character, its vivid pictorial appeal, and its remarkable talent for
producing results valid outside their region of convergence,

The Hamiltonian for the model system is written as the sum of an un-
perturbed part representing a set of independent constant-frequency lattice
oscillators (Einstein phonons) and a strong coupling term. After reviewing
the standard treatment by canonical transformation, an Einstein phonon
propagator is introduced in two different forms:

Gk, 1) = —iKthol T {bi(t) BL(O)} |0,
and

Dk, ) = =il T{{b-x(t) + BL()) [6:(0) + bLLO)]} [0,

where b}, b, are the Einstein phonon creation and destruction operators.
These are evaluated by summing self-energy diagrams exactly to all orders;
the poles of the resultant clothed propagators yield the renormalized Einstein
phonon frequencies, i.e., the well-known phonon dispersion law. The D-form
of the propagator is shown to be easier to handle mathematically (since it
eliminates the need for summing over backward-going graphs), but more
difficult to interpret physically. Despite the fact that the propagator appears
unusable in certain regions due to divergence difficulties, an alternative
derivation shows it to be valid everywhere. In the last section, the ground
state energy is calculated by summing exactly over an infinite set of ring
diagrams which turns out to be the series for 4/(1—x).

It is to be emphasized that although we believe the viewpoint taken here is
new, the end results are nof new, and the procedures used to obtain them are
not simpler than the usual canonical transformation technique. The field-
theoretic route is followed first for the purpose of showing how the phonon
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may be fitted nicely into the quasi-particle picture of matter which has been
emerging over the last ten years (Ter Haar (1959-60)), and second, in order
to exhibit an extraordinarily simple model system where the many-body
methodology is transparent and the solutions exact.

16.2 Hamiltonian for coupled Einstein phonons
If we have a linear chain of N atoms, with interatomic distance d, and
harmonic coupling constant 3mw}, its Hamiltonian may be written

-

}n.‘wo T (e —1y)?

Il
M=
N|-3

H
m

-
]

2
I:;) +«¥mmuu;] Imw} )_, Ut (16.1)

I
Mz

-

where p;, v;are momentum and displacement operators for the atom on site /,
and end effects have been neglected. This may be expressed in occupation
number formalism by first introducing the operators b, b;, which respectively
create or destroy a unit of excitation at the /th oscillator, by means of

W= '\/2rrr'w ® ;+b;)

pi = A/ 70 (b~ (16.2)
(we have set fi=1); the result is
H= w3 Glbrtd) - Z (by+ 1) (byys +bli). (16.3)

Secondly, we make the Fourier transformation

b; . (I;\/N} -5'1 e+HLM

= (I/v/N) X ble*4 (16.4)
k
converting H to

H = wo ¥ (blbi+H =50 > e™by+bL) (by+b).  (16.5)
k

k

Making use of the fact that the b;’s obey boson commutation rules

(b bl)- = x5 [biy bl = [b], b)) = 0, (16.6)
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the last term may be changed to a summation over k>0 and we obtain the
desired starting form for the Hamiltonian (see (5) in §7.7):

H=w3 (b,:b,‘ﬁ)—“g’ z coskd(by+b1 ) (b_y+b]) = Ho+Hy. (16.7)

k>0

The unperturbed term, Hy, is the Hamiltonian for a set of oscillators extending
through the whole lattice, having number operator b}¥;, and a common
frequency wy; these are the bare Einstein phonons. They interact via the
perturbing term, H,, become clothed and acquire a k-dependent frequency,
thus being transformed into ordinary phonons. The problem is to find the
new frequency dispersion law wy, and ground state energy Ey.

Since H, is as large as H,, perturbation theory cannot be used here, at
least not in its ordinary form. The standard textbook solution (Ziman (1962),
chap. 1) therefore employs a canonical transformation of the Hamiltonian,
Defining the new operators

éi = b+ bl
m = i(be—bLy), (16.8)
H becomes
H= “’7° Z {m}me+ (1 —coskd) $} . — 2. (16.9)
k>0
Introducing the boson operators a, a, by
¢ = Vwolwy(ar+aly)
e = i\/wk/wo(al—a_k), wy = wo\/(l—‘COSkd), (16.10)
yields
H= %; wilala+1). (16.11)

This is clearly the Hamiltonian for a set of quasi particles with number
operators a}a; and dispersion law and ground state energy

wy = woy/(1—coskd), E = “_;_" (16.12)
%
which are the well-known relations for phonons.
It will now be shown how this exact result may be obtained by the graphical
techniques of many-body theory. The dispersion law is derived in §§16.3,
16.4, and the ground state energy in §16.6.

16.3 Definition of Einstein phonon propagator

The field-theoretic method for finding the excitations of a many-body
system consists in solving for the Green’s function propagator; the poles of
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this propagator yield directly the energies of the excited states (Galitski and
Migdal (1958)). The propagator for the Einstein phonon may be defined in
one of two ways. The simplest, from the standpoint of physical interpretation,
is

Glk,t) = —iKibo| T {ba() BLO)} ¢ho> (16.13)
where b,(t) is the operator b, in the Heisenberg picture:
bi(f) = etiitp, g~iH!, (16.14)

The symbol T is the Wick time-ordering operator for bosons, and has the
property
T{A@)B(@)} = A@tYB@) ¢ >t

= B)A(t) ¢ <. (16.15)

The ket vector [ is the exact ground state or ‘interacting vacuum’ for the
system of interacting Einstein phonons. This propagator has the physical
significance of being the probability amplitude that if an Einstein phonon in
the state k is introduced into the interacting vacuum at time /=0, and
‘propagates’ in the system, we will observe an Einstein phonon in state k at
time t=¢ (+>0). In the case of zero interaction, G(k,?) assumes the free
propagator form

Golk, 1) = —i{B0| b(r)b](0) |0+ 6_,<0]| bJ(0) by(t) |0D}
= —jf,elwo? (16.16)
where |0) is the ket for the non-interacting vacuum (i.e., no bare Einstein

phonons present). We shall also need an auxiliary propagator which repre-
sents propagation ‘backwards’ in time for the non-interacting case, e.g.,

Gg = —iO| T{b}(1) bu(0)}|0) s, 0 = —if_,e*io". (16.17)

It is most convenient to work with the Fourier transforms of the propagator,
given by

+ o
1
— fwt = -—
Golk, w) = J- dre"t Gy(k,t) +w—wo+i8 (16.18)
+ |
~ —_ lwt = —_ -
Galk, w) = fdre Golet) = = o35 (16.19)

where 3 is a positive infinitesimal used to remove terms oscillating at 7= co.
An alternative propagator, harder to interpret physically, but easier to
work with mathematically is

Dk, ) = —iipol T{$:(t) $L0)} |0>. (16.20)
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The ¢,'s here are defined by

¢ = betbly; $l=bl+b_ = ¢y, (16.21)

and are proportional to the Fourier transform of the displacement operator:

1
=3 upe~ 4 = J Srion b+t (16.22)

where (16.2) has been used. Although difficult to picture in terms of Einstein
phonons, D(k,t) may be viewed as propagating a ‘displacement wave’ in
the interacting vacuum. The free propagator is

Dok, t) = —i[f,e"'0t+8_, et (16.23)
which has the Fourier transform

1 l 2wo

Dok, ) = w—wo+id wtwe—id - w? - wi+2iBwy

(16.24)

It is seen that D, includes propagation both forwards and backwards in time;
this makes it somewhat simpler to use.

16.4 Evaluation of propagator by exact summation of graphs

Propagators may be evaluated either by solving the differential equation
they obey (see appendix M) or by expressing them as a perturbation series
with the aid of graphs and summing over selected sets of graphs to infinite
order. The latter technique has the advantage of being systematic and to a
high degree automatic, and is the one we shall consider now. It will be seen
that in the present case the summation may be carried out over all graphs and
is exact.

The derivation of the dispersion law using the G(%, £) form of the propagator
is the most instructive from the physical standpoint. This begins with the
Dyson perturbation expansion

© Ty T3
(-) 3 (—l)"/n!xfdt,...f
n=0 7 T4

X dt,,(()l T{Hl(‘l) see Hl(’n)bk(‘) bI(O)} |0> . (]6.25)
© T T
S (—-1y/mix [ dn...|
n=0 7 T

x dt, 0| T{H(1y)... Hy(1,)}|0)

G(k,t) = lim

ImTy, -7,
—®
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where b,(¢) is now in the interaction picture:
by(t) = e'He! by e='Ho! (16.26)

and
H() = e H ettt = z_‘,o V,[b,,(r)+b1,(r)] [b_,(:)+b,*,(r)] (16.27)
14

v, = —‘%’cospd. (16.28)
With the conventions that b' (b) are represented by lines above (below)
interaction vertices, with +p (—p) lines directed upward (downward), the
four products in Hy(f) may be represented graphically as shown in Fig. 16.1.
These show the different types of interactions between Einstein phonons:
(1) two Einstein phonons, one in state p, the other in — p, collide and annihilate
each other at time ¢, (2) an Einstein phonon in state p is annihilated at time ¢

P
H
lp I-p p
() @

&) @

Fig. 16.1 Graphs for Interactions Between Einstein Phonons

with the simultaneous creation of a new Einstein phonon in state P, etc.
According to the field-theory recipe for associating diagrams with matrix
elements, the expansion, (16.25), may be shown to be the sum of all possible
sequences of such interactions, with a bare Einstein phonon entering and
leaving, as shown in Fig. 16.2. These self-energy diagrams reveal the Einstein
phonon dressed in a cloud of other Einstein phonons having the same or
opposite momentum. (Note that unlike the electron propagator, twisting the
interaction wiggles through 180 degrees does not produce a new diagram.)
They may be evaluated by Fourier transforming to (k, w)-space and applying
the rules:

(1) Factor of iGy(k, w) for the forward propagating ( + k) lines.
(2) Factor of iGg(k, w) for the backward propagating (—k) lines.  (16.29)
(3) Factor of — iV, for each interaction wiggle.

The summation is most instructively carried out with the aid of the Dyson
equation. Define an irreducible self-energy diagram for the Einstein phonon
as one which cannor be drawn as two parts connected by a positive k-line;
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thus graphs (2) and (4) in Fig. 16.2 are irreducible, while (3) and (5) are
reducible. Then, by summing over all reducible self-energy diagrams, it is
easily shown that G(k,?) satisfies Dyson’s equation as drawn in Fig. 16.3.
In Fig. 16.3, Z is the sum over all irreducible self-energy parts as shown.

k k
iGllt) = H = | +',J+ | L+ + e
kK |k |k k
) @ 3 @ )

(1

Fig. 16.2 Expansion of Einstein Phonon Propagator

=4 + ;©=M+_‘t;‘k+

(@ ®)
Fig. 16.3 (a) Dyson Equation and (b) Irreducible Self-energy Expansion

This is easily evaluated by means of the rules of (16.29), plus (16.19) (dropping
the infinitesimals for convenience):

—iE = =iV [1+(= V) (Gs)+(~ V(G5 P+ -]

__—iVi _ —iVwtw) (16.30)
1=V, Gy Vitwtawy

The Dyson equation is
iG(k, w) = iGy+(iIGo)( —iZ)(iG), (16.31)
from which one readily obtains, with the aid of (16.18, 28 and 30),

w + wo(l - cos kd) (16.32)

Glk,w) = wl—wi(l1—coskd)
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The renormalized Einstein phonon frequencies are given by the poles of
G(k,w); these occur at
w = wov/(1—coskd) (16.33)

which is identical with the phonon dispersion law, (16.12).

The derivation in terms of the D(k,t) form of the propagator is mathe-
matically simpler but lacks the charm of having direct physical interpretation.
This alternative propagator may be expanded by means of (16.25) with the

iDk,n = = + ‘—J +rﬁ + "FJJ.;

Fig. 16.4 Expansion of Alternative Einstein Phonon Propagator

substitution of ¢.(r)$1(0) for b,(£)b}(0), and H, written in terms of the ¢'s
thus:

Hi) = 5 V,4,0)8}(0). (16.34)

The diagrammatic series for this case appears in Fig. 16.4. The rules are

(1) Factor of iDy(k, w) for each line.

(2) Factor of —iV, for each wiggle. (16.35)

This yields in (k, w)-space
iD(k, w) = iDo[14iDo( =iV )+ (iDo)(—iV;)2 4] Do (16.36)

T 1=D, ¥,
from which

20)0
_ , 16.37
D(k, w) wz_wg[l— COSkd] ( )

which produces again the correct phonon dispersion law.

16.5 Question of convergence

Throughout the above arguments, we have ignored the fact that the series
summations converge only for [summand| <1. This condition restricts the
w-range in which the above propagators are valid. Thus, the G(k,w) form
holds only for w satisfying

@ ViGsl <1, B)|GoZ]| <1 (16.38)
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where (a) comes from (16.30) and (b) comes from the summation which
yields the Dyson equation, (16.31), while D(k, w) is true only for w such that

[ViDo| < 1, i.e., |wdcoskd| < |w2—w]]. (16.39)

This is typical of the convergence troubles which plague many-body theory.
The usual household remedy is to assume without proof that the propagator
may be analytically continued to all values of w; it is often possible to justify
this by using non-perturbative procedures to get the same result. No general
validation is yet available (Katz (1962)).

In the present case, it is easily shown that the results are good outside the
regions of convergence by direct canonical transformation of the propagator
itself. Consider just D(k,w) for simplicity. Let @ be the operator trans-
forming from ordinary phonon representation to Einstein phonon repre-
sentation. If |y) is the ground state in ordinary phonon representation, this
means

Oly> = |¢o> (16.40)
Substituting into (16.20) and using (16.10) yields
D(k,t) = —iy| O~ T{$1)$1(0)} O |y>
= —iy| T{0" $u(r) 00 $(0) O} |y>
= —Ky| T{V wofex [a(f) + at D]V wofwy [a(0) +a_(O)]} ly>
= —j(wofwy) {0, 4 8_,etien?}, (16.41)
from which
2wy

Dike, w) = wi—wi+2i8wy

This is just (16.37) but without any restrictions on w, thus showing that in
this transparent case, and perhaps in more opaque ones, the field-theoretic
method is vindicated.

16.6 Ground state energy

The ground state energy of an interacting many-body system may be found
from the theorem

E = Ey+i lim ;;ln Kol O(0) I, (16.42)
Imps>—-

where E, is the ground state energy of the non-interacting system, and J(¢)
is the scattering operator, given by

O(t) = etiHotg—th, (16.43)
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The term <{yo| U (1) |¢ho) is the interacting vacuum-vacuum scattering matrix,
which is obtained from the expansion:

i
Wl OO = > E f dy.. f dty O\ T{H () ... Hy(1) 0.
n=0 (16.44)
This may be expressed graphically as the sum over all closed, topologically
distinct ‘vacuum fluctuation® diagrams; its logarithm is just the sum over
the linked diagrams as shown in Fig. 16.5. These ring diagrams are similar

to those encountered in the random phase approximation, but much simpler.
They may be calculated using the rules of either (16.29) or (16.35) (both give

In<gol TNy = ¥ + E:} + E—.li] + +

+ + .o
Fig. 16.5 Graphs for Ground State Energy

the same result). After evaluating each diagram and taking the derivative
and limit according to (16.42), it is found that each distinct graph gives a
contribution to the energy obtained by the following rules:

(1) Factor of V) for each interaction wiggle.
(2) In each of the n—1 time intervals between successive inter-
actions on the nth order graph, draw a horizontal line. Then
have a factor of —wp! for each intersection of these horizontal
lines with a vertical line of the graph.
(3) Sum over all k. (16.45)

Carrying out the calculation according to these rules, we find

3 linked graphs = Z le— Vk[2 ]+ V*[(2w0)2+(2ul:o)2]

k>0

e 1 ] 1 1 ]
V"[z"(2wo)=+2"(2wn)2(4mo)”"(2wo)3 + ]

(16.46)
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From (16.5), we have

=N % _
E, = Z 5= I o (16.47

Combining (16.28, 46 and 47) yields the final result
E = Ey+3 linked graphs
= 'Eo wo{l —4coskd—Lcostkd—J)scosdkd—L . Scoskd...} (16.48)

= 3 woy/(1-coskd) = Z“g‘
k

k>0
in agreement with (16.12).

It is interesting to note that, unlike the case with the summation for the
propagator, there are no convergence difficulties here, since coskd is always
< 1. This should be contrasted with the corresponding ground state sum-
mation in random phase approximation, where one is forced to assume that
the result of summing a logarithmic series can be continued into divergent
regions (Gell-Mann (1957)).

ACKNOWLEDGEMENT

The author wishes to thank Prof. H. Hajgaard Jensen for the many stimulating con-
versations which motivated this work and for his careful reading and criticism of the
manuscript.



Chapter 17

Quantum Field Theory of Phase Transitions in
Fermi Systems

17.1 Introduction

It is everyday experience that under certain circumstances a peaceful-looking
system of interacting particles in its ‘normal’ phase, will suddenly become
unstable and undergo a dramatic transition to a ‘condensed’ phase with
radically new properties. A familiar example of such a ‘ phase transition’ is the
change from gas to liquid when the temperature is decreased below a certain
point, or the pressure is increased. Other examples are the gas — solid
transition, paramagnet — ferromagnet, ordinary conductor — supercon-
ductor, paramagnet — spin-density-wave antiferromagnet (see first two
columns of Fig. 17.1). The intriguing thing about phase transitions is the
emergence of properties in the condensed phase which are completely different
from the properties of the normal phase. Thus solids are hard while gases are
‘soft’, ferromagnets pick up iron nails but paramagnets do not, supercon-
ductors have zero resistance while ordinary conductors have finite resistance,
etc.

The perturbation expansion of the propagator which we have used through-
out most of this book unfortunately breaks down in condensed systems. We
saw an example of this in the case of superconductivity, §15.4. In this chapter
we are going to show that the matrix propagator used to describe the super-
conducting phase in §15.5 can be extended to provide a systematic, intuitively
appealing framework for a theory of fermion phase transitions in general.
The material here is a condensed version of the review article by Mattuck and
Johansson (1968), hereafter abbreviated MJ.

To introduce the main ideas, let us begin with a simple example—the transi-
tion from the paramagnetic to the ferromagnetic state in a metal with non-
localized electrons, like Ni. This is illustrated schematically in the first row of
Fig. 17.1. Above a certain critical temperature, T, the system is in the normal,
paramagnetic phase. There is short-range order (SRO), meaning that nearby
spins tend to line up parallel to one another, but no long-range order (LRO),
i.e., notendency of spins separated by macroscopicdistances toalign themselves
parallel. If we now reduce the temperature below T, all spins, even those of
macroscopic separation, spontaneously start to line up parallel to one another.
This emergence of long-range order marks the transition to the ferromagnetic
state.

287
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Fig. 17.1. Examples of Phase Transitions in Fermi Systems (Highly
Schematic)

By ‘spontaneously’ in the above description, we mean ‘with no applied
magnetic field’. If there were such a field, even the spins in a normal system
would line up parallel to it, and there would be LRO. However, this is not
referred to as a phase transition, since the LRO disappears as soon as the field
is turned off and is therefore not an intrinsic property of the electron system.
The measure of long-range spin order is the ‘relative magnetization’
(=actual magnetization divided by maximum possible magnetization) given by

M= ualS) 2

= =<8

Npsl2 N

(17.1)
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where N=number of electrons in unit volume, and (S is the average spin per
unit volume. The quantity M is called the ‘long-range order parameter’ for
the system.

Besides long-range order, the ferromagnet shows another characteristic
feature of condensed phases, i.c., ‘broken symmetry’. The idea here is that in
the normal paramagnetic phase, since spins of macroscopic separation are
oriented randomly with respect to one another, the system as a whole is in-
variant under the group of all possible rotations in space. Butina ferromagnet,
the spin system as a whole points in a definite direction in space. Hence the
system is now invariant only under that subgroup of the rotation group con-
sisting of rotation about the direction of spin orientation. Thus we have
‘broken symmetry’ under rotation.

Of course if we are dealing with a perfectly isotropic system, all directions of
spin orientation are equally likely so on the average there is no broken sym-
metry. True broken symmetry can arise only if there is a very tiny magnetic
field present—the *source field—which fixes the direction of spin alignment,
In practice there are always such small fields around; thus the Earth’s magnetic
field may play the source field role.

A striking example of a phase transition quite similar to the paramagnet-
ferromagnet transition is the ‘staring crowd’ phenomenon shown in Fig.
17.2. In a crowd in the ‘normal’ state, people gaze in random directions.
However, it is often observed that if one person starts staring at, say, an empty
second-story window, a large number of people in the crowd will start staring
at the window, despite the fact that nothing of interest is happening there
(i.e., no external field present)! This is the ‘condensed’ phase. Again, the
broken symmetry is rotational invariance, while the LRO parameter is the
“starization’ or number of starers divided by the total number of people.

The ideas here are general: a phase transition is a sudden change from a
normal state with only SRO and perfect symmetry, to a condensed state with
LRO and broken symmetry. Examples of broken symmetry and LRO
parameter are shown in the last two columns of Fig. 17.1. (Regarding the
superconducting case, a ‘ global gauge transformation’ is a change of the phase
of the single-particle operators:

cly —> cloexp(id), Cia — CroeXp(—id). (17.17)

The wave function of a normal system is invariant under this transformation,
but the BCS wave function is not. Hence there is broken symmetry under
global gauge transformation. See MJ for further discussion of this and the
other cases.)

The parameters which determine whether the system is in a normal or
condensed state are the temperature 7, and density p (or alternatively, the
coupling constant A for the interaction between particles). A single fermion
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system can usually exist in several possible condensed phases depending on 7'
and p or A. Figure 17.3 shows a hypothetical Fermi system of this sort. The
points on the boundary between the normal and condensed phases are called
“transition points’.

In addition to the nature of the broken symmetry and LRO, there is another
important characteristic of a phase transition, i.e., whether it is first order,
second order or some higher order. In the second-order transition, the LRO
parameter changes continuously in going from the normal to the condensed

-

3

Normal

‘Super-
‘conductor
/s,

SLAAAL

Fig. 17.3. Phases of Hypothetical One-component Fermi System. T=
Temperature, p= Density, A= Coupling Constant

state, but has a discontinuity in its first derivative. In a first-order transition,
the LRO parameter itself changes discontinuously at the transition point.

17.2 Qualitative theory of phase transitions

We now ask: Why do phase transitions occur? There is evidently no
difficulty in understanding how there can be long-range order in a system,
when this order is brought about by the presence of a finite external field.
Thus, we saw that in an external magnetic field, a paramagnetic system will
become magnetized parallel to the field. Or, if there is a fire in the third-
storey window, it is obvious why the crowd will be staring at it. But in a
condensed system, there is LRO in the absence of a finite external field.
How is this possible?

As Brout (1965a) points out, the answer to this in all known cases is that
there is an internal field produced by the interactions between the particles of the
system itself. This field depends on interaction strength (or density) and
temperature. In the normal phase, the field is limited in range and causes
local, or short-range, order. But in a condensed phase, the internal field
extends throughout the whole system and produces long-range order.

Consider for instance a set of spins coupled by strong negative spin-spin
interaction (due to exchange), and for simplicity, assume the temperature is
zero. If we look at some arbitrary spin—‘spin A’—we see that another



292 A GUIDE TO FEYNMAN DIAGRAMS [17.2

nearby spin sitting in the field of A will tend to line up parallel to A. This
creates an even stronger field in which a third spin will align itself, etc., until
all the spins are lined up pointing in the same direction (ferromagnetic state).
If we now examine the final situation, we see that any one spin is lined up
parallel to a long-range internal field due to all the other spins. In the case of
localized spins, this is called (in lowest-order approximation) the * Weiss field’
or ‘molecular field’. Notice that this internal field has the same aligning effect
on spins as an external magnetic field has. We will call it the *spin-aligning
field’. However it is not a real magnetic field because it cannot bend the orbits
of charged particles,

(The *staring crowd’ phenomenon may be explained in the same way. One
person stares at the empty window. A second sees him staring, and this inter-
action between the two people (not between the person and the window )]
causes the second to stare also, etc., until finally the whole crowd is staring,
Thus we have any one person polarized parallel to an internal ‘staring field’
due to all the others.)

InTable 17.1 is a list of the internal fields associated with various condensed
phases.

Table 17.1 Internal fields for various condensed phases

Condensed phase Internal field

’ Ferromagnet Spin-aligning field
Solid Periodic field
Superconductor Pairing field
Spin-density wave antiferromagnet | Spiral spin-aligning field

The above ideas may be expressed mathematically in the following schematic
way: Let us assume that the system has in it, in the final situation, some internal
long-range field or fields which we will collectively call F. The corresponding
LRO parameters will be collectively called @. The ¢ will be a function of F
which depends in general on A, the interparticle interaction strength, and 7,
the temperature:

0 =0,.(F) (17.2a)

(for example, the relative magnetization, .#, is a function of the internal
spin-aligning field, 5#). The field F, in turn, is a function of @:

F=Fy(0) (17.2b)
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(thus, with localized spins, # =y.4). These two equations may be combined
into:
0 = 0,1(F,1(0)), (17.2c)

which is to be solved for the order parameter @. (In the magnetic case, this is
M = M(yA), which is just the Weiss equation.) Note that in general (17.2c)
is extremely complicated, and one must find @ by a self-consistent method.
That is, we assume a non-zero value for 0, find F from (17.2b), substitute in
(17.2a) to get a new value of O, put this in (17.2b), etc., until the value of @ stops
changing appreciably and the calculation is ‘self-consistent’. If the self-
consistent value of @ turns out to be non-zero, then the system is in the con-
densed phase. Equations (17.2a, b, c), relating long-range order and internal
field, are the expressions of the basic mechanism underlying all phase transi-
tions.

17.3 Anomalous propagators and the breakdown of the perturbation series in the
condensed phase

In chapter 9 and the appendices, we saw how to develop the single-particle
propagator for normal systems in a perturbation expansion. But, as pointed
out in the chapter on superconductivity, the normal perturbation series breaks
down in the superconducting phase. This is quite general, and in fact the
normal perturbation series breaks down in any condensed phase. A particu-
larly simple example of why this breakdown occurs is the case of ferro-
magnetism. In the normal phase of a system with no external field, because
of momentum conservation, the propagating particle always emerges in the
same linear and spin momentum state that it entered. But in the ferromagnetic
phase, because of the internal spin-aligning field, F, there is a possibility that
the particle spin may be flipped as shown in Fig. 17.4. (Of course, it may also
propagate through the internal field without flipping.) This means that in the
ferromagnetic phase, in addition to the ordinary propagator, we can have
‘anomalous’ propagators which flip a spin (for simplicity we consider only
the T=0 case):

Gk}, kt, ¢ =)= —iC¥y| T{c'.;(t')c{;(t)}l‘-”o>
and (17.3)
Gtk t'—1)= —i<qlo|T{Cn(")ct'1(’)}|Wo>-

These propagators are zero in the normal phase.

If we now examine the normal perturbation expansion of Z' in (10.8), or its
self-consistent version in (11.3), we see that the only propagators in it are
normal ones. Hence the normal expansion is invalid in the ferromagnetic case
because it does not include the anomalous spin-flip processes which are
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characteristic for the ferromagnetic phase. Note that this means that the
propagator expansion in (9.40) and the expansion for X in (10.8) or (1 1.3) are
invalid in the ferromagnetic case, even if they are summed exactly to infinite
order.

_'k_L"t;\,t'_kF’

Ne

Fig. 17.4. Anomalous Propagation in the Ferromagnetic Phase. The Internal
Spin-Aligning Field, F, is Assumed to be in the x Direction

In the above discussion, it is assumed (see Fig. 17.4) that the internal field F
is in the x direction. If, on the other hand, F happened to be in the z direction,
no spin flips could occur (since our test particles are polarized along z) and all
propagation would apparently be normal. Hence we might conclude that the
propagator was not a completely adequate tool for probing the structure of the
ferromagnetic state. Actually this is not true, because there is a difference
between propagation of spin up and spin down particles, which is caused by
F,, and this difference may itself be considered anomalous propagation. Thatis

4G = G(kt, kb, ¢’ —1)— Gk, k|, t'—1) (17.4)

is zero in the normal phase since the system is completely symmetric, but finite
in the ferromagnetic phase, if F,#0. For example, in the Hartree-Fock
approximation, we find simply that (assume ¢'>t and k > k;):

AGur = —ifexp[—i(ex—p—gBF,) (t'—t)]—exp[—i(ex—p+gBF,) (1= 1)]},

where gBF, is the energy of the spin in the internal spin-aligning field. (This
will be discussed further in §17.5.)

The above argument for the breakdown of the perturbation series in the
condensed phase is true in general, provided we always assume from the
beginning, as we have been doing throughout, that our system is infinitely
large. (If we start with a finite system, then there are some cases, such as super-
conductivity, in which it is possible to obtain the condensed phase from the
ordinary perturbation series. This is discussed in MJ, Appendix C.) [n each
condensed phase, in addition to the normal process, there is an anomalous
process (or processes) which can take place because of the long-range internal
field, with a corresponding propagator (or propagators) (Bogoliubov ( 1960)).
In Table 17.2 is a list of anomalous propagators for various phases (for each
propagator listed there is also a Hermitian conjugate which has been omitted).
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Table 17.2 Anomalous propagators for various condensed phases

Condensed phase Anomalous propagator
Ferromagnetic Gres = —i{¥o|T{cy (¢ el (1} o)

Solid Goor = — K¥o| T{ersnralt) clox.alOH Fod
Superconductor Goup = —K¥o| Tty (1)) e} (D} Wo>

Spin-density wave
antiferromagnet | Gsow = —i{¥o|T{Chsq.0°(1") Chra.oUN}| ¥o)

In the case of the solid, the propagating particle can pick up momentum
s’ —x, the difference between any two reciprocal lattice vectors, from Bragg
scattering by the periodic internal field. In the superconductor, the anomalous
process is not really a propagation, but rather the amplitude for the creation
of a pair of particles in opposite momentum and spin states. In the spin-
density wave case, a particle picks up momentum Q—Q’ from scattering
against the periodic structure of the spiral internal field, and has its spin
changed from o to o’ by the spin-aligning character of the internal field.

The anomalous propagators have the valuable property that the LRO
parameters may be obtained directly from them. For example, in the ferro-
magnetic case, the LRO parameter is, for magnetization in the x direction,

2 1
M= ﬁ<sx>=-ﬁz<wolcl' c“-!-czl Ck'lqlo>. (17.5)

where we have expressed the spin operator S, in second quantized form (see
exercise 7.11). Evidently we can get this from the anomalous propagators
(17.3) as follows:

M= ’W‘Z [G(k}, kb, 0°)+G(k!, ki, 07)]. (17.6)

If the magnetization is in the z direction, we have

2 1
M= 17 (S = FZ <‘Po|¢-‘11 Cxy —cI, Cu”’o)

—l _ 8
= WZ (G(kt, k1,07 — Gk}, k{,07)). 7.7

showing how AG in (17.4) acts as an anomalous propagator.
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In a superconductor, the order parameter is the pair creation amplitude
(= energy gap in a Type I superconductor) given by

4= g (Wok-'{: Cln [¥o>

=—i3 F'(k,0), (17.8)
k

where F” is the anomalous pair propagator in (15.49). Similar relations exist
for the other condensed phases (see MJ, p. 530).

The fact that some sort of anomalous propagation exists in all condensed
phases, and that this anomalous propagation is not taken into account in the
normal expansion, is the physical reason for the breakdown of the normal
perturbation expansion in the condensed system. There is also a more
mathematical way of getting this result. This is based on the fact that for the
normal perturbation expansion of the propagator to be valid, the interacting
ground state |'¥,)> must have the same ‘structure’ as the non-interacting ground
state [Po), i.e. it must overlap |®,) so that (see appendix E.12, C.6):

(WolPo> £0 (non-orthogonality condition). (17.9)

Since at infinite volume the condensed phase always has a different structure
than the normal phase, it follows that (17.9) is not satisfied, so that the expan-
sion in (10.8) or (11.3) is not valid. For example, in the ferromagnetic state,
there are, say, more spins up than down, so that we have (in HF approxima-
tion):

|'}’o> = |l*l' ‘k:?’ cney l“ut; l.” l.:l’ vony I.Pl 000, . ..>, where M > P. (17.10)

This is clearly orthogonal to the non-interacting |®,>, which has M= P.

