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Many years later Feynman and Dirac met one more time. They 

exchanged a few awkward words---a conversation so remarkable 

that a physicist within earshot immediately jotted down the 

Pinteresque dialog he thought drifting his way:

I am Feynman.

I am Dirac.

(Silence)

It must be wonderful to be the discoverer of that equation.

That was a long time ago.  (Pause)   What are you working on?

Mesons.

Are you trying to discover an equation for them?

It is very hard.

One must try.
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Quantum electrodynamics �QED� is used to derive the differential cross sections measured in the three new
experimental internal source ensemble x-ray holographies: bremsstrahlung �BXH�, fluorescence �XFH�, and
multiple-energy �MEXH� x-ray holography. The polarization dependence of the BXH cross section is also
obtained. For BXH, we study analytically and numerically the possible effects of the virtual photons and
electrons which enter QED calculations in summing over the intermediate states. For the low photon and
electron energies used in the current experiments, we show that the virtual intermediate states produce only
very small effects. This is because the uncertainty principle limits the distance that the virtual particles can
propagate to be much shorter than the separation between the regions of high electron density in the adjacent
atoms. We also find that using the asymptotic form of the scattering wave function causes about a 5–10 %
error for near forward scattering. �S0163-1829�97�01622-6�

I. INTRODUCTION

Fifty years ago, Gabor proposed electron holography as a
method to improve the resolution of electron microscopes so
that atoms could be directly imaged.1 Gabor’s idea was to
focus the electron beam to a very small region of space just
outside the sample to produce a nearly point source of radia-
tion, and to record the interference pattern between the
spherical reference wave from this point source and the
spherical object waves produced when the electrons scattered
from the atoms in the sample. This photographically re-
corded interference pattern would then be used as the diffrac-
tion grating in an optical reconstruction system. Although
Gabor’s dream to directly image atoms using holographic
electron microscopy has never been realized �because the
quality of the best electron lenses is only about as good as
that of a raindrop for visible light2�, Gabor’s suggestion pro-
duced the optical holography revolution with the advent of
lasers to provide the necessary coherent monochromatic ex-
ternal reference waves.
Ten years ago, Szöke pointed out that the necessary co-

herent spherical reference wave could also be created by
generating the electron reference wave inside the sample.3 In
this case, the spatial coherence comes from the small spatial
extent of the internal electron source. Szöke’s internal source
electron holography suggestion generated a flurry of
activity,4 and, in the past five years, Gabor’s dream of di-
rectly imaging atoms with electrons has been partially real-
ized for atoms within the first few atomic layers of the sur-
face of a crystal using photoelectrons,5 Auger electrons,6
diffusely scattered low energy electrons,7 and diffusely scat-
tered Kikuchi electrons.8 However, because electrons inter-
act very strongly with atoms, the scattered object waves are
not very good spherical waves �there is a strong angular
variation of the magnitude and the phase of the electron-
atom scattering amplitude�, and multiple scattering produces
‘‘electron focusing’’ effects along the lines of atoms in the
sample which are important. Consequently, these new elec-

tron holographies produce pictures of where the atoms are,
but they do not accurately reconstruct the atomic positions.
Szöke also proposed internal source x-ray holography using
fluorescence x rays. Because x rays interact weakly with at-
oms, internal source x-ray holograms should produce much
more accurate atomic resolution images than the internal
source electron holographies.9,10 Unfortunately, the price for
this is that the modulation of the intensity in x-ray holograms
(1�5�10�3) is about 100 times weaker than the modula-
tion in electron holograms (1�5�10�1).
Earlier this year, the first atomic resolution x-ray holo-

grams were produced using x-ray fluorescence holography11
�XFH� and multiple-energy x-ray holography �MEXH�.12
About three years ago, stimulated by the advantages of
multiple-energy electron holography13 and the promise of
XFH,9 we started developing a new kind of internal source
x-ray holography which uses bremsstrahlung photons created
inside the sample.14 The primary motivation for this paper is
to provide the theoretical foundation for experimental brems-
strahlung x-ray holography �BXH� starting from quantum
electrodynamics. The bulk of this paper is devoted to BXH,
but we also show how the same quantum electrodynamic
foundation applies to XFH and MEXH.
Bremsstrahlung x-ray holography is very attractive for

three reasons: �1� Bremsstrahlung allows hard x rays to be
produced from low Z atoms. High quality holograms require
the wavelength to be much smaller than the spacing between
the atoms. The characteristic fluorescence energies of many
interesting and important low Z elements are too low to pro-
vide good images using XFH. �2� Bremsstrahlung produces x
rays with a wide spread in their energy and allows multiple
energy holograms to be recorded simultaneously by energy
analyzing the bremsstrahlung photons. To accurately recon-
struct a three-dimensional object in real space, we need in-
formation over a three-dimensional volume in reciprocal
space. To overcome the problems in the internal source
single-energy electron holographies, several multiple-energy
methods have been developed.13 These multiple-energy elec-
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tron methods eliminate the twin images, greatly reduce the
effects due to the strong angular variation of the magnitude
and phase of the electron-atom scattering amplitude, and re-
duce the noise in the reconstructions. The MEXH method
was developed in analogy to the multiple-energy electron
methods to provide higher quality holograms than the single-
energy XFH method. �3� The bremsstrahlung production
cross section is extremely high. A conventional 400 W x-ray
source produces about 1013 short wavelength bremsstrahlung
photons per second into 4� steradians.14 If all of these pho-
tons could be collected and energy analyzed, a very high
quality BXH could be generated with a tabletop apparatus in
a few hours.
The implementation of bremsstrahlung x-ray holography

raises a number of interesting theoretical questions. We first
recall that bremsstrahlung photons can have any energy from
nearly zero to the energy of the incident electron, and
the spectral intensity diverges at low energies:
I(�)d����1d� . The bremsstrahlung photons, which scat-
ter in the target crystal to produce the object waves, are
intermediate or virtual particles. The momentum of each in-
termediate bremsstrahlung photon can take on any value; we
must integrate over all virtual momenta in computing the
scattering amplitude. Of course, this must occur for any in-
termediate particle that produces an object wave, but the pos-
sible problems are potentially more serious here for the vir-
tual bremsstrahlung photons because of the broad nature of
the bremsstrahlung spectrum.
More generally we should ask: Are quantum mechanical

effects ever important in internal source x-ray holography?
Or does the simple wave picture always work? If a quantum
mechanical approach is needed, what is the correct quantum
mechanical description of internal source x-ray holography?
When can multipath photon interference be treated by the
scalar wave equation approximation to Maxwell’s equations
instead of the full theory of quantum electrodynamics? To
answer these questions, we develop a quantum electrody-
namic treatment of the three internal source x-ray hologra-
phies, BXH, XFH, and MEXH, and compare it in detail with
the simple wave picture.
It is useful to provide this connection between the funda-