17.4 The generalized matrix propagator

In order to construct a perturbation theory valid for the condensed state, it
is necessary to modify the self-consistent (see below for reason why self-
consistent form is required) self-energy expansion in (11.3) so that it includes
the appropriate anomalous propagators. We will show that the method of
doing this is to replace each normal propagator in (11.3) by a matrix propagator
which is a simple generalization of those of Nambu (1960) and Rajagopal
(1964a, b, 1966). The diagonal elements of this generalized matrix propagator
are normal propagators, while the off-diagonal elements are anomalous. A
crude plausibility argument analogous to that used in the superconducting
case §15.5 for this will be given here—a more rigorous demonstration is in
M], §6.
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For simplicity, consider the ferromagnetic case first. The matrix propagator
here is (see (17.3)) defined by:
Gror,t'—1) = —i ( {¥o|T{ex;(t) CI,(I)}I Yo <W0|T{Cn(")cll(’)}| Yo
) Vol T{ex, (1) Cl:(')” Wo> (¥l T{ex, (1) C‘I;(‘)}‘ Yoo/
(17.1)
In the non-interacting system, this becomes the bare matrix propagator, which
ink, w space is:
1 0
Go,,, (k,w) = —i w—(ﬁ;l‘)"‘"‘”s 1 . (1712
w—{e,—p)+iwd
It is possible to write G, in the same form as the ordinary normal propagator
by introducing the spinor operators:

i) = ("‘"”); YU = ey, ey (), (7.13)
. cxy (1)
from which
Gre (&, 1" — 1) = —iC¥Ho|T{yu(t) ()} Po>. (17.14)

(Note that when 1’ <, we must change y}(¢) to a column vector, and y,(t") to a
row vector.). Furthermore, the Hamiltonian (7.51) (including spin and assum-
ing a spin-independent interaction of form (7.70)) has the same form when
written out in terms of these y,’s that it has when written out using the ordinary
¢'s. Thus we find:

H=3 (a&—p)vlys+t 2 Viima(y! v2) (vivm)+constant.  (17.15)
k kimn

Hence, since both G and H have the same form in terms of the v,’s as the
ordinary G and H have in terms of the ¢,s, it is plausible that one can use the
same perturbation expansion as before, the only difference being that matrix
propagators are to be associated with the directed lines, instead of ordinary
propagators.

Thus we find that the Dyson equation (11.8), with self-energy X in the self-
consistent form (11.3), may be written out in terms of matrix propagators as
follows:

1
GS':' (kt w) - z((; fer) .

Gfol (k) w) = (17.16)

As pointed out just after (10.11), in the normal system, X is the generalized
local effective field which produces the short-range order (i.e., the *cloud’)
around the propagating bare particle. By analogy, Z here is the potential of the
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internal spin-aligning field in the ferromagnetic system, the potential which
establishes the long-range order. Further, according to §17.3, the anomalous
propagators in G directly give the LRO parameter. Hence (17.16) is just the
self-consistent equation for the order parameter which was described schem-
atically in (17.2c).

Note that it is absolutely necessary to use the perturbation series in the
self-consistent form, (11.3). If the ordinary form, (10.8), were used instead, we
would find that because G, in (17.12) is diagonal, all diagrams in £ would be
diagonal. Hence G itself would be diagonal and therefore incapable of
describing the condensed state. This difficulty disappears in the self-consistent
theory, since only clothed propagators appear in the self-energy term. (Note
that in the ferromagnetic case with magnetization in the z direction, G, Z are
always diagonal, but G;, #G,, and 2, #Z, ).

Matrix propagators for the other phases are constructed in the same way as
in the ferromagnetic case, using for off-diagonal elements the anomalous
propagators in Table 17.2. The superconducting case yields (omit ¥,, T, ¢’,
for brevity only!):

(17.17)

Guuo(k, t'—1) = _i(<cx: > ey c_“)).

(Clu Ct':)(‘-'lu Coxy)
The solid gives a matrix propagator with an infinite number of rows and
columns. For simplicity, consider a one-dimensional lattice with spacing 4
and first reciprocal lattice vector xo=2w/d. Then, suppressing spin index,
etc., for brevity, we find:

ey avehiny Cancliaey ...

. <ck+x° > <cl+x° C:-no) ----------

Glo k,”"" = -1 (17.18)
) ) CCorpangCl) voveniiiiiiiin..

(For very rough calculations, one could neglect all higher order harmonics,
and replace this by a 2 x 2 matrix involving justk and k +3,.) The spin-density
wave phase also produces an infinite matrix propagator:

{en CL) (Cny ck'+Qol> (eny ‘-’I+oot> -------
CCxsaot 1) {Crsant Shrant) Crraos Cheaor) - -
Gapwk, t'—1) = —i| (Ciraor D e oo oeeee i
<Crr2001 L 2 S

(17.19)
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This is usually replaced by a 2x 2 matrix which neglects all the higher-order
terms (Rajagopal (1964a)).

The argument in (17.13)-(17.16) is casily generalized to any matrix pro-
pagator G and we find the general self-consistent Dyson equation:

1

Golle, ) = Gs'(k, w)—X(G)

(17.20)

Another way of deriving (17.20) is based on the idea of turning on the source
field so that the new unperturbed ‘ vacuum’ state, |Py> is no longer orthogonal
to the condensed state |¥,) in (17.9). This more rigorous technique is described
in detail in MJ, §6.

17.5 Application to ferromagnetic phase in system with 6-function interaction

As a very simple example of how the above formalism works, we will
calculate the magnetization in HF approximation for a system with 6-function
interaction, i.e., with

H= E €x¢'iTg C“,.‘{' ¥ }: CIa’cIa Cma Cna’- (172]}
ko klmn
ac’
This will turn out to yield the well-known Stoner result.
In self-consistent HF approximation, the matrix propagator equation is:

o<l

To make things easy, we will assume that the internal magnetization field is
in the z direction so that G,, =G, =0. The diagram dictionary for this case
is in Table 17.3; see (9.39) regarding convergence factor exp (iw0") in Table
17.3. See around (9.47') regarding iwd in free propagator. Regarding the
trace rule, see MJ around Fig. 21. Applying these rules to (17.22) yields:

k,w
¥ N,+N 0
k 0  N+N,

»w l,,a

(17.22)

k,w N, 0
K, ’ . T
d =+iV (17.24
() )

4
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Table 17.3  Diagram dictionary for the ferromagnetic phase at T = 0
(magnetization in z direction)
Diagram element Factor
G (k’ w, 0
kw :'G,..(k,w)=:( k) )
0 G; 1(1‘: ‘”)
© K,w v Gy (k, w)exp (iwd?)
k,w
IGo,"(k, w) =
k,w —1* 0
i| o—(e—p)+iwd
1

0 —_——
w—(&—p)+iwd

k+q,0
k,o q

. 10
| TPRCEPE - 01

fermion loop

(—1) x trace over product of G’s
forming the loop

intermediate momentum, k
intermediate frequency, w

d*k dw
@en?' ) 2n

where we have used:

i

Ay = =i f ;—w Goo(l, w) e=t0" (17.25)
w
and
N,= 4l {hray (17.26)
o= | G o> .
Placing these results in (17.22) yields
i 0
th 0 = w—(c,—p.)—VNl-*-in (17.27)
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whence
1

> 17.28
w—(eg—p)— VN_,+iwd ( )

Gk, w) =

We can get an equation for N, by placing (17.28) in (17.25), (17.26). Doing
the resulting integral by contours yields:

(Ex=nu=¥N-g) H=VN_g u=VN_g
* d*k iN
N,= J = J. dep(e) = — deV'e
(27)? 4ei
(e4=0) 0 0

N
= u-VNL)E, (17.29)
2¢}

where p(e) is the density of energy levels. Now we express this in terms of the
relative magnetization given by:

M=N,+Ni_ m (17.30)
Using
N=N;+N,, (17.31)
and
Ny =¥MN+N), N =¥N-MN), (17.32)

we find the magnetization equation:

28 1

N " 2% {(u—=INV+IVNM)} —(u—4NV—1 VNM)}  (17.33)

where ¢, is equal to (37*N)?/2m, the Fermi energy of the non-interacting

system. Thus, (17.33) is the self-consistent equation for the LRO parameter, M.
The value of p is determined by the condition that the total number of
particles is N. Using (17.29)-(17.32) yields:

N= % {(p—INVHINVM)} + (u—4NV—INVM)i}. (17.349)
€F

Adding and subtracting (17.33), (17.34) in order to eliminate p gives:
NV

2

I
— M 3
2M{(l M) —(1— M) }. (17.35)
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This is the well-known Stoner equation. The magnetization is plotted as a
function of N¥/2¢ in Fig. 17.5. For fixed V, we can regard this curve as a
function of the particle density, N. (In MJ, N is fixed and the coupling V is
allowed to vary.)
M
1.0 L

(a) (c) NV

i
2/3 2° 2
Fig. 17.5 Relative Magnetization, M, as a Function of the Parameter,

NV|2e, in System with 8-Function Interaction. (a) Paramagnetic Region,
(b) Unsaturated Ferromagnetic, (c) Saturated Ferromagnetic

1
I
|
|
|
|
|
1

It is seen that the transition point where the magnetization first becomes non-
zero occurs at the critical density N, given by:

or N.=——. (17.36)

This is the point at which the paramagnet-ferromagnet phase transition takes
place. Note that since M changes continuously at N,, while the derivative of
M changes discontinuously, we have a second-order phase transition (see
end of §17.1).

It should be observed that M=0 is always a solution of (17.35), also for
N> N.. To show that the finite M solution is the correct one for N> N, we
have to prove that it yields the lowest energy. This is done in MJ, p. 546.

The above calculation is in HF approximation (or “generalized HF,” since
it includes anomalous propagations). To go beyond HF and take correlations
into account, we have to include higher order diagrams in the self-energy. This
is described briefly at the end of MJ, §7.

17.6 Divergence of the two-particle propagator and scattering amplitude at the
transition point

We have seen how the matrix propagator may be used to investigate the
properties of the condensed phase. However, in many cases one is only
interested in finding the transition points, i.e., the value of the density N,, and
temperature, T,, where the condensation starts. In the case of second order
transitions, the simplest way to do this is to start in the normal phase and
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caleulate the appropriate two-particle propagator G, (or scattering amplitude,
I'). Then the transition point is that value of N or 7' where G, (or I') becomes
infinite.

Let us see how this works in the ferromagnetic case. For simplicity we first
toke T=0. (The finite T case is treated at the end of this section.) The quantity
characterizing the magnetic properties in the normal, paramagnetic phase,
is the magnetic susceptibility y(k,w) which gives the response of the system to
a small applied magnetic field H(k, w) by (cf. (13.127)):

M(k, w) = x(k, w) H(k, w) (17.37)

where M(k,w) is the wave-number and frequency dependent magnetization.
We assume the system is isotropic so the susceptibility is the same in all
directions.

Since we are interested in static magnetic properties we take w=0, and since
we consider only uniform magnetization, the wavelength is infinite and the
wavenumber k=0. Now in general, a small applied field H will cause a small
magnetization when the system is in the normal, paramagnetic phase. But
if we now start to increase the density N, then we find that as N approaches N,
(the critical density for the ferromagnetic transition) the magnetic suscept-
ibility x(0,0) grows larger and larger, and when N= N, we find x(0,0)= «. This
means that when N=N_, no external field at all is required to produce magnet-
ization, i.e., the system magnetizes spontanecously. Hence we can find the
transition point, N,, by calculating the susceptibility and finding that point
at which it becomes infinite.

The magnetic susceptibility can be calculated from a closely related function,
the ‘retarded spin polarization propagator’, Dfj, defined by

Dﬁ(r‘ 1) = =i, (¥o|[Si(r, 1), S_:(O-O)]+lwo>- (17.38)
Here S,(r) is the ith component of the spin density operator:
'J’r(r))
iy (r)

where o, are the Pauli spin matrices and i=x,p,2,4+,—(v. =0, +ia,). S(r,1)
is S(r) in Heisenberg picture (see (9.3)). In an isotropic system, the following
relations hold:

Si(r) = (H(r), ) (1)) 0:( (17.39)

DX = DX = DX =3DX =D~
DE, = Dfi, = DX = DX = D = DX =0. (17.40)

Il

The magnetic susceptibility tensor and its Fourier transform are related to
DF and its Fourier transform by

xifr,t) = —p? DR(r,1);  xi)(q, w) = —p? Di(q, w) (17.41)
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where u is the magnetic moment of the particles in the system. Thus the
problem is to find the retarded spin polarization propagator, Df.

Now D, itself cannot be obtained from Feynman diagrams. However, we
can use diagrams to calculate its cousin, the time-ordered spin polarization
propagator

Du(r, ') = - l.<t}l°|T{S‘(r, t) SJ(O, 0)}|Wo> (l 7.42)
or its Fourier transform, D,,(q,w). Then we can employ the relations (see
appendix L.26):

Re D (g, w) = Re Dfi(q, w)
Im D, (q, w) = sgn(w) Im D(q, w) (17.43)
to find Df}(q,w) and thus y,,(q, w).
Because of (17.40), in an isotropic system we only need to calculate one of the

components of Df, so we consider the simplest one, i.e., DR, or its time-
ordered version D_, given by (use (17.38, 39)):

D_y(r,t) = ~i(Fo| T} (r, 1)y (x, £)43(0,0) 5, (0,00} Wy, (17.44)

Note that this is a two-particle propagator similar to the polarization pro-
pagator in (13.5). It has the diagram expansion

| ¥4 | ¥
—iD_,(rt)= @=O+ @ +%+ + S
1 [ | ) 1 i
0,0

0,0
(17.45)

Now it turns out (see MJ §8) that as far as getting a transition point is concerned,
the approximation for D_, in the normal phase which corresponds to the HF
approximation in the condensed phase (§17.5) is just ladder approximation:

p+q
= p,a+ + +-
o+ w
1
m+q, m.y
+w !
=O + ! (17.46)
k+a\ ko

v+w

- iD-+(‘l.w) =

q,w
1
q

N2
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where we have taken the Fourier transform. The particle-hole K-matrix in
(17.46) satisfies the integral equation (cf. (10.20)):

m-+q, m,7y \AMN’}
Rl I+q,] 1.8
K = M +ﬁ+w “747)
k+aq, \ku §
v+ w ! X

which, since ¥'=constant (cf. exercise 10.4) has the solution

v

3
1—(i— V)J (‘; ;3 f iGo(1, B) iGo(1+q, B+ w)

K(q, w)

= = V ; (17.48)
,u(_,-,,)m_@ LA
Ce) R
where we have expressed the integral in the denominator in terms of the pair
bubble (9.54) (note factors of (—1) for fermion loop and 2 for spin sum).
Translating (17.46) into functions, noting that K is a function only of q, w, and

expressing integrals over G’s in terms of m,(q, w) we easily find:

—fD—+(fI»“‘)=% Rﬂ(q!w)'i- [12 :rro{q,w):‘ [_l.K('L w)]!

_'i ﬁﬂ(q! w)

D_.(q,w) = (17.49)

1= E KO(Q.“’)
Now we are interested in the case =0, w =0 for which we have from (10.78):

70(0,0)=3N/2¢. Since this is pure real, so is D_,(0,0), and we have by (17.42)
that D_,(0,0)= D% (0,0). That is

DR,(0,0) = —>Dlder (17.50)
1—VGNjder)

This diverges, so that xy_.(0,0) (= —p? D_,(0,0)) diverges, when

SNV 46{.‘
or No=—, 17.51
7 ( )

46;.'

which is exactly the result for the transition point in (17.36).
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It is important to observe that the transition point may also be obtained
from the retarded K-matrix, X®(q,w). This is related to the time-ordered
K(q,w) in (17.48) in the same way that DR is related to D in (17.43). Hence
we have

vV 14
K*%(0,0) = K(0,0)= 7 = (17.52)

1 0,00 1 3NV
_Eno(») _4

€F

so that the retarded K-matrix diverges at just the point where the transition
from the paramagnetic to the ferromagnetic phase takes place.

When N> N, it can be shown that the pole of K*(w) occurs for w in the
upper half-plane, in violation of analyticity, analogous to the superconductivity
result (15.43). When N approaches N, from above, the pole moves down to
the point w=0. There is no pole when N<N..

Just as in the superconducting case, §15.7, the argument here is easily general-
ized to finite temperatures. The K-matrix is, for finite q, w,,:

. ~ d:p 1 +a 1 1 -
Hlon) = V[l_(—y)j(2#)33..Z-g(iwu+iwm— ¢’+¢+p)(iw,—€,+}l-)} .

(17.53)

Evaluating the frequency sum as in §14.5, and analytically continuing iw,—
w+i8, breaking the integral up into real and imaginary parts, setting w=0and
taking the limit q — 0, we find

(17.54)

K*0)= x'(0+i8) = V[1+ V [ desplen) g (")]'

de,

where p(e;) is the density of states for spins in one direction. The chemical
potential may be determined from

N =2 de, ple)f (). (17.55)

To make things easy to evaluate, assume a constant density of states given by
ple,)=N/[2ep where ¢ is the Fermi energy at T=0. Carrying out the integrals
and eliminating p we find that the temperature T, for which K® diverges is
given by

—EF

Kyl = ————— .
o In(1 —2¢-/NV)

(17.56)
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These results are easily generalized: in all cases where a second-order phase
transition takes place (see MJ, §8), the retarded response function, or its
related scattering amplitude, evaluated at w=0 becomes infinite when the
coupling/density (or temperature) reaches its critical value. The physical
interpretation of this is that the system shows a ‘response’ in the absence of
any external field, i.e., it spontaneously goes over into the condensed phase.
An example of this was discussed in the case of superconductivity (§15.4)
where we showed that the scattering amplitude becomes infinite at the point
where Cooper pairs start to form.

Finally, it should be mentioned that an enormous amount of work on phase
transitions has been concerned with the behaviour of physical quantities in
the neighbourhood of the critical point. For a review of this large subject, the
reader is referred to the book of Stanley (1971). A microscopic theory of
critical phenomena has been formulated by Wilson (1971a, b, ), and expressed
in terms of Feynman diagrams by Wilson (1972) and Tsuneto and Abrahams
(1972). The graphical methods used in critical phenomena are reviewed in an
article by Brout (1974), and Wilson and Kogut (1974).

Further reading

Mattuck and Johansson (1968).
Brout (1965).

Stanley (1971).

Brout (1974).

Wilson and Kogut (1974).

Exercises

17.1 (a) Show that H in (7.51) is invariant under global gauge transformation (17.1%).
(b) Use (a) plus the fact that |¥,) is non-degenerate in a normal system to
prove that |¥;) is invariant under (17.1°). (Hint: represent the global
gauge transformation as an operator T.)
(c) Show that for a superconductor, H,.q in (15.16) is invariant under (17.1)
while the BCS |¥,) in (15.29) is not.
17.2 Verify (17.15).
17.3 Verify in detail (17.23) — (17.35).
17.4 Verify (17.40).
17.5 Verify in detail (17.53) — (17.56).



Chapter 18

Feynman Diagrams in the Kondo Problem

18.1 Introduction

The history of mankind has been marked by a series of catastrophes—fires,
floods, famines, plagues. Physicists have to add to this list another catastrophe:
divergences. The Kondo problem is largely concerned with a so-called *infra-
red divergence’ occurring in the theory of dilute magnetic alloys, and the
history of the problem is the story of the physicist’s fight against this divergence.
The problem has attracted a great deal of attention because, like critical
phenomena and the X-ray problem, it can be handled only by self-consistent
renormalization of all propagators and interactions. In this chapter, we will
present a very brief introduction to just the diagrammatic treatment of the
problem. For a general review, the reader is referred to Rado and Suhl (1973),
Kondo (1969), Heeger (1969), and for details of the approach used here, to
Cheung and Mattuck (1970), Mattuck, Hansen, and Cheung (1971), Larsen
(1972), Larsen and Mattuck (1974), and Larsen (1974).

A dilute magnetic alloy consists of a few magnetic impurity atoms like Fe,
dissolved in a non-magnetic host metal, e.g., Cu. Such systems show an
anomalous increase in electrical resistance at low temperatures shown in
Fig. 18.1. In 1964 Kondo proposed that this increase was due to exchange
scattering between the conduction electrons and the magnetic impurity atoms.
We will write his Hamiltonian for the case of a single impurity of spin S=4.
(As we noted in connection with the problem of randomly distributed non-

1~—aT?

In (1/T)

T

Fig. 18.1 Resistance, R, due to Magnetic Impurities in Dilute Magnetic
Alloys, as a Function of Temperature, T

308
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magnetic impurities in §3.5, for very low impurity density, the only important
terms in the self-energy are those representing repeated scattering from the
same impurity (see (3.67). Hence we just need to deal with one impurity and
multiply the result by a concentration factor.) The Kondo Hamiltonian is
H= 3¢ clecra—J > (0.4°S) Cia* Crar (18.1)
k,a a, e k. k"
The first term describes a set of conduction s-electrons in a band of width D,
with e, measured relative to the Fermi surface. The second term is the exchange
interaction, where o, is the Pauli spin matrix for s-electrons, S is the impurity
spin operator and J is the negative (antiferromagnetic) interaction constant.
Kondo's Hamiltonian may be rewritten in the form

H =3 clacia+20d}di—J 5 (00a'Spp)d)claciads.  (18.2)
k,a a k. k', a,a'. 8.8

Here S has been expressed in second quantized form (see exercise 7.11, with
no k-index, since the impurity spin is fixed in configuration space). 1S is a
Pauli spin matrix, and d}, d; create (destroy) a spin in state 8 (= +1) at the
impurity site. These d’s are called ‘ pseudofermion operators’ (see Abrikosov
(1965)). Note that the free pseudofermion energy (second term in (18.2)) is
zero because the free spin energy in (18.1) is zero.

The Hamiltonian in form (18.2) allows impurity states with §=0 as well as
S=1}. Eliminating the effect of these spurious $=0 states requires multiplying
physical quantities by a correction factor Q(7'), as described in detail by Larsen
(1972). We will take Q(7T') =constant in the following discussion.

Let us represent the s-electrons by solid lines, the impurity spin or * pseudo-
fermion’ (abbreviated ‘pf”) by dashed lines, and the interaction by the inter-
section of a solid and a dashed line. Then the exact equation for the s-electron
propagator may be written

EAE S (18.3)

(18.4)

kA

k)

B=O
G Crg)
Toic
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while that for the pf propagator is

xoi:
"

In these equations, I is the s-pf scattering amplitude, given by
q,a,w, ﬁ’—w"-*-wm

]:‘1
%

.

. .
p,a ,wy ﬂ y—wytwy,

The free propagators are

1 1
Go(ko '.wn) = ’ go(i‘"m) =T
jw,— € iw

(18.1

(18.9)
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Observe that (18.4) is similar to the non-magnetic impurity case for density
(N/£2) small (first four terms on the right-hand side of (3.67")), with 27 replacing
the empty circles. The difference is that, as shown in (18.5), the circles here
have very complicated internal structure. This is due to the fact that the
exchange term in (18.1) does not act as an external potential, since it has an
internal degree of freedom, i.e., the impurity spin can flip.

The first-order bubbles in (18.5) and (18.7) are zero on account of the spin
sum involved, and will henceforth be omitted.

The resistance can be obtained from the reciprocal lifetime at the Fermi
surface, 7;!, and 7;! is given in turn by the imaginary part of the self-energy,
analogous to (3.71). It can be shown that

R« 75} = Im Z%(kg, €, +1i9), (18.10)

where we have analytically continued the imaginary frequency self energy to
Jjust above the real axis: 2'(k,iw,—w+1i8) (i.c., we have the retarded self-
energy—see appendix L).

The physical origin of the self-energy can be seen from diagram (18.8()).
The s-clectron comes in, interacts once with the impurity spin, flipping it, and
isitself flipped. Atalater time, the flipped spin interacts back on the s-electron.
The net effect is to alter the s-electron energy and to scatter it out of its original
state, giving it a lifetime.

(For those who like analogies, we can imagine the situation in Fig. 18.2.
Man M throws hat H onto shell where it accidentally hits bucket of wet
cement C. This flips cement bucket, analogous to spin flip, and cement falls
down on man’s head, thus increasing his mass (altering his energy) and slowing
him down (offering resistance).)

Note that it is this spin flip which makes the Kondo problem a many-body
problem, despite the fact that there is no direct interaction between two elec-
trons in the Kondo Hamiltonian. That is, electron | comes in, flips the spin,
and the flipped spin interacts with electron 2. Thus, two electrons interact
indirectly via the impurity spin, as shown in (18.11):

|

-
-

-4 (18.11)

o

| $ it Fmclis 2
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18.2 Second-order (Born) approximation

Kondo's original calculation was equivalent to the following approxima-
tions for (18.3)-(18.8):

*) #ﬂ/“ -@] (®) @z @
LY Y \ '\
© ~( }/, (D x ):\+ R (18.12)
(a) (c)‘

(®)

Note that this is a second-order calculation of I" but is third order for Zj.
Diagram (@) in I' is just the bare interaction. The s-pf*pair bubble’ diagram
(b) is given by

Fig. 18.2 Analogue of Electron-Impurity Spin Scattering in Kondo Problem
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q,2,w, « Br_wn"'wm

EJ’%("H-‘Saa')(".-a-'sa'a')

\
L'\, } B —w,t+wy
’
/ xJ Z l Go(],w:)go (—wa+wm)o
P B et o, B (18.13)

The spin sum here is easily shown to be

S (Oer"Sas O e- Sy ) = 18:a- 84~ 0aa'Spp- (18.14)
a p’

and thel, w, sum is, after performing the frequency sum with the aid of (14.54):

f(e)- &]

Ko(i‘"m) = €e—z

S(«)—/(0)
JZI'_;:T' or Ko(z)=—de p(€) ———

(18.15)

where we have analytically continued iw,, to the whole complex z-plane, and
where p(e) is the density of states. We will assume that p(e) is a simple
Lorentzian of width 2.D:

Di= 1 1 1
= — . 18.16
ple) €e4+D* 2 [e-lD ¢+l'D] ( )

Placing (18.16) in (18.15) yields
Ko(2) = K§(2)+ K(z)

wn_ [ U@
8@ = -3 .f e D—iD)

-

A S VIOt Y
KO(Z)—+2m' ,[d (e—z)(e+iD)’ (18.17)

We will take z to be in the upper half-plane, then set z=w+i8 to get the
physically interesting retarded scattering amplitude. Just the case w=0 will
be considered here.

Let us firstevaluate X3(z). Thishaspolesate=z,e= +iDand e=#iT(2n+1),
n=integer (coming from the Fermi function. Note that we set the Boltzmann
constant equal to 1). If we close the contour in the lower half-plane, the poles
within the contour are at e,= —#iT(2n+1), n=0, 1, 2, ... as seen in Fig.18.3.
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X
$4 1 +iD
K

X o4 _—-Z

-
<

—miT@n+1),
n=012,...

Fig. 18.3 Contour for s-pf Pair-Bubble Integral
The integral vanishes on the half-circle, so we have

az) = 2 (—2mi , V(-4 ate, = —miT@2n+1),
Ki(z) = 2m'( 2mi) > { Residues of m ne012..

2% Gm (ecl-mT@tD(-T)

a0 e+-xir(2na+1) (€ —2Z)(e—iD)e—[-miTQn+ 1)]) (18.18)
This gives us, for z=0+3:
e A - 1
K30+id) = @mi*T .Zo (n+3) (n+¥)+Df2aT’ (18.19)

The second integral, K§(z), may be evaluated similarly, except that we close
the contour in the upper half-plane. In this case, we have inside the contour a
pole at e=z2. For z=0, the contribution from this pole vanishes, since
f(z=0)—4=0. The rest of the contribution is from the poles at ¢,=
+inT(2n+1), n=0, 1, ... and is exactly the same as (18.19). Hence we just
multiply (18.19) by 2 to get the entire K, result:

Ky(0+i8) = K§0+i8)+ K3(0+id)

2 - 1 ’ 1
= @nrT Z, (n+3) (+3)+Dj2=T

(18.20)
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This can be expressed in terms of the digamma function, given by (I'(z)=
gamma function)

_dinI'(z) =1 1
o =— -‘C*‘Z[;“m

(18.21)

where C=0-5772.... (Euler’s constant). Changing to a sum from 1 to « in
(18.20) and expanding in partial fractions gives

a1 1
K(°+’8)“5§ln—i (n—})+D/2wT]

= Jp[f(3+ D/2=T)— (3)] (18.22)

where p=(7wD)~! =density of states at e=0. For D> 2#T, the argument of
is large and we can use the expansion

Y (largez) =Ilnz~1/2z—--- (18.23)
0
K(0+i3) =~ JpIn(D[2nT). (18.24)

This diverges when T—0. The origin of the divergence is the 1/e behaviour of
the integrand together with the sharp Fermi surface (at 7=0) which cuts off
the integral at e=0. It is called an ‘infra-red’ divergence since it comes from
the low-energy range where ¢—0.

This same divergence shows up when we calculate the resistance. Placing
(18.12D(a)) plus (18.22) plus a similar contribution from (18.12D(c)) into
(18.12C, B, A) and utilizing (18.10), we obtain, after some work:

R « J2[1 =JpIn(D|2ks T)). (18.25)

Thus Kondo's second-order calculation of I (or third order for £*) vields
the experimentally observed InT behaviour. Unfortunately, the InT term
diverges as 7—0, which indicates that second-order perturbation theory is no
longer valid. In the temperature region where result (18.25) matches experi-
ment, it is called the ‘Kondo effect’. In the region where it blows up, it is
called the ‘Kondo problem’.

18.3 Parquet approximation with bare propagators

The standard cure when finite order perturbation theory breaks down is to
use partial summation, as we did in the case of the electron gas in RPA. In the
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present case, Abrikosov (1965) showed that at high T, the dominant diagrams
were the ‘parquets’, i.c., diagrams such as (18.8(a), (b), (c), (), (e)), obtained
by ‘opening up’ more and more interaction vertices and inserting an s—pf pair
bubble in them. (Thus (18.8(f), (g) and (h)) are not parquets.) Summing
over all parquets including terms of leading order in In(D/T) yielded:

T opar (i) = I'(its ) Oge=*Spg-, (18.26)
where

Iiw,,) = JI[I +2Ky(iw,)]- (18.27)
Using (18.24) we see that I'(w + i8) diverges when w =0, and T'is given by

1+2K,0+i8) =0, or 1 =2J|pIn(Dj2ksT), or Tx = Zkie-mnm,
(18.28)

where T is called the ‘Kondo temperature’. This divergence of I' at T is
muchworse than Kondo’s divergence at T=0. Moreover, there is a correspond-
ing divergence in the resistance at the Kondo temperature. In other words,
the cure appears to have killed the patient!

For some time after this result, it was believed that since this divergence at
Ty was similar to that occurring at the critical temperature in superconductivity
(see §15.7), or in ferromagnetism (see §17.7), it indicated some sort of ‘ localized
phase transition’ at the impurity site, i.e., formation of a bound state of the
impurity spin and s-electron spins . However, it is now known that the diverg-
ence at Ty is spurious, and occurs because we have only included those diagrams
which are important at high T, and neglected diagrams which become im-
portant at low 7.

We can get an idea of which diagrams are significant in the low-temperature
region by examining the similar, but much simpler ‘X-Ray Problem’, which
can be solved exactly (see Roulet ef al. (1969), Noziéres et al. (1969), Noziéres
and de Dominicis (1969)). In the X-ray problem, an approximation is
developed which rigorously takes into account all diagrams contributing to
lowest order in the coupling constant. This approximation involves self-
consistent renormalization of the propagator lines and vertices. Applied to
the Kondo problem, this would mean a self-consistent treatment including
diagrams having clothed s-propagators, like (18.8(/)), clothed pf-propagators,
like (18.8(g)), and clothed vertices, like (18.8(4)). No one has yet succeeded in
carrying out such a full renormalization programme although there have been
some attempts (Murata (1971)). However, we can perhaps get a qualitative
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idea of what to expect from such a programme by examining first the effect of
self-consistently renormalizing just the s-electron propagator, and then the
effect of renormalizing the pf~-propagator and vertices.

18.4 Self-consistently renormalized s-electrons

The self-consistent calculation using just clothed s-electrons (Cheung and
Mattuck (1970)) may be summarized in the following three equations:

ﬂ ~ l + (18.29)

(18.30)

(18.31)

The procedure is to calculate I in parquet approximation in terms of the
unknown clothed s-propagator, G, using (18.31). Then we calculate G in
terms of the unknown self-energy, Z*, using (18.29). Finally, we calculate 2*
in terms of I, using (18.30). This gives us the self-consistent ‘dog-biting-its-
own-tail” argument illustrated in Fig. (18.4).

Simultaneous solution of (18.29, 30, 31) shows that the renormalized pair-
bubble, X, no longer diverges as 7->0, but goes to a constant there. I" no
longer diverges at T=Tj but instead has only a weak divergence as T—0,

Fig. 18.4 Self-Consistent Kondo Dog



318 A GUIDE TO FEYNMAN DIAGRAMS [18.5

indicating the formation of some sort of bound state at 7=0. The resistance is

In(7/Tx)

“\'~ i @ro+ =1

(18.32)

which is finite everywhere. The agreement with experiment is good above T
but bad as 7-0, where it comes up with infinite slope (cf. the (1 —a7?)
behaviour in Fig. 18.1). (This result was first obtained by Hamann (1967)
by using Nagaoka’s decoupling of the equations of motion for G*. This de-
coupling is equivalent to the partial sum over parquets in (18.31). See appen-
dix M and Theumann (1970)).

The reason why this calculation removes the divergence of I at Ty is that
there is ‘negative feedback’ in the self-consistency loop: when I’ tends to
become large, so does £, which reduces the s-propagator, diminishing X and
thus I".

(This negative feedback has a striking parallel in the dog-biting-its-own-tail
of Fig. 18.4. The harder the dog bites, the more it hurts. The more it hurts, the
less hard he bites. This negative feedback explains why dogs do not diverge,
i.e., why they do not bite their own tails off 1)

18.5 Strong-coupling approximation with self-consistently renormalized pseudo-
fermions and vertices

We turn now to the self-consistent calculation using renormalized pf
propagators and vertices (Larsen (1974), Larsen and Mattuck (1974)). The
expressions for the s- and pf-propagators and self-energies are just (18.3, 4, 6).
However, the s-electron self-energy X7}, pf self-energy Z*/ and the s—pf scatter-
ing amplitude, I, are not found by the ordinary Feynman diagram expansions
(18.5), (18.7), and (18.8). Instead it is convenient to use the reduced graph
expansion (appendix N) to find the imaginary parts of these quantities; the real
part then follows from dispersion relations. The reduced graphs for 2}, I', and
%! are:

() . N
s N
7 " ! ,’///”, \\‘\ \\\ \
11 \ ! \
8 =ImE)=o w + +,’r{u\ W ol +-e- (18.33)
\\\ A7 \‘\ \\\ ’:/ /,’
” ATRNY 2
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FHES S (18.34)

ohe

boslm= ;;;}+ (18.35)

That is, the reduced graph expansion for the imaginary part of each quantity
isthe sum of all possible reduced graphs having the proper number of s-electrons
and pf’s in one endpiece and out the other endpiece with all possible inter-
mediate states.

It is assumed that all s-electron-pf interaction vertices occurring within the
endpieces of the reduced graphs are clothed, i.e., replaced by full 4-tail I"'s of
the type on the left of (18.34). For example, diagram 3 on the right of (18.35)
has as a typical contribution the diagram

(18.36)

where the circles are the clothed s—pf interaction, and the dashed line denotes
intermediate state.

Observe that the higher-order terms in each expansion involve higher and
higher-order endpieces, so that the set of equations (18.33-35) is not complete.
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In fact we need an infinite number of equations for these higher-order ampli-
tudes. The expansion for the most general many-tail diagram may be written:

2X pfs 2v s-electrons

: = = p s-lines
¢, k.0
k pflines
(18.37)
If we designate the general many-tail diagram as follows:
=T =T, (18.38)

where the latter notation shows (k + /)/2 = total number of pairs of pflines and
(m+n){2=total number of s-electron lines, then (18.37) may be written out
using rules similar to those in appendix N. This yields the following monster:

83T yan) = T Ay 3 (=DM T+(=1p ...
i J 1

S, 8.k,

ooe j 8(x, +rodX,— Y)XRI‘VI:‘?;'* ({ya.-lvv-d-c}: {X,})

x A T0RE xoh (avvesadd). (18.39)

where p=k+n and

[ = rdx,d(x,)f(x.)'“ de.d(x.m-x.)

1 1]

X I A%y i1 PXee ) S (= Xpi1) f dxyon p(Xiin)S (X14n)
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In this beast, o/(x) is the pf spectral function, p(x) is the s-clectron spectral
function, and f the Fermi function. Y is a linear combination of external
frequencies, {V1sv-s-} aNd {¥1484v4.} are short for the set of labels on the
lines entering at the bottom or the top respectively, {x,} are the intermediate
state variables, 4 is the number of hole lines, R means retarded, A means
advanced, and the index i, i’ or j stands for the particular Feynman diagram
contributing to the total amplitude. A,, is equal to (— 1)’ times a spin sum
factor, where f=number of fermion loops external to the endpiece diagrams.

Fortunately, there turns out to be a relatively non-traumatic path through
this chamber of horrors (18.39). Namely, there is a simple class of solutions to
(18.39) known as homogeneous or scale-invariant solutions. A homogeneous
function f(x,,x3,...,X,) is defined as follows

f(x.,x,,...,x,,)=q¢f(ﬁ,ﬁ....,fi), (18.40)
n 7 7

where 7 is an arbitrary real number known as the scaling factor, and a is a real
exponent. A simple example of a homogeneous function is /1 (x,x)=xt+x3.
Scaling this by 7 yields f(x,/9,X:/1) = x}[n* + x3[n* =772f(x,, x2), s0a=2. Itis
easily verified that if the quantities in (18.39) are homogeneous, and behave as
follows when scaled by |»| (y is an as yet unknown constant):

I'({(yaa) = Inl"*v-'P:({%}) (18.41)
o (x) = || (x/|n]) (18.42)
p(x) = p(x/I9l) (18.43)

then (18.39) is satisfied. That is, on the left and right of (18.39), we divide x,,
y., Y and T by |n| wherever they appear. Noting that f(x,)—f(x/[n]) =f(x/)
(since f(x,)=[exp(x,/T)+1)%,) and 8(x,)—~>8(x./|9}) = [7]8(x), and substitut-
ing the expression in (18.41) for the various scaled quantities yields just (18.39)
multiplied on the right by the factor || to the power

A-8+k —€+
Pow(right)=k+n—l+k(y—1)+l-y[ 3 ]—[y ; ”]+

k4A+8] [n+v+
+|—r[ +2+ ]—[" ; ‘], (18.44)

and on the left || to the power

Pow(left) = 1—Ay—v. (18.45)
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These two powers are identical, showing that homogeneous functions do
indeed satisfy (18.39).

Using results (18.41-43), and under the assumption that the s are functions
only of a single variable z (or w if we continue z to just above or below the real
axis), where z is the variable associated with each of the incoming pflines, and
requiring that | «/(x) and { p(x) be normalized to unity, it can be shown that
& has the form (¢ =tan-'(d/aT)):

- Ysing)’ - o)1
d(w) = m,—){(dT—iw)y +(aT+lw)7 } for 'w|$4
=0 for|w|>4 (18.46)
with corresponding pf propagator:
ry/2)(sin §)”
FR(w) = id~Y (aT—iw)yr-' "7, (18.47)
) ( sin (¢y)
and the general many-tail vertex has the form
a»
RAT) ~ v (£)¥77 T Fiw)t 7, (18.48)

Here the quantity « is a constant. Note that these results are valid only to
lowest order in /T and w/4. Thus for example, we can see from (18.46) that
&7 is not scale-invariant for w > 4.

Note that by (18.38, 48), I'§ is just the pf self-energy, given by:

Z% = M}~ A7 i~YaT—iw)'~. (18.49)
But 9 is given by the Dyson equation:

Y(w) = (18.50)

1
w—ZP ()’
For this to reduce to the strong-coupling form (18.56), when w—0 we must
have

lim Z”(w) >w,
-0
This requiresy >0.
To see the significance of 4 and the exponential y in (18.46-48), let T=0
(then ¢==/2) and consider the time transform of Y(w). For y=1 we have
2*’ =Ty~ —id. Placing this in (18.50) yields

1

1 18.51
w+id ( )

Y(w) =
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Fourier transforming we find

gR(1) = —if, e~ (18.52)
Similarly, for y # 1 we find:

GR(1) « 8,(41)7". (18.53)

Thus, for y=1, the probability amplitude for the pf being in, say, a spin up
state, decays exponentially, while for 0<y <1 the decay is algebraic, with a
long time tail. The associated lifetime of the decay is 4.

If we now expand (18.48) to lowest order in w/T and place the result on the
left of (18.39), we obtain

a* w
33 I~ Ti-4y-viatve2 jf Ay both even or both odd
f P' aT
4%
~ T1=av=v ja+v+l  if 3 odd, v even or Aeven, v odd. (18.54)
Pv

Placing (18.48) on the right of (18.39) and expanding to lowest order in w/T
we find that every term on the right has exactly form (18.54) so that monster
(18.39) is satisfied. Solutions of the form (18.46), (18.48) are known as strong-
coupling solutions. It should be emphasized that the strong-coupling forms
hold only to leading order in w/4 and 7/4, since homogeneity and scale
invariance is broken by 4.

The strong-coupling form is not a complete solution since the constants
7,4, e are thus far undetermined. To find them would require actually carrying
out the sums in (18.39) in detail with all 4,,’s included, which would be a
formidable task. However, it is possible to at least determine y by recourse to
an exact numerical result of Wilson (1973) for S=1 in the following way:
First of all, let us get an expression for the magnetic susceptibility x due to
the impurity spin. y is given by (H =magnetic field):

x = lim S22
H-+0

(18.55)

Since (n,> and (n)> are obtained directly from the single-particle propagator
@ (see 11.24)), they will have the same dependence on 4 and T that 4 does
(sec (18.47)), i.e., in leading order at T—0:

T
av -’

X~ (18.56)
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Now a numerical result of the T=0 calculation of Wilson shows that y is
finite at 7=0. Hence in (18.56) we must have y=1. From (18.52), this means
a pf spin state decaying exponentially with lifetime 4-! and propagator
(18.51). We will, in what follows, take the corresponding spectral density to
be the Lorentzian

4

A (w) = w?+ 42

(18.57)

rather than the square form which (18.46) reduces to when y=1.

To get a crude idea of the other constants, i.e., 4, «, we approximate (18.34,
35) by the first diagram on the right. These diagrams are the most important
at high temperature. At low T, as pointed out after (18.54), in the w, T—0
limit, all diagrams have the same strong-coupling form. Hence the first
diagram on the right of (18.34, 35) will also go over to the strong-coupling
form when T->0. The coefficients will of course be wrong, but since the 7—>0
and the high 7 forms will be correct, we may expect to get a useful interpolation
formula,

In functional form, using just the first diagram on the right, and taking the
case w=0, (18.34, 35) are

22°(0) = 3 |IY0)|*3B,(0) (18.58)
ar(0) = —2|I0)|*8K(0) (18.59)

where |I'(0)]*=I"’(0) I"4(0) comes from the two endpieces, and 8B,(0), 3K(0)
are the factors coming from the intermediate states. Using the dispersion
relation

1 oT
I(z)= () = - ;fdx x_(’;)
(18.59) becomes
Ry 1
I'}o) = m, (18.60)

where K(0) is the pair-bubble with clothed pf propagator, evaluated using the
Lorentzian density of states (18.57):

1 4 D 27?2
Kk(o)=p[ln27Df —z/:(5+ m)]z p[lnz— "643 ] (18.61)

This is (apart from a factor of J) just the generalization of the bare pair-bubble
(18.22).
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We now put (18.60, 61) in (18.58) above and note by (18.51) that 2%/ =
Z#7=jd. This gives us the following equation for 4:

T 1 4 4
{7*'”(5*5?)“*‘('*57)}
4=34

18.62
" 20T ’ L, a4\ (18.62)
Tx 2 22T
which has the solution
3
AT)~Tx + % T, for T<Tx (18.63)
i T
A(T) fad T m, for T>Tyx (18.64)

where Ty is the Kondo temperature.
If we place this into (18.61, 60), we find that as 7—0, I'(0) has the strong
coupling form (cf. (18.48)):

r~-~, =2, (18.65)

If (18.63) is put into the susceptibility (18.56) we find

1

x~_
3
T,+%T

(18.66)

i.e., a Curie-Weiss like behaviour.
The resistance may be calculated from ImZ} in (18.33), using the first
diagram on the right for a crude approximation. The result is

R=~] -r forT<T 18.67)
-_—1 T ?‘i or K ( .
3n?
for T>Tyx (18.68)

Ry —————
16In*(T|Ty)

These results are in good agreement with experiment. The whole resistance
curve as a function of temperature is compared with the experiments of Loram,
Whall, and Ford (1971) in Fig. 18.5.
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Fig. 18.5 Comparison of Strong Coupling Theory with Experiment.
Points: Experimental Results. Solid Line: Theory
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Further reading

Rado and Suhl (1973).
Kondo (1969).
Heeger (1969).

Exercises
18.1 Verify in detail (18,13)-(18.25).



Chapter 19

The Renormalization Group

19.1 Introduction

During the years 1964-74, a new tool known as the ‘renormalization
group’ wasintroduced into the attack on the many-body problem. The method
was originally developed by Gell-Mann and Low (1954) to improve on pertur-
bation theory in particle physics, and later applied to infra-red divergences by
Bogoliubov and Shirkov (1959), and to quantum electrodynamics and high-
energy physics by Wilson (1970). In many-body theory, Bonch-Bruevich
(1962) employed it on the electron gas, and it has been applied to the Kondo
problem by Abrikosov and Migdal (1970), Fowler and Zawadowski (1971),
Fowler (1972), Zawadowski (1973), and to one-dimensional metals by
Menyhérd and S6lyom (1973). (Another type of renormalization group has
been used with great success by Wilson and others (Wilson (1971a, b, ¢),
(1972)) to tackle the problem of critical phenomena, but this type will not be
discussed here.)

In this chapter, we will give a brief introduction to the renormalization
group, following Bonch-Bruevich (1962) and Wilson (1970). To keep the
beginner from getting lost in what at first sight appears to be an impenetrable
Jjungle of variables and parameters, we will restrict ourselves to discussing just
one simple, exactly soluble case, i.e., the high-density electron gas.

The renormalization group is a set of transformations of the quantities in
the Dyson equation. These transformations are simple multiplications by a
factor, and they have the property that they leave the form of the Dyson
equation unchanged. The transformed quantities obey differential equations
called ‘Lie equations®, which turn out in many cases to be a lot simpler to
solve than the Dyson equation itself. This constitutes one advantage of the
method. Another advantage is that it may lead to a new series expansion which
is an improvement over the original expansion.

We will first review the theory of the effective interaction in a high-density
electron gas, then define the renormalization group in this case. Finally, we
derive the Lie equation for the group and show how to solve it.

19.2 Review of effective interaction in the high-density electron gas

In the high-density limit, the effective interaction is given exactly by the
Dyson equation
328
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XK = W"LW (19.1)
k,w

which may be translated into (for simplicity we consider only the w=0 case,
so the w-dependence will be omitted from all that follows)

Ve, 0=0) = V(k,0)+ V. (k,0) 7 o(k,0) ¥ (k,0). (19.2)
Using (10.40) and (10.82) this may be written out in detail, letting k= |_IE| :

mkg
ey

4m-z 1 1 -3k’
Vek) = —— + Velk) == | -1 + 7 (1-3k'Hln ﬁ% (19.3)

Kk’

] 4ze?

where k' =k/kg. It will be convenient in what follows to re-write this equation
in terms of the following quantities:

(a) The ‘dimensionless charge’: g* = ;:—;: (19.4)
F

(b) The ‘bare interaction propagator’: Do = 1/k? (19.5)

(c) The ‘effective interaction propagator’: D = Vg (k)[4me* (19.6)
(d) The pair-bubble function:

2w wi? 1 k2 1 -4(k3 W)t
2W—-——- l+|l=)ll--=|Ih|——5—— 19.7
S [ +(k’) ( 4W) "|rw|] 7

where W=kZ2. Note that f(«)=0, f/(0)= «, and fis always positive. Then the
Dyson equation (19.3) becomes:

D = Dy— Dg?lk*f(k*{W)] D,. (19.8)
It will be convenient to re-write this using the quantity
d(k*W,g*) = k> D(k*, W,g?), do=k*D,=1, (19.9)
in terms of which the Dyson equation becomes
d = dy—dg*f(kK*|W)dy, or d=1-dg*f(k*/W). (19.10)

Note that d=d(k*/W,g*). Equation (19.10) may be immediately solved to
yield

1
d(kZIW’gZ):-W. (19.“)
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This d is just the ‘screening’ or *shielding’ factor described in (10.35) and
(10.37). Sincef(0)= and f(«) =0, we have that d=0 for k—0 (corresponding
to large distances, where we have total screening of the electron charge) and

d=] for k— o, (19.12)

corresponding to short distances where the charge is unscreened.

Note that all of these results are exact in the case of the high density electron
gas which we are considering here.

In the succeeding sections of this chapter, we will pretend that we don’t
know the solution (19.11), and show how to solve (19.10) using the re-
normalization group.

19.3 Renormalization group for interaction propagators in the high-density electron gas

The renormalization group in the present case is defined as the set of trans-
formations

D —»:zD(=D), Dy—zD(=D,), g —z'g¥(=§> (19.13)

where the multiplier z is a real number. Since z can vary continuously, the
renormalization group is a continuous or *Lie’ group. Note that the quantities
D, Dy, g*are the true ‘ physical’ quantities, while zD, zD,, 2! g2 are unphysical.

The Dyson equation (19.8) is invariant under the renormalization group
transformation:

b = Dy— Dg*(k?f(k*|W)) Do, (19.14)
i.e., the unphysical or ‘renormalized’ quantities obey the same Dyson equation

as the physical ones. The renormalization group transformation may also be
stated in terms of the quantity d(k) defined in (19.10)

d—zd(=d), dy—>zd(=d), g*—z'g(=g? (19.15)

which leaves the Dyson equation in form (19.10) invariant.
It is useful to define a quantity called the ‘invariant charge’, given by

ginw = g2d = g*d. (19.16)

This is also invariant under the renormalization group transformation.
Next we express the multiplier z in terms of a parameter, A, as follows:

1

2A/W,gH) = Wg—z)\

(19.17)

Note that this z(Af W, g?) is an unknown function at the outset, since d(k*/ W, g%)
is unknown (here, as mentioned above, we are just pretending that it is
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unknown). Hence the transformed quantities become:
d, = d(k2 I\, WA, §2) = z(\| W, g¥) d(K* W, g%)
_ Ak W.gh)  dkP[A-AIW,g%)
T dNw.g)  dAW.g)
g2
2\ W, g%)

(19.18)

= g2 d(\W, g?). (19.19)

52
i =

Observe that d, is a function of k2/A and WA, and that it is expressed as a
function of g2 rather than g2. This means that we should imagine that (19.19)
is solved for g2 as a function of g3, W/A, then place the result in (19.18). This
is what is done in practice (see after (19.34)). Note that d obeys the so-called
‘normalization condition’, i.e., that d=1 when k*=2X;

a1, WA, g3 = 1. (19.20)

The identity transformation of the renormalization group is obtained when
z=1. Since, by (19.12), d(A/|W,g*)—1 when A—>x, we have

z=1 for A— o, (19.21)

showing that A= o is the value of the parameter for the identity transformation.

19.4 Transforming from one transformed quantity to another: the functional equation
of the renormalization group

Now let us see how to go from one transformed quantity d, to another, d,..
We have by (19.18)
d(k*IW,g?)
dx|w,g?’
d(k*|W,g%)
dMW.gh

d(k3 X, WX, g3 = (19.22a)

d(k3[A, WA, §3) = (19.22b)

Dividing (19.22a) by (19.22b) yields
s e <2y AAIW.2%)
J(k"//\ » ;"V/A 8a) = d(A’/W,gz)
= dQA\X, WX, g2) A3, WIA 8) (19.23)

d(k*/A. WA, &

and

1
za_ 1
8= o win g B (19.24)
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It is convenient here to relabel the various quantities in (19.23) and (19.24) as
follows:

x= kXN, y=WIX, gi=sJ), M=t (19.25)
Then (19.24) becomes:
8t = J*d(t,y,J%) (19.26)
and (19.23) is
dx,y,J?) = d(t,y, T d(x/t, yIt,]? (1, y,T?). (19.27)

Equation (19.27) is the functional equation of the renormalization group in
this particular case. It has the same form as (11.16) in Bonch-Bruevich (1962)
and as (13) in Fowler and Zawadowski (1971), so actually it is quite general.
However, it should be carefully noted that these authors use the single symbol
d orJ to denote both the physical quantity and the transformed, multiplicatively
renormalized quantity. To avoid the profound confusion this can lead to, we
have followed Wilson (1970) and used two different symbols, d and d (or g*
and §%). (Wilson uses d, for the physical and d for the transformed quantities.)
In particular, it should be noted that

d(k3(A, WIA,§3) # d(k3 (A, WA, §3) (19.27)

i.e., the transformed d is not simply the physical 4 with the variables k, W, g2
replaced by k%A, WA, g3.

19.5 Lie equation for the renormalization group

We now cast the functional equation (19.27) into differential form. Differ-
entiating both sides with respect to x (let s=x/f):

ad(xy.J?) _ P [ad(s, yitJ2d, y,P))] 1
ox os t

and setting ¢ = x on both sides (so s =1) to get an equation in the single variable,
x, yields the Lie equation:

ad(x,3,J%) _ d(x,y,J?) [ad(s, yixJ* d(x, y,J%)

. 19.28
ox x os ],-1 ( )

The bracketed quantity on the right is called the *infinitesimal generator’.
Equation (19.28) may be written in the alternative form:

dlnd(x,y,J?) 1 [a Ind(s, y/x,J*d(x, y,J?))

os

. (19.28%)
ox x o1

where we have used the fact that d(s=1,...)=1.
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Note that (19.28) is an equation for the transformed, unphysical function,
d as a function of x. Once we have found this function, the physical d can be
found from (19.21) together with (19.19):

Ay =AW, 8); §i.o=g% (19.29)

That is, the transformed, unphysical d,, §2 go into the physical d, g? when
Ao,

Another way of writing the Lie equation is in terms of the invariant charge,
(19.16). Multiplying both sides of (19.28) by J* and noting that by (19.16)
and (19.25) we have

glznv = gi JA = g}"JA' = g:’ J(kzlxlv WIA"gI') = ]z‘](x.}’.]z)s
which yields:

Eg'zi _ g,_zm, [ad(s,ylx,g.’..v)] (19.30)

ox x os

which is an equation for the invariant charge.

19.6 Solution of the Lie equation

The usual procedure in solving the Lie equation is to make some approxima-
tion for din the * generator’ on the right-hand side of the equation, then solve
the equation subject to the boundary conditions (19.20, 21) to obtain a better
approximation for d. In the present case, we will use a crude first-order
perturbation approximation, valid only for k> kg, for 4 in the generator.
When the Lie equation is solved, we find that the result is valid for a/l k values,
and is in fact exact (due to the simplicity of our example).

Let us approximate the effective interaction by the first-order expression

SED0000 & e+ Ww (19.31)

which corresponds to setting da1 on the right side of the Dyson equation
(19.10) yielding:

d(k3[W,g») =~ 1 —g2f(k*|W). (19.32)
This is valid when g2f<1, which means that X/ W cannot be too close to 0,

since f(0)=». The corresponding approximate d,, 3 may be found by sub-
stituting (19.32) in (19.18, 19):

1-g*f (k| W)

d, = kA, WIAED = TS W)

(19.33)
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& = gl -g*f(\w)). (19.34)

To get d expressed in terms of 32 2 rather than g2, we solve (19.34) for g2 in
terms of §2, and substitute the result in (19.33). Retaining only the lowest-order
terms in &} in the result, we find for our approximate d:

d(2 A, WA 83) = 1 -G k3 W)=f N W), (19.35)
or, using (19.25)
d(x,3,J%) = 1-JUf (xIy) - (1 p)]. (19.36)

We now calculate the generator on the right of the Lie equation (19.28).
Substituting x—s, y—>y/x, etc., in (19.36) yields

d(s, yix, J*d(x,y,J) = 1-J*d(x,y,J%) [f(s;x) -f (;)] (19.37)

Note that this is an expansion in terms of the invariant charge 32, =Jd (see
(19.16)). Taking the derivative:

[a"] = D d(x,y,0%)- : ‘i{((x"/’y’;) (19.38)
Substituting this into (19.28) gives
ad(%’]l = ey, Jop g2 LD (x’y ), (19.39)
which is easily solved to yield
d(x,y,J?) = W’lf(fcm . (19.40)

Using the normalization condition (19.20):

Ny 1 o
J(I,y.])—l—B+]2f(l/y). or B=1-J3(l}y). (19.41)
Hence
1
2T = =T A (1942
or, using (19.25)
d(k* (A, WA, gD = ' (19.42)

1+ Uk W)=fW)]
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To get the physical d from the solution for the transformed d in (19.43), we
simply use (19.29), which yields (note that f(A/ W)—0 when A—x):

1

1 — ol — ©) = 2 2y

(19.43)

which is the exact result (19.11)!

In order to see why it is that we can get (in this super-simple case) an exact
result starting from the crude first-order approximation (19.32) let us see what
happens if we start with the second-order approximation:

dk (W, gy~ 1 —g* [k} W)+ g’ S (K| W)]. (19.44)

Going through the same procedure as in the first-order case, yields, instead of
(19.37), the expression

d(s,yix,J?* d(x,y,J?) = 1 =J*d(x, y, TS (sx[y) — f(x[»))+
+ {(J2d(x, 9, TS (sxly) — f(xIM)]. (19.45)
Taking the derivative, we find

od x df(x/y)
— = -J*d(x,y,JH - —=—
[%].-. S e T

df (x/y)
d(x/y)
The second-order term is evidently zero, so we are left with just result (19.38).

In a similar way, all higher-order terms yield zero when we calculate the deriva-
tive, so the first-order result (19.38) is exact.

+ 2002 d(x, y, JOPLS (5x19) = £ (5[ aos % (19.46)

Further reading

Bonch-Bruevich (1962).

Wilson (1970).

Fowler and Zawadowski (1971).
Zawadowski (1973).
Bogoliubov and Shirkov (1959).

Exercises
19.1 Verify (19.45).



Appendices

Appendix &/
Finding Fictitious Particles with the Canonical Transformation

7.1 Canonical transformation method of solving the many-body problem

In this appendix we will pin down some of our qualitative statements in
chapter O with the aid of the canonical transformation technique. The idea
is to transform the equations for the system to a new set of coordinates such
that the interaction term becomes small. In other words, we transform from
the coordinates of strongly interacting real particles, to coordinates of weakly
interacting fictitious particles, i.e., quasi particles and collective excitations.
Although the transformation method is not as systematic as the propagator
technique described in chapter 0, it nevertheless gives excellent insight into
the nature of many-body systems, so it will be presented briefly here.

Let us first express quantitatively our remarks about a system of N non-
interacting particles. Suppose that these particles have masses my, m,, ..., my,
and that they are placed in a time-independent external force field F(r), with
associated potential V(r). Our problem is to find out how they behave.
In the classical case, the system is described by the N independent equations
of motion

dzl"
F(l") = m,zz—, i= 1,2,..., N, (d.l)

with solutions of the form r,=r(r). In the quantum mechanical case, this is
replaced by the Schrodinger equation

N
HY = E¥, with H= 3 H, H = %4- V), (#.2)
- i

where H, ¥, E are the total system Hamiltonian, wave function, and energy,
respectively, and H,, p;, V(r,) are the single particle Hamiltonian, momentum,
and potential energy. If ¥ is written in the product form (neglect symmetry
requirements for simplicity):

N
Plry...ry) = ;[:Il $i(r)) (#.3)
336
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and substituted into (&.2), it is found that (&.2) separates into the N single-
particle Schrédinger equations

Higp(r) = Epyp(r), i=1,..,N (.9)
and the total energy is just the sum of the single-particle energies:
E=3E,. (#.5)
i

Thus, in both the classical and quantum mechanical non-interacting systems
we find N independent equations, which means that we have just N one-body
problems,

In the real many-body problem, we have seen that the particles interact
with one another. This means that in the classical case it is necessary to solve
the N coupled equations

N dzr, .
F(r,)-}-JZI F(r,,r,) = mlwz-, 1= l, 2, seey N, (d.6)

where F(r,r)) is the interaction force between two particles. In the quantum
case, we find a non-separable Schrédinger equation:

Nora N
[z [2p_”,'+ V(r,)]+'} 2 V@t pup)) Hry...xy) = EV(r;...15)
ilLom, gz

(«.7)

where V(r,1;,p,, p)) is the two-particle interaction potential, considered to be
momentum-dependent, for the sake of generality,

It will be convenient in what follows to make a distinction between ‘ weak’
and ‘strong’ interactions. We will call the interaction term in (#/.7) * weak’
or ‘small’ if it causes just a small perturbation to the solutions in the non-
interacting case, i.e., if it can be handled by ordinary finite-order perturbation
theory. If it cannot be handled this way, the interaction will be referred to
as ‘strong’ or ‘large’, Most of the interactions we have to deal with are of
the strong type. For example, consider the Coulomb interaction between
two electrons in a metal, This has the form

2

Viepr) = (#.8)

Iri—ry| )

If the ground state energy of the system is calculated using this as the
perturbation, we obtain the result

Ey = EQ+EM+o+o+o+...,
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i.e., infinity to all orders of perturbation theory above the first! (It should
be noted that there are some interactions which are small in magnitude but
which cannot be treated as small perturbations, such as the small attraction
between electrons which gives rise to superconductivity. According to the
above scheme, these will also be classified as ‘strong’.)

Since visualizing the motion of a strongly interacting N particle system is
roughly like trying to watch a basketball game played with N balls, the early
attacks on the many-body problem tried to reduce it to a one-body problem
by getting rid of the interaction. This could be done either by pretending it
didn’t exist, or more legally, by transforming it away. In the classical case,
such a transformation implies that we change to a new set of co-ordinates in
which the equations of motion (&/.6) become approximately decoupled. For
instance, in simple situations it might be possible to define new co-ordinates
R, given by

Iy = rl(Rl!RZN":Rk'“-’RN) . (&{9)
which, when introduced into (&/.6) change it into:

IR
SR = M 254 S R, R). (.10)

small

The M, are referred to as ‘effective masses’. Equation (&/.10) constitutes a
set of N nearly independent ‘one-body’ problems which can be more or less
accurately solved, the remaining small interaction A(R,, R;) being treated by
perturbation methods. The ‘bodies’ here are of course not real but rather
fictitious bodies.

The idea of transforming a system of interacting real particles into a system
of approximately non-interacting fictitious bodies can be easily illustrated by
means of two interacting particles in a gravitational field. Let the masses of
the two particles be m,, m,, positions r,, r,, gravitational force F;=m,g,
F,=m,g, and interaction force F(r, —r,). These obey the coupled equations
of motion

F1+F(l'1—'l'2) =mi

(#.11)
Fz-F(l’l—l’z) = mzfz.

The problem may be reduced to two independent one-body problems by
making the transformation to new co-ordinates

(m;+mz)R = myxr;+myr, (centre of mass co-ordinate) o.12)
(.
r=r—-r (relative co-ordinate).
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Adding the two equations yields
Fiow = (my+my) R, (2.13)
while multiplying by m, and m, and subtracting gives

myms, ..

Er) = my+m,

(o/.14)
Thus, we have two new independent equations: one for a fictitious particle-
like body of effective mass m;+m, with position at mass centre R and the
other for a fictitious particle-like body of effective mass mm,/(m,+m,) and
position at the relative co-ordinate r.

n+ |l

Fig. /.1 Chain of Atoms with Harmonic Coupling

The new non-interacting fictitious bodies are not always ‘particle-like’ in
their appearance, however. Consider for instance the well-known case of a
one-dimensional chain of N atoms of mass m coupled by nearest-neighbour
harmonic forces shownin Fig. «/.1. The classical equation of motion for such
a system is
d*u,

= Zk‘: U, + kc("r!+l +u -]) =m Ehz-—

(o.15)

where u, is the displacement of the nth atom from equilibrium and k. is the
spring constant. The transformation (27.9) here is just the simple Fourier
transform:

u, = %‘, Uy e, (o/.16)

Substituting this in («.15) produces decoupled equations of form (.7.10):

2

2k (coskd—1) U, = degf—FO, (.17)

which have the solution

Uy = Agel™'; w, = J[%(l —coskd)}- (7.18)
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If all the 4,’s are zero except one, then (%7.16) becomes
u, = Ake-l(knd—w:’) (d.lg)

which is just the equation of a sinusoidal longitudinal vibration or ‘sound
wave’ on the chain, of frequency w, and wavelength A=2n/k. Thus, the
fictitious ‘single bodies’ here are wave-like instead of particle-like.

The quantum case may often be handled in a parallel fashion by trans-
forming the Hamiltonian, H, canonically, so that its interaction term becomes
small. Introducing the new co-ordinates R, and momenta P, by

r = l"(Rl,...,Rk,. . .,RN;Pl,...,Pk,...,PN)
Pi = PRy, .., Ry; Py, ., Py),

(Note: The definition of a canonical transformation is that the new co-
ordinates, R,, P,, must obey the same canonical commutation relations which
are obeyed by r,, p;, i.e.

frop) = iidy, [rnm] =0, [p,p)=0) (o/.207)
yields the transformation

H= 2!‘. H(m,r,)+%§ Ve, pnpy)

= H' =3 HP,R)+1X V'(R,R,;P,P,). (¥.21)
q Qm ——————

small

(7.20)

If this can be done, then the problem reduces to the set of N approximately
independent one-body problems:

H'(P,R)$; = E; ¢, (#.22)

with V' as small perturbation. These are just the equations for the inde-
pendent fictitious bodies in the quantum case. The energy levels of the quan-
tum system are the sum of the fictitious body energies:

E=3E, (o.23)
q

A simple example of transformation (&#.21) is provided by the system of
two interacting particles treated quantum mechanically. The system obeys
the equation (assume no gravitational field)

H¥(r\,r;) = E¥(r,13) (4.24)
where

7 ha
H= +272+ V(l'x"l'z). | ='i . (‘d‘25)

s
2m,
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Making the same transformation (&.12), to centre of mass and relative
co-ordinates, we find

H = H(R)+ H(r)
where R

H(R) = pz He) = —&—

2(my +my)’ 2( ﬂ_'”_Z)
my+my
which yields the two Schrédinger equations
H(R)$4(R) = E; ¢:(R)
H(r)y(r) = Eyy; (r)

showing two fictitious particle-like objects just like those in the corresponding
classical case.