mental theory �QED� and these new holographies. Almost all
of the work in this field has been based on the simple wave
picture. For example, Barton’s original holographic inver-
sion procedure15 for electrons is based on the Helmholtz-
Kirchoff inversion procedure for classical scalar waves.
However, in the nonrelativistic limit, Rous and Rubin16 have
recently shown how the Lippmann-Schwinger equation can
be used to provide solutions to the Schrödinger equation
which correctly describe the physics of the single-energy
electron internal source holographies.
For BXH in particular, classical electrodynamics will not

produce the correct answer at high energies because the in-
termediate photons and electrons are virtual: the square of
their four-momenta may not be equal to the square of their
rest masses, p2�m2. The physics can be divided into on-the-
mass-shell amplitudes �called the ‘‘on-shell’’ or ‘‘real’’ pro-
cesses� when p2�m2, and off-the-mass-shell amplitudes
�called ‘‘off-shell’’ or ‘‘virtual’’ processes� when p2�m2.
We show by explicit calculation that the virtual photons and
virtual electrons do not propagate over the entire distance

between the regions of high electron density in two adjacent
atoms, and consequently classical electrodynamics predicts
the right behavior. The reason for this comes from the un-
certainty principle. The amount of off-shellness, or virtuality,
of photons of energy k0 and momentum k� is measured by the
quantity k0

2�k� 2�Q2. If k0��k� �, the virtual photon is not
massless and its range is Q�1 which is much smaller than the
interatomic spacing a . If k0��k� �, Q2 is negative and
exp(i�Q�r) oscillates rapidly for r�a and any important con-
tributions are cancelled.
Thus our main result is that for real atoms in real solids,

excited to emit bremsstrahlung or fluorescence x-ray radia-
tion, classical electrodynamics works very well because there
is no significant overlap between the regions of high electron
density in the adjacent atoms. However, because the inter-
mediate state photons and electrons in the internal source
x-ray holographies are virtual, it is important to use quantum
electrodynamics to derive the equations necessary to analyze
the holograms. We provide that derivation for BXH, XFH,
and MEXH.
The separated atom approximation that we use to show

that the full quantum electrodynamic treatment reduces to
the classical electrodynamic expressions for real atoms in
real solids, is formally analogous to the separated scatterer
approximation used in analyzing high energy hadron-nuclear
scattering experiments.17–20
Almost all of our knowledge of the atomic scale structure

of bulk condensed matter has been determined from mea-
surements of the quantum mechanical interference patterns
that arise from particle-crystal scattering. How do the new
x-ray holographies compare with crystallography, and what
are the other possibilities? There are four equivalence classes
of quantum mechanical interference patterns that have been
used to determine structure: �1� In crystallography, there is
an external source of particles which are sent into the crystal
in nearly plane wave states. In the usual kinematic scattering
limit, these particles coherently single scatter from many at-
oms in the crystal. The interference between these many
single-scattering events produces the Bragg peaks.21 �2� In
internal source holography, there is an internal source of par-
ticles which leave the crystal in nearly spherical wave states.
These particles coherently single scatter from the object at-
oms in the crystal. The interference between each of these
single-scattering events and the strong direct path reference
beam produces the Gabor zone plates in the hologram. �3� In
external source holography, there is a coherent external
source of particles which is sent into the crystal in nearly
plane wave states. These particles coherently single scatter
from the object atoms in the crystal. The interference be-
tween each of these single-scattering events and the strong
reference beam produces the hologram. Unfortunately, the
necessary coherent hard x-ray sources are not yet available22
and when they become available they will probably destroy
the sample in the process of making the hologram.23 �4� In
the Kichuchi and Kossel methods, there is an internal source
of particles which leave the crystal in nearly spherical wave
states. These particles coherently multiply scatter from many
atoms in the crystal. The interference between these many
multiple-scattering events produces the Kichuchi and Kossel
patterns. These multiple-scattering patterns also contain use-

2400 56GERALD A. MILLER AND LARRY B. SORENSEN



ful holographiclike information,24 but this information is dif-
ferent than the single-scattering holograms.
The remainder of this paper is organized as follows. Sec-

tion II outlines the standard classical scalar wave derivation
of the intensity of the holographic interference pattern for the
interference between a spherical reference wave and a
spherical object wave. Section III is devoted to deriving an
expression for the corresponding cross section for the inten-
sity of the holographic interference pattern for bremsstrah-
lung holography. Since this paper is concerned with the pos-
sible effects of virtual photons, it is sufficient to consider the
process as being bremsstrahlung production by the source
atom followed by photon scattering by the object atom, lo-
cated at a displacement r� from the source atom. We find that
we can simplify the expression for this cross section and
apply it to holography if the atoms can be treated as well
separated so that only real photons propagate from the source
atom to the object atom. We then show for real atoms in real
crystals that the regions of high electron density are suffi-
ciently well separated. Our separated atom approximation is
presented in Sec. IV. The bremsstrahlung energies for the
experiments we are considering are 40–60 keV and at these
energies, the x-ray-atom scattering cross section is domi-
nated by the Thompson process. So we study the photon
virtuality effects for bremsstrahlung production followed by
Thomson scattering first. For this case, the corrections to our
separated atom approximation are defined and shown to be
entirely negligible in Sec. V. Near resonance, the anomalous
scattering amplitude can become comparable to the Thomp-
son scattering amplitude, and these two amplitudes interfere.
We consider this case in Sec. VI, where we use the numeri-
cal results of the previous sections to justify the immediate
use of the separated atom approximation. In XFH, the photon
is produced by fluorescence radiation, where the excited
atomic state is produced by electron or photon impact, and
the atom decays via photon emission. The emitted photon
can be scattered by another atom to produce an object am-
plitude which will interfere with the direct reference ampli-
tude. This is discussed in Sec. VII, where the necessary am-
plitudes for this process are presented. In MEXH, a real
photon is sent into the sample from outside. This photon has
a direct path to the detector atom and a collection of single
scattering paths to the detector atom via the object atoms
which will interfere with the direct path. This is discussed in
Sec. VIII. The final section is devoted to a brief summary
and discussion.

II. CLASSICAL INTERNAL SOURCE ENSEMBLE X-RAY
HOLOGRAPHY

When an x-ray photon is created inside a solid and is
detected outside, the quantum mechanical interference be-
tween the different paths that the photon takes as it leaves the
solid will produce a holographic image of the atoms around
the position where the photon is created. As we show below,
the probability distribution for the photon intensity is a Ga-
bor hologram. In contrast to the usual external source x-ray
holography where the reference wave comes from outside
the sample, in internal source x-ray holography, the wave
corresponding to the direct amplitude �i.e., the amplitude for
the photon to leave the solid without any interactions� serves

as the reference wave, and the wave corresponding to the
amplitude produced by single photon-atom scattering plays
the role of the object wave.
Because the amplitude for photon-atom scattering is weak