We can also demonstrate the transformation (27.21) for the chain of atoms
in Fig. &/.1 (for details, see Ziman (1962), p. 6 ff., or H. Hgjgaard Jensen (1964),
p. 1). The Hamiltonian for the chain is (neglecting end effects)

H= Z( +k. uz) -3k, g (tp Uiy 1ty thny)

n-l

- Z ( Piy uz) k, >: . (#.28)

ne=1|

+V(r) (s7.26)

(£.27)

The first term describes a set of independent harmonic oscillators, one on each
atom site, while the second is the interaction between each atom and its
nearest neighbour. The transformation (%/.20) in this case turns out to be

1 .
U, = 7_ z (qucosqnd—mg’qsmqnd) (.29)
1 .
Pn = TN z (mew, U, singnd+ P cosgnd) (s£.30)
where 2%
= A/‘;;‘(l—cosqd)}- (o.31)

The %,, 2, obey the canonical commutation rules
Uy Pyl = ik, U]l =0, [P(Py] =0, (#.32)

which may be proved by substituting (=.29, 30) into (&/.20°), with r,;=u,.
Placing (.29, 30) into (2.28) and using (.27.32) we get, after some tedious

calculation, the result: ) \
H = z [%#"T“’Wg], («£.33)
q
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which is just the sum of a set of ordinary harmonic oscillator Hamiltonians
of various frequencies. (Note: the usual transformation which is made is not
(.29, 30) but rather

— 1 —Iignd . 1 +ignd
un_VI_VZqu ’ Pn—‘/ngqe .

However, this leads to a Hamiltonian which is not completely decoupled
since it mixes modes of wavenumber g and —g. Transformation (.29, 30)
produces complete decoupling.) The Schrédinger equation and energies of
the gth oscillator are the well-known

[ ’ ?2 m 2 r ’ ’
Hq¢n¢ = (z_mq'*'quq]§)¢n, = En¢¢nq
E,:q = Iiw,,[nq+§], n, = 01,23,... (7.34)

so that the total system energy and wave functions are
E =3 hwfn,+1)
q

W = B, B oo B (.35)

Thus the independent *fictitious bodies® here are just quantized longitudinal
sound waves.

It will be useful for us to recall the operator algebra method of deriving
results (#7.34) (see, for example, Park (1964) p. 110 ff.). This is done by
performing an additional transformation on H, in (2/.34) which involves the
*ladder’ operators, b, b} defined by:

/mw,
by = 2mh e, 29~ 25 %,

b} = A/zm P+ me‘% (7.36)

From the commutation rules (2.32), it is easily verified that the b;’s obey the
rules:

(@) [bp bl) = 84y (D) bnbge] =0, () [b),b1] =0.  (#.37)

Substituting the inverse of transformation (&.36) into (</.34) and using
(&#.37a), yields the new Hamiltonian and Schridinger equation

Hy = hwy(bl by+3), Hids, = E, én,. (&.38)

Using (=#.37, 38), it may be shown (see above reference) that if we let i}, be
the lowest-energy eigenfunction of Hy, then all the other eigenfunctions are
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given by
o l 1
¢,,‘ = !/l,,' = W(bq') 'l/loq, n, = 0, 1, 2, seer (ﬂ.393)
9

The corresponding energies are
E,, = hw(n,+1), (.39b)

thus establishing (&.34). It also follows that the b-operators have the follow-
ing important properties when operating on the energy eigenfunctions:

(@) bJ '/’nq = ‘/m "‘n.+h
(®) bothn, = Vingn,1, (.40)
(¢) b bgtpn, = ngthn,

Observe that the additional transformation, (&.36), changes /' in (&/.33) to

H* = 3 hwyblb+1) = 3 T hw,+3 ho,bLb,,
q q q

E, (7 .41)
with associated Schrodinger equation
H' W pnan.stein... = E¥ g e ...
where
o on e e atars o = g Wngy oos Yngy e (o7.42)

.2 Elementary excitations

The results in the last section show how the problem of a strongly coupled
classical or quantum many-body system may often be solved by transforming
to a set of approximately (or exactly, in the simple cases considered) inde-
pendent fictitious bodies. There is a more modern (but equivalent) way of
viewing these fictitious bodies which has the advantage of giving a unified
picture of many-body systems. It is based on the concept of elementary
excitations, and is the viewpoint which is taken throughout this book.

In order to understand what an elementary excitation is, and to see how it is
related to the fictitious bodies, let us look at a specific case, the phonon.
Recall first that light waves may be regarded either as quantized radiation
oscillators or as consisting of particles (*quanta’) called photons each of which
has energy fiw. This suggests that it may be possible to look at sound waves
in the same way. If we examine result (=/.34), we see that instead of regarding
the sound wave of wavenumber ¢ as one fictitious body (the harmonic oscil-
lator) having quantized energy E,=/w(n,+4), we could alternatively regard
it as a set of n, quanta each having energy fiw,, together with a ground state
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of energy 4/w,. These quanta of the sound wave are called phonons and,
like photons, they behave very much as particles (i.e., particles in the quantum-
mechanical sense—they are not necessarily localized, although they can be—
see Hojgaard Jensen (1964)). It should be pointed out here that it is common
to call a phonon a ‘quantized sound wave’, but that according to the above,
this is not correct. For a given n, there is only one quantized sound wave of
wavenumber ¢ (this is just the fictitious body of energy E_), but there are
many, i.e., n,, phonons of wavenumber g. Hence it is more proper to call the
phonon a quantum or particle of sound.

The energy hw, is evidently just the least unit of excitation energy above
the zero-point energy 4/w,. Since the phonon carries this least unit, it is
referred to as an ‘elementary excitation’. The ‘compound excitations’ are
then just excitations involving many phonons.

The phonon way of viewing the sound wave provides a new interpretation
of the wave function and ladder operators, bf,, b,. Evidently, 'I’,,,l',.qw e
in (&/.42) describes a system with n,, phonons of wavenumber g, n,, of wave-
number g, etc. Therefore, by (#7.40), b} is an operator which creates a phonon
of wavenumber g, while b, destroys such a phonon, and b}, is the ‘number
operator’ for phonons of wavenumber q.

An important feature of phonons, in contrast to the quantized sound waves,
is that the total system energy is equal to the sum of the energies of all the
quantized sound waves, by (=/.35), but it is not equal to the sum of the energies
for all the phonons. That is, (=#.23) does not hold true for phonons. This is
obvious from (&/.41) where we see that to get the total energy, we must add
the ground state energy to that of the phonons. Thus (/.41) gives us a picture
of any excited state of the system as being composed of a ground state plus a
collection of independent phonons above the ground state.

This result for the phonon case turns out to be extremely general. It
appears now that, in most many-body systems, it is possible to perform a
transformation from the system of strongly interacting particles to a set of
approximately independent elementary excitations above the ground state.
Thus, we may write, using (&/.21) and by analogy with («7.41), the transforma-
tion in the form:

H= z", H(p,,r,)+}%} Ve, p,p)

> H' = Ey+3 AL A+ f(.. . Ag... A}..) (.43)
q \.__.__.v.___—l
small

where E, is the ground state energy of the interacting system, ¢, is the energy
of the elementary excitation, 4}, 4, A}A4, are the creation, destruction and
number operators for the elementary excitations. (The ¢, is often called the
‘dispersion law’ or ‘excitation spectrum’.)
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The small term in («/.43) describes the interactions between elementary
excitations. These give rise to a broadening, de,, of the energy levels, ¢;,. By
the uncertainty principle, we have 4 E4¢~ A, which means that the elementary
excitations have a lifetime, 1,~h(de)™ . This lifetime must of course be
reasonably long (i.e., level width /77! must be <¢,) for the elementary excita-
tions to really be considered well-defined and independent of one another.

Elementary excitations are often (see chapter 0) divided into two general
types: ‘quasi particles® and ‘collective excitations’, although this practice is
not universal. (For example, some writers, like Ter Haar (1960) call all
elementary excitations quasi particles.) Various examples of elementary
excitations were discussed in chapter 0, such as quasi electrons, quasi nucleons,
plasmons, phonons, and nuclear quanta.

Itis important to notice that there may be more than one kind of elementary
excitation in a given system. For example, in the electron gas in a metal, there
are both quasi electrons and plasmons, while in a nucleus we have quasi
nucleons and vibrational and rotational collective excitations existing simul-
taneously. Thus, in general, the right-hand side of (&/.43) may be written

H' = Eg+3Y ¢, AL A+ € Bl By + small terms. (#.44)
q k

quatsi particles collective excitations

Exercises

&/.1 Prove the commutation rule («/.37a).
/.2 Verify (. 38)

/.3 Calculate: b}, s,

.4 Prove (. 40c) from (7.40aq, b).

7.5 Calculate the following:

(@ 6L ¥ o,y. 300, 00 0.0......
() by, ¥, 00.0.0....
() bl- bca b;: '}l,‘" 541004, 0,0. ...

& .6 How many phonons are in the atomic chain described by the wave function:
'}Ion- Oess 2000 Oeqr 303.0.0. . ..

«f.7 What is the total energy of the system in Ex. &/.6?

Appendix A
Dirac Formalism
The three most popular formulations of quantum theory are Schrédinger’s

wave mechanics, Heisenberg’s matrix mechanics, and Dirac’s abstract vector
space method. They are all equivalent, but Dirac’s formulation has the



346 A GUIDE TO FEYNMAN DIAGRAMS

advantage of being more compact and general than the first two. We shall
show that the equations of the Dirac formalism bear the same relation to
those of Schrédinger and Heisenberg, as vector equations like A+ B=C bear
to A,+B,=C,, A,+B,=C,, 4,+B,=C, (i.e.,, the same vector equation
written out in terms of its components in some orthogonal system of unit
basis vectors). We shall work with a one-particle system; the generalization
to the many-particle system is straightforward.

In the Schradinger scheme the state of the system at time ¢ is described by
the wave function, and its complex conjugate

P, 1), @0 (A.)
while dynamical variables are given by differential operators
r,V,, o« = «r, —iV,); Example: Energy operator:

H = -ﬁv% ve), Gi=1). (A2)

The wave function obeys the time-dependent Schrdinger equation
%
—ify = . (A.3)

The observable values of any operator « are the eigenvalues a; of

adi(r) = a;,(r), (A9

where the ¢, are the corresponding eigenfunctions. They satisfy the ortho-
normality relations:

[ #rmemdr = 5, (A.5)

The probability of observing the eigenvalue a, is |4,(¢)|2, where A;(r) is the
coefficient of ¢,(r) in the following expansion of the wave function:

P(r,t) = Z‘:Al(‘)?sl(l‘).
i.e.,

4 = [ $1O¥E D, (A.6)

In the Heisenberg matrix method, i, y* are replaced by the column and
row matrices

AN (" SN S § (A7)
b

b
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These may be obtained from ¢, ¢* by choosing any complete orthogonal
set of functions, 7,(r) (which are usually eigenfunctions of some Schrédinger

operator, f); then we have
¥y = f i) (T, ) d3r.

Similarly, the dynamical variables are square matrices

oy %2
%1 X22

vee evee Oy

oo e

where
aw = [ i@ (e, V)i d>r.

The column matrices of (A.7) obey

Hy Hyp o o\ P ¥
'i(H'zl Hy ) '/‘z) =% '/'z)

analogous to (A.3). The eigenvalue equation (A.4) becomes:

a1 12 .. éi $i
(a.zl d.zz ...) (#) = aq #)

and the orthonormality relation (A.5) has the form

#
@i 44" (ﬂ) = 8

(A8)

(A9)

(A.10)

(A.11)

{A.12)

(A.13)

The probability of observing g is given again by |4,(¢)|? in (A.6) with row
and column matrices substituted for ¢; and ¢, and the integral removed.
Since the Dirac abstract vector space description is essentially a general-
jzation of vectors and tensors (dyadics) in ordinary space, let us review these
first. Consider an ordinary two-dimensional plane. As is well known, we
may construct vectors and tensors in this plane which may be combined in

the following ways:
(a) Addition: A+B = C (avector)
(b) Scalar product: A-B = |A||B|cosb,5 = ¢
= ‘component of A on B’
= a number or ‘scalar’.
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(1) normalized vector, A: A‘A=|APR =1
(2) orthogonal vectors, A,B: A‘B=0
(3) orthonormal set, A;: ArA; =38
(c) Multiplication by tensor (dyadic) D:
B = DA (dyadic stretches and rotates vector). (A.14)

For purposes of calculation, it is convenient to choose an arbitrary pair of
orthogonal and normal (‘orthonormal’) vectors as ‘basis’ vectors—call
them u; and u,—and express all other vectors and dyadics in terms of their
components or ‘representatives’ in the chosen basis, When this is done, the
vectors become column matrices and the dyadics square matrices, thus:

- Ay - A,
o a()(4)
(b) D= (ul-Dnl Ill‘Dlli) = (D" Dlz), )

- llz'Dlll Ilz'Dll - Du Dzz

and may be manipulated by the ordinary rules for matrix algebra. Substi-
tuting these in (A.14) produces

Ay Bl) _ (A;'FB]) _ (Cl)
@ (A2)+(Bz - A+ B, - C,
®) (. 4)(5') = AiBi+ 4B, = C (A.16)
2
© (31) - (Dn Dlz)(Al) - (Dn A1+Dlez)
B, Dy Dy /\A, Dy Ay+ Dy 4,

Of course, the actual numbers appearing in the matrices depend on which
u,,u, have been chosen as basis.

The primary differences between the Dirac abstract vector space and the
ordinary one above are first, the Dirac space has an infinite number of
dimensions and second, Dirac’s vectors (called ‘ket’ vectors, |4)) are com-
plex so they each have a complex conjugate ‘bra’ vector, {A| =|7>. (More
precisely, the bra is the ‘conjugate imaginary' of the ket. See Dirac (1947),
p. 20.) Parallel 10 (A.14) these Dirac vectors may be combined as follows:

(@) Addition: |A>+|B) = |C>

(b) Scalar product of |4) and |B): {(A|B)> = ¢ (a number)
(1) normalized: Ala> =1
(2) orthogonal: (A|B) =10

(3) orthonormal set, A;: {A;|4;> = §,
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(¢) Multiplication by linear operator a:
|B> = a|d). (A.17)

In addition. Dirac algebra has three new concepts not found in ordinary
vector algebra:

(d) Operator product of |4) and |B):
B = |A>{B| = alinear operator,
because BIR) = |A>(B|R> = vector.
(¢) Muitiplication by unit operator:
If {9, is an orthonormal set, then the operator

Sl (or [ 1> Culdn)
I
is a unit operator, i.e., it=1. This is because
2': "’h)("hl"h) = ; |7h>su = |")}>

so that:
)3‘|m> ul =1L

Thus we have:
CA|B)> = % <A, | B).
(/) Complex conjugation (c.c.): « may be written:
a = Rea+ilma, sothat & = Reax—ilme.

Further, [A)={A|. It may then be shown that to get the c.c. of any product
of bras, kets and operators, take c.c. of each factor and reverse the order.
Thus, for example:

(BIA> = (A|B), (P = &|P),
(Pla|BY = (B|&|P), of = P&, etc. (A.18)

Using this new algebra, Dirac builds up quantum mechanics precisely
parallel to the Schrddinger and Heisenberg schemes. The states of a system
are described by abstract vectors and their complex conjugates

ONECOIR (A.19)

and dynamical variables by abstract linear operators

2
r,p,«(r,p); Example: H = 22'—-" + V(). (A.20)
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The state vector obeys:

—iH|y) = %”;) (A.21)
The observable values of « are the eigenvalues g, of
aldd = aj|d> (A.22)
where the eigenvectors ¢, satisfy the orthonormality relation
$ildy> = 8. (A.23)

For example, the position operator, r, has the eigenvalue equation

) =rr)
with (A.24)
nind = 8(ri—r,),
(note that r, is a continuous eigenvalue). The probability of observing eigen-
value a, is | 4,(1)|> where

() = E‘A,(t)IqS,). A(2) = {bi|(e)). (A.25)

The relation of Dirac’s abstract vector formulation to the Schrodinger
and Heisenberg formulations is precisely the same as the relation of the
ordinary vector algebra (A.14) to vector algebra in terms of a basis (A.16).
Thus, the Schrddinger wave mechanics is just the Dirac abstract vector
formulation expressed in position basis. This means that the basis vectors
(which correspond to the u;,u; in (A.15)) are the eigenvectors |r,> of the
position operator r as given in (A.24), and that all other vectors and operators
are expressed in terms of their components along the |r;). This is often
called the ‘position representation’. Then it can be shown that the
Schrédinger wave function is just the components of the Dirac state vector
|¥(5)) in the position basis:

$(r, 1) = Glg)d, 2,0 = GO (A.26)
analogous to (A.15q).
The Schrédinger operators are given by (see Merzbacher (1970), p. 326 ff.,
o1 Dirac (1947), p. 90)
' |alr, P> = afr, —iV,)8(r'—1) (A.27)

analogous to (A.15b). For example, the Dirac eigenvalue equation (A.22)
can be transcribed into the Schrédinger one (A.4) by multiplying on the
left by <r| and inserting the unit operator

1= J' e <rel drs, (A.28)
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as follows:
[ @*ricrlalre <> = akrign
or
[ d*reatte —i9,) 8e-n) rild> = aicelgd
SO

a(r, —iV,)¢;(r) = a;y(r). (A.29)

Similarly, to get the Heisenberg matrix method we just express the Dirac
vectors and operators in an arbitrary basis—call it |,>. Then (using (A.28))
the component i, in (A.7) is

P = o> = [ &P rcauled <eigd
= [ d* eyt i) (A.30)

which is just (A.8), while o, in (A.9) is
g = <y, Pllmed> = f d3rd’ v’ (e < e, I <l >
= [ PrdPr g ate, —19) 80 - D))
= [ i@ atr, -1V O dr, (A31)

which is just (A.10). Equation (A.31) shows that {n;:|a|n;> may be used as
a shorthand way of writing the ordinary Heisenberg matrix elements.

Appendix B
The Time Development Operator, U(1)

This appendix is the first step of the labyrinthine argument (appendices
B — G) necessary to derive the diagrammatic expansion of the vacuum
amplitude and the propagator from the time-dependent Schrddinger equa-
tion. In order to minimize the risk of the reader getting appendixitis on the
way through, we start with a diagram of the labyrinth. The letters in each
box refer to the various appendices. (Note that appendix C is not included,
although certain results in it will be used.)
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I_Time-dependent Schrodinger equation (B)

/

\

U: time develop- U: gives formal
ment operator solution to
gives formal Schrodinger Differential _
solution to > cquation in »>— equation for U
Schrodinger ‘interaction
equation picture’

(B) (D) (D)
Vacuum Propagator Perturbation
amplitude in in terms of expansion of
terms of U U U

(D) (B D)

4

—

Perturbation expansion
of vacuum amplitude

(D)

Perturbation expansion
of propagator

(E)

1

Wick’s theorem (F)

Wick's theorem  (F) |

1

!

Expansion of vacuum
amplitude in diagrams

(G)

Expansion of propagator
in diagrams

(G)

Let us go on now to the time development operator, U(t—#,). Suppose
that ¥(r,), W(¢) are the wave functions at initial time to and later time ¢.
Then thé time development operator is defined as the operator which produces
¥(r) when it operates on ¥(¢):

Y(1) = Ut—15) ¥(to)

(or |¥()> = U(r—t5)| W(to)) in Dirac notation).
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We can find a formal expression for U(f—t,) by using the fact that ¥ obeys
the time-dependent Schrodinger equation

—IHY() = a% w()

(or ~iH|¥Y (1)) = a% | ¥(#)> in Dirac notation) (B.2)
where it is assumed that H is time independent. It follows that
:2
Ut—1to) = et = l—iH(t—ro)+%-,H2(t—1o)2+---, (B.3)

where the expansion gives the meaning of the exponential operator. The
correctness of (B.3) may be established by substituting it in (B.1) and
differentiating:

2 2
-a—,l‘f’(r» =% U(t—=10) | ¥ (te)>
= 2 oo | wirgyy
= —iH|¥()) (B.4)

in agreement with (B.2).
As an example of how to work with U(r—1p), suppose at f5, which we
take equal to zero, the system is in state ¥, which is an eigenstate of H so that

H|¥,> = E,|¥». (B.5)
We ask for the value of
[P = e ' |¥). (B.6)
This is just
:2
¥ () = [1 —IH1+% H24-- ] | ¥
-2
= [| —1£,.r+;—!£3:2+---] ¥,
= e = [FyertEns ®.7)

We shall also have occasion to evaluate
(P = (Fale'™. (B.8)
This is done by using the complex conjugate (see (A.181)):

PO =P = W) = e 5'|¥,) = ™YW, (BI)
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Appendix C

Finding the Ground State Energy from the Vacuum Amplitude
(Readers going systematically through the appendices according to the

master plan in appendix B may skip this appendix on first reading!)
We wish to prove that

Ey= Wo+i[£lnR(t)] , (C.1)
dt 1= ao(1—fy)

where Ey, W, are the ground state energies of the interacting and non-
interacting systems respectively and % is a positive infinitesimal such that
nx ®o=c0, We begin with the vacoum amplitude as defined in (5.3). This
may be written out

R(1) = ™ol Bo| U () | Do) = eWol(Dy| e 1H1 by, (C.2)

where (B.3) has been used. Let us expand this in terms of the exact eigen-
states | ¥,,) of the Hamiltonian H. Introducing the unit operator

Z [¥ (Wl
(see (A.18¢)) gives
R(1) = e'¥o! Z (Dol ¥, (¥l o>
= ¢!Wor % {Pol o> (W Py e~'5=. (C.3)
Taking logarithms of both sides, differentiating, and putting in the limit:

5% (ol W 2 e~15(~ iE))
9, - n
FR I TN

T~
i

-z |<¢0| q:ln>|2( —_ iEn) e—lE. Te—E. 7T
Z KPo| PP e BT R T

- T—s0

= iWo+

(C4)
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Now as T —» o, the quantity 7T — o by assumption, and all the exponentials
decay to zero. But the exponential with lowest value of E,, e.g., E,, will
decay the slowest, so that only the n=0 term will be important, giving us

d _ o K Po| P (—iEg) e 'R @ e~Bonx @
[ o R(t)] i = iWo+ [(Bo| Py P Eo= e o ®

= iWy—iE,, (C.5)

from which theorem (C.1) follows immediately.
It should be noted that for the limiting process in (C.4), (C.5) to be valid
we must have
(Dol ¥p> # 0. (C.6)

In the case of a system in which the interacting ground state |¥o> has a
different symmetry from that of the non-interacting ground state, |Po), we
find that the two states are orthogonal, so (P, ¥¢> =0 and (C.1) does not
hold. This is the situation in which the original uniform non-interacting
system undergoes a change of phase as a result of the interaction. This is
what happens, for example, when we turn on an attractive force between
originally non-interacting electrons in an electron gas; the gas then undergoes
a phase change to the superconducting state and (C.1) cannot be used to get
the new ground state energy. (See chapter 17, Mattuck and Johansson (1967).)

It should be remarked that the method used in this appendix is due to
Thouless (1961) and we have chosen it because of its great mathematical
simplicity. The more ‘physical’ way of getting the relation between Eo and
R(?) uses the ‘adiabatic theorem’ (see Schweber (1961), p. 316 ff.). This
involves (1) slowly (adiabatically) turning on the interaction potential in the
non-interacting system in its ground state, so as to avoid transitions to excited
states, (2) the assumption that the interacting ground state evolves con-
tinuously from the non-interacting one when (1) is carried out (adiabatic
hypothesis). In the Thouless method, the imaginary time limit corresponds
to (1) since it eliminates all excited states, while the condition {DPo| o> £0
corresponds to (2), since it means that the interacting and non-interacting
ground states must overlap each other.

Appendix D
The U(t) Operator and its Expansion

D.1 At zero temperature

The operator U is a first cousin to the time development operator U
(appendix B). It is in fact itself often called the time development operator
because, as will be seen, it gives the time development of the wave function
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when the wave function is expressed in ‘interaction picture’, Its utility lies
in the fact that the vacuum amplitude, R, and the Green's function, G, may
be expressed directly in terms of it; this means that when we find the per-
turbation expansion of U, we automatically have the expansion for both
Rand G.

The O operator is defined by
U(f, ) = elfhot /(] to) ettt
= e'”o t e—lfi(c-lg) e-mo 49. (D.l)
It should be noted that the exponents in this expression cannot be combined
since H, Hy do not commute! That is, using (B.3):
eAe? = 1+(A+ B)+3 (4242484 B) -+
while
et o l+(A+B)+%(AZ+AB+BA+32)+--- (D.2)
which are not equal if AB# BA.
The expansion for [ is obtained by using the Schrédinger equation to get

a differential equation for U, changing this to an integral equation, and
iterating. The first step is to transform the Schrddinger equation

—itHy+H) |90 = 21w (03
and its formal solution (B.1)
|¥@0)> = Ult—10) | P(10)> (D.4)
into ‘interaction picture’. This is defined by (see Schrieffer (1964a), p. 104)
O(1) = ettHo! @ giHot (D.5)
for an arbitrary operator @ and
1P @) = e+ | W) (D.6)

for an arbitrary state vector |¥'>. The purpose of this transformation is to
get rid of the explicit appearance of Hy in (D.3). Using it, we find that (D.3)
becomes

a%l‘f’(t)) = =il ¥ () (D.7)

which is easily checked by employing (D.5, 6) and differentiating. Equation
(D.4) becomes

E@) = 00, 1) [ (10)). (D.8)



APPENDICES 357

(Note by (D.1, 5) that J# U!) Substituting (D.8) into (D.7) and cancelling
| P (10)) gives the basic equation for

400,19 = ~ i 0110, (D)

A series expansion for {(r,7;) may be obtained by integrating (D.9)
and iterating:

0(,10) = Olto, 1) —i | Ay(t) O(tr, 10} ity

]

O(to, t0)— iU (40, 1) f A\(t)dn+

+izjdt1 J‘ :1(231(']) Hl(fz) U(tz. to)

I

1-i J‘ A1) dty +i? j dty j dn, B (1) By(t) ++ -+ (D.10)

where U(to.10)=1 by (D.1). The order of factors is important, since H(1,),
H(t;) do not commute. Dyson has shown that the nth-order term in (D.10)
may be rewritten so each ¢, goes from ¢y to ¢ (see Schweber (1961), p. 332,
for proof):

ta-1 ' !
J‘dfl... J. dl,,ﬂl(tl)...ﬂl(r,.) = ;Il!J‘dtl”. fdt,TDx
1y [ to %
x (A1) ... (1), (D.11)

where T, stands for *Dyson time-ordered product’, which means operators
in brackets re-arranged so times decrease from left to right. Thus, in second
order:

TolAy(1)) A1) = 8y, Ai(t) Ar(t)+ 6,y (1) Ar(1))  (D.12)

with @ as in (5.25). Here, since we assume H has an even number of creation
and destruction operators, Tp, is the same as the ordinary Wick time-ordered
product (9.4), so from now on we drop the D-subscript. Substituting (D.11)
in (D.10) yields the perturbation expansion of the { operator

L]

0@, 10) = 2 (‘?" f dr... f dt, TLRY). .. Ayt (D.13)

n
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D.2 At finite temperature

The finite temperature J-operator is defined and expanded in a way
which runs precisely parallel to the zero temperature case. It is used to find
the finite temperature imaginary time propagator and vacuum amplitude
(chapter 14).

As shown in appendix B, in the 7=0 case the operator and diagram
expansions may all be traced back to the time-dependent Schrédinger
equation. In the T#0 case, everything goes back to the Bloch equation,
(14.21):

0 ,
55 = —(H—uN)p. (D.14)

This may be obtained from the Schrédinger equation (D.3) by making the
replacements:

it—+B, H->H-puN, ¥—p. (D.15)

Hence we define the T#0 J-operator by using these replacements in (D.1),
yielding:

U(B) = ePHorM) g~B(H—pN) (D.16)

where ity — B, has been set=0. (Note that since 8g=1/kT,, it can never be
negative.) Similarly the T'0 ‘interaction picture’ is given by

O(B) = efHopN) @ o~BlHe—pN) (D.17)
so that, for example,
Ay(7) = e"HrsN) pf o~T(HepN) (D.18)

Finally, making replacements (D.15) in (D.13) yields the expansion of the
U-operator for T#0:

8

[--3 ” B
D) = Z (=) f dry... f dr,T{f(r)... By(r)). (D.19)
1]

n!
=0 0

Exercises

D.1 Derive (D.7), (D.8), and (D.9). . . R
D.2 Derive(D.11)for the case n=2. (Note that H,(t,)H,(t2) # H,(t2)B,(1))! Why?)
(Answer: Fetter and Walecka (1971), p. 57; Raimes (1972), p. 100.)
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Appendix E
Expansion of the Single-particle Propagator and Vacuum Amplitude

E.1 Propagator expansion at 7=0

The single-particle propagator can be expanded in a perturbation series
with the aid of the operator 7 defined in (D.1). We will confine ourselves to
G*(kq, k1, t;—1;) since G~ follows by exactly the same type of argument. It
will first be shown, using the method of Thouless (1972), p. 89, that G* can
be expressed in terms of U by:

Gtk k1 82— 1) = , ““('ll ” O(T>, Ty, ka, ky, 12— 11) (E.)
Toms 4 c0(1 — 1)

where
_; %l T{0(T2, Th) & (t2) €L (1)} | Po>- .

Q= (Bo| U(T, 1)) | P>

(E.2)

In (E.2), since we are dealing with G*, we must have 7,> ¢, and we assume
Ty > 13, Ty <1y, so that:

Tz >h>h > Tl' (E3), (E.4)

The &’s are the ordinary ¢;’s written in interaction picture as defined by
(D.5), and we have 7 x = o,
Recall that G* is defined by (9.6)

G*ka ke, t—17) = =16, K Wol exi(t) ch(t1) | o), (E.5)

so that to prove (E.1) we need to do some juggling to get from the interaction
picture &'s in (E.2) to the Heisenberg c,’s, (9.3), in (E.5), and from the non-
interacting |®Po) to the interacting | ¥o>. Begin by breaking up U into

0T, Ty) = O(Ta, 1) 002, 1) U(11, ) (E.6)

which follows immediately from (D.1). Insert this into (E.2) and rearrange
the terms in proper time order, using the given order in (E.4), so that the
T-symbol may be dropped:

—i{Dg| O(Ta, 1) & (12) O(t2, 1) L, (1) T (00, T) | P '

e= (Po| U(T2, Ty) |Po>

(E7)

Writing out the &(r)’s and using (D.1) again, this may be expressed in terms of
U instead of U:

— eI D| U(Ty— 1) ¢, Ulta— 1)) ek, Ut — T1) | Po)

0= W=D, U(T,— 1) | Po)

(E-8)
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Applying the definition of U in (B.3) gives

0= —i{Po| e~ H T2, (1)) ¢} (1)) 1773 | D)
(B €T ¢FITS |85 ’

(E.9)

where the ¢;’s are now in Heisenberg picture. Inserting the unit operator
over the exact eigenstates of H, ¥ |¥,>(¥,|, yields
n

- ’E (DBo| Bod (W | B e ETE T, | ¢, (1) L (1) | ¥,
¢= z <¢o| W,,) 4 ‘;P"|¢o) & En Tr—EaTp)

(E.10)

The limit is taken as in (C.4, 5). Only the m=0, n=0 terms survive, there is
some cancellation and theorem (E.1) is proved.

The perturbation series for G*(ky,ky,t,—1,) is then obtained simply by
substituting the expansion of &, (D.13) into (E.1, 2):

© (—iy + (1 ~in) ' '
—i; — _wz{_,,) di... fdt,,x
G(kz, kln '2_11) = X <¢01T{Hl(:l').'.mu?‘ln()‘;) ékz(tZ) éln(’l)} |¢o> (E.l l)
SEE | i fa

x{Po| T{A(1y). .. Ay (1)} | Do)

The + has been dropped since the result holds also true for G—.
It must be carefully noted that (C.6) must hold, for the limit of (E.10) to
yield (E.1), i.e., we must have

{Po|¥op> # 0 (E.12)

for the perturbation expansion of G to be valid (see §15.4).