for hard x rays, the reference wave will be much stronger
than the object waves, and this strong reference wave limit is
the ideal holographic situation because the hologram is then
dominated by the interference between the reference wave
and the singly scattered object waves. In this limit, the inter-
ference between one object wave and another object wave,
and the interference between the reference wave and the low
order �double, triple, . . . � multiple scattering object waves
is much weaker than the interference between the reference
wave and the single-scattering object waves. In nearly per-
fect crystals, the interference between the high order object
waves can become comparable to the reference wave and is
responsible for the Kossel �x-ray� and Kikuchi �electron� pat-
terns. However, these multiple scattering features are sharp
in angle and therefore can be easily removed from the holo-
gram.
To develop the simple classical wave picture for internal

source ensemble x-ray holography, consider first just the two
atoms shown in Fig. 1. The full internal source x-ray holo-
gram can be obtained from this two-atom case by summing
over all object atoms for each source atom, and by summing
over all source atoms. Suppose the source atom at the origin
emits radiation which is detected in the far field, and suppose
also that prior to detection the radiation is scattered by a
second object atom located at position a� . The direct and
single-scattering paths produce an interference pattern. When
the polarization is not important, this problem can be treated
as due to the interference between two scalar wave fields,
with the scalar field representing a component of E� or B� .
In this approximation, the first atom emits a scalar spheri-

cal reference wave R of the form

R�
eikr

r , �1�

and the second atom emits a scalar spherical object wave
O of the form

FIG. 1. The classical scalar wave description of internal source
holography. The source atom produces the spherical reference wave
R which propagates directly to the detector, and which is scattered
by the object atom to produce the spherical object wave O . The
interference between R and O at the far field detector produces the
internal source hologram.
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O�
eika

a f a���
eik�r��a� �

�r��a� �
, �2�

where again a� is the position of the second atom. In the far
field, r�a , the composite amplitude M�R�O takes the
form

M�
eikr

r � 1�eika
f a���

a e�ik�•a� � , �3�

where f a(�) is the standard atomic scattering amplitude for
an incident plane wave, and we have followed the tradition
in this field of neglecting the higher-order spherical wave
corrections.
The far field intensity is given by the square of the com-

posite amplitude M :

I�M*M�R*R�R*O�RO*�O*O . �4�

Holography records much more phase information than crys-
tallography, but there is still a ‘‘holographic phase problem’’
present in the holographies that can only measure the inten-
sity �e.g., laser, electron, and x-ray holography� and not the
amplitude �e.g., acoustic and microwave holography�. The
intensity holographies record both the information we want
about the object in the R*O term, and a copy of the complex
conjugate of this information in the RO* term, which pro-
duces a nonexistent twin to the object during the reconstruc-
tion.
The far field object plus twin holographic interference

cross term R*O�RO* is proportional to

Re� f a����cos�ka�k�•a� ��Im� f a����sin�ka�k�•a� �. �5�

In this paper, we treat the case in which the source atom
emits x rays with wavelength � . Note that to obtain signifi-
cant holographic oscillations, it is important to make ��a ,
and that the best holograms will be produced when ��a .
Although all of the existing and proposed internal source

holographic techniques actually depend on the multipath
quantum mechanical interference of the particle emitted by
the sample, the essential features of the holograms can be
�and have been before this paper� obtained from the simple
wave picture of the process outlined above.
There are two essential ingredients of atomic resolution

internal source holography: �1� There is a localized source
inside the sample. This localization provides the necessary
spatial coherence of the source. The particle can be localized
by being created inside the sample—this is the case for the
bremsstrahlung and fluorescence x-ray holographies de-
scribed in this paper. The particle can also be localized by
being ejected from a specific quantum state in the sample—
this is the case for photoelectron and Auger electron holog-
raphy. In addition, the particle can be localized by an inco-
herent inelastic scattering event—this is the case for diffuse
low energy electron diffraction �LEED� holography and dif-
fuse Kikuchi electron holography. The analogous incoherent
scattering localization is possible theoretically for photons
via thermal diffuse x-ray scattering and via Compton scatter-
ing. �2� There is interference between the direct reference
wave and the singly scattered object waves. This requires a

coherent scattering event at the object atoms. If the object
atoms scatter incoherently, the interference in the final state
will not occur.
We shall show how these features arise from quantum

electrodynamics.

III. BREMSSTRAHLUNG X-RAY HOLOGRAPHY „BXH…
In the bremsstrahlung process, an electron incident on a

solid radiates a photon: e(pi)�solid→e�(p f)��(k)
�solid�. In this paper, we consider the case where the initial
and final electronic states of the atoms are the same, and
where the solid is a collection of fixed atoms, i.e., we do not
consider the effects of thermal motion. The Feynman dia-
grams for bremsstrahlung holography are shown in Figs. 2
and 3. The complete holographic amplitudeM is the sum of
the reference wave amplitude R, given by the crossed and
uncrossed Born bremsstrahlung terms shown in Fig. 2, and
the object wave amplitude O, given by the crossed and un-
crossed Compton scattering terms shown in Fig. 3:

M�R�O. �6�

Here the QED reference R, object O, and hologramM am-
plitudes are analogous to the corresponding classical R , O ,
and M terms in Eqs. �1�–�3�. The quantum mechanical in-
terference between R and O required to produce the holo-
graphic interference patternM, requires coherent scattering
of the reference wave by the object atom. This required co-
herent Compton scattering by the single object atoms is pro-
vided by the recoiless Lamb-Mössbauer effect, in which the
entire crystal lattice takes up the recoil momentum due to the
Compton scattering. Consequently, the efficiency of this ho-
lographic process depends on the size of the recoiless frac-
tion.
Before starting, it is useful to sketch the notational con-

ventions used in this paper. The various four-momentum
vectors are represented with italic typeface, e.g., k ,pi ,p f ,
and the three-vector spatial components are indicated with
italic typeface with explicit arrows, e.g., k� , p� i , and p� f . The

FIG. 2. The uncrossed �a� and crossed �b� Feynman diagrams
for the reference amplitude R in bremsstrahlung x-ray holography
�BXH�. The x represents the target atom that produces the brems-
strahlung photon. In the uncrossed �crossed� diagram, the outgoing
photon is created after �before� the virtual photon is destroyed. The
solid line represents the incident electron and the wiggly lines the
photons; this standard convention is used in all the Feynman dia-
grams in this paper.
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magnitudes of three-vectors are written explicitly, e.g., �k� �.
Thus for the bremsstrahlung reference amplitude shown in
Fig. 2, the conservation of energy and momentum is written
as pi�q�p f�k , where ��k0, pi

0�Ei , and p f
0�E f . Here

q is the four-momentum supplied by the target, q�(0,q� ),
where the 0 arises from our condition that no atoms �or nu-
clei� be excited. Three-momentum conservation is expressed
as q� �p� i� p� f�k� . The notation and conventions of Bjorken
and Drell25 are used throughout the present work, and our
units are such that both � and c are unity.
The cross section for the holographic interference pattern

is related to the square of the holographic amplitudeM by

d3�

d�d� fd�k� �
�m2 p f

pi
2�

��M�2

2�2��6
��Ei�m���, �7�

where m is the mass of the electron, � represents the outgo-
ing angles of the photon and � f those of the electron (p f).
The quantity �M2� is obtained from �M�2 by squaring the
magnitude of R�O, summing over the spins of the final
electron, and averaging over the spins of the initial electron.
The reference amplitude R shown diagrammatically in

Fig. 2 is evaluated as

R�k ,q ��
Zepe2

�q� �2
� ū f � � �•p f

2p f•k �
�•pi
2pi•k ��0

�
�”k”�0

2p f•k �
�0k”�”�0

2pi•k � ui��1�F� �q� ��� , �8�

where e2/4��� , the proton charge is the negative of the
electron charge ep��e , and F(�q� �) is the electronic contri-

bution to the atomic form factor, normalized so that
F(0)�1. This matrix element is proportional to ���(0,�̂).
The nuclear form factor is essentially unity for the kinematic
range of the current x-ray holography experiments. The de-
viation of the term �1�F(�q� �)� from unity represents the
screening effect of the atomic electrons. If q� �0, the atom
acts as a neutral object and there is no bremsstrahlung.
The only significant approximation made in obtaining Eq.

�8� is that the initial and final state electron-nuclear Coulomb
interactions have been neglected. The influence of these in-
teractions, which can increase the value of the computed
cross sections significantly, can be reasonably well approxi-
mated by multiplying the above amplitude by the product of
the continuum electronic wave functions evaluated at the
nuclear center—this is the Elwert approximation of Ref. 26.
This is a well-motivated approximation classically because
the acceleration that leads to the bremsstrahlung takes place
in the vicinity of the nucleus. Detailed numerical studies27
have confirmed the qualitative accuracy of the Elwert ap-
proximation. Multiplying our amplitude by this factor does
not influence the propagation of the virtual photon between
atoms, which is our principle concern. Thus we shall ignore
the initial and final state interactions here in our study of the
potential off-shell effects.
It is convenient to define the expressions in the bracket as

�•B(k), so that the reference amplitude can be rewritten as

R�k ,q ��
Zepe2

�q� �2
�1�F� �q� ���B��k ���. �9�

As shown in Fig. 3, the virtual photon (k�) is produced by
the source atom, propagates to the object atom, located at a
separation r� from the source, which scatters the virtual pho-
ton k� so that the final photon k is produced. The object atom
scattering is dominated by the Compton scattering of the
photon by the atomic electrons. This is because the photon-
atom scattering is larger than the photon-nuclear scattering,
by the ratio of the proton mass to the electron mass for the
Thompson term, or by the ratio of the squares of the atomic
and nuclear radii for the dipole terms. The virtual brems-
strahlung matrix element is denoted as B̃�(k�) and the
Compton rescattering transition matrix as C�(� ,k ,k�). The
evaluation of the Feynman graphs shown in Fig. 3 uses stan-
dard techniques.25 Here we also carry out the integration
over the time component of k�, which gives us a � function
setting k�0�� . Then we arrive at the expression for the ob-
ject amplitude:

O��Z2e4ep� �C��� ,k ,k���
B̃��k��

�2�k��2�i�

�e�i�k��k���•r� d3k�
�2��3

�1�F� �q� ����

q� �2�i�
, �10�

where q� ��p� f�p� i�k��. Note that k�2��2�k��2�0.
The bremsstrahlung matrix element is given by

FIG. 3. The four Feynman diagrams for the BXH object ampli-
tude O. The object amplitude has four terms due to the crossed and
uncrossed source terms, and the crossed and uncrossed Compton
scattering terms. The sum of the two R diagrams in Fig. 2 interfere
with the sum of the four O diagrams in this figure to produce the
bremsstrahlung hologram.
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B̃��k��� ū f � �0
1

p” i�k” ��m �����

1
p” f�k” ��m �0� ui ,

�11�
where standard spinor notation is used. Note that the Comp-
ton term �C�(� ,k ,k�)� is the atomic expectation value of the
virtual-to-real Compton transition matrix which converts the
virtual photon k� to a real one with four-momentum and
polarization (k ,�). Thus

C��� ,k ,k�����SF�Pi�k ��”��”F�P f�k ���, �12�

where SF(P) is the relevant propagator for the bound elec-
trons. For example, when the electrons are treated as free, the
Compton transition matrix element is given by

Cf ,i
� �� ,k���Ū f � ��

1
P” i�k”�m �”��” 1

P” f�k”�m ���Ui ,

�13�
where the upper case spinors Ui ,Uf represent the initial and
final states of the free electron, with P� i�k���P� f�k� .
But the atomic bound states are more interesting. We may

better understand the operator of Eq. �12� by noting that in
the relativistic theory, the origin of the Thompson term
comes from the terms involving the creation of virtual
electron-antielectron pairs.28 The resulting two-electron plus
antielectron states live only for a very short time, so that we
may ignore interactions with the other particles of the atom.
The remaining terms can be seen in the nonrelativistic limit
up to O(p2/m2) as arising from the two interactions of the
dipole operator.28 Then, we may write the Compton transi-
tion matrix element as a sum of terms so that

�C��� ,k ,k�����T��� ,k ,k�����R��� ,k ,k���, �14�

where the Thompson scattering is denoted as T�(� ,k ,k�) and
the resonant scattering and other contributions are denoted as
�R�(� ,k ,k�)�.
When the long wavelength approximation is valid, we

obtain

�R��� ,k ,k�����2e2�
n

�i� �̂•D� �n��n�Dl�i�
Ei���En��1/2 �i�n

�� ,l

��2e2�
n

�i�Dl�n��n� �̂•D� �i�
Ei���En

�� ,l ,

�15�

where the dipole operator D� is given by

D� ��
i�1

Z

s� i �16�

and s� i is the displacement of the ith electron from the atomic
center. The vector D� is simply the sum of electronic dipole
operators. The quantities En and �n are the energy and the
width of the excited state n . The result shown in Eq. �15�
indicates that only the three-vector R� part of R� enters into
the expression for the amplitude. This is because each atomic
photon emission and/or absorption is controlled by an �̂•D�
operator. For unpolarized atoms, R� must be proportional to
�̂ , so that it is convenient to define a strength function
S(�) such that

R� � �̂S���. �17�

We use this definition along with Eq. �15� to obtain

S�����2e2�
n

��i��•D� �n��2� 1
Ei���En��1/2�i�n

�
1

Ei���En
� . �18�

As noted in the Introduction, we shall proceed by first
studying the effects of Thompson scattering by the object
atoms. An explicit evaluation yields

�T����
1
m ��i� iF� �k��k����, �19�

where for simplicity we take the scattering object atom to be
of the same type as the source atom which produced the
virtual photon. In this and the following two sections we
shall consider photons for which the Thompson term is
dominant. We shall return to the resonant corrections to the
Thompson term in Sec. V.
We compute �M2� by squaring R�O, keeping only the

Thompson scattering contribution T� in O, by summing over
the final electron spin, and by averaging over the initial elec-
tron spin. The result is