E.2 The vacuum amplitude expansion at T=0
The vacuum amplitude is easily expressed in terms of U as follows:
R(t—1t0) = W=~ Py| U(t —15) | Dod
= elWo(l—I°)<¢o| e-l"o le+lﬁol U('_ to) e—lHoto e+l”o ‘°|¢O> (E. 13)

= (By| U (1, 10) |Po>



APPENDICES 361

where (B.7), (B.9) have been used. Thus, taking matrix elements on both
sides of (D.13):

R(t—1o) = z tn;—) J' dar... f dtdPo| T{H (1) ... H\(1,) |DPo> (E.14)

n=0

which is the desired perturbation expansion of the vacuum amplitude.

E.3 Expansion at finite temperatures
As mentioned in §14.3, the imaginary time propagator
Y(ka, ky, 12— 1)) = —{T{erx(r) k(D (E.15)
may be expanded the same way the T=0 propagator was. Parallel to (E.1),
(E.2), we obtain the theorem

G(ka by, 12— 71) - <T{0(ﬂ) ék,(‘l’z) 51.("1)»0 (E.16)
(for 7o > 1y) OB '

where { Yo denotes average over ensemble of non-interacting systems at
temperature 7, and J(B) is defined in (D.16). Using (D.19) then yields

- L8 8
Z(—}) J‘df;...J‘d‘r},X
- n!
¢ H

n=0

g(kz, kh T,— Tl) = - X <T{€1(1’|,) voe fl(f;) ékz(‘rZ) 5[‘:(1'1))0 (E. 17)
"Z; (—’nf—)" J. dry... J. dr(T{Ay(ry)... BT
= ] 0

The useful form of the finite temperature vacoum amplitude (14.40) is

R(B) = <O(BYo- (E.18)

This is evidently just the denominator of (E.16, 17) so that we have the
perturbation expansion:

n=0

@ i A 8
.%(ﬂ) = z (—_n:—) f dfl' “ee f dT,:(T{Hl(T;) e H](‘l’,,,)}>o. (E.lg)
0 ]

Exercises

E.1 Derive (E.7), (E.8), and (E.9).
E.2 In (E.10), let T, = —a(1 —in) and T>= +a(1 —in) and carry out the limit of Q as
a-o. Show that the result is just G*(ka, k3, 12— 1,), provided (@o|¥o> #0.
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Appendix F

Evaluating Matrix Elements by Wick’s Theorem

In order to do any good deeds with the perturbation expansion for R(t—t,)
in (E.14) or that for G(kj,k1,2,—1)) in (E.11), it is necessary to evaluate the
matrix elements occurring in these expressions. We will first do this by the
tedious ordinary method, then show how to save time by using one of Wick’s
tricks called *Wick’s theorem’,

For simplicity, let us assume that the Hamiltonian is for N non-interacting
fermions in an external potential:

H = H0+H1
where
Hy = ? acle, Hy = :).“., Viicley. (F.1)

In interaction picture, H, is
Hl(t) = gtitlot kz, Vkl‘i c,e"”"'

= 3 VyetiHotl g=iHot gtiHo o o=iHot

»

= 3 Viél(0é )

-

k,

~

Via [8l(e)dy(0) +aJ(0) Y1) + by (1) dy(0) + b, (1)) BY(n)).  (F.2)

k,

-~

The é&}(t), é,(¢) may be simplified in the following way. We have

é,(t) = e+lHo lcle—‘ﬂol

:2
= ¢;+i[Hy, CI]“"% (Ho, [Ho, 111424+, (F.3)
where the exponentials have been expanded by (B.3). The commutator is
[Ho €] = %: elclexe—ercl ). (F.9)
But by (7.32)
clever = —clejey =[-8, 1+ eicllcy, (F.5)
so that
[Hocl]l = —? €Ok, 10k = —€cp. (F.6)

Substituting this for the commutators in (F.3) yields

i2

&(t) = C‘—ieﬂﬁ"'z!

Arterte
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or
&(t) = cpe~it, (F.7)
Similarly, the d(¢) and b(t) operators have the simple forms:
al() = aler'!, bY(t) = ble™'',
4y (1) = age™'!, by(t) = bretler’, (F.8)

Let us now use these results to evaluate some of the matrix clements
appearing in the numerator of (E.11). The zeroth order term is easy enough.
Assume #,>t;. Then, for kj, k1> kg,

MO = (Byo| T{G;(12) 6},(1)} |Po>
= ((pol a, al. |¢°> e~ il ti—ea b)) (F.9)

= sk X e~ lenliz—n)
1. k2

(see (7.35)). This is just the free propagator, iG§(ka, ky,t2—1;).
The first-order element in the numerator of (E.11), assuming 1> #;>1
(write ¢ for ¢; from now on) and that k,,k, > kF, is:
M® = (Bo| T{H(1)di (1) L,(11)} | Po>
= :2'7 Vit [<O] T{G1(1) 6,(1) Gy (1) 4L (11D} 0> +

+ 0+ 0| T{bi(N) b1 dir (1) 6L, (11)} 1031, (F.99)
or, using (F.2, 8):

<0| ay,a} a, af, 10>
+<0| ax,al bal, 10>
+ 0| ax, by a, al, |0>
+<0] ay, by bhal, |0>

M(l) = kzl Vkl e—l‘(u. =€ €1 t—€xy 1) (F.]O)

where |0) is the Fermi vacuum. The elements are evaluated by using the
commutation rules (7.73) to systematically bring all destruction operators to
the right where they operate on the vacuum and produce zero by (4.20). The
first element is

<0| ay,al a,al, 10> = <0| ay,al[8; x,—a},a;110>
= <0| ak,al |0> 8,_;“—(0' ak,azalla,]0> (F.ll)

= 8’6:, & 8‘. ky ™ 0.
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The second and third terms in (F.10) are equal to zero since they do not
destroy the same number of particles and holes they produce. The fourth
is found to be:

(0' ag, bk b',all ]0) = 8,“. k3 8,‘. 1o (F.12)
Hence we obtain the final result

M® = Vk: ky e~lenlts) g—lent-1) 4 kz Vix e~len(t—t) 8‘“. ky (F.13)

Now, if we had infinite patience, infinite energy, and zero imagination, we
could plough blindly ahead through the second-, third-, and higher-order
elements, evaluating them by brute force using the commutation relations as
above. However, there is a much easier way, using Wick’s theorem.

Wick’s theorem is essentially based on the idea of bringing all destruction
operators to the right where they operate on the Fermi vacuum |0) and give
zero. Thus the central concept employed is that of the normal product which
has all destruction operators on the right, It is defined by

N[ABC'DFtG'...} = (-1)’[C'F'G'...4BD...] (F.14)

where P is the number of interchanges of neighbouring operators required
to get from the given order on the left to the ‘normal order’ on the right,
For example,

N4(8:) BY e ah(0)] = +BY(e)) ah(0) din(ts)
= —daL(t) bl (tD du(ty). (F.15)

Note that normal order has nothing to do with time order, and that order
among the different creation (or destruction) operators is immaterial, pro-
vided we affix the proper sign.

The importance of the normal product lies in the fact that

{O|N[4BC'D...]|0) = 0. (F.16)

If there is at least one destruction operator, this is obvious from (4.20). If
there are only creation operators, the element vanishes since

<0]a} = a, [0y =0, etc.

It is also necessary to introduce the contracted product or * contraction® of
two operators, which is the difference between the time-ordered and normal
product:

r—
AB = T{AB}—-N[AB]. (F.17)
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Thus, for example,

=1
a1 a%(ty) = Ax(1) Y1) — (— 1) dY(r) d(ty)
(for 1, > 1))

= (a,al+aha,) e~ lern—an)
= By e (F.18)
In a similar fashion, using (9.4), it is found that

dk(‘z);l(tl) =0, fort; €4
by(ty) Ek(tl) = § et et fort, > 1
gk(fz)bl‘(tl) =0 for <N

{ 1 b 1 I_l'
di(t2) di(ty) = bu(e) by(ty) = (1) Y1) = etc. = 0. (F.19)
Note that —
5&,(’1)51.(’1) = iGY(ky, ky 12— 1)
. . ,
5&.('I)Bt3(t2) = —iGy(ka, ks, 12—1y). (F.19)
Evidently, the contraction is a number, not an operator. Because of this,
taking matrix elements of both sides of (F.17) and using (F.16), yields
1
AB = 0| T{4AB}|0> (F.20)

which is a short way of writing (F.19). Comparing this with (9.1) shows
that the contraction is just i x the unperturbed propagator.
Finally, one also needs normal products with contractions like, for example,

N{ABCD] = —N[ACBD] = - ACN[BD). (F.21)

Wick’s theorem then states that a time-ordered product of operators may
be decomposed into a sum over pure normal products, normal products
with one or more contractions, and completely contracted normal products
as follows:

T(UVW...XYZ) = N(UVW...XYZ]

1 —
+N[UVW...XYZ)+N[UVW... XYZ]+"+

I 1 [ |
+N[UVW...XYZ]+N[UVW...XYZ]+" "+
+.oo

+N[UVW...XYZ)+N[UVW...XYZ]+--- (F.22)
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where the last line has only completely contracted products. We see that
(F.17) is a special case of this (see Fetter (1971), p. 91 for general proof).
If we now take the two sides of (F.22) between Fermi vacuum states, the non-
fully contracted normal products vanish by (F.16), leaving:

O|T{UVW...XYZ}|0) = UVW...XYZ+UVW...XYZ++--
= sum over all possible fully contracted
products, (F.23)

Equation (F.23) eliminates a lot of the drudgery involved in the evaluation
of matrix elements. As an illustration of how it works, let us use it to calculate
the elements in (F.9), (F.9') which were calculated before by the old method.
Employing (F.23), (F.18), (F.19) we have for (F.9) (remember that we are
assuming k,, k> k')

— 1
0| T{dy (1) dL, (1)} 0> = i (1) 6}, (2) = 8k, ry €l (F.24)

For (F.9’) we find
0| T{a(1) 4, (1) di (1) a},(11)} |0

(f2> t > tl)

[ —
+d,(0)al(n)dl (1) G (12
+aJ(1)dl(6,) 4,() dr (1)

— 1. 1
+4,, (1) al(1) Gy(1) 6L, (1)
0+ 0 + ( - 1)2 sk:. k e""““*"" X
X 81. ky e-“”(‘_‘l). (F .25)

Similarly, the second and third terms give zero while the fourth yields

I T {6t B0 (1) AL} 105 = b)YV dr(r) Al e )+
= &, 10k, k€U 04+0.  (F.26)

Substituting (F.25, 26) into (F.9’) produces just the result we got before,
i.e., (F.13). (Actually, this case is a bit too simple—the real power of the
method is first revealed in the higher orders.)

We conclude this section with a note regarding why the time-ordering opera-
tor for equal times is defined as in (9.4). If we substitute expression (F.2) for
H,(¢) in matrix element (F.9"), we see that the equal times operators like
N E), dl()alr), dI(t)B}(t), etc., must always occur in just the order in
which they appear in the Hamiltonian, i.e., ¢! (or at, b) to the left of ¢ (or ¢, b'),
as stated in (9.4). It follows that the propagator for equal times must have
¢! to the left of ¢, i.e., it is a hole propagator.
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Exercises

F.1 Verify (F.12).

F.2 (@) Consider a many-body system with two-body interaction given by H,; in
(7.48), and no external perturbing potential. Write out the matrix element
in the first-order term in the numerator of G in (E.11), expressed in terms of
él(r) and é(r).

(b) Write in particle-hole notation the term in (a) corresponding to k, m=> kg,
I, n<bky, ka, ky> ke (Answer: (G.6").)
(¢) Write out (b) in the case 1;>1,>1,.
(d) Evaluate (c¢) with the help of (F.8) and the commutation rules. Show that
(c) equals
‘} Z Vkimn Bmkl 6;5 532;. \‘.’huk}(‘]_” L‘_u"l“_‘”
kimn
F.3 Verify (F.19).
F.4 Evaluate Ex. F.2(¢) with contractions and show that the result is the same as
obtained in F.2(d).

Appendix G

Derivation of the Graphical Expansion for Propagator and Vacuum
Amplitude

In appendices B, D, E, F we have seen how to expand the Green’s function
and vacuum amplitude in a perturbation series and how to evaluate the
matrix elements in the expansion by Wick’s theorem. The remaining step is
to show how the perturbation series may be expressed in graphical form.

We will only sketch the process of translating the perturbation series (E.11)
into diagrams for the simplest case, i.e., N non-interacting fermions in an
external potential. The diagram expansion for this case was derived in the
first part of the book by the monkey argument, and appeared in (4.34). Our
object now is to take the matrix elements for this case as in (F.9), (F.9),
show how to draw them diagrammatically, and thus re-derive (4.34).

The method becomes transparent if we just remember that by (F.20), a
contraction is ix propagator. Hence: each contraction in (F.23) will be
represented in a diagram by means of a directed line. Furthermore, for the
present external interaction, each interaction Vy; will be represented by a dot.
Consider now as a concrete example the M term in (F.25), which has the
non-vanishing contraction on line 3. Including the > ¥}, factor from (F.9")

we can write/draw this: ki
k /
r'—""_|' el r—*—:' kl k| kl
Edn,{f:}dk(f)(_fyk:)d:(f)é.\l(f:)z _‘_?"_*"_:_" (G.0)
ki 2 1

which reveals directly how diagrams come from contractions.
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In (G.1) we show the graphs for M®, as obtained from (F.9, 24), and for
MM, as obtained from (F.9’, 25, 26):

17 5
t k, k
ki f O
. G.1
1 ! kl f k| ( )
M@ ;,l(l)

The first two graphs are just what appear in the diagram series for G* in (4.34),
However, the third diagram is not found in (4.34). It is of the ‘unlinked’
variety, and in a minute we shall show how to get rid of it. Equation (G.1) makes
the meaning of the graphs clear: each graph is in 1~1 correspondence with a
non-vanishing matrix element in the perturbation expansion of G in (E.11).

It should be noted that there is a factor of (—i)"/n! in nth order appearing
in (E.11). We can get the (— )" factor from the diagrams by simply associating
a factor (—{V},;) with each dot, instead of V.

The n! is cancelled in the following way: Consider the second order matrix
element in the numerator of (E.11) as an example:

M@ = OIT{H,(t]) Hxt3) 4y,(12) 8,(1.)}10), 5.

Thisis a sum over all possible time orders. Select any one of these—for example
;> ;> 13> ;. It will be sufficient to illustrate the point if werestrictourselves
to just linked diagrams. The two sets of contractions giving rise to linked
diagrams here are (omit - over a, b for clarity):

tz
ti 4 R ¥ 1 L} 1
= "Z Vun Vir€0lau (12) al(13) a,(13) ai(13) ay(23) a3 (2,)10) (G.1a)
'l1 nn
4
12

11 = 2 Von VarCOlan (1) bult ) (1) allt}) Bi(1) af,(2)10>.  (G.1b)

4
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Now consider another particular time order, i.e. t;>1,>t;>1¢,. The linked
diagrams here are

I

1
.'3{
I

1
rirllf, = S Vi VenCOlay (1) byt ar}) an(t5) B2 al (1[0, (G.1b")
h

= S Vit VOl ()al(t]) ar(t]) alb(ts) a(t3) b (1,)]0) (G.1a")

klmn

Iy

2 klmn L

Comparing (G.1a) with (G.1a’), we see that they are identical, except that the
time labels are permuted. Hence their values are equal, so we may retain just
one of them and multiply its value by 2, thus cancelling the factor 2! The same
holds true for (G.1b) and G.1b"). In general, in the nth order matrix element,
we write out all different time orders, contract each time order in all possible
ways, and draw the corresponding diagrams, both linked and unlinked. We
will always find that for any type of diagram, there are n! diagrams which are
identical except that the times are permuted, so they give equal contributions.
Hence we retain just one of them and cancel the n!.

Note that the diagrams we end up with after all this are time-ordered. They
may then be added together as we did in §9.5 to form the non-time-ordered
Feynman diagrams. (The usual method of eliminating the n! involves permut-
ing indices of the interaction Hamiltonian, rather than time label permutations.
This produces Feynman diagrams directly. See Fetter and Walecka (1971),
p. 96 ff.).

Continuing the process of evaluating the higher-order matrix elements in
the numerator of (E.11) by means of (F.23), we obtain

i x Numerator .
of G = L H + O -+ i +
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It is easy to see that, analogous to the case of the vacuum amplitude in
(5.23, 24), the unlinked diagrams here may be factored into the product of
the separate links, so that (G.2) may be written

ixl;l;xg\erator =| " [“‘O"’ 0+8+...]+

+x[1+OA+Q+8+ } +++.(G.3)

The terms in brackets are just the diagrams in the vacuum amplitude expansion
for this case, (5.20).

Now look at the denominator of (E.11). By (E.14), this is just the vacuum
amplitude expansion, so the diagrams are exactly the same and we may write

Dengtqiénator =1 + O + 0+ 8_,_ ver (G.4)

Thus the denominator precisely cancels the bracketed terms in the numerator,
and all unlinked diagrams thereby vanish, yielding

i x Num. G
= —_—— -+ (G.S
iG Denom. G ’+*+ +M+ + (G.5)

corroborating the result found in (4.34). This result is often called the ‘linked
cluster theorem for the propagator’.

In the case of an interaction Hamiltonian for a system of mutually inter-
acting fermions, such as the H, in (7.48), the evaluation of the expansion of
G in (E.11) by Wick’s theorem (F.23) follows identical lines and we obtain
the result:

(Num. G !X[HOVO+®+®+'“]+1”’O‘[I+O'O+@+Q:Cv+...]+...

Denom.G +O'~O+@ ®+ ]

P BpEe e

confirming the result in (4.63).
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In (G.6) we note that, for example, the bubble diagram (4.54a) comes from
the following first-order term in the numerator of G:

Z =i

1 o -

Mi{nzgr- =i f dt ( P ) Vk.’mn
acting kim> ke

Ln<kp

COIT{by(0) AL (1) () BY(1) (1) G, (1)}1 0> (G.6")

The fully contracted product which corresponds to (4.54a) is the one connecting
by to b}, d} to G, and d,, to a},,.

Note on fermion loops

If we try to calculate the third diagram in (G.1) by using dictionary
Table 4.2, it is found that

I
iGy(ky, ty—=1)) X X (— )V iG5 (ky t—1)
%

_}‘-
i,
li

e—-:u.(r:—n)( —i) y? Vi — e—fn{f—l‘))
= +i E ka X{.’_k"urm. {G?)
k

Let us compare this with the result obtained by the present method. Consider
the second term in (F.13) which this graph comes from, and put in a (—i)-
factor for the ¥y to take care of the (—i)! in first order appearing in (E.11).
This yields
—IM® = —i 3 Vi x e~ienten) (G.8)
k

which differs by a (—1) from (G.7). This is a typical situation, and it can be
shown that the way to get the correct sign in general is to associate a factor
of (—1) with each fermion loop. Thus, the diagram in (G.7) has one fermion
loop, ), so gets an extra factor of (—1). The fundamental reason for this
rule may be obtained from a careful analysis of the number of interchanges
of operators required when (F.23) is applied—each such interchange produces
afactorof (—1). (See Fetter and Walecka (1971), p.98; Raimes (1972), p. 139.)

Note on diagrams which violate the Pauli exclusion principle

It was pointed out that when k,=k,, diagram (4) in (4.34) violates the
Pauli exclusion principle. If we examine the expansion (G.2) for the numerator
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of G, we see that the diagram in question is actually cancelled by another
diagram, an unlinked one, thus:

tz rz {
t
ky
Nk B ) ©9
1
t'
1 h

as is easily seen by translating the diagrams into functions. Note especially
the (—1) coming from the fermion loop. Despite this cancellation, it is
necessary to keep the exclusion-principle-violating diagrams in order to prove
the ‘linked cluster theorem for the propagator’, (G.5) (cf. comment after
(5.13) regarding diagrams which violate conservation of particle number).

These statements are general. In the linked cluster expansion of the
propagator (G.5), or the second line of (G.6), there will always be an infinite
number of diagrams which violate the Pauli exclusion principle. Such dia-
grams cancel in the unlinked expansion, but must be kept if we wish to use the
much simpler linked expansion.

Exercises
G.1 Show using Ex. F.4 that the matrix element in Ex. F.2(c) corresponds to the

diagram:

G.2 For H, in (7.76) and k;=k;>ky and £,> ¢{>t;, write out all 16 first-order
matrix elements in the numerator of the propagator expansion, (E.11), using
particle~hole notation.

G.3 Show with the help of (F.8) that 11 of the elements in Ex. G.2 are equal to zero.
G.4 Evaluate the non-zero elements in Ex. G.2 with the aid of contractions, and
draw the corresponding Feynman diagrams.

Appendix H
The Spectral Density Function

1. Single-particle propagator

For brevity, we shall derive only the expression for A*(k,w); that for A~ is
found in exactly the same way. Call ¥V, EY the exact eigenstates and energies
of the Hamiltonian H of the interacting N-particle system. The propagator
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G*(k,1) may be expressed as a sum over these exact states by inserting the
unit operator

[P

(see appendix A) into (9.7), letting ¢, =0, 1, =, and noting that in the sum over
N’, all terms are zero except those for which N'=N+1:

GHk, 1) = —i0, S (WP e, | WNHY CPIH| e cl | B Y

—i6, 3 [CP XM ]| Py |? e iBa" 1B

= —i, 3 |(cDo|2 e 1-E1, (H.1)
Taking the Fourier transform of the above yields
1

= 2 : H.2

G*e) = > NeDal’ =g gpye7o (H2)

This shows that the poles of G* occur at the energies of the interacting N +1-
particle system minus the ground state energy of the interacting N-particle
system, thus proving (3.14) for the case of a system with no external potential.
A similar proof holds in the general case.

The exponentials in the above may be expressed in terms of the chemical
potential defined in (9.23), thus:

EN —Eff = ENY - E§H\ + EY*' - EY
= w,?0+l + PN—FI

(H.3)

For large N (like for electron gas or nuclear matter, but not for atoms or finite
nuclei!) we have
N+l o N

TR p = p
wp'! R Wy = wp, (H.4)
giving
G¥(k, 1) = —i0, 3 |(c])po|? e~ ' retm)t (H.5)

1

_— H.6
w—(wu+p)+id (H.6)

Gk, @) = > [(canl?

In a system with large volume, the energy levels are so closely spaced that we
can go from a sum to an integral by introducing the spectral density function

(see below)
At(k, w)dw = h |(ehnol? (H.7)

w<wn<w+tdw
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or, equivalently,
A*(k, ) = ? l(‘-’l)nolz 3(w—w,). (H.8)

This function is defined only for w >0 because by (H.3, 4), w,>0. It gives
the probability that the state |¥§') with an added particle in state k is an
exact eigenstate of the N+ 1-particle system with energy between w and
w+dw, Substituting (H.7) in (H.S5, 6) gives

G*k,t) = —if, j At(k, w) e~ i@t gy, (H.9)
0

(-]
A )
as in (9.22, 24).

It is important to observe that a profound change takes place when we go
from the sum (H.6) to the integral (H.10). The sum (H.6) has an infinite
numberof real poles, whereasthe integral (H.10) has a small number of complex
poles. For example, as mentioned after (9.27), if we use a Lorentzian for
A*(k,w) in (H.10), we obtain the quasi particle propagator (8.37), which has
a complex pole at w=¢;—i7,. This was also mentioned after (3.70).

The physical meaning of the appearance of complex poles when we go from
a sum to an integral may be seen by looking at the corresponding expressions
for G in the time domain, i.e., (H.5) and (H.9), Consider the sum (H.5) first.
To analyse its behaviour, we note that there are two characteristic energies
involved: First, if there is no interaction, then (c}).o=8sn, i.€., (c])so is finite
only for a single energy level. But with interaction, in typical cases (c}).o is
spread out over a band of energy levels from say n’ to n”, having width 4E=
Wy, 0— Wy, 0. Secondly, there is the characteristic spacing between adjacent
energy levels, de~wyyy,0—wy, o

Now, at =0, all the terms in (H.5) are in phase and G*(r) is maximum.
As tincreases, the terms in (H.5) start to get out of phase with each other, and
G*(t) decays in a characteristic time given by 7~ A/4E. However, if we wait
a length of time T~ /i/de, then the exponentials will start to get in phase with
each other again, and G*(¢) builds up again to its value at t=0. (This is just
the ‘beat’ phenomenon observed when we add two signals cos(2#nv,¢) and
cos(2mv,t): the beat frequency is v,—v, and the corresponding period for
build-up of the beat is T'=1/(v—v,).) Thus, the Green’s function shows
periodic behaviour.

The above holds for a finite system, with corresponding finite distance
between energy levels. Butif we go to the infinite volume limit, then (w,,,,0—
@y, 0)—0, and the build-up time 7—. That is, G*(t) becomes aperiodic,
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decaying to zero in a time of order 7, and never building up again. This is just
the quasi particle behaviour. Thus the discontinuous change from real poles
to complex poles in the infinite volume limit, is associated with the discontinu-
ous change of the propagator from a periodic to an aperiodic function.

In practice, it is not necessary to have volume—-a since for a typical large
system, we find that 7" is so large compared with the times involved in the
experiment that build-up will not be observed. However, in small systems,
like atoms and light nuclei, the above considerations are not valid: the energy
levels are widely spaced, the propagator poles are real, and the quasi particle
picture does not hold.

2. Two-particle propagator
Consider first the particle-particle propagator. It will be sufficient to
treat just the case (see (13.4)) with r,=r,=r and t;=1,=0, and t>0. Using
¢ (1)), cf (1) instead of the s in (13.4), this becomes
Gi(t) = i, (P, (1) eay(1) ek (0) cf, (0) > (H.11)
article—
(:artlcle )
Inserting the unit operator gives

G3(t) = i6, 3| <P¥le*"™ ey cn,e~ |V PV e} of | N>

(p=p) a N’

. 3 - N+
!9; E<lyg]ck.'ckl|1II;':’+2><QP';’|\'+.ICI’L.£’Il}fb\'>e I(EN+2 Eg]t
n

I

=i, 3 D,e "EI*I-E{ (H.12)

Taking the Fourier transform just as in (H.1) we find:

1
w—(EN2—EY)+id’

Gf (w)= =3 D, (H.13)

(p=p)

showing that the poles of the particle-particle propagator occur at the excited
state energies of the interacting N+ 2-particle system minus the ground energy
of the interacting N-particle system,

Similarly, we can analyse the polarization propagator, which is a special
case of the particle-hole propagator, with t;=1,=t, t,=1,=0 and ¢>0 given
by (see (13.5)):

FH(1) = —i{Wolel,(r) e, (1) c},(0) €,(0)| o). (H.14)
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Inserting unit operators, and Fourijer transforming, we find

1
F'(w) = 3 B,

iy (H.15)

showing that the poles of F*(w) yield the excitation energies of an N-particle
system.

Exercises

H.]1 Show that the spectral representations of G-(k,f) and G~(k, w) are given by the
second term in (9.22), (9.24) respectively.

H.2 Verify the sum rule (9.25). [Hint: Convert (9.25) from an integral to a sum, then
use commutation rule for ¢;, c{.}

H.3 Assume that we have a system of N interacting fermions in a box of side L, and
that these are approximately describable as non-interacting quasi particles of
mass m*. (a) What is w,o in (H.5) in this case? (b) What is the spacing between
adjacent energy levels, and the corresponding ‘build-up' time for the single
particle propagator? (Note that (H.5) here is just a Fourier series, and the build-
up time is just the period for the series.) (c) What is the time required for a
particle at the Fermi surface to traverse the box? (d) Compare the traverse time
and build-up time for an electron in a 1 cm® metal, and for a nucleon in a heavy
nucleus.

Appendix |

How the i3 Factor is Used

The simplest example of the use of the i3 factor in propagator calculations
is to make the inverse Fourier transformation from G3(k,w) in (3.13) back
to G(k,t) (set t=1,—1,) in (3.12°). The Fourier transform is given by

+o
dw _

Gty = | Toe ' Gitk,w)

_ J‘ do e (L.1)
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The integrand has a pole at w=¢,—i8. The integral may be evaluated by
integrating along the following contour surrounding the pole

w-plane

(1.2)
By the theorem of residues:
J‘ = f + 'f = 2mi 3 residue at pole n
< ot T
Coomi lim @ etidete
B wre—is 27(w — €+ 18)
= jgrliasil, (1.3)

Theintegral around \.,/ vanishes because ¢ > 0 (by definition of G* in (3.1)),
and therefore the ‘convergence factor’ e~/*, goes to zero in (I.1). Hence we
obtain

+ =
dw el

it — je—lle—id) 1.4
2rw— €+ id ke ( )

el

For 1 <0, we complete the contour in the upper half-plane, where there are no
poles, so the integral vanishes. Hence we obtain

Ga—(k, f) — —iﬂ,e'"""‘“‘ (15)

confirming (3.12°). This method may also be used to take the transform of
Go(k,w) in (8.35).

Note that to get the correct transform for r=0 (i.e., the 1, =1, case in (4.31))
it is necessary to include a convergence factor exp (iw0*), where 0% x @ = =, in
carrying out the contour integral. This makes the integral vanish over a half-
circle in the upper half-plane. This factor may also be included in Gy(k,w)
itself. (See Schrieffer (1964), pp. 108-9.)
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Appendix J
Electron Propagator in Normal Electron-Phonon System

The Hamiltonian for the coupled electron-phonon system is given in
(15.4). In order to calculate the electron propagator for this system, we need
to add to the dictionary Table 9.1 expressions for the electron-phonon
interaction and the free phonon propagator. In jellium approximation, the

Table J.1 Diagram dictionary for phonons

Diagram Function
free ——— = __§29,
phonon 1Dol@r ) = 2 —S24+18
electron— k'
dne* | ZEN
phonon ), q —ig, = _i_»/(_)
interaction K ) 9 2A,M

former is given by (15.8). The latter is (see chapter 16, equation just after
(16.41)):
1 1 29,
D) = S etk T T (1)

which is just like the electron propagator except for the addition of a
‘negative frequency’ part. (The factor in the numerator of (J.1) is a matter
of convention. See Schultz (1964), p. 124.) These quantities may be repre-
sented diagrammatically as in Table J.1.

The expansion for G is then given by

>
D)

+ + see o sese 0.2
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(Note that all bubble diagrams have been omitted because

q=0 q=0
@ O =0, (B o) =0. d.3)

Equation (a) follows from the statement just after (10.32). Regarding (b),
we see that the q=0 phonon has infinite wavelength, meaning a translational
movement of the whole crystal. This is eliminated simply by holding the
crystal fixed.)

The striking thing about (J.2) is that the phonon lines (including vertex
dots) enter the diagrams in exactly the same way as the Coulomb interactions
do. This means that we have an effective electron-electron interaction due
to the emission and absorption of virtual phonons. This is just the interaction
pointed out by Froéhlich, which we discussed in §15.3(@). Stated diagram-

matically:
- M )

(4) Coulomb interaction (B) Frohlich interaction
(electron-phonon-electron)

Observe that according to Table J.1 (B) involves frequency parameter w,
and is therefore a retarded interaction.

Because of the symmetrical way in which (A), (B) enter series (J.2), we can
do a little preliminary partial summation sleight-of-hand to make the series
as simple-looking as in the no-phonon case. First, the expansion is rewritten
in factored form:

x(’”"' + ’“""") < (m+ W) 4 e (1.5)

Defining the combined interaction

MWW T AAAns o+ ST J.6)
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this reduces to

=‘*b*1‘3>*<f)*

which is just as simple in form as the no-phonon propagator expansion (9.40).
The usual partial summations of chapter 10 can be carried out on (J.7).
The Dyson equation is

* } W (.8)

where the irreducible self-energy is given by

b-D- mcpj"of“‘o

J3.9

It is now easy to do all the renormalizations on (J.9) that were done on (10.8).
The clothed combined interaction is given by

!:; (3.10)
WREENE = wwwww

where @ is the sum over irreducible polarization parts (cannot be broken

in two by removing a combined interaction line):

@=O+@+O::Q+-... .11
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similar to (10.54, 52). The free propagator lines may be dressed as in §11.1.
Therenormalized series then has no insertions in any interaction or propagator,
and all interactions and free propagators become clothed:

+eee, (J.12)
The solution of (J.10) is evidently
AAALALAAA PSS
s = =
@UTTIITTTe
+ (J.13)

showing that the dressed combined interaction is the sum of a shielded
Coulomb interaction and a shielded Frohlich interaction. Note that if @

is replaced by the lowest-order pair bubble in (J.11), the shielding term in
the denominator is just the sum of a Coulomb and a phonon part.