�M2��
1
2 �

s f si
�B*•�B•�� Ze3�q� �2

�1�F� �q� ��� � 2� Z3e8

�q� �2
�1�F� �q� ���

�2Re� B*�k �•�� d3k�
�2��3

�1�F� �q� ����

�q� ��2
e�i�k��k���•r� F� �k��k����

�2�k��2�i�
�T��� ,k ,k���B̃��k��� � . �20�
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Here the term of order Z4e10, which is much smaller than the lower-order terms, has been neglected.
The result given by Eq. �20�, as specified by the matrix elements given by Eqs. �11� and �19�, is our main result. It gives

the bremsstrahlung holography cross section when the object scattering is dominated by the Thompson term. We shall make
a further simplification to facilitate a first evaluation: we will keep only the numerically most significant terms of B and B̃ , i.e.,
the ones proportional to �̂•p� f and �̂•p� i . This leads to the standard classical expression for the bremsstrahlung cross section.29
We have explicitly evaluated the neglected terms numerically and found that their neglect produces an approximately constant
10% reduction in the cross section over the kinematic region where the bremsstrahlung holography experiments will operate.
Our numerical results can be understood by noting that �”k”�0�i�� •���k� . This spin-dependent interaction is a magnetic effect
proportional to �� �A� , which therefore does not interfere with the terms we keep. Furthermore, the two spin-dependent terms
of Eq. �8� partially cancel and their sum is smaller than the leading term by about k/m .
We carry out the average over electron initial spin, and the sum over final electron spin. The result for the bremsstrahlung

holography cross section is

d3�

d�� f �k� �
�m2 �p� f �

�p� i�

1
2

�

�2��5
��Ei�m����M�2

1
8m2 �8EiE f�4pi•p f�4m2� , �21�

where

�M�2�� Ze3�q� �2
�1�F� �p� f�p� i�k� ��� � 2� �̂•V� �k ��̂•V� �k ��

Z3e8

�q� �2
2�1�F� �q� ���

m ReI�k� ,r� �. �22�

Here the quantity I(k� ,r�) is given by

I�k� ,r� ���̂•V� �k �� d3k�
�2��3

�̂•V� 1�k��e�i�k��k���•r�� �1�F� �q� ����

�q� ��2
F� �k��k����

�2�k��2�i� � , �23�

where q� ��p� f�p� i�k�� and q� �p� f�p� i�k� . The vectors
V� (k) and V� 1(k�) are given by

V� �k ��
p� f
p f•k �

p� i
pi•k , �24�

V� 1�k���
2p� f

2p f•k��k�2
�

2p� i
2pi•k��k�2

. �25�

The cross section for the intensity of a bremsstrahlung
hologram given by Eq. �21� together with the definitions
given by Eqs. �22�–�25� is the complete solution to the
bremsstrahlung holography problem. What remains to be
done is to carefully analyze these equations to see how the
classical holography equations emerge in the classical limit,
and to see how large the quantum effects are, and when they
are important. That is the content of the next three sections.

IV. SEPARATED ATOM APPROXIMATION

The goal of the bremsstrahlung holography experiments is
to determine precise information about the location of the
object atoms, which is represented in Eqs. �21�–�25� by the
vector r� . The standard holography expressions involve an
interference term of the general form �ei�re�ik�•r�/r where
� is a known function. A quick look at Eqs. �22� and �23�
could lead one to dismay. How could that integral ever have
the simple form required for holographic investigations? We
indicate a solution by considering the situation when the two
atoms are very far apart, i.e., in the limit where r approaches
infinity. Here our intuition provides a guide: the process

must proceed by bremsstrahlung from the source atom fol-
lowed by photon propagation along the direction of r� and
Thompson scattering by the object atom. Thus the brems-
strahlung makes a real photon with momentum �� �� r̂ and
energy � , and the Thompson scattering changes the direction
of �� to k� .
In this case, the photon has four momentum ��(� ,�� )

and �•��0. The propagating photon is on shell. This situ-
ation is simple, but the full integral of Eq. �23� is not. How-
ever, we will evaluate this integral by developing expansions
in which the leading term is correct in the limit that r is very
large. We shall keep the leading term and the most important
corrections. We call this approach the separated atom ap-
proximation. In practice, this amounts to replacing k� by � in
certain terms in the integrand. For example, we shall show
below that replacing V� (k�) by V� (�) and q� � by p� f�p� i���
are excellent approximations.
We may use the uncertainty principle to better understand

why the propagating photon must be real for infinite values
of r . Our virtual photons have energy � , but the magnitude
of the three-momentum varies from 0 to infinity in the inte-
gration. Let us define Q2��2��k���2 to provide a measure of
the violation of energy conservation required to make the
virtual photon. This is simply the square of the energy-
momentum four vector, which vanishes for real photons. If
Q2�0 the wave is a decaying exponential of the form
e���Qr�/r , which has a small value. The interpretation of this
Yukawa form is that the photon lives for a time �/Q , so that
its maximum range is �c/Q . If Q2�0, the wave is of the
form ei�Qr/r . The effect of this term is very small because of
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the oscillations of the integrand in the integral over d3k�.
Thus, the net result is that only the real photons with Q�0
reach the object atom.
Are the atoms in a real solid sufficiently separated so that

all the virtual photon effects are gone before the bremsstrah-
lung photon reaches the nearest atoms? We argue that the
answer is yes, at least for most solids at typical experimental
bremsstrahlung holography energies, by considering the spe-
cific example of crystalline copper. In crystalline copper the
atoms are separated by a distance RN�2.5561 Å�4.83a0
where a0 is the Bohr radius �0.529 Å. Where are the elec-
trons in each atom? The electron density for isolated copper
atoms and for crystalline copper calculated using the FEFF
computer code30 is shown in Fig. 4. Note that this density is
sharply peaked at small values of s since most of the elec-
trons are within 1 Å of the nuclear center of the atom, and
that the electron densities for isolated atoms and for atoms
embedded in the solid are very similar. In particular, the root
mean square radius of the displayed density is 1.08a0 . Thus
the closest separation r between the copper atoms is about 5
times the typical value of the distance s between an electron
and the nucleus. At the very least, it is reasonable to expect
that the separated atom approximation is a good starting
point.
Our procedure is to examine a set of approximations to

the full results for I(k� ,r�) given by Eq. �23�. We will define
the on-shell, separated atom approximation as the result of
setting k����� in V1(k�) and in q� �. Then the on-shell ap-
proximation Ion(k� ,r�) to the full on- and off-shell integral
I(k� ,r�) is given by

Ion�k� ,r� ��
�1�F� �p� f�p� i��� ����1�F� �q� ���

�p� f�p� i��� �2

� �̂•V� �k ��̂•V� ���Jon�k� ,r� �, �26�

where

Jon�k� ,r� ��� d3k�
�2��3

e�i�k��k���•r� F� �k��k����

�2�k��2�i�
. �27�

Again, the subscript ‘‘on’’ is to remind us that setting k��
equal to �� causes the propagating photon to be on shell. Its
virtuality has decayed by the time it reaches the near-
neighbor atoms, and the square of its four momentum has
vanished. The next section �Sec. V� is devoted to the dem-
onstration that the on-shell Ion(k� ,r�) given by Eq. �26� is an
excellent approximation to the full I(k� ,r�) given by Eq. �23�.
The first step is to understand the integral Jon . We can

gain some insight by converting the integral over the mo-
mentum into one involving positions. We use

F� �k��k������ d3s��s �e�i�k��k���•s�, �28�

so that the on-shell Jon integral given in Eq. �27� simplifies to

Jon�k� ,r� ���
1
4�� d3s��s �

ei��s��r��

�s��r��
e�ik�•�s��r� �. �29�

If r�s for the important regions of �(s), we may replace
ei��s��r��/�s��r�� by ei�rei�r�•s�/r . This gives

lim
r→�

Jon�k� ,r� ���
1
4�

ei�r

r e�ik�•r�F� �k���� ��, �30�

which has the usual classical holographic form. The spheri-
cal Green’s function ei�r/r corresponds to the form of the
wave at infinity. This form arises from the pole in the inte-
gral for Jon at �k����� .
To check the asymptotic approximation given in Eq. �30�

we numerically compared the full Jon given by Eq. �29� with
its approximation given by Eq. �30�. The results are shown in
Fig. 5. Note that the approximation is excellent except when
k� �r� . Even then, the full theory and the approximation pro-
duce very similar holographic interference patterns; the
asymptotic approximation produces a pattern about 10%
smaller than the full theory when k� �r� . This agreement be-

FIG. 4. The electron density �(s) for isolated copper atoms
�dashed line� and for copper atoms in crystalline copper �solid line�
calculated using the FEFF computer code �Ref. 30�. Here s is the
distance from the center of the atom.

FIG. 5. Comparison of the real part of the on-shell separated
atom approximation Jon �solid line� given by Eq. �27� with the real
part of the classical spherical wave holography function �dashed
line� given by Eq. �30�. The results in Figs. 5–9 are shown for
crystalline copper with representative experimental kinematics: the
incident electron energy is 60 keV and the outgoing photon energy
is 20 keV. Here cos(�)�k̂•r̂.

2406 56GERALD A. MILLER AND LARRY B. SORENSEN

Larry




tween the full quantum electrodynamic calculation and the
simple classical holography equations shows that brems-
strahlung holography is possible: the reduction for k� �r� does
not significantly change the oscillatory form with its strong
dependence on k�•r� .
There is no need to use the asymptotic approximation in

numerical work. We may use the correct value of Jon and
maintain the explicit holographic form. This involves ex-
panding the form factor in terms of Legendre polynomials
PL( k̂• k̂�):

F� �k��k������
L
FL��r �PL� k̂• k̂��, �31�

where ���k� �. Combining the partial wave expansion for the
atomic form factor given by Eq. �31� with the full expression
for Jon given by Eq. �27� yields the partial wave expression
for Jon

Jon�k� ,r� ��i��
L
iLFL��r �hL

�1 ���r �PL� k̂• r̂ �, �32�

where hL
(1)(�r) are the outgoing spherical Bessel functions.

All that is required for this to hold is that r be bigger than the
maximum value of s �i.e., circa 2.56 Å for copper� occurring
in the integral �29�. Since r�2.56 Å and Fig. 4 shows that
�(s) is less than 10�3 of its maximum value for s�0.5 Å,
this condition is met. We may also understand the relation
between this expression and its limiting form shown in Eq.
�30�. The use of the asymptotic form of the outgoing spheri-
cal Bessel functions:

lim
x→�

hL
�1 ��x ����i �L�1 e

ix

x , �33�

leads immediately to the result shown in Eq. �30�. The cor-
rections to this asymptotic form are thus of order 1/x times
the original result. Thus we see that the expected first cor-
rection to Eq. �30� is of the order of 1/�r�1/25 for ��20
keV.
Equation �32� allows us to understand why the difference

between the asymptotic approximation given by Eq. �30� and
the exact result given by Eq. �32� is largest for k�•r��1. The
terms FL(�r)hL(�r) monotonically approach zero as L in-
creases. The function PL(k�•r��1)�1 for all L , so that the
terms with large L �these are the terms for which the ap-
proximation generated by Eq. �33� is less accurate� add con-
structively. This can also be seen �without using the partial
wave expansion� by examining the integrand of Eq. �29�. If
k̂• r̂�1 �i.e., when k� �r�), the term ��s��r���k�•s� is greatly
reduced so that the contributions of the larger values of s are
less inhibited by the oscillating exponential than for other
values of k�•r� .
The partial wave expression �32� systematically gives all

of the corrections to the classical holographic form given by
Eq. �30�. However, it is useful to provide another approxi-
mation which shows us why the relevant integrals are domi-
nated by terms in which k����� . The idea is to approximate
F(�k��k���) using

F� �k��k�����F�q1���k����� �•�� q1F�q1�, �34�

where q1��k���� �. We use Eq. �34� in the integral �27� and
note that the k�� appearing in the numerator of the integral
�26� can be replaced by a gradient on r� . Thus we find

Jon�k� ,r� ���
1
4�

ei�r

r e�ik�•r�F�q1���Jon , �35�

with

�Jon�k� ,r� ���e�ik�•r��� q1F�q1�•V� on�k� ,r� �, �36�

where

V� on�k� ,r� ��� �� r

i ��� � � d3k�
�2��3

eik��•r�� F� �k��k����

�2�k��2�i� � .
�37�

One may use the Legendre partial wave expansion of Eq.
�32� above to obtain a more detailed expression for
V� on(k� ,r�). But the main point is that the long distance behav-
ior of the integral is that of ei�r. Since (�i�� r��� )ei�r�0,
the correction to the separated atom approximation must
have an extra factor of order 1/�r�1/25. We shall use ex-
pansions similar to that of Eq. �34� to systematically under-
stand the short distance terms. The integral V� on(k� ,r�) will
appear again. Furthermore, we shall often employ the tech-
nique of writing a complete expression as its on-shell ap-
proximation plus a term which is proportional to
(�i�� r��� ) and vanishes in the asymptotic limit given by
Eq. �30�.

V. SHORT RANGE TERMS

In the previous section we showed how keeping the ef-
fects of the pole at �k����� led to the term with the long
distance propagation. Here we show that this pole dominates
the complete expression given by Eq. �23�. The vector k��
appears in three places in this integral, in �1�F(�q� ��)� , in
1/�q� ��2, and in V� 1(k�). We will denote these terms as the
screening correction, the Coulomb photon propagation, and
the electron propagation. We shall study each one separately.