In the literature (see bibliography at end of chapter 15!), the dressed com-
bined interaction is usually written in another form, more complicated, but
having a slightly more direct physical interpretation. We define (1) a dressed

Coulomb line by:
ity i S g =  reressn w@ -+ -} cew

R aaaal

- —_— ; (149
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(2) a dressed phonon line by

Ty

or

(3.15)

and (3) a dressed electron-phonon interaction by
E” = >“ + )_,,@q ¥ m ¥
- 0

(The line stumps in (J.16) are only to show where electron and phonon lines
are to be attached. Note that @ is not an ordinary dressed vertex like (11.30)
since it contains insertions only in the phonon branch.) Then it is simple
diagram algebra to show that

e = YN + (ORTETe). J3.17)
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That is, the dressed combined interaction is the dressed Coulomb interaction
plus dressed phonon interaction.

Let us examine (J.17) in RPA, where @ = O Then, the dressed
Coulomb line is just V.4 in RPA (10.35):
wovn = —i ==
WRPA = lVeﬂ'(q, (0) = eRpA(q, w) . (1.18)

The dressed phonon line is (see bibliography at end of chapter 15)

——— 12V eppa(q, 0) wy

worw, | = D@, @) = T 702408 (.19
where w, is the phonon frequency renormalized by the accompanying electron
cloud; it is given by

w, =

Q, (%Zzez NYM )*

= o for smallg). (J.20
Viemm@m ~\1ragg ) =9 Corsmella. (20
This is a much more respectable behaviour for a longitudinal phonon than
that shown in Fig. 15.1. Note that beside the unimportant v {erpalq, 0},

(3.19) is just the free propagator (J.1) with €2, replaced by w,. The dressed
electron-phonon interaction is given by

= — _—igg .
©nn = —igen(@ = €rpa(q,0) (-2

This is a screened interaction and is evidently much smaller than the bare one.
We may use these results to write out the expression for the dressed com-
bined interaction in (J.17):

o = — i ppal@w) = —illg.n(@)|? D(q, w)+ Ver(q, w))

RPA
- 84 2 ZVGRPA(q. 0) wq
t{( GRPA(qo 0)) x —w2+‘8 + (J-22)

4 et ]
q ‘RPA(q’ w)
which is evidently a retarded interaction. It is possible at this point to make
contact with the electron-phonon—electron interaction (15.13) used by BCS.
The BCS interaction is just a static approximation to (J.22) in which
erpa(@, @) is replaced by the static limitasq — 0

2
enra(@ @) > (@) = 1+:— 1.23)
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and w in the phonon propagator is set equal to ¢, — €4 These replacements
in (J.22) yield just (15.13).

Note that the first term in (J.22), i.e., the Frohlich interaction, is negative
for small w. Thus the criterion for superconductivity using the combined
interaction is, again, that the Frohlich term should dominate the Coulomb
term. In the normal case, with which we are dealing in this appendix, the
Coulomb term is the dominant one.

Let us now calculate the electron propagator, using the following
approximation for the proper self-energy:

. k+gq,
@ X ode D (J.24)

with ==  given by (J.22). We have thus

3
Zkw) =i %%?Go(k’*'q-w"") [lg.a(@I? Dig, )+ Vea(q, €)]. (3.29)

The evaluation of this is in Schrieffer (1964a), p. 151 ff.; it leads to a quasi
particle with an effective mass near the Fermi surface given by

m* = m+8mCoul.+8mphon. (J.26)
where mc,,. is obtained from (10.47) and

o A(m\b T2k 4+ A2
dMgpon, = m;(-l—s) r,In T] .27

where A is the RPA screening constant in (10.39). This result is just what we
would expect: the bare electron has its mass renormalized partly by the
accompanying cloud of other electrons, and partly by the accompanying
phonon cloud.

When the Frohlich term dominates the combined interaction, the above
calculation is no longer valid, since the system becomes a superconductor.

In that case, it is necessary to use the Nambu method to calculate the electron
propagator, as described in §15.6.

Appendix K
Spin Wave Functions
Since most people have only seen spin presented in the matrix scheme, we

will give a brief review of the less familiar Schrédinger scheme used here.
(See Raimes (1961), p. 113 and Margenau (1961), p. 59 for details.) Consider
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a free fermion. The space part of its wave function, ¢,(r) is the eigenfunction
of the momentum operator, p=—iV,, i.e.,

=iV, gu(r) = keu(r), (i = 1), (K.1)

where r is the space coordinate and k= (k,,k,,k.) are the momentum eigen-
values. Analogously, the spin part of the wave function, 7,(y) is the eigen-
function of the z-component of the spin operator, S, i.e.,

S.14(y) = an4(y), (K.2)

where yis the spin coordinate and ¢ are the eigenvalues of S;. o has the values
+1h or +14 (for i=1). There is no good physical picture of ¥, but it may be
visualized as the cosine of the angle between the spin axis and the z-axis.
However, this angle can only have the values 0 and = so that y=+1, —1.
The spin wave functions are

g =1, (=D =0, 74(1) =0, (- =1 (K3
They thus form a complete orthogonal set, i.e., it is easily checked that
% 7'.':()’)7}«'('}’} = ar:m" (K'4)
The S,, S, operators operate as follows on the spin wave functions:

Sene(y)= -o(y), Sy16(y) = ion_o(¥). (K.5)

Appendix L

Summary of Different Types of Propagators and their Spectral
Representations and Analytic Properties

A. At T=0, with fixed number of particles, N
(For details, see Fetter and Walecka (1971), p. 72 fI., and Abrikosov (1965),

p. 49 fT.)

We first give the definitions of the various propagators:
1. Time-ordered or causal

G(k,t) = —i{¥|T{ci(t) cl(0)}|¥o)- (L.1)
2. Retarded (first type)
G*(k,1) = —ib, (¥ole(r) c}(0)[¥o). (L.2)

3. Advanced (first type)
G (k,t) = +i6_{¥,|c](0) cu(1)|¥o)- (L.3)
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4. Retarded (second type; this is what is usually meant by * retarded")

GR(k, 1) = —i8Wollei(0), c}(0)),|¥o>. (L.49)
5. Advanced (second type)
GAk, 1) = +i0_(Folle(t), c}(0)), | Fo). (L.5)

By using the same method as in appendix H, we find the following Lehmann
representations for the Fourier transforms of the above propagators:

1. Causal
¢ A*(k, w’) A™(k, ')
= ¢ . L.
Gk, ) !dw [w—w’—p.+i8+w+w’—p.—i3 (L6
2. Retarded, first type
H A*(k, )
+ = oo X
G*(k,w) = oj des [w-w'-p+:s]' (L.7)
3. Advanced, first type
-] A_ R #
G-k, = | do? —A B0 (L.8)
] wtw' —p—id
4. Retarded, second type
3 A*(k, o) A™(k, w’)
R - ’ . L9
Gk, ) de [w-—w’—p,+i8+w+w'—p.+i8 (L9)
5. Advanced, second type
H Atk o A(k, o’
GA(k,w)=.[dw'[ ( @) . (,k“’), . (L.10)
> w—w —p—id wtw —pu—id

The causal propagator, G(k,w) may be calculated dlagrammaucally From
it we may obtain the spectral functions A* and 4~ using (3. 76) which yields

Gk, w) = pJ' dw 'A_M—inj?dw’A*(k,w’)S(w—w'—y.)
(1]

w—w

+PJ dw’ ——_M+ n.[ dw’ A"k, w’) $(w + o’ —u) (L.1D)
0

w+tw —
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from which we immediately obtain from the imaginary parts:

Ak, w—p) = —%ImG(k,w), w>p

1
A k,p—w) = +-ImGk,w), w<p. (L.12)
mw
All the other propagators can be calculated from A* and 4.

B. At T=0 with fixed chemical potential,

The above T=0 representation is for a system with a fixed number of
particles, N. For a system with fixed chemical potential (see §9.7) we simply
replace w by w+p everywhere in (L.6)—(L.10) (see (9.47), also Abrikosov
(1965), p. 63). If in addition we define a new spectral density function:

AK,w") = A*(k, @), &' >0
= A"k, — '), o' <0 (L.13)

then (L.6)—(L.10) assume the simple forms (note: G(k, w)= Gk, w+p) is the
propagator for fixed u):

1. Causal
G -7 dw’ Ak, " ber ber L.14
(k. w) __J; (&, o) w—w+id w—w —id (L.14)
a®
2. Retarded, first type
o Ak, w) b
Gk, dw’ L.15
&, w) = J. w—w +18 ( )
3. Advanced, first type
+® A , ’ a_m'
6-kw) = [ du (k“’—) (L.16)
R w—w —id
4. Retarded, second type
+o Ak, o)
Grk,w) = | dow ———. .
&, w) _J; w—w +id (L.17)
S. Advanced, second type
+o Ak, '
Gk, w) = | du’ —(-—‘"—)— (L.18)
w—w —id
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C. Analytic properties of propagators at T=0

These expressions may be used to study the analytic properties of the various
propagators (Abrikosov (1965), pp. S5, 56). The argument and results are the
same for fixed N or fixed p; we use fixed u since the expressions are simpler,
Consider G* first, and apply (3.76):

AGD) i, w). (L.19)

GRK,w) = P ].“‘ do'’

w—w
Hence

Im GR(k, w’)

+®
Re C*(k, ) =§ J' duf == (L.20)

A function which obeys this ‘ dispersion relation’ between its real and imaginary
parts is analytic in the upper half w-plane (UHP) but not necessarily in the
lower half w-plane (LHP) where it may have poles (Titchmarsh (1948)),
A simple example is when A4 is the Lorentzian:

dir
Ak, w) = , L.21
(k ) [w—(fl-ﬂ)]z"'Az ( )
This yields
O o et N 4 - !
R P oy o gy . ey g 7,
(L.22)

which is analytic in the UHP but has a simple pole at w=(e,—p)—id in the
LHP.

Similarly, G“ obeys the dispersion relation

Im G4k, w’)

' —w

+x®
ReGA(k,w) = — f de’ (L.23)
mw

which is characteristic for functions analytic in the LHP, with poles in the
UHP. If A in (L.21) is used, we find an example of this:

1

G = ————

(L.24)

which has a pole in the UHP.
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The causal propagator obeys

sgn («’) Im G(k, w’)

’
w —w

ReCk, o) = I;P j du’ (L.25)

which is not analytic in either half-plane. It is thus advantageous to use G,
G rather than G because of their simpler analytic properties.
By applying (3.76) to G, G*, and G4 it is easy to show that for real w:
Re G(k, w) = Re G*(k, )
ImGk, w) = ImG*Kk,w) forw>0

= -ImG*(k,w) forw<0 (L.26)
Re G(k, w) = Re GA(k, w)
ImGk,w) = —ImG4Kk,w) forw>0
= Im G4k, w) for w <0 (L.27)
whence
Gk, w) = G/(k,w) forw>0
= GAKk,w) forw<O0. (L.28)

D. Finite temperature, fixed

The real time propagators at finite T are defined just as the T=0 ones
(L.1)-(L.5) except that the average is now over a grand canonical ensemble
(see, e.g., (14.18)). The Lehmann representations of their Fourier transforms
are just like those at T=0 except that s are replaced by Fermi functions,

S (w)=[exp(Bw)+1]"}, f*=1=f". They may be found by the finite T
analogue of the method in Appendix H (see Fetter and Walecka (1971),
p. 292 ff., Abrikosov (1965), p. 141 f1.).

1. Causal
Gk ) = I dos’ A0k, w')[wf_ e
2. Retarded, first type
Gk, w) = T dw'%g. (L.30)
3. Advanced, first type )
G-k, 0) = wa'%g’l (L.31)
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4. Retarded, second type
Amw
Rk, ’ L.32
¢ & w) = J des w—w'+ 13 ( )
5. Advanced, second type

G“(k, w) - J‘ dw' A(k, wl)

-

(L.33)

w—w —i

None of the above propagators can be calculated diagrammatically. But
we can use diagrams to calculate the related ‘imaginary time’ propagator, from
which we may obtain the above propagators. The imaginary time propagator
is:

Ik, 7) = —(T{eul) c}O)D. (L.34)

Its Fourier transform 9(k, iw,) (the ‘imaginary frequency’ propagator), has
the Lehmann representation (see Fetter and Walecka (1971), p. 297):

I, iw,) = jd ':u(kl“’) w,,=—(2";l)"

where A(k,w’) is the same as that in (L.29)—(L.33). This may be analytically
continued from the points iw, to the whole complex z-plane by replacing iw,
by z (Fetter and Walecka (1971), p. 297-8). We may then obtain A4 from

(L.35)

+o ’
Gk, z > w+i8) = ) l dw’ % (L.36)
by applying (3.76) which yields
AK,w) = — %Im YI(k, w+i5). (L.37)
Similarly:
AKX, w) = + % Im%(k, w—i8).
Also:

Ak, w) = ﬁ (B, w— i8) — 9(k, w +i8)]. (L.38)
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Having obtained A from the imaginary frequency propagator, we can place
it in (L.29)—(L.33) to find all the real frequency propagators. Note that

GR(k,w) = 9(k,w+id) (L.39)
GAk, w) = Y(k, w—id). (L.40)

Diligent use of (3.76) yields that G® and G4 at finite T obey the same dis-
persion relations as at T=0 (see (L.19), (L.23)) so their analytic properties are
the same as at 7=0. G is easily shown to obey (cf. (L.25))

coth (4 Bw") Im G(k, w)

+®
Re G(k,w) = E f dw’ - (L.41)
™ % w —w
so it is not analytic. We also find for real w:
Gk, w) = f*(w) GRK, w)+/(w) G4k, w) (L.42)

which is the finite 7 version of (L.28).

E. Two-particle propagators

The above discussion has been restricted to single particle propagators.
Two-particle propagators (or the related scattering amplitudes) are much more
complicated since they involve in general three independent frequencies.
However, in many cases of interest, such as the polarization propagator (13.12)
or the K-matrix in Exercises 10.4, 10.7, only one frequency occurs. In such
cases, the analytic properties are the same as those for the single particle
propagators. (Abrikosov (1965), p. 148.)

Exercise

L.1 Show with the aid of (L..17) that the Lorentzian spectral density (L.21) yields the
propagator (L.22) (use contour integration).

Appendix M

The Decoupled Equations of Motion for the Green’s Function
Expressed as a Partial Sum of Feynman Diagrams

Throughout this book we have calculated the Green's function by expanding
it in a perturbation series with the aid of Feynman diagrams, then partially
summing over a selected set of diagrams. An alternative method is to write out
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the hierarchy of differential equations satisfied by the Green’s function and
solve these equations approximately by a ‘decoupling’ procedure. We will
briefly indicate how this decoupling procedure works, and show that any
decoupling is equivalent to a partial sum. For details, see Mattuck and
Theumann (1971), abbreviated MT.

Let us write the general n-particle propagator in the form

Gi(12,...,n;51°2,.. ., ) = (=iYKTMPQ2), ..., $(m) $'(),. .., AN,
M.1)

The equation of motion for G, may be found with the aid of the equation of
motion for the ¢ operators in Heisenberg picture:

(f%%) B0 = [ d or—r) DY DD,
. (M.2)

2= ) 0) = — [ doe—r) ) B D)
o 2m ’ d ’ '

Differentiating both sides of (M.1) with respect to any of the times ¢,, and
using (M.2) yields an equation of motion expressing G, in terms of G,_, and

Gn+l :

.9 V] .o
(:a—’l+ﬂ)0,(l,...,n,l,...,n)

= 5 SG=IN=1) Goy(lyeeosfm Lt 1y mi Vs V= L+ Leoowtt)
sy’

-:fdw(r,-r) Gatr(®tss Ly ey msRe, 1,y ). (M.3)

Note that in the expression: (—1)*', I’ means the number 1. Also,
1, .., j=1, j+1, ..., n, means 1, 2, 3, ..., n with j omitted, and 8(j-N=
3(x,—r)8(t,—1). Also G,_,=1. There is a similar equation when we
differentiate with respect to ¢,..

(M.3) constitutes a ‘hierarchy’ of equations for G. l.e., when n=1 we find
an equation for G (=G,) in terms of G,:

2w G(ry, tyxi, 1) = 8(ry,—x)) 8(2, — 1))
'at,+2m Iyl 0) = olf —r) ot — ¢

—ij 1o (r =) Gy(rty,ry £y 300,71 17). (M.4)
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When n=2 we get an equation for G, in terms of G and G, etc. To solve this
hierarchy, the usual thing is to express say G,,, in the equation for G, approxi-
mately in terms of products of lower order G’s so that the equations for n>/
become decoupled from those for n</ and the hierarchy becomes finite.
For example, if in (M.4) we set

Gx(12;1'29~G(1;1)6(2;2)—-G(1;2') G(2; 1'). M.5)

we have just a single differential equation in the hierarchy, to be solved for G.
Or we could decouple G, in the form

G3(123; 1’23~ G(1; 3') G,(23; 1'2), (M.6)
in which case there would be two equations in the hierarchy, to be solved for
G, G,.

In order to see the relation between the decoupling and partial sum methods,

we first re-write the hierarchy (M.3) in integral form. The integral form of the
first equation in the hierarchy, (M.4) is

G(1; 1) = Golt; 1) —i [ [ d2d30(2; 3)Go(132)Ga(3,2; 3%, 1) (M.7a)

where v(s;s)=v(r,—r,)8(t;— ;). This may be checked by differentiating
both sides with respect to ¢, and noting that for the free propagator we have:

(iof o+ Vi[2m) Go(1,1=8(1-T). (M.7b)

Using the “stretched skin’ representation of G, introduced in (13.1°), (13.2),
(M.7a) may be drawn as follows:

1 1
H = + - M.7c)

Similarly, the G, — G, equation in integral form is:

2

1 2 1 2 1 L 2
PRI e
t F3¢ LY e A4+ ;g 2

ll

l’
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That is, (M.7) is the integral form of (M.4), etc. Note that there are actually
two possible forms for the G— G, equation, of which (M.7) is one, and four
possible forms of the G, — G, equation (M.8). (See MT, p. 730.)

Consider now the decoupling (M.5). In diagram form this is

1 5 1 2 1 2
-4 X w
1 2f 1 Py 1’ 2’

Placing this in the integral equation of motion (M.7) we find

1 1

1 1
H - } + M + 7@ (M.10)
xl 1‘ l'

l'

which is just the self-consistent Hartree-Fock approximation.
A similar procedure can be used to reveal the secret meaning of the de-
coupling of G; in (M.6). In diagram form (M.6) is

' 2 3 1 2 3
= - X e
1’ 2! 3’ 1 2! 3’

If this is substituted into the ‘fish’ part of (M.8), we find the result in the second
diagram of (M.12):

: 2 ; ? 1 2
, e, g (M.12)
4,4 444"+ gt 3
v »
l’ 21

This may be distorted into the third diagram of (M.12), which is topologically
equivalent to (and therefore the same as) the second diagram. Substituting
this result into the whole equation in (M.8) yields

2 t 2 ! 2 1 2
E - 4} H _ X -~ (M.13)
g ’ o 3.
1 2 o !/ M
14 2!
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[terating (M.13) by substituting the whole right-hand side of this equation for
the G, on the right, etc., generates immediately the following series for G:

- X -

(M.14)

We now follow the usual procedure in the decoupling method and replace the
clothed propagators in (M.14) by bare ones, giving us the ladder sum for G,:

mERRES = R e PR

which shows that decoupling (M.6) is equivalent to ladder approximation.

These two examples illustrate that any given decoupling of the equations of
motion for the propagators is equivalent to a particular partial sum of Feynman
diagrams. (The reverse correspondence does not appear to be true, i.e., to any
given partial sum there does not necessarily correspond a decoupling. See
MT, p. 740.)

Appendix N
The Reduced Graph Expansion

The reduced graph method originated in quantum field theory where it is
called the ‘unitarity expansion’, and was first used in many-body theory by
J. S. Langer (1961, 1962). In this brief introduction, we follow the un-
published notes of U. Larsen (1973).

Reduced graphs may be used to calculate the imaginary part of any field-
theoretic quantity, e.g., the self-energy or the scattering amplitude. The real
part may then be found using dispersion relations such as (L.20). Reduced
graphs are not ordinary Feynman diagrams, although they do resemble them.
The idea is to notice that the imaginary part of the value of any given Feynman
diagram may be broken up into a sum of contributions, one from each of the
poles associated with the intermediate states of the diagram. Each of these
contributions is expressed in the form of a diagram called a reduced graph,
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which may be evaluated by certain rules. We will show in detail how this is
done in a couple of simple cases then generalize.

By (L.37, 38), the imaginary part of a quantity Q may be obtained from the
discontinuity of Q across the real axis:

Im Q(x+i8) = %[Q(x+i8)-— Q(x—i3)) = 8Q.

Let us first consider the reduced graphs for the imaginary part, 82, of the self-
energy, 2. To introduce the basic concepts, we will calculate the contribution
to the discontinuity from two of the lowest-order self-energy diagrams at
finite 7. Note that all propagator lines in the diagrams are clothed, and the
spectral representation is used, where p(x) is the spectral density. Forsimplicity,
the interaction is assumed independent of wave number, and equal to a con-
stant, ¥, represented diagrammatically by a single point. The first diagram is
(we sometimes use the abbreviated notation 1 = x,, 2=x,, 3=x;, iw, =n, etc.):

1.m

Zm(n)s n m'g
N

34

= (=) V[ d1p(1) [ d2p(2) [ d3p(3) Fn,1,2,3)

where

1 1 1
. - z .= E . . (N1
F; 1,2,3) Bt xy—iwg B Lt xy—lwytiwn—iw; X3—iw ™D

The sum over w, is carried out as in §14.5 and yields

_J@-f3)
5o

lw,,-3+2-lw,

(N.2)

where we have used f(2 — iw, + iw,)=1(2), since w,+ w,, is even. Placing this
in the sum over w,, and evaluating this sum by the same technique gives

Fin1,2,3) = L& _lf f;]_[_f;l_);go_z)] (N.3)
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where we have used that
SB-24iw,) = —g(3-2) = —[e?-D_1]! (Bose function),

since w, is odd. Analytically continuing iw,—2, and juggling the Fermi and
Bose functions a bit, F may be written in the form

R(1,2,3) — S Df (=)
F(Z,l,2,3)=m. R(I,Z,S)—W. (N.4)
Hence
2wy = (=) v2 [ dip) [ d202) [ d3p(3)l—£g-:%. (N.5)

The discontinuity, 8Z", across the real axis is given by (abbreviate { d1p(1)
by fy, etc.)

3ZW = il,?{z'“’(w+i8)-2'"’(w"’5)} =[[[er

123

where, using (3.76),

8F = %{F(w-%-iS)-—F(w-iS)}

_ Ra,2,3) l _ l
2 |1+2-3-w-i8 1+2-3—w+id
= 7R(1,2,3) §(1 +2-3-w). (N.6)

Hence, Im 2V is given by

M2 =8I0 = .,,-J"” R(1,2,3)8(1+2-3-w)

123

= —af ) [[[ FV/@A-380+2-3-0) N

1213

where we have used the fact that because of the 8-function, fw)=/f(1+2-3).
From this result, we can see that the discontinuity arises from the pole of F,
whichoccursatz=1+2—3. Notethatthe location of this pole may be obtained
directly from the original graph by drawing a dotted line cutting the graph into

two pieces:
1

¥4
£ } ™)
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and taking particle lines as positive, holes negative: z=1+2—3. Further-
more, note that each particle, p, has a factor f(p), and each hole, A, a factor
J(—h). The —1is for the fermion loop, and the delta function gives frequency
conservation.

For the second example, consider the self-energy diagram given by

n+s—=1 n+t-1I

2o eSO e [ rerzaas

12345 (N.9)
/

where

1 1 1 1 1
y 1y &y ’49 == iy - T
Fn; 1,2,3,4,5) Blz 5-1 322—3 I—s—ntl
ZL (N.10)
- 4—¢ 3~ t—n+l

Carrying out the frequency sums yields, after continuing iw,—>z

F@z) = -[/@Q-fIF@-/3)}

SO)2-1—-4+3]+gQ2 1) [S—4+3—2}—g(d=3)[5—2+1—2]
X G-2+1-2)(5-4+3-2)(2—1-4+3)

(N.11)

This expression has two poles, in contrast to the first example, where there was
just one.

The idea now is to evaluate 8F expressing it (henced Z®) as the sum of two
contributions, one from each pole. There is a technical problem here, since
both poles lie on the real axis (because 5—2+1, and 5—4+3 are real). This
means that when the integrals over 1, 2, 3, 4, 5, are carried out, these poles give
rise to ‘overlapping branch cuts’, i.e., branch cuts lying on top of each other,
on the real axis. This leads to ambiguities and indeterminate integrals.

To avoid such ugly things, it is necessary to displace the overlapping cuts
from each other. This is done by adding infinitesimal imaginary parts to the
integration variables, i.e., 1>T=1+i8,, 2-3=2+i8,, etc., choosing the i8's
in such a way that the first pole, x,,=5-2+1, becomes %,,=x;,+ i, the
second pole, x,,=5—4+3 becomes £,,=x,,+2in, etc. When this is done,
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we find

F(z;1,3,3,3,3) = BIgi Lo . (N.I2)
G—2+1-z+i)(G—4+3—z+2m)

where

Rz 1,...,5) = =[f(9- SOIS@)-f0)]

fO)2—-1-4+3+im]+g(2-1)
x{ x[5—4+3—z+42in]—g(4-3)[5-2+1—z+iy] -

2—-1-4+3+iy
(N.13)
The total discontinuity across all the cuts is given by
| R
BID = —{ZP(w+id) - ZPw-id) = [[[[[oF.  N14)
F & S GOt AU o[58 I S

Here, § <7 and
1
OF = - (F(w-+2im+i8)— Fw+ iy —i8))
4
1
= ;{[F(w+2f7}+f5)— Flw +2in—i8)]+ [Flw+in+i8) — F(w+ in—i8)]},
]

(N.15)

where we have used that F(w+2in—i8)=F(w+in+id) since <7 and there
are no cuts in between that at z=w+ 2ip—i8 and that at z=w +in+i8, With
the aid of (N.12), (N.15) becomes:

Rlw-+in; 1,...,5)
5—44+3—w—in+2in

OF = 78(5-2+1—w)

R(w+2in;1,...,5)
5241 —w—2in+in’

+78(5—4+3-w) (N.16)
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Placing the expression for R in (N.13) into (N.16), simplifying with the aid of
the 8-functions, and placing the result for 3F into (N.14) yields:

52D = 2V3f-Y(w) IJI 55-2+1—w}(-1Df GV S f(-2)

1258
S&~1) i i
ff3 4—(w—"5- in) +wV3f l(w)!!;[s(s 4+3 )
S()=1(Q2)
% (= DSOS~ [ [ o - NA7)
!!l 2—(w—5—in)

We can now extend the rules used to get (N.7) directly from graph (N.8),
and use these extended rules to get (N.17) directly from graphs. This is done
as follows: We cut graph (N.9) into two internally connected pieces in all ways
such that the incoming line enters in the left-hand piece and the outgoing line
exits from the right-hand piece:

()
1! 3 1 3!

.(8) s(b) |

These graphs, as well as (N.8), have the general form:

oﬁg (N.19)

where A and B are called ‘endpieces’ and the set of particle and hole lines cut
by the dotted line are called the ‘intermediate state’. Such graphs are called
‘reduced graphs’. We see that the two terms in (N.17) can be obtained from
the reduced graphs in (N.18) by the following rules:

(1) A factor for each endpiece given by evaluating the endpiece as an
ordinary Feynman diagram. (For example, in (N.18a), the endpiece A4
gives just a factor ¥, while endpiece B produces V2 times the double
integral over 3 and 4 in the first term of (N.17).)
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(2) A factor f(x;) for each particle in the intermediate state, and f( —x,) for
each hole.

(3) A factor 8(Zx, (particle)— Zx, (hole)) for the intermediate state.

(4) [ dx;p(x)) for each x; in the intermediate state.

(5) Overall factor [f(w)]™".

(6) Factor (—1) for each fermion loop not already included in evaluating
the endpieces. (N.20)

[n the case of a general Feynman diagram, to find its contribution to the
imaginary part of the self energy, Im X', we first separate it into two piecesin all
possible ways such that the incoming particle enters the left-hand piece and
the outgoing particle leaves the right-hand piece. The resulting diagrams all
have the general form

with n particles in the intermediate state, and n— 1 holes. The contribution of
each of these reduced diagrams to Im2'is given by the rules in (N.20).

Finally, to get the reduced graph expansion for the imaginary part of the self-
energy, we decompose every Feynman diagram into a sum of reduced graphs,
and regroup all the resulting reduced graphs according to the number of lines in
the intermediate states. This yields

Im—(Z)+ = @ + @ 4o (N.22)

where the endpieces are the sum over all possible Feynman diagrams with the
indicated number of lines entering and leaving.

A similar expansion exists for the imaginary part of the scattering amplitude
(§10.6):

o JBX - 2000 + X - X+

and also for the higher-order field theoretic quantities, with many particles
entering and leaving.



Answers to Exercises

Chapter 2
2.1

(l)@
14081

r

+ + Qn + ++++; 2" diagrams in nth order

@

22 P(ry,ry) = Pylrz, r)+ Po(r,, 1) P(m) Po(ra, v) + Po(ry, 11) P() Polra, 1)
+P0(I',,,, I.l) P(m) Po(rlm rm)P(m) PO(rZ’ rm)+ eves

2.3 P(ry, 1) = c+[P(m)+P(D)+ c3(P(m)2 + P(m) P(D+ P(l) P(m) + P(I)2)+ c*...

= c{1+c[P(m)+ P(D)+A(P(m)+ P(D]2+...} = l-cTr:)ﬁ’(T)]'

c
24 P(l’g, I'l) = i——TI’(a)'
a

402
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Chapter 3

2, (mnx = n?
3.1 $a(x) = [=sin ——); €= , m= 1,23, .
a a 2ma®
fmn?
Gin,ta=11) = — i, exp |~ )(r,—f,)

2ma*
A2 =
Gin,w) = [m—- +f§] ;
2m

a!
3.2 We have
wtn?
H = p’2m+U(x), H¢y = — ¢n
2ma
thus:
¥ J' dx$2(x) B(p*/2m+U(x))? $ul(x)
=TT
= B n
(2ma’) ¢
- ( wn? )“ 5
2ma®

3.3 The diagram series here has just the form (3.33) except that the = is replaced
by =. The diagram is equal to

wen
=iV = iB
! —1i (Zma'!)
and the directed lines are just the propagators of Ex. 3.1. Thus
it mat\*
Gt(n,w) = — +i6—B :
) [“’ 2mat (Zma’) ]

mn? w2 n*\3
3.4 € = +B( ) V Ta= ®,
2ma® 2ma®

3.5 See Eq. (2.23).

3.7 Use 3.77), (3.78). m* m[l i ZN’"IW;]"I
& S 2 5 : B = e .
¢ ey

(i/82) G§(s) Gs(k) 3. G&(r) Gg(a) Gi(p)

rf.a.p

x W, Wpt “z" z e—l(r-p) Ry z g—ila-r+p-k).Ry
[

Gw‘}z ) f @y’ (z }; Go(P)* G3(@) W Wap Wiy Wop Bus.




404 A GUIDE TO FEYNMAN DIAGRAMS

Chapter 4
4.1 -k,
4.2 (a) 0.
®) 115,19
(©) ¢} J11111000...>=]11111000...), for k<kg, and =0, for k> k.
Hence% eclex11111000...>=(e;+ €2+ €3+ 64+ €5)[11111000...).

4.3 Equation (4.39) with extra term, — | ¥,/ 2 (0 — ; + #8)~1, in denominator.
4.4 See (9.33/, h) and after (9.32).

[k-(p+q)]

(b) Energy is not conserved:

k22m+-pY2m # (k—-q¥*2m+(p+q)*/2m.
4.6 [iG(k, w) x F(k,w) where:

d dj
Fk, ) = GZJ fz—:rfz—ficg'(k—q,w—c)x(—"’,)z

x (= 1) xiG§(+q, B+ ) xiG(, B
A function of k and w,
4.7 By conservation of momentum and frequency, the directed line joining the two

parts must have the labelk,w. The result then follows immediately.

4.8 See (10.5), together with (4.76, 77) and F(k,w) in Ex. 4.6.

q wda
q q
q q q n r
4.11(a) Hw= + + 41+ q + + NI+
p P P P 1 p
P
P

I
= =
+
X
——mma,
+
—_——
—
+
——®
8
S~ —
+
——
—
+
—
g
—
+
g
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Gs(q,w) AGH(p,w)

I**A[ > Gilw)+ > Ga(m.w)}

1>kp m<kp

or  G*'(q,p,w)=GE(p,w) 84+

G(q,w) Af,f, G§ (p,w)

1A [ S Gilw)fi+ S c;(m,w)f:.]

1>k m<kp

(b) G*(q,p,w)=G(p,w)8,,+

Chapter 5

] [

[ I
5.1 —J.duJ‘dr,J.dr,.J dty S iGE(p, ty— 1)) x (—i) ¥V, x iGH(1, £y~ 13)
0 0 0 0 e
L>h> >
X (—=1) Vo x iGH(g, ta— 1) x (= i) VX iG3(1, ty—15) % (—10) Ky

5.2 (a) Equivalent.
(b) Distinct.
(¢) Distinct.
5.3 The diagrams arc exactly the same as in (5.12, 13) except that all 1's are

replaced by m, where m is such that €, <€, €, being the Fermi energy of the
system.