A. Screening correction

Keeping the k�� in the screening term leads to the integral,
Is :

Is�k� ,r� ��� d3k�
�2��3

e�i�k��k���•r�� �1�F� �q� ����
F� �k��k����

�2�k��2�i� � .
�38�

Recall that q� ��p� f�p� i�k��. Pole dominance of the integral
would allow us to replace the k�� appearing in q� � by �� . Thus
the integral may be approximated by using

F� �q� ����F� �p� f�p� i��� ��k����� ���

�F� �p� f�p� i��� ����k����� �•�� q2F�q2�, �39�
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where q2��p� f�p� i��� �. Using this in Eq. �38� leads to the
appearance of k�� in the numerator of the integral, which can
again be replaced by a gradient on r� . The result is

Is�k� ,r� ���1�F�q2��Jon�k� ,r� ���Is�k� ,r� � �40�

with

�Is�k� ,r� ���e�ik�•r��� q2F�q2�•V� on�k� ,r� �. �41�

The leading long distance behavior of the integral of Eq.
�37� required to evaluate V� on is that of ei�r. But
(�i�� r��� )ei�r�0. Furthermore, �� q2F(q2) is of order
(n/q2)F(q2), with n�4. Thus, the �Is(k� ,r�) screening cor-
rection term of Eq. �40� provides a correction which has an
extra factor of F(q2)/q2r compared to the leading term.
However, F(q2) is very small, 1% at most, for the kinemat-
ics of this experiment. For typical kinematics q2�100 keV
so (n/q2r)F(q2)�(4/125)(1/100)�3�10�4. The correc-
tion to the separated atom approximation due to the screen-
ing term is completely negligible here. This is shown in Fig.
6.

B. Coulomb photon propagation

If we keep the k�� in the Coulomb photon propagator
1/�q� ��2, we need to evaluate the Coulomb integral
ICoul(k� ,r�):

ICoul�k� ,r� �

�� d3k�
�2��3

e�i�k��k���•r�� 1
�p� f�p� i�k���2

F� �k��k����

�2�k��2�i� � .
�42�

In this case, there are two sets of poles. One is the usual one
at �k����� , but there is also a set of poles off the real axis �in
the complex �k��� plane� corresponding to the zeros of
�p� f�p� i�k���2. It is desirable to handle these pole terms sepa-
rately, so we use the identity

1
A • 1B �� 1A �

1
B � 1
A�B �43�

in the form

1
�p� f�p� i�k���2

• 1
�2�k��2�i�

�� 1
�2�k��2�i�

�
1

�p� f�p� i�k���2
�

�
1

�2��p� i�p� f �2�2k��•�p� f�p� i�
. �44�

The first term has the pole at �k����� which is responsible
for the long distance photon propagation. The second term
has the above-mentioned poles of �k��� off the real axis.
The vanishing of the denominator �2�(p� i�p� f)2

�2k��•(p� f�p� i) occurs only when the two terms in the
bracket cancel and causes no mathematical difficulty. The
first term of Eq. �44� can be approximated by using
k����� �(k����� ) and expanding so that

1
�2�k��2�i�

• 1
�2��p� i�p� f �2�2k��•�p� f�p� i�

�
1

�2�k��2�i�

1

�p� f�p� i��� �2
�1�

2�k����� �•�p� f�p� i�

�p� f�p� i���2
� .

�45�

The first part of Eq. �45� corresponds to the separated
atom approximation. The next term involves (k����� ) which
yields the integral Von(k� ,r�) of Eq. �37�. The specific correc-
tion to Jon is denoted as �Jon

Coul which is obtained by keeping
the second term of Eq. �45� in the Ic integral given by Eq.
�38� so that

�Jon
Coul�k� ,r� �

���2 �� d3k�
�2��3

e�i�k��k���•r�� �k����� �•�p� f�p� i�
�2�k��2�i� � . �46�

The k����� term of Eq. �46� again leads to an extra factor of
1/q2r , as compared to the leading term. The expected small
size of this correction is confirmed by numerical evaluation.
Indeed the second term of Eq. �45� is negligible except for
the angles for which the leading term vanishes. See Fig. 7,
which shows the relative sizes of Jon(k� ,r�)/(p� f�p� i��� )2 and
the correction to it due to �Jon

Coul(k� ,r�)/(p� f�p� i��� )2.
What about the second term of Eq. �44�? This is given by

FIG. 6. The small effects of photon virtuality on the screening
correction given by the ratio of the second to the first term in Eq.
�40�. The ratio Re�Is /Re��1�F(q2)�Jon� is plotted to illustrate the
size of these corrections for two typical experimental values of the
momentum transfer, namely 12.2 keV and 93.5 keV. Here the mo-
mentum transfer �� �p� i�p� f and the angle �� is specified by
cos(��)��̂•r̂.
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� 1
�p� f�p� i�k���2

� 1
�2��p� i�p� f �2�2k��•�p� f�p� i�

.

It is necessary to treat the k��•k�� terms correctly, but the term
k��•(p� f�p� i) may be evaluated by using k����� �(k����� ) and
treating the difference term as a perturbation in k����� . Thus

1
�p� f�p� i�k���2

�
1

�p� f�p� i�2�2�� •�p� f�p� i��k��•k��

�
2�k����� �•�p� f�p� i�

��p� f�p� i�2�2�� •�p� f�p� i��k��•k���2
.

�47�

If we treat this as a function of �k���, the poles in the exact
expression and in its approximation given by the first term,
appear at the same positions. The second term can be thought
of as correcting the value of the residue at the pole. Further-
more, it vanishes for well-separated atoms. Thus neglecting
the second term is a good approximation. We use similar
logic to write

1
�2��p� i�p� f �2�2k��•�p� f�p� i�

�
1

�2��p� i�p� f �2�2�� •�p� f�p� i�
. �48�

We use the first terms of Eqs. �47� and �48� to estimate
the second term of Eq. �44�. We immediately expect that this
second term is completely negligible because it has the form
of the Fourier transform of

1
k��•k���P2

,

where P2�(p� f�p� i)2�2�� •(p� f�p� i). This Fourier transform
falls off very rapidly with r , i.e., as exp(�Pr)/r. For typical
values of P of about 100 keV�50 Å�1, we will have
Pr�25, where a is the separation ��2.56 Å�. The exponen-
tial damping factor destroys this second term. This intuitive
conclusion is also confirmed by numerical evaluation, but the
strong exponential damping inherent in this term caused the
effects of this correction to be too small to be plotted.

C. Electron propagation

The full expression for the Feynman graphs in Fig. 2 al-
lows a new type of term, one in which the electron propa-
gates over the distance r . The mathematical origins of this
effect are in the poles of the electron propagator shown in
Eq. �25� which arise via the appearance of the four-
momentum of the virtual k�2�0 in those denominators.
There are two terms in that equation, one arising from the
uncrossed graph �Fig. 2�a�� and the other from the crossed
graph �Fig. 2�b��. We shall study these terms in sequence,
using our standard technique of writing k����� �(k����� ) and
treating the second term as an expansion parameter—
whenever possible without destroying the correct analytic
structure.

1. Uncrossed term

Suppose we keep the full uncrossed term. This means that
we must evaluate the integral J1(k� ,r�):

J1�k� ,r� ��� d3k�
�2��3

e�i�k��k���•r�
2p f•k��k�2�i�

1
k�2�i�

F� �k��k����

�2�k��2�i�
.