5.5 Both have a particle and a hole in the same state, which is impossible.

Chapter 7

7.1 (=1)]0010100...>.

7.2 (A*<100...|+ B*{11100...]) N(A4]|100...>+ B|11100...>) = A2+ 3 B2,
73 ey el|¥>+cley|¥>=—A]0100...>+.4|0100...>=0.
7.4 Using (7.47) and the €, from the answer to Ex, 3.1, gives

n?
= +
Hu Z(Zmaz)fnf..

7.5 Using (7.50) plus the answer to Ex. 3.2 yields

aint\3 min?\3
H; = ..Z.B(zma") SmnChcy = gB(Zma’) cl ey

7.6 Using (7.69), (7.69"), yields:

F xtmn =£‘3(k +1, m+n)

Hence,

A —
ose =0 D CrgCricCmtn
m,n.q
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11
7 S¢e= S CholSJlo" ey era
ko, la’
where
<ka|S,llo”> = 8,(o]S,|0".
Using appendix (K.5),(K.4),

{o|Silo"> = Z NN Sane(y) = % g N3P N-0r(y) = 18, -0
Hence

S§3¥°=14 3 8uds,corcloCia = iz [Cq Cq*‘h; %3 8
ko, lo*

Chapter 8

8.1 'I:I,,,.,ok = [iGo(k, @)= iV (= 1X(-1),

mp* ¥ < (iG30, )P~
k™~

The second pair of diagrams cancels in a similar way

83
. _ k2

6 = ——003—

2m

-r,“

0-25(k — k)2

Wiran)(— 1),

kkg _ k2
2m " Im’

. k3
"zZTn

=
e —¢p

Chapter 9

9.1 (—1)x(~1)x (s cl(t3) cxlty).
9.5 (a) and (c).
9.6

kaw] k-(p+q),w—(B+¢)
P+q
B-¢ 1
A8
k-q
w— €
kw

g, €

9.9 Because they violate rule (2) in §9.6.

k2

k3
This ratio is small (< 0-1) provided k/k,< 2.

< (Klkp=1
025 (k/k,,+ 1)'

(211)
X (=IV)(= iV, )% iGok—q, w—¢)

x IGy(p, B) % iGo(p+q, B+ ¢).
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Chapter 10
10.1 b, c are self-energy parts. b is proper, ¢ improper.

ka ky k;I m m
10.2 w= hw+ / H é =
k ki k, l /

fG(kah m) = II.Gl:l(kl’ w) 8k|k|+z il.Gl:'(‘kll w) akum x [_fme} x llGU‘l":II' “")-
Im

10.3 See (4.96).
10.4 Using (10.21), with V.= A, we find
13 p de =1
K(q,w) = A[I—A {(2[')_, Gi(p, € GS(‘I“P,w—G):I

as can be verified by substitution in (10.21).
10.5 a, d are polarization parts. a is proper, d improper.

k'+q

Y'+w
(-l

‘qu k+q

Yyrw
B f#(q' w} == i'.'ﬂ'n(q, w}
K’ r-‘v .
3 2m)3 (2.,}3 J. iGo(k’,y") % iGy(k, y)

X iGo(k+q,y+ w) x iGy(K' +q,y"+ w) x (— i) K(k',y", k,y; q, w)

(factor of 4 for sum over spins).

10.7 (a) K(p: f’,p,(: q, GJ) — A”P“F'[] _AI(Qn w)]_l|

where 1ga) = i | 29 6o, ) Gola =", 0— i
ere = —_— x - -
q,w JJ )" olp,€) Golq—p",w—€")
d? u-
b) I*(q, w) = u
b) I'(q, w) J.{z-.-r)’w—e,,-—c,_,-+f'5
d*p -
I~(q, = -
@) J. (27) w—€p-—€qp-—1id
m mky
(c) 1*(0,0) = = — (w—k¢); 17(0,0) = —
272 2
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(d) Atlow density, kra<€1 (see beginning of §10.3). But, since ¥, has range w,
Fourier transforming shows V(r) has range ~1/w, so ax~1/w. Hence
ky €w, which means |I+(0,0)| > I-(0,0).

3
10.8 KE = I3 for two non-interacting electrons in ground state in a three-
dimensional box. PE = e¥/agr,. From (10.24), L~2a,r,.
Hence

37I'2 ,'3 3172 ao 8

KEPE = —— ~ — ~ —,
/P 2mell  4agnr, 1,

Az AZ -t
109 Forge2: V (g, 0)% (dmekd) [;‘-; +q=(1- m)]
F

4n 1
For g»2: V o (4, 0) = (4me*/k7) [q’+-5 Fq”]
F

dav.
atg = 2: il

= +©

Chapter 11

11.1 Diagram () should not be included, since it is already included in diagram 4
of (11.3). None of them should be in (11.5) since (a) and (b) are already
included in the third diagram on the right of (11.5) and (¢) is included in the
second diagram on the right of (11.5).

11.2 G(k,w) as in (11.2]1) with ;= ,(1 ~ 4)™,

sgn {ex(1 ~ A)~' — p] Bles(1 = A)~' — ]
B a-4) :

Zl = (I_A)_lv 7;!

LB

11.3M©

Poles are at w=¢;—i(€j— p)5. Close contour inupper half S-plane. By residue
theorem, § dB=0 for ¢;> g, and = +1i for €; < u, from which the result follows
immediately.

+ @ E"iglV"""-Vlul]]Qﬁ—e"'___

18 o 2m B—e+i(B—p)S
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Chapter 12

1
= (-D3(-1¥ 1}
q‘gm (et €— €~ €yy)

< 1
(‘m+n +e—¢,— ‘H-u)

12.3 The first diagram is given in (12.7). The second is

( 1)" E V!m!m]

= (=1)4 Z [ m<ke
(€k+ €= €k+¢_ 'E.I'—q)I {€k+ €= €ppq— f;_q)

The diagram with n bubbles contains the factor in brackets to the nth power.
Hence we have a geometric series which may be summed to yield

12 2
J=(—1)‘Z{ B i & ]
te—€u.—€, €t(e+fB)— €piq— €1y

qkl
where Bi= X Vimim
m<kp
Chapter 13
13.1
1
”‘1 CKA
= + losnd + dooem + = +§{<A
e -
[
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(c) Substituting for 4 from Ex. 13.2 yields (a).

13.7 We have

l — 1 —
—iG2(4,3,2,1) = —<CO|T{(4) $*(3) (2) $*(1)|0> — <OI T {h(4) $*(3) ¥(2) ¥*(1)]0>
= iGo(4, 1) x iGo(2, 3) — iGo(4, 3) X iGo(2,1),

which may immediately be translated into the zeroth-order diagrams of (13.2).

Chapter 14
g BCE—pNy
14.1 . z, N, e BE-u 21 Z
= 2'; B (E—pND #(By) a.

14.2 By (14.12), ano':% In (1 + Pl

Hence Ny=3; (etAlos 4 1)-1,
%

14.5
k,w,. q'e,,,
k-q P+q
= (+ MYk, w )]
W = €m poﬂl pl +em 1 +®
- iFok—q, w,—
k,ww Gim ";B;'MZ_; ok—q,w,—¢.)

x 194(p, B) % 19o(p+4q, B+ €,)
x(—=V)2
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Chapter 15
15.1 2{; € bl b |Wo> = 2:‘2 e chycnpelipe gyl n (= )

= 2%: € My Ny |Pod
=23 e.my |¥o> (sincenm, =n_, =0orl)
k

= F € Mo Fod.

152 [y, af.] = uy tyleey, o=ty O lergy €yl =  etc., ...

B[ty i+ 0, V] = S

15.3 E = Ey+E, +2E,,

1 0\/ 5
15.5 z (el cgy) (0 L 1)( "k?) = % exlchycppt iy c_,“)~§ €
k

(=L

15.6

Kot iy [sco(k. w)]z

dk'dw
2=)*

F(k,0%) = _KWOIC” C-qW’o)
VTS = 0V T

where |¢>=[T (u;+v,6])[0>. In normal state, v,= 1 —0, so F=0. In super-
#k

73 (=i% ko) Tr {‘r; xiG(k’, w’):r elw’o”
15.12

I

conducting state F#0.

Chapter 17

17.1 (b) Let T be the global gauge transformation operator. Then, H|¥o) = Ey|¥o),
so THT'T|Wo)=EoT|¥Ws>. But, by 17.1 (@), THT'=H. Hence HT|¥,> =
EyT|¥,>. Butsince |¥,) is non-degenerate, this means T|¥,> = |¥,>, Q.E.D.

Appendix of

.1 We have:

1 i fw,
[bo, b1 = b by=blby = 5y [P Palt 3 ,/ o [P0 %]
q

i w, m . ———
-3 J i (%o 2e1+35, Vo,w ¥, ¥,).
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Using (7.32) yields («.37a) immediately.

o3 \/(4)
<3 @=p b Bon Bsos Yoo = Yoo V) i Yoy = VO ¥or 0o .

(©) \/(3) VO VY, 40.04.0.0..
«/.6 Five phonons.
.7 E = 33 hw,+ 2hw,,+ 3hw,,.
q
Appendix G

G.3, G.4 The non-vanishing contracted elements and corresponding diagrams are
(omit time for brevity):

k,
M/ | !
kg.(_iyklma(olal;a}b.ambr,ﬂg"l()) = m@
ktk
(| m m IICz
2 (_'Vum)(olax,a'b.b a,.a,,|0> n
Kimn k k‘

ky
e I
S (= iViund Olay, b,a} bia,al |05 = ¥
kimn ’l | n
m 1 kl
—o M
2 (= Vuw) Olay, bia} a, b} al\J0> = -
Kima | | kl I
== k, m n
2 (= Veuna) <Olay, by by L bl 0> = +k| O;:‘“zo

M — ] k, k n
— V1) O\, by by BL, Y . [0 E+’ @
kgn('uxlt,tzm.k,l) kN /

Appendix H
H3
” n?
(a) ey = m [n;+n;+ l]’ ("l = 0' 192'- . -)

(b) AE = [2[2m* L3, ¢ (build-up) = 2m* L3/h
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; 2 h (372 N)?}
(¢) velocity at Fermi surface = vy = [ h Qe Ny
m* m* L

so 1 (traverse) = Lfvy=m®*L*[h(37* N)}
(d) t (traverse)/t (build-up)=2/(37*N)¥. This is ~10~® for a metal and ~0-2
for a heavy nucleus.
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A

adiabatic theorem, 355

advanced propagator, 72

analytic properties of propagators,
38547

angels on pinhead problem, |

anomalous diagrams, 162, 215, 245

anomalous propagators, 268, 2934.

antisymmetry, 125, 130

B

bare interaction, 5

bare particle, 5

bars in Copenhagen, 14

BCS interaction, 258, 383

BCS theory, 2574, 274

Bloch equation, 242, 358

Bogoliubov quasi particle: see bogo-
lon

bogolon, 10, 263

bogolon propagator, 271

broken symmetry, 289

Brueckner theory, 2224

bubble diagrams, 814, 217, 371, 372

C

canonical commutation relations, 340

canonical transformation, 2, 1474,
3364.

chemical potential, 158, 373

formalism using, 168

clothed: see renormalized

cloud around quasi particle, 44, 87,
96, 191

collective excitations, 10, 2274.

combined interaction, 379

commutation relations, boson, 140
canonical, 340
fermion, 130
particle-hole, 136
Cooper pair, 274
conduction electron, 9, 17, 544"
connected diagrams: see linked dia-
grams
conservation of frequency, 84
conservation of momentum, 794.
conservation of particle number,
violation of, 106
contraction, 364
convergence factor, 164, 377
Cooper pairs, 259f.
correlation energy, 2184
correlations, 96
Coulomb interaction, 94, 136
creation and destruction operators,
67(., 1284
based on position
1384,
boson, 140
elementary excitation, 344
fermion, 128
in Heisenberg picture, 155
in interaction picture, 362
pair, 260
particle-hole, 70, 136, 147
phonon, 3424
critical phenomena, 122, 307

eigenstates,

D

decoupled equation of motion, 391 4.
delta-function interaction, 141
density operator, 139
destruction operator: see creation and
destruction operators
423



424

diagram dictionary for
drunken man progagator, 144.
electron in impure metal, 60
ferromagnet, 300
ground state energy of interacting
Fermi system, 216
interacting electron-phonon sys-
tem, 378
interacting Fermi system (Feyn-
man method), 167
interacting Fermi system (Gold-
stone method), 86
interacting Fermi system at finite
temperature, 246
non-interacting Fermi system in
external perturbing potential, 75
pinball propagator, 30, 34, 35
quantum pinball propagator, 47
superconductor, 270
diagram perturbation series
breakdown in superconductor, 264
derivation of, 524, 3674.
with renormalized interactions, 195
with renormalized propagators, 204
with renormalized interactions and
propagators, 205
with renormalized vertices, 211
self-consistent, 204
diagram perturbation series for
classical pinball propagator, 31, 33,
35

condensed phase, 296/.

drunken man propagator, 15

electron in impure metal, 58

electron propagator in electron gas,
20, 96, 189

ferromagnet, 299

finite temperature propagator, 245

ground state energy of interacting
Fermi system, 1154, 215

ground state energy of particle in
external potential, 111

Kondo problem, 3094

particle-hole propagator, 230

propagator for interacting Fermi
system, 174, 85

INDEX

diagram perturbation—cony.
propagator for non-interacting
Fermi system in external po-
tential, 74
quantum pinball propagator, 48
superconductor, 269
vacuum amplitude of one particle
in external potential, 108
vacuum amplitude of interacting
Fermi system, 115
diagram rules for
ground state energy of interacting
Fermi system, 2154
propagator in interacting Fermi
system, 165ff.
ground state energy of one particle
in external potential, 113
diagrams, Abrikosov, 166, 167
diagrams, Hugenholtz, 166, 167
dielectric constant, generalized, 190
Dirac formalism, 3454
disordered system, 54f.
dispersion law for elementary ex-
citations, 344
divergences, disagreeable, 51, 52, 283,
308, 315, 317, 318
divergent diagrams, 1874, 219f"., 223
dog
poodle, 87
self-consistent, 317, 318
double-bubble diagram, 217
dressed : see renormalized
drunken man propagator, 134.
Dyson’s equation, 178
finite temperature, 245
general form, 182, 183

E

effective external potential, 90, 181,
182

effective interaction, 5, 97, 98, 1904.,
200

effective mass, classical, 27

effective mass of quasi particle, 44,
62, 63, 94, 99, 185, 192, 384
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Einstein phonons, 275/
electron gas, 71, 94f7., 185/f., 217,
3281F.
density regions in, 186
effective interaction in, 189
ground state energy, 217/f.
Hamiltonian, 186
proper self-energy, 189
ring diagrams for, 189
RPA in, 189
Wigner lattice, 185
electron in metal, 9, 54/
electron—-phonon interaction, 257, 378
elementary excitations, 4, 343ff.
energy, average at finite temperature,
239, 248
energy, complex, 42, 60, 374
energy gap in superconductor, 263
energy of excited states: see excited
state energy, elementary ex-
citations, quasi particles, col-
lective excitations
energy of ground state: see ground
state energy
energy parameter: see frequency
equations of motion for propagator,
391
exchange diagrams, 82, 83
exchange interaction, 309
exchange scattering, 82, 91
excitation spectrum, 344
excited state energy from propagator,
41, 373
exponential operator, 353

F

Fermi distribution, 241

Fermi level, -momentum, -sea, -sur-
face, 65

Fermi surface, existence of, 209ff.

Fermi vacuum, 69

fermion loop, 83, 164, 371

ferromagnet, 287/,

Feynman diagrams, 17f., see also
under diagram

425

Feynman diagrams—cont.
and the jungles of the Amazon, 120
quasi-physical nature of, 17, 87

Feynman method, 161, 162

fictitious bodies, 3

field operators, 139

finite temperature propagator, 241 .
vacuum amplitude, 247/f.

fish diagram, 394

forward scattering, 82, 89

frequency, 34, 84, 164

Friedel oscillations, 197ff.

Frohlich interaction, 258, 379

G

Gell-Mann and Brueckner theory,
217

global gauge tranosfrmation, 289

Goldstone method, 161

grand canonical ensemble, 239

graphs: see diagrams

Green’s function: see propagator

ground state energy, 101/, 214f.
electron gas, 217/,
from vacuum amplitude, 354
many-body system, 115/, 214}
nuclear matter, 222/f.
one-particle system, 111ff.
superconductor, 260f.

H

Hamiltonian, for general elementary
excitation, 344
in interaction picture, 362
in occupation number, formalism,
13241, 139
in particle-hole formalism, 137
with variable particle number, 169,
242
Hartree equation, 91
Hartree quasi particles, 89ff.
Hartree model system, 143ff.
Hartree-Fock quasi particles, 21
at finite temperature, 247
Heisenberg picture, 155
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Hilbert space, extended, 127
hole, 8, 66, 137
hole propagator, 72

at finite temperature, 244

I

id-factor, 40, 376
imaginary time propagator, 2414
impurities in metal, 10, 54, 3084,
indistinguishability of particles, 73,74
infinitesimal generator, 332
instability, 264, 2874, 3024.
interacting Fermi system, 784,
interaction, bare, 5
between elementary excitations, 9,
345, 146, 147
dressed, renormalized, effective,
clothed, 5
strong, 337
weak, 337
interaction amplitude, one particle in
external potential, 46, 73
two colliding particles, 78
interaction picture, 356
intermediate frequency, 84, 164
intermediate states, 55, 77, 164
intermediate times, 33
internal field in condensed phase, 291
invariant charge, 330
irreducible self-energy: see proper
self-energy
irreducible self-energy part: see
proper self-energy part

K

K-matrix, 1844,
in Brueckner theory, 2244
retarded, 265

Kondo problem, 3084.

L

ladder diagrams, 22, 184
ladder approximation, 116, 1834.

INDEX

ladder sum in superconductivity, 265
Lehmann representation, 158, 3724,
3854.
level width of elementary excitations,
345
Lie equation, 3324.
Lie group, 3304.
lifetime of classical quasi particles,
27,28
lifetime of elementary excitations, 345
lifetime of quasi particles, 4, 6, 41,
62, 63, 92, 175, 185, 192
general expression, 150, 208
linked cluster theorem, 102, 1094,
370
linked diagrams, 109
long-range order, 2874.
parameter, 289
low-density Fermi system, 183, 2224

M

magnetic impurities in metals, 3084"

magnetization, 3034.

magnons, 11

many-body problem, 1.

many-body wave function, 67, 68,
1244

matrix propagator, 2874., 296f.

momentum non-conserving  dia-
grams: see anomalous diagrams

monkey partial sum, 32, 33

N

Nambu formalism, 267f.
Neanderthal notation, 71
non-local interaction, 197
non-propagating lines, 82, 164
normal order product, 364
nuclear binding energy, 92, 2224
nuclear matter, 92, 2224

ground state energy of, 222/

interaction in, 223

quasi particles in, 92, 183
nuclear quanta, 11
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number of particles, obtained from
propagator, 168/f.
number operator, phonon, 343
fermion, 130

@)

occupation number basis, 127
occupation number formalism, 67/,
123fF.
for bosons, 140
Hamiltonian in, 71, 132, 133
operators in, 71, 1284
statistical mechanics, in, 2394
wave functions in, 68, 125ff.
one-body operator, 131, 157
one-particle propagator: see propa-
gator
oyster diagram, 20, 23, 217
open, 82, 84

P

pairing in superconductor, 259
pair bubble
particle-hole, 171ff., 1974
finite temperature, 249ff.
in Kondo problem, 313/f.
parquet diagrams, 316
particle, definition of, 66
particle-hole formalism, 69/, 136/f.
canonical transformation, 70, 147
commutation rules, 136
creation and destruction operators,
70
partial summation, 15/, 28, 48, 58,
65, 89, 17047., 395
Pauli principle-violating diagrams,
74, 88, 372
perturbation series: see diagram per-
turbation series
phase transitions, 287/
phonons, 255/, 2754, 3417
propagator, 284, 378
pinball machine, 28/
diagram series for, 31

pinball machine—cont.
picture of, 29
propagator for, 28
two-particle propagator for, 228
vacuum amplitude for, 103
pinball game, quantum, 43ff.
propagator for, 46ff.
plasmons, 10, 11, 234/}
Poissons formula, 250
polarization cloud, 191
polarization diagrams, 190
polarization part, 193
poodle process, 87
principal part integral, 61
probability amplitudes, addition of],
37, 38
propagator
advanced, 72, 157, 385f.
amplitude factor for, 41, 42, 151,
156, 157
analytic properties of, 385/
anomalous, 268, 293ff.
causal, 3854
classical quasi particle, 26
collective excitation, 233/f.
definition of, verbal, 38, 39, 72, 151
definition of, mathematical, 154
density fluctuation, 2304
derivation of expansion for, in
momentum-conserving external
potential, 52; in general case,
359; at finite temperature, 361
diagram series for: see under dia-
gram perturbation series
differential equation of, 53, 392
drunken man, 13/,
electron in metal, 17
electron in impure metal, 17, 54/f.
excited state energies from, 41
finite temperature, 241
free, 40, 151, 157
hole, 72
Green’s function, interpretation as,
53
imaginary time, 241ff.
interacting Fermi system, 78/7.
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propagator—cont.
matrix, 268, 2964.
no particle, 23, 101
non-interacting Fermi system in
external potential, 724.
particle-hole, 22, 230
physical experiment to measure, 88
pinball, classical, 284,
pinball, quantum, 434.
polarization, 2314.
poles, of, 41, 373
quasi particle, 42, 152
retarded, 38, 157, 3854
single pair-bubble approximation
for, 1704.
spin polarization, 303
sum rule for, 159
system with variable particle
number, 168
two-particle, 22, 2274
time-ordered, 3854
types of, 12, 3854
proper self-energy, 181
proper self-energy part, 179
pseudofermions, 309

Q

quantum field theory, 3, 1184
quantum pinball game, 43
quasi electron, 7f., 98, 99, 192
quasi horse, 4
quasi ion, 5
quasi nucleon, 10
quasi particle
cloud, 44.
classical, 26
definition of, 4.
effective interaction between, 191
effective mass of, 6
existence of, 2054.
Hartree, 89, 90
Hartree-Fock, 894
in electron gas, 944., 1854
in electron-phonon system, 384
in low-density Fermi system, 183
in nuclear matter, 92, 93, 183

INDEX

quasi particle—cont.
in momentum-conserving external
potential, 434,
Landau, 143
lifetime of, 6, 41, 150, 175, 208
propagator, 42, 152
RPA, 96f.
single pair bubble approximation,
1704.
self-energy, 7
quasi-periodic boundary condition,
243
quasi-physical processes, 82, 87

R

random phase approximation (RPA),
21,97, 116, 185, 217
random system, 544.
reduced graphs, 3184, 3954.
reduced Hamiltonian for supercon-
ductor, 260
renormalization, 177, 178
renormalization group, 3284.
renormalized electron-phonon inter-
action, 382
general interaction, 5, 1924.
particle, 5, 204
phonon, 382
ring diagrams, 21, 97, 187, 189, 221
resistance (electrical), 54f7., 308f.,
311, 326
response function, 232, 233, 303
retardation effects in supercon-
ductivity, 271
retarded propagator, 38, 157, 232,
265, 303, 3854.

S

scale invariance, 321 4.

scattering amplitude, 196, 302

screened interaction, 9, 974, 191

second quantization: see occupation
number formalism

selective surnmation : see partial sum-
mation

self-consistency, 91, 2034



INDEX

self-consistent renormalization, 122,
203f7., 204, 213, 3174

self-energy diagrams, 85

self-energy of quasi particle, 7, 90,
1704

self-energy part, 179

self-energy, proper, 181

self-energy, real and imaginary parts
of, 61, 174

shielded interaction:
interaction

short-range order, 287/

single pair bubble approximation, 170

single particle propagator: see
propagator

single particle states, 41, 124

skeleton diagrams, 203ff.

source field, 289

spectral density function, 158/,
37211, 3854

spectral (Lehmann) representation,
158ff., 3724f., 3854

spin operator in second quantization,
141

spin polarization propagator, 303/f.

spin wave function, 384

staring crowd phase transition, 289/f.

statistical mechanics, 239/f.

step function, 41

stretched skin diagram, 228

strong coupling, 318ff.

strong interaction, 337

superconductivity, 254ff.

T

temperature, finite, 2384

time-dependent Hartree-Fock, 205

time development operator, 102, 351,
355

time machine, 67

time-order in diagrams, 160, 161, 368,
369

time-ordering operator, Wick, 155

Dyson, 357

topology of diagrams, 21, 107, 161,

162

see screened

429

t-matrix : see K-matrix

transition temperature, 287ff.
superconductor, 272, 273
ferromagnet, 306

twisted diagrams, 84, 215

two-body operator, 132

two-level problem, 77, 114, 134

two-particle propagator, 22, 227f.

8]
U-operator, 355/f.
undefined single-particle encrgies,
226

unlinked diagrams, 105, 107, 109, 368

A

vacuum amplitude, 23, 101, 102
derivation of expansion for, 360,
361
finite temperature, 247ff.
for one particle in external po-
tential, 105/,
in many-body system, 115
pinball machine, 103
vacuum, Fermi, 69
vacuum fluctuation diagrams, 107
vacuum polarization diagrams, 107
vacuum, true, 127
vertex, 79, 211
part, 211
renormalized, 211
virtual processcs, 17, 80, 88

W

weak interaction, 337
well-known theorem from complex
function theory, 61
Wicks theorem, 136, 365
X

X-ray problem, 122
Y

Yukawa interaction, 93
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QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, V.V. Nemytskii
and V.V, Stepanov. Classic graduate-level text by two prominent Soviet mathe-
maticians covers classical differential equations as well as topological dynamics
and ergodic theory. Bibliographies. 523pp. 5% x 8%. 65954-2 Pa. $10.95

MATRICES AND LINEAR ALGEBRA, Hans Schneider and George Phillip
Barker. Basic textbook covers theory of matrices and its applications to systems of
linear equations and related topics such as determinants, eigenvalues and differ-
ential equations. Numerous exercises. 432pp. 5% x 84 66014-1 Pa. $9.95

QUANTUM THEORY, David Bohm. This advanced undergraduate-level text
presents the quantum theory in terms of qualitative and imaginative concepts,
followed by specific applications worked out in mathematical detail. Preface.
Index. 655pp. 5% x 8%. 65969-0 Pa. $13.95

ATOMIC PHYSICS (8th edition), Max Born. Nobel laureate’s lucid treatment of
kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic
structure and spectral lines, much more. Over 40 appendices, bibliography. 495pp.
5% x 84, 65984-4 Pa. $11.95

ELECTRONIC STRUCTURE AND THE PROPERTIES OF SOLIDS: The
Physics of the Chemical Bond, Walter A. Harrison. Innovative text offers basic
understanding of the electronic structure of covalent and ionic solids, simple
metals, transition metals and their compounds. Problems. 1980 edition. 582pp.
64 x 94. 66021-4 Pa. $14.95

BOUNDARY VALUE PROBLEMS OF HEAT CONDUCTION, M. Necati
(zisik. Systematic, comprehensive treatment of modern mathematical methods of
solving problems in heat conduction and dilfusion. Numerous examples and
problems. Selected references. Appendices. 505pp. 5% x 8%, 65990-9 Pa. $11.95

A SHORT HISTORY OF CHEMISTRY (3rd edition), J.R. Partington. Classic
exposition explores origins of chemistry, alchemy, early medical chemistry, nature
of atmasphere, theory of valency, laws and structure of atomic theory, much more.
428pp. 5% x 8%. (Available in U.S. only) 65977-1 Pa. $10.95

A HISTORY OF ASTRONOMY, A. Pannekoek. Well-balanced, carefully rea-
soned study covers such topics as Ptolemaic theory, work of Copernicus, Kepler,
Newton, Eddington’s work on stars, much more. Hlustrated. References. 521 pp.
5% x 84, 65994-1 Pa. $11.95

PRINCIPLES OF METEOROLOGICAL ANALYSIS, Walter J. Saucier. Highly
respected abundamly illustrated classic reviews atmosphenc variables, hydro-
statics, static stability, various analyses (scalar, cross-section, isobaric, isentropic,
more). For intermediate meteorology students. 454pp. 6% x 9%. 65979-8 Pa. $12.95
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RELATIVITY, THERMODYNAMICS AND COSMOLOGY, Richard C. Tol-
man. Landmark study extends thermodynamics to special, general relativity; also
applications of relativistic mechanics, thermodynamics to cosmological models.
501 pp. 5% x 8% 65383-8 Pa. $12.95

APPLIED ANALYSIS, Cornelius Lanczos. Classic work on analysis and design of
finite processes for approximating solution of analytical problems. Algebraic
equations, matrices, harmonic analysis, quadrature methods, much more. 559pp.
5% x 8%, 65656-X Pa. $12.95

SPECIAL RELATIVITY FOR PHYSICISTS, G. Stephenson and C.W. Kilmister.
Concise elegant account for nonspecialists. Lorentz transformation, optical and
dynamical applications, more. Bibliography. 108pp. 5% x 8%.  65519-9 Pa. $4.95

INTRODUCTION TO ANALYSIS, Maxwell Rosenlicht. Unusually clear, acces-
sible coverage of set theory, real number system, metric spaces, continuous
functions, Riemann integration, multiple integrals, more. Wide range of problems.
Undergraduate level. Bibliography. 254pp. 5% x 8%. 65038-3 Pa. $7.95

INTRODUCTION TO QUANTUM MECHANICS With Applications to Chem-
istry, Linus Pauling & E. Bright Wilson, Jr. Classic undergraduate text by Nobel
Prize winner applies quantum mechanics 1o chemical and physical problems.
Numerous tables and figures enhance the text. Chapter bibliographies. Appen-
dices. Index. 468pp. 5% x 8%. 64871-0 Pa. $11.95

ASYMPTOTICEXPANSIONS OF INTEGRALS, Norman Bleistein & Richard A.
Handelsman. Best introduction to important field with applications in a variety of
scientific disciplines. New preface. Problems. Diagrams. Tables. Bibliography.
Index. 448pp. 5% x 8%. 65082-0 Pa. $11.95

MATHEMATICS APPLIED TO CONTINUUM MECHANICS, Lee A. Segel.
Analyzes models of fluid flow and solid deformation. For upper-level math, science
and engineering students. 608pp. 5% x 8%, 65369-2 Pa. $13.95

ELEMENTS OF REAL ANALYSIS, David A. Sprecher. Classic text covers
fundamental concepts, real number system, point sets, funci.jpns of a real variable,
Fourier series, much more. Over 500 exercises. 352pp. 5% x 8%,  65385-4 Pa. $9.95

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg,
Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of
Dirac, Schroedinger, Compion, Wilson, Einstein, etc. 184pp. 5% x 8%.

60113-7 Pa. $4.95

INTRODUCTORY REAL ANALYSIS, A.N. Kolmogorov, S.V. Fomin. Trans-
lated by Richard A. Silverman. Self-contained, evenly paced intreduction to real
and functional analysis. Some 350 problems. 403pp. 5% x 8%.  61226-0 Pa. $§9.95

PROBLEMS AND SOLUTIONS IN QUANTUM CHEMISTRY AND PHYSICS,
Charles S. Johnson, Jr. and Lee G. Pedersen. Unusually varied problems, detailed
solutions in coverage of quantum mechanics, wave mechanics, angular momen-
tum, molecular spectroscopy, scattering theory, more. 280 problems plus 139
supplementary exercises. 430pp. 6% x 9%, 65236-X Pa. $11.95
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THE ELECTROMAGNETIC FIELD, Albert Shadowitz. Comprehensive under-
graduate text covers basics of electric and magnetic fields, builds up to electromag-
netic theory. Also related topics, including relativity. Over 900 problems. 768pp.
5% x 8Y. 65660-8 Pa. $17.95

FOURIER SERIES, Georgi P. Tolstov. Translated by Richard A. Silverman. A
valuable addition to the literature on the subject, moving clearly from subject 1o
subject and theorem to theorem. 107 problems, answers. 336pp. 5% x 8%.

63317-9 Pa. $7.95

THEORY OF ELECTROMAGNETIC WAVE PROPAGATION, Charles Her-
ach Papas. Graduate-level study discusses the Maxwell field equations, radiation
from wire antennas, the Doppler effect and more. xiii + 244pp. 5% x 8%,

65678-0 Pa. $6.95

DISTRIBUTION THEORY AND TRANSFORM ANALYSIS: An Introduction
to Generalized Functions, with Applications, A.H. Zemanian. Provides basics of
distribution theory, describes generalized Fourier and Laplace transformations.
Numerous problems. 384pp. 5% x 8%. 65479-6 Pa. §9.95

THE PHYSICS OF WAVES, William C. Elmore and Mark A. Heald. Unique
overview of classical wave theory. Acoustics, optics, electromagnetic radiation,
more. Ideal as classroom text or for self-study. Problems. 477pp. 5% x 8%.