�49�

The product of propagators can be written

1
2p f•k��k�2

• 1
k�2�i� �� 1

k�2�i� �
1

2p f•k��k�2� 1
2p f•k� .

�50�

The 1/(k�2�i�) is the photon propagator and we denote its
contribution as the photon propagation term; similarly, the
second part is the electron propagation term. The last factor
1/(2p f•k�) vanishes only when the term in the bracket van-
ishes and so causes no mathematical difficulty. We may then
study two separate integrals

J1�k� ,r� ��K1�k� ,r� ��K2�k� ,r� �, �51�

where

K1�k� ,r� ��� d3k�
�2��3

e�i�k��k���•r�
2p f•k�

1
k�2�i�

F� �k��k����

�2�k��2�i�
�52�

and

K2�k� ,r� ���� d3k�
�2��3

e�i�k��k���•r�
2p f•k��k�2�i�

�
1

2p f•k�
F� �k��k����

�2�k��2�i�
. �53�

FIG. 7. The small effects of virtual photon propagation on the
Coulomb correction. The real part of the on-shell Coulomb correc-
tion �Jon

coul/(p� f�p� i��� )2 �dashed line� given by Eq. �46� is com-
pared with the real part of the full on-shell separated atom approxi-
mation Jon /(p� f�p� i��� )2 �solid line� given by Eq. �27�. Here
��12 keV, p̂ i• r̂�0.5, and p̂ f• p̂1�0.5.
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We work first with K1. The manipulations are simplified by
using

1
2p f•k� �

1
2p f•�

�
1

2p f•�
2p f•���k��

1
2p f•k� , �54�

where the four-vector ��(� ,�� ). Using this relation in Eq.
�52� enables us to derive a differential equation for K1:

K1�k� ,r� ��
Jon�k� ,r� �

2p f•�
�

1
2p f•�

2p� f•��� �
��

i �k� �K1�k� ,r� �.

�55�

We see that the first term is the separated atom approxima-
tion for this particular term. The quantity ��� �i�� r�k� � van-
ishes when acting on e�ik�•r�ei�r/r , so that the second term is
a correction. The effect of this term can be estimated by
replacing K1 on the right-hand side by Jon /(2p f•�). Thus

�2p f•��K1�k� ,r� ��Jon�k� ,r� ���Jon
uncr�k� ,r� � �56�

with

�Jon
uncr�k� ,r� ���2p� f•��� �i�� r�k� �Jon�k� ,r� �. �57�

A brief calculation shows that once again the correction is
proportional to the vector integral V� on(k� ,r�) of Eq. �37�, and
is down by about 1/�r compared to the first term. Explicit
numerical evaluation confirms this estimate, the correction
term Jon

uncr is indeed negligible, as shown in Fig. 8. For gen-
eral purposes, it is useful to note that Eq. �55� has the formal
solution

K1�k� ,r� ��
1

2p f•��2p� f•��� �k��i�� r�
Jon�k� ,r� �. �58�

This formal solution gives us a controlled way to study some
of the corrections to the separated atom approximation.
The K2 term given by Eq. �53� represents new physics

occurring in this two-atom process. To see this, recall that

2p f•k� � k�2�i��(p f�k�)2 �M 2�i��(E f��)2 �m2

�(p� f�k��)•(p� f�k��)�i� . We write this in terms of a four-
vector W�(E f�� ,p� f�k��) as 2p f•k��k�2�i��W2

�m2�i� . The zero in this term is a pole in the integrand
representing the long distance propagation of the electron of
four-momentum Won�(E f�� ,�p� f�k� � r̂). We use the same
pole dominance idea that we used for the photon propagation
terms. In this case, the four-vector W appears instead
of the four-vector � . Then we handle the term 2p f•k�
�2p f•W�2m2 by using

1
p f•W�m2 �

1
p f•Won�m2 �

1
p f•Won�m2

�p f•�Won�W �
1

p f•W�m2 . �59�

This allows us to derive the analogous differential equa-
tion for K2:

K2�k� ,r� ��
Kon�k� ,r� �

2p f•Won�m2 �
1

2p f•Won�m2

�2p� f•�W� on�� ��

i �k��p� f � �K2�k� ,r� �, �60�

where

Kon�k� ,r� ���� d3k�
�2��3

e�i�k��k���•r 1
2p f•k��k�2

�
F� �k��k����

�2�k��2�i�
. �61�

Equation �60� is equivalent to the full expression for K2 and
also shows how we can make a first approximation for K2 by
substituting Kon(k� ,r�)/(2p f•Won�m2) for K2 on the right-
hand side. The technique is the same as in previous sections.
We immediately see that the second term vanishes in the
separated atom approximation.
We may evaluate Kon in the separated atom approxima-

tion, because this is essentially the same integral as Jon . The
separated atom approximation worked except when q1 was
small. Here the quantity �k���P� f�k� � r̂� plays the same role as
q1. The result is

Kon�k� ,r� ��e�ik�•r�e�ip� f•r�� �
1
4�r �

�ei�2E f���2�p f
2rF� �k��p� f��E f���2�p f

2r̂��.

�62�

Since E f��m2�p f
2 is very large, F is evaluated with a large

argument, and this kills the K2 term.
The size of the quantity K2 is controlled by Kon and by

the denominator

D�2p f•Won�m2�E f�E f�����p� f• r̂ ��p� f�k� �. �63�

Numerical evaluation shows that K2�K1. If p� f�0, Kon is
small because the atomic form factor is evaluated at a large

FIG. 8. The small effects of virtual electron propagation in the
uncrossed graph in Fig. 2. The real part of the uncrossed correction
�Jon

uncr �dashed line� given by Eq. �57� is compared with the real part
of the on-shell separated atom approximation Jon �solid line� given
by Eq. �27�. Here k̂• p̂ f�0.5 and p̂ i• r̂�0.5.

2410 56GERALD A. MILLER AND LARRY B. SORENSEN

Larry




argument. When �p� f � takes on a typical experimental value,
the energy denominator is very large. The net result is that
K2 is ignorable.
However when �p� f � is very much larger than the electron

mass, D approaches 0 and K2 can become large. The brems-
strahlung from a collection of atoms would then have a large
contribution from the electron propagation term. This small
value of D is a necessary condition for the occurrence of the
Landau-Pomeranchuk-Migdal �LPM� effect31 in which the
long time scale of electron propagation allows a coherent
effect which reduces the radiation. However, we are con-
cerned with the low energy limit in which the electron mo-
mentum is much less than its mass. So, for us, the electron
propagation term is negligible.

2. Crossed term

Suppose we keep the full crossed term. This means that
we must evaluate the integral J2(k� ,r�):

J2�k� ,r� ��� d3k�
�2��3

e�i�k��k���•r�
2pi•k��k�2�i�

1
k�2�i�

F� �k��k����

�2�k��2�i�
.

�64�

The product of propagators can be written

1
2pi•k��k�2

• 1
k�2�i� �� 1

k�2�i� �
1

2pi•k��k�2� 1
2pi•k� .

�65�

Again we denote the first term as the photon