64926-1 Pa. $11.95

CALCULUS OF VARIATIONS WITH APPLICATIONS, George M. Ewing.
Applications-oriented introduction to variational theory develops insight and
promotes understanding of specialized books, research papers. Suilable for
advanced undergraduate/graduate students as primary, supplementary text. 352pp.
5% x 8% 64856-7 Pa. $8.95

A TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell.
Important foundation work of modern physics. Brings to final form Maxwell's
theory of eleciromagnetism and rigorously derives his general equations of field
theory. 1,084pp. 5% x 84%. 60636-8, 60637-6 Pa., Two-vol. set $19.90

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS, Charles Fox.

Graduate-level text covers variations of an integral, isoperimetrical problems, least

action, special relativity, approximations, more. References. 279pp. 5% x 8%.
65499-0 Pa. $7.95

HYDRODYNAMICAND HYDROMAGNETICSTABILITY, 8. Chandrasekhar.
Lucid examination of the Rayleigh-Benard problem; clear coverage of the theory of
instabilities causing convection. 704pp. 5% x 8%. 64071-X Pa. $14.95

CALCULUS OF VARIATIONS, Robert Weinstock. Basic iniroduction covering
isoperimetric problems, theory of elasticity, quantum mechanics, electrostatics, etc.
Exercises throughout. 326pp. 5% x 8%. 63069-2 Pa. $7.95

DYNAMICS OF FLUIDS IN POROUS MEDIA, Jacob Bear. For advanced
students of ground water hydrology, soil mechanics and physics, drainage and
irrigation engineering and more. 335 illustrations. Exercises, with answers. 784pp.
6% x 9K, 65675-6 Pa. $19.95
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NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard
Hamming, Classic text stresses frequency approach in coverage of algorithms,
polynomial approximation, Fourier approximation, exponential approxima-
tion, other topics. Revised and enlarged 2nd edition. 721pp. 5% x 8%,

65241-6 Pa. $14.95

THEORETICAL SOLID STATE PHYSICS, Vol. I: Perfect Lattices in Equilib-
rium; Vol. II: Non-Equilibrium and Disorder, William Jones and Norman H.
March. Monumental reference work covers fundamental theory of equilibrium
properties of perfect crystalline solids, non-equilibrium properties, defects and
disordered systems. Appendices. Problems. Preface. Diagrams. Index. Bibliog-
raphy. Total of 1,30lpp. 5% x 8% Two volumes. Vol. 165015-4 Pa. $12.95

Vol. 11 65016-2 Pa. $12.95

OPTIMIZATION THEORY WITH APPLICATIONS, Donald A. Pierre. Broad-
spectrum approach to important topic. Classical theory of minima and maxima,
calculus of variations, simplex technique and linear programming, more. Many
problems, examples. 640pp. 5% x 8%, 65205-X Pa. §$13.95

THE MODERN THEORY OF SOLIDS, Frederick Seitz. First inexpensive edition
of classic work on theory of ionic crystals, free-electron theory of metals and
semiconductors, molecular binding, much more. 736pp. 5% x 8%.

65482-6 Pa. $15.95

ESSAYS ON THE THEORY OF NUMBERS, Richard Dedekind. Two classic
essays by great German mathematician: on the theory of irrational numbers; and on
transfinite numbers and properties of natural numbers. 115pp. 5% x 8%.

21010-3 Pa. $4.95

THE FUNCTIONS OF MATHEMATICAL PHYSICS, Harry Hochstadt. Com-
prehensive treatment of orthogonal polynomials, hypergeometric functions, Hill’s
equation, much more. Bibliography. Index. 322pp. 5% x 8%, 65214-9 Pa. $9.95

NUMBER THEORY AND ITS HISTORY, Oystein Ore. Unusually clear,
accessible intreduction covers counting, properties of numbers, prime numbers,
much more. Bibliography. 380pp. 5% x 8%. 65620-9 Pa. $8.95

THE VARIATIONAL PRINCIPLES OF MECHANICS, Comnelius Lanczos.
Graduate level coverage of calculus of variations, equations of motion, relativistic
mechanics, more. First inexpensive paperbound edition of classic treatise. Index.
Bibliography. 418pp. 5% x 8%. ‘ 65067-7 Pa. $10.95

MATHEMATICAL TABLES AND FORMULAS, Robert D. Carmichael and
Edwin R. Smith. Logarithms, sines, tangents, trig functions, powers, roots,
reciprocals, exponential and hyperbolic functions, formulas and theorems. 269pp.
5% x 8%. 60111-0 Pa. $5.95

THEORETICAL PHYSICS, Georg Joos, with Ira M. Freeman. Classic overview
covers essential math, mechanics, electromagnetic theory, thermodynamics, quan-
tum mechanics, nuclear physics, other topics. First paperback edition. xxiii +
885pp. 5% x 84. 65227-0 Pa. $18.95
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HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS.
GRAPHS, AND MATHEMATICAL TABLES, edited by Milion Abramowitz and
Irene A. Stegun. Vast compendium: 29 sets of 1ables, some to as high as 20 places.
1,046pp. 8 x 10%. 61272-4 Pa. $22.95

MATHEMATICAL METHODS IN PHYSICS AND ENGINEERING, John W.
Dettman. Algebraically based approach to vectors, mapping, diffraction, other
topics in applied math. Also generalized functions, analytic function theory, more.
Exercises. 448pp. 5% x 8%4. 65649-7 Pa. $8.95

A SURVEY OF NUMERICAL MATHEMATICS, David M. Young and Robert
Todd Gregory. Broad self-contained coverage of computer-oriented numerical
algorithms for solving various types of mathematical problems in linear algebra,
ordinary and partial, differential equations, much more. Exercises. Total of
1,248pp. 5% x 8%. Two volumes. Vol. 165691-8 Pa. $14.95

Vol. 11 65692-6 Pa. $14.95

TENSOR ANALYSIS FOR PHYSICISTS, J.A. Schouten. Concise exposition of
the mathematical basis of tensor analysis, integrated with well-chosen physical
examples of the theory. Exercises. Index. Bibliography. 289pp. 5% x 8%.

65582-2 Pa. $7.95

INTRODUCTION TO NUMERICAL ANALYSIS (2nd Edition), F.B. Hilde-
brand. Classic, fundamental reatment covers computation, approximation, inter-
polation, numerical differentiation and integration, other topics. 150 new prob-
lems. 669pp. 5% x 8%. 65363-3 Pa. §$14.95

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT,
Albert Einstein. Five papers (1905-8) investigating dynamics ol Brownian motion
and evolving elementary theory. Notes by R. Fiirth. 122pp. 5% x 8%,

60304-0 Pa. $4.95

NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard
Hamming. Classic text stresses [requency approach in coverage of algorithms,
polynomial approximation, Fourier approximation, exponential approximation,
other topics. Revised and enlarged 2nd edition. 721pp. 5% x 8%. 66241-6 Pa. $14.95

AN INTRODUCTION TO STATISTICAL THERMODYNAMICS, Terrell L.
Hill. Excellent basic text offers wide-ranging coverage of quantum statistical
mechanics, systems of interacting molecules, quantum statistics, more. 523pp.
5% x 84, 65242-4 Pa. $11.95

ELEMENTARY DIFFERENTIAL EQUATIONS, William Ted Martin and Eric
Reissner. Exceptionally clear, comprehensive introduction at undergraduate level.
Nature and origin of differential equations, differential equations of first, second
and higher orders. Picard’s Theorem, much more. Problems with solutions. $31pp.
5% x 8%, 65024-3 Pa. $8.95

STATISTICAL PHYSICS, Gregory H. Wannier. Classic text combines thermo-
dynamics, statistical mechanics and kinetic theory in one unified presentation of
thermal physics. Problems with solutions. Bibliography. 532pp. 5% x 8%,

65401-X Pa. $11.95
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ORDINARY DIFFERENTIAL EQUATIONS, Morris Tenenbaum and Harry
Pollard. Exhaustive survey of ordinary differential equations for undergraduates in
mathematics, engineering, science. Thorough analysis of theorems. Diagrams.
Bibliography. Index. 818pp. 5% x 8%. 64940-7 Pa. $16.95

STATISTICAL MECHANICS: Principles and Applications, Terrell L. Hill.
Standard text covers fundamentals of statistical mechanics, applications to
fluctuation theory, imperfect gases, distribution functions, more. 448pp. 5% x 8%,

65390-0 Pa. $9.95

ORDINARY DIFFERENTIAL EQUATIONS AND STABILITY THEORY: An
Inroduction, David A. Sinchez. Brief, modern treatment. Linear equation,
stability theory for autonomous and nonautonomous systems, etc. 164pp. 5% x 8%.

63828-6 Pa. $5.95

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quantum Theory,
George Gamow. Lucid, accessible introduction to influential theory of energy and
matter. Careful explanations of Dirac’s anti-particles, Bohr's model of the atom,
much more. 12 plates. Numerous drawings. 240pp. 5% x 8%. 24895-X Pa. $5.95

THEORY OF MATRICES, Sam Perlis. Ouistanding text covering rank, non-
singularity and inverses in connection with the development of canonical matrices
under the relation of equivalence, and without the intervention of determinants.
Includes exercises. 237pp. 5% x 8%, 66810-X Pa. $7 95

GREAT EXPERIMENTS IN PHYSICS: Firsthand Accounts from Galileo to
Einstein, edited by Morris H. Shamos. 25 crucial discoveries: Newton's laws of
motion, Chadwick's study of the neutron, Hertz on electromagnetic waves, more.
Original accounts clearly annotated. 370pp. 5% x 8%. 25346-5 Pa. $9.95

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH AP-
PLICATIONS, E.C. Zachmanoglou and Dale W. Thoe. Essentials of partial
differential equations applied to common problems in engineering and the
physical sciences. Problems and answers. 416pp. 5% x 84%. 65251-3 Pa. $10.95

BURNHAM'S CELESTIAL HANDBOOK, Robert Burnham, Jr. Thorough guide
to the siars beyond our solar system. Exhaustive treatment. Alphabetical by
constellation: Andromeda to Cetus in Vol. }; Chamaeleon to Orion in Vol. 2; and
Pavo to Vulpecula in Vol. 3. Hundreds of illustrations. Index in Vol. 3. 2,000pp.
6% x 94, 23567-X, 23568-8, 23673-0 Pa., Three-vol. set $41.85

ASYMPTOTIC EXPANSIONS FOR ORDINARY DIFFERENTIAL EQUA-
TIONS, Wolfgang Wasow. Outstanding text covers asymptotic power series,
Jordan’s canonical form, turning point problems, singular perturbations, much
more. Problems. 384pp. 5% x 8%, 65456-7 Pa. $9.95

AMATEUR ASTRONOMER'S HANDBOOK, J.B. Sidgwick. Timeless, compre-

hensive coverage of telescopes, mirrors, lenses, mountings, telescope drives,

micrometers, spectroscopes, more. 189 illustrations. 576pp. 5% x 8X.
(USO)24034-7 Pa. $9.95
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SPECIAL FUNCTIONS, N.N. Lebedev. Translated by Richard Silverman. Fa-

mous Russian work treating more important special functions, with applications

to specific problems of physics and engineering. 38 figures. 308pp. 5% x 8%.
60624-4 Pa. $7.95

OBSERVATIONAL ASTRONOMY FOR AMATEURS, J.B. Sidgwick. Mine of
useful data for observation of sun, moon, planeis, asteroids, aurorae, meteors,
comets, variables, binaries, etc. 39 illustrations. 384pp. 5% x 8%. (Available in U.S.
only) 24033-9 Pa. $8.95

INTEGRAL EQUATIONS, F.G. Tricomi. Authoritative, well-written treatment
of extremely useful mathematical tool with wide applications. Volierra Equations,
Fredholm Equations, much more. Advanced undergraduate to graduate level.
Exercises. Bibliography. 238pp. 5% x 8%, 64828-1 Pa. $6.95

CELESTIAL OBJECTS FOR COMMON TELESCOPES, T.W. Webb. Inesti-
mable aid for locating and identifying nearly 4,000 celestial objects. 77 illustrations.
645pp. 5% x 8%. 20917-2, 20918-0 Pa., Two-vol. set $12.060

MODERN NONLINEAR EQUATIONS, Thomas L. Saaty. Emphasizes practical
solutian of problems; covers seven types of equations. . . . a welcome contribution
to the existing literature. . . ."—Math Reviews. 490pp. 5% x 8%, 64232-1 Pa. $9.95

FUNDAMENTALS OF ASTRODYNAMICS, Roger Bate et al. Modern approach
developed by U.S. Air Force Academy. Designed as a first course. Problems,
exercises. Numerous illustrations. 455pp. 5% x 8%. 60061-0 Pa. $8.95

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUA-
TIONS, John W. Dettman. Excellent text covers complex numbers, determinants,
orthonormal bases, Laplace transforms, much more. Exercises with solutions.
Undergraduate level. 416pp. 5% x 8%. 65191-6 Pa. $9.95

INCOMPRESSIBLE AERODYNAMICS, edited by Bryan Thwaites. Covers theo-
retical and experimental ueaiment of the uniform flow of air and viscous fluids past
two-dimensional aerofoils and three-dimensional wings; many other 1opics. 654pp.
5% x 8%4. 65465-6 Pa. $16.95

INTRODUCTION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Excep-
tionally clear exposition of important discipline with applications to sociology,
psychology, economics. Many illustrative examples; over 250 problems. 260pp.
5% x 84, 65084-7 Pa. $7.95

LAMINAR BOUNDARY LAYERS, edited by L. Rosenhead. Engineering classic

covers steady boundary lavers in two- and three-dimensional flow, unsteady

boundary layers, stability, observational techniques, much more. 708pp. 5% x 8%,
65646-2 Pa. $15.95

LECTURES ON CLASSICAL DIFFERENTIAL GEOMETRY, Second Edition,
Dirk J. Struik. Excellent brief introduction covers curves, theory of surfaces,
fundamental equations, geometry on a surface, conformal mapping, other topics.
Problems. 240pp. 5% x 8%. 65609-8 Pa. $6.95
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ROTARY-WING AERODYNAMICS, W.Z. Stepniewski. Clear, concise text covers
aerodynamic phenomena of the rotor and offers guidelines for helicopter per-
formance evaluation. Originally prepared for NASA. 537 figures. 640pp. 6% x 9%.

61647-5 Pa. $14.95

DIFFERENTIAL GEOMETRY, Heinrich W. Guggenheimer. Local differential

geometry as an application of advanced calculus and linear algebra. Curvature,

transformation groups, surfaces, more. Exercises. 62 figures. 378pp. 5% x 8%.
63433-7 Pa. $7.95

INTRODUCTION TO SPACE DYNAMICS, William Tyrrell Thomson. Com-
prehensive, classic introduction to space-flight engineering for advanced under-
graduate and graduate students. Includes vector algebra, kinematics, transforma-
tion of coordinates. Bibliography. Index. 352pp. 5% x 8%. 65113-4 Pa. $8.95

A SURVEY OF MINIMAL SURFACES, Rabert Osserman. Up-to-date, in-depth
discussion of the field for advanced students. Corrected and enlarged edition covers
new developments. Includes numerous preblems. 192pp. 5% x 8%,

64998-9 Pa. $8.95

ANALYTICAL MECHANICS OF GEARS, Earle Buckingham. Indispensable
reference for modern gear manufacture covers conjugate gear-tooth action, gear-
tooth profiles of various gears, many other topics. 263 figures. 102 tables. 546pp.
5% x 8%. 65712-4 Pa. $11.95

SET THEORY AND LOGIC, Raobert R. Stoll. Lucid introduction to unified
theory of mathematical concepts. Set theory and logic seen as tools for conceptual
understanding of real number system. 496pp. 5% x 8%. 63829-1 Pa. $10.95

A HISTORY OF MECHANICS, René Dugas. Monumental study of mechanical
principles from antiquity to quantum mechanics. Contributions of ancient Greeks,
Galileo, Leonardo, Kepler, Lagrange, many others. 671pp. 5% x 8%.

65632-2 Pa. $14.95

FAMOUS PROBLEMS OF GEOMETRY AND HOW TO SOLVE THEM,
Benjamin Bold. Squaring the circle, trisecting the angle, duplicating the cube:
learn their history, why they are impossible 10 solve, then solve them yourself.
128pp. 5% x 8%. 24297-8 Pa. $3.95

MECHANICAL VIBRATIONS, ]J.P. Den Hartog. Classic textbook offers lucid
explanations and illustrative models, applying theories of vibrations to a variety of
practical industrial engineering problems. Numerous figures. 233 problems,
solutions. Appendix. Index. Preface. 436pp. 5% x 8%. 64785-4 Pa. $9.95

CURVATURE AND HOMOLOGY, Samuel 1. Goldberg. Thorough treatment of
specialized branch of differential geometry. Covers Riemannian manifolds, 1opol-
ogy of differentiable manifolds, compact Lie groups, other topics. Exercises. 315pp.
5% x 84. 64314-X Pa. $8.95

HISTORY OF STRENGTH OF MATERIALS, Stephen P. Timoshenko. Excel-
lent historical survey of the strength of materials with many references 10 the
theories of elasticity and structure. 245 figures. 452pp. 5% x 8%. 61187-6 Pa. $10.95
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GEOMETRY OF COMPLEX NUMBERS, Hans Schwerdifeger. Illuminating,
widely praised bock on analytic geometry of circles, the Moebius transformation,
and two-dimensional non-Euclidean geometries. 200pp. 5% x 84,

63830-8 Pa. $6.95

MECHANICS, ]J.P. Den Hartog. A classic introductory texi or refresher. Hundreds
of applications and design problems illuminaie fundamentals of trusses, loaded
beams and cables, etc. 334 answered problems. 462pp. 5% x 8% 60754-2 Pa. $8.95

TOPOLOGY, John G. Hocking and Gail S. Young. Superb one-year course in
classical tapology. Topological spaces and functions, point-set topology, much
more. Examples and problems. Bibliography. Index. 384pp. 5% x 84,

65676-4 Pa. $8.95

STRENGTH OF MATERIALS, J.P. Den Hartog. Full, clear treatment of basic
material (tension, torsion, bending, eic.) plus advanced material on engineering
methods, applications. 350 answered problems. 323pp. 5% x 8% 60755-0 Pa. $7.50

ELEMENTARY CONCEPTS OF TOPOLOGY, Paul Alexandroff. Elegant,

intuitive approach 10 topology from sei-theoretic tapology to Betti groups; how

concepts of lopology are useful in math and physics. 25 figures. 57pp. 5% x 84%.
60747-X Pa. $2.95

ADVANCED STRENGTH OF MATERIALS, ]J.P. Den Hartog. Superbly written
advanced text covers torsion, rotating disks, membrane stresses in shells, much
more. Many problems and answers. 388pp. 5% x 8%. 65407-9 Pa. $9.95

COMPUTABILITY AND UNSOLVABILITY, Martin Davis. Classic graduate-
level introduction to theory of computability, usually referred 1o as theory of
recurrent functions. New preface and appendix. 288pp. 5% x 8%. 61471-9 Pa. $6.95

GENERAL CHEMISTRY, Linus Pauling. Revised 3rd edition of classic first-year
text by Nobel laureate. Atomic and molecular structure, quantum mechanics,
statistical mechanics, thermodynamics correlated with descriptive chemistry.
Problems. 992pp. 5% x 8%. 65622-5 Pa. $19.95

AN INTRODUCTION TO MATRICES, SETS AND GROUPS FOR SCIENCE
STUDENTS, G. Stephenson. Concise, readable text introduces sets, groups, and
most importantly, matrices to undergraduate students of physics, chemisiry, and
engineering. Problems. 164pp. 5% x 8%. 65077-4 Pa. $6.95

THE HISTORICAL BACKGROUND OF CHEMISTRY, Henry M. Leicester.
Evolution of ideas, not individual biography. Concentrates on formulation of a
coherent set of chemical laws. 260pp. 5% x 8%. 61053-5 Pa. $6.95

THE PHILOSOPHY OF MATHEMATICS: An Introduciory Essay, Siephan
Kdrner. Surveys the views of Plato, Aristotle, Leibniz & Kant concerning proposi-
tions and theories of applied and pure mathematics. Introduction. Two appen-
dices. Index. 198pp. 5% x 8%. 25048-2 Pa. $6.95

THE DEVELOPMENT OF MODERN CHEMISTRY, Aaron J. Ihde. Authorita-
tive history of chemistry from ancient Greek theory to 20th-century innovation.
Covers major chemists and their discoveries. 209 illustrations. 14 ables. Bibliog-
raphies. Indices. Appendices. 851pp. 5% x 8%. 64235-6 Pa. $17.95
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THE FOUR-COLOR PROBLEM: Assaults and Conquest, Thomas L. Saaty and
Paul G. Kainen. Engrossing, comprehensive account of the century-old combina-
torial topological problem, its history and solution. Bibliographies. Index. 110
figures. 228pp. 5% x 8%. 65092-8 Pa. $6.95

CATALYSIS IN CHEMISTRY AND ENZYMOLOGY, William P. Jencks.
Exceptionally clear coverage of mechanisms for catalysis, forces in aqueous
solution, carbonyl- and acyl-group reactions, practical kinetics, more. 864pp.
5% x 8%, 65460-5 Pa. $19.95

PROBABILITY: An Inuroduction, Samuel Goldberg. Excellent basic text covers set
theory, probability theory for finite sample spaces, binomial theorem, much more.
360 problems. Bibliographies. 322pp. 5% x 8%. 65252-1 Pa. $8.95

LIGHTNING, Martin A. Uman. Revised, updated edition of classic work on the
physics of lightning. Phenomena, terminology, measurement, photography,
spectroscopy, thunder, more. Reviews recent research. Bibliography. Indices.
320pp. 5% x 84. 64575-4 Pa. $8.95

PROBABILITY THEORY: A Concise Course, Y.A. Rozanov. Highly readable,
self-contained introduction covers combination of events, dependent events,
Bernoulli trials, etc. Translation by Richard Silverman. 148pp. 5% x 8%,

63544-9 Pa. $5.95

THE CEASELESS WIND: An Introduction to the Theory of Atmospheric Motion,
John A. Dutton. Acclaimed text integrates disciplines of mathematics and physics
for full understanding of dynamics of atmospheric motion. Over 460 problems.
Index. 97 illustrations. 640pp. 6 x 9. 65096-0 Pa. $17.95

STATISTICS MANUAL, Edwin L. Crow, et al. Comprehensive, practical
collection of classical and modern methads prepared by U.S. Naval Ordnance Test
Station. Swress on use. Basics of statistics assumed. 288pp. 5% x 8%.

60599-X Pa. $6.95

DICTIONARY/OUTLINE OF BASIC STATISTICS, John E. Freund and Frank
J. Williams. A clear concise dictionary of over 1,000 statistical terms and an outline
of siatistical formulas covering probability, nonparametric tests, much more.
208pp. 5% x 8%, 66796-0 Pa. $6.95

STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CON-
TROL, Walter A. Shewhart. Imporiant text explains regulation of variables, uses
of statistical control to achieve quality control in industry, agriculture, other areas.
192pp. 5% x 8%, 65232-7 Pa. $6.95

THE INTERPRETATION OF GEOLOGICAL PHASE DIAGRAMS, Emnest G.
Ehlers. Clear, concise text emphasizes diagrams of systems under fluid or
containing pressure; also coverage of complex binary systems, hydrothermal
melting, more. 288pp. 6% x 9%. 65389-7 Pa. $10.95

STATISTICAL ADJUSTMENT OF DATA, W. Edwards Deming. Introduction to
basic concepts of statistics, curve fitting, least squares solution, conditions without
parameter, conditions containing parameters. 26 exercises worked out. 271pp.
5% x 8% 64685-8 Pa. $7.95
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DE RE METALLICA, Georgius Agricola. The famous Hoover translation of
greatest treatise on technological chemistry, engineering, geology, mining of early
modern times (1556). All 289 original woodcuts. 638pp. 6% x 11.

60006-8 Pa. $17.95

SOME THEORY OF SAMPLING, William Edwards Deming. Analysis of the
problems, theory and design of sampling techniques for social scientists, industrial
managers and others who find statistics increasingly important in their work. 61
tables. 90 figures. xvii + 602pp. 5% x 8%. 64684-X Pa. $15.95

THE VARIOUS AND INGENIOUS MACHINES OF AGOSTINO RAMELLIL: A
Classic Sixteenth-Century Illustrated Treatise on Technology, Agostino Ramelli.
One of the most widely known and copied works on machinery in the 16th century.
194 detailed plates of water pumps, grain mills, cranes, more. 608pp. 9 x 12. (EBE)

25497-6 Clothbd. $34.95

LINEAR PROGRAMMING AND ECONOMIC ANALYSIS, Robert Dorfman,
Paul A. Samuelson and Robert M. Solow. First comprehensive treatment of linear
programming in standard economic analysis. Game theory, modern welfare
economics, Leontief input-output, more. 525pp. 5% x 8%. 65491-5 Pa. $13.95

ELEMENTARY DECISION THEORY, Herman Chernoff and Lincoln E. Moses.
Clear inuvoduction 1o statistics and statistical theory covers data processing,
probability and random variables, testing hypotheses, much more. Exercises.
364pp. 5% x 84. 65218-1 Pa. $9.95

THE COMPLEAT STRATEGYST: Being a Primer on the Theory of Games of
Strategy, J.D. Williams. Highly entertaining classic describes, with many illus-
trated examples, how to select best strategies in conflict situations. Prefaces.
Appendices. 268pp. 5% x 84, 25101-2 Pa. $6.95

MATHEMATICAL METHODS OF OPERATIONS RESEARCH, Thomas L.
Saaty. Classic graduate-level text covers historical background, classical methods of
forming models, optimization, game theory, probability, queueing theory, much
more. Exercises. Bibliography. 448pp. 5% x 8%. 65703-5 Pa. $12.95

CONSTRUCTIONS AND COMBINATORIAL PROBLEMS IN DESIGN OF
EXPERIMENTS, Damaraju Raghavarao. In-depth reference work examines
orthogonal Latin squares, incomplete block designs, tactical configuration, partial
geometry, much more. Abundant explanations, examples. 416pp. 5% x 8%,
65685-3 Pa. $10.95

THE ABSOLUTE DIFFERENTIAL CALCULUS (CALCULUS OF TENSORS),
Tullio Levi-Civita. Great 20th-century mathematician's classic work on material
necessary for mathematical grasp of theory of relativity. 452pp. 5% x BY%.

63401-9 Pa. $9.95

VECTOR AND TENSOR ANALYSIS WITH APPLICATIONS, A.L Borisenko
and LE. Tarapov. Concise introduction. Worked-out problems, solutions, exer-
cises. 257pp. 5% x 84. 63833-2 Pa. $6.95
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TENSOR CALCULUS, J.L. Synge and A. Schild. Widely used introductory text
covers spaces and tensors, basicoperations in Riemannian space, non-Riemannian
spaces, etc. 324pp. 5% x 8Y, 63612-7 Pa. $7.95

A CONCISE HISTORY OF MATHEMATICS, Dirk J. Struik. The best brief
history of mathematics. Stresses origins and covers every major figure from ancient
Near East to 19th century. 41 illustrations. 195pp. 5% x 8%. 60255-9 Pa. $7.95

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS, W.W. Rouse
Ball. One of clearest, most authoritative surveys from the Egyptians and Phoeni-
cians through 19th-century figures such as Grassman, Galois, Riemann. Fourth
edition. 522pp. 5% x 8%. 20630-0 Pa. $10.95

HISTORY OF MATHEMATICS, David E. Smith. Nontechnical survey from
ancient Greece and Orient to late 19th century; evolution of arithmetic, geometry,
trigonometry, calculating devices, algebra, the calculus. 362 ilustrations. 1,355pp.
5% x 8%, 20429-4, 20430-8 Pa., Two-vol. set $23.90

THE GEOMETRY OF RENE DESCARTES, René Descartes. The great work
founded analytical geometry. Original French text, Descartes' own diagrams,
together with definitive Smith-Latham wranslation. 244pp. 5% x 8%.

66068-8 Pa. $6.95

THE ORIGINS OF THE INFINITESIMAL CALCULUS, Margaret E. Baron.
Only fully detailed and documented account of crucial discipline: origins;
development by Galileo, Kepler, Cavalieri; contributions of Newton, Leibniz,
more. 304pp. 5% x 8%. (Available in U.S. and Canada only) 65371-4 Pa. $9.95

THE HISTORY OF THE CALCULUS AND ITS CONCEPTUAL DEVELOP-

MENT, Carl B. Boyer. Origins in antiquity, medieval contributions, work of

Newton, Leibniz, rigorous formulation. Treatment is verbal. 346pp. 5% x 8%,
60509-4 Pa. $7.95

THETHIRTEEN BOOKS OF EUCLID'S ELEMENTS, translated with introduc-
tion and commentary by Sir Thomas L. Heath. Definitive edition. Textual and
linguistic notes, mathematical analysis. 2,500 years of critical commentary. Not
abridged. 1,414pp. 5% x 8%  60088-2, 60089-0, 60090-4 Pa., Three-vol. set $29.85

GAMES AND DECISIONS: Introduction and Critical Survey, R. Duncan Luce
and Howard Raiffa. Superb nontechnical introduction 1o game theory, primarily
applied to social sciences. Utility theory, zero-sum games, n-person games,
decision-making, much more. Bibliography. 509pp. 5% x 8%.  65943-7 Pa. $11.95

THE HISTORICAL ROOTS OF ELEMENTARY MATHEMATICS, Lucas
N.H. Bunt, Phillip S. Jones, and Jack D. Bedient. Fundamental underpinnings of
modern arithmetic, algebra, geometry and number systems derived from ancien
civilizations. 320pp. 5% x 8%. 25563-8 Pa. §8.95

CALCULUS REFRESHER FOR TECHNICAL PEOPLE, A. Albert Klaf. Covers
important aspects of integral and differential calculus via 756 questions. 566
problems, most answered. 431pp. 5% x 84. 20370-0 Pa. $8.95
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CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY

SOLUTIONS, A.M. Yaglom and I.M. Yaglom. Over 170 challenging problems on

probability theory, combinatorial analysis, points and lines, topology, convex
polygons, many other topics. Solutions. Total of 445pp. 5% x 8%. Two-vol. set.

Vol. 165536-9 Pa. $6.95

Vol. 11 65537-7 Pa. $6.95

FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLU-
TIONS, Frederick Mosteller. Remarkable puzzlers, graded in difficulty, illustrate
elementary and advanced aspects of probability. Detailed solutions. 88pp. 5% x 8%.

65355-2 Pa. $3.95

EXPERIMENTS IN TOPOLOGY, Stephen Barr. Classic, lively explanation of
one of the byways of mathematics. Klein bottles, Moebius strips, projective planes,
map coloring, problem of the Koenigsberg bridges, much more, described with
clarity and wit. 43 figures. 210pp. 5% x 8%. 25933-1 Pa. $5.95

RELATIVITY IN ILLUSTRATIONS, Jacob T. Schwariz. Clear nontechnical
treatment makes relativity more accessible than ever before. Over 60 drawings
illustrate concepts more clearly than textalone. Only high school geometry needed.
Bibliography. 128pp. 6% x 9%, 25965.X Pa. $5.95

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, Earl
A. Coddington. A thorough and systematic first course in elementary differential
equations for undergraduates in mathematics and science, with many exercises and
problems (with answers). Index. $04pp. 5% x 8%. 65942-9 Pa. $7.95

FOURIER SERIES AND ORTHOGONAL FUNCTIONS, Harry F. Davis. An
incisive text combining theory and practical example to introduce Fourier series,
orthogonal functions and applications of the Fourier method to boundary-value
problems. 570 exercises. Answers and notes. 416pp. 5% x 8%, 65973-9 Pa. §9.95

THE THEORY OF BRANCHING PROCESSES, Theodore E. Harris. First
systematic, comprehensive treatment of branching (i.e. multiplicative) processes
and their applications. Galton-Watson model, Markov branching processes,
elecron-photon cascade, many other topics. Rigorous proofs. Bibliography.
240pp. 5% x 8%. 65952-6 Pa. $6.95

AN INTRODUCTION TO ALGEBRAIC STRUCTURES, Joseph Landin.
Superb self-contained text covers “abstract algebra’’: sets and numbers, theory of
groups, theory of rings, much more. Numerous well-chosen examples, exercises.
247pp. 5% x 8%. 65940-2 Pa, $6.95

Prices subject to change without notice.
Available a1 your book dealer or write for free Mathematics and Science Catalog to Dept. G1,
Dover Publications, Inc., 31 East 2nd St., Mineola, N.Y. 11501. Dover publishes more than 175
books cach year on science, elementary and advanced mathematics, biology, music, ari,
literature, history, social sciences and other areas.
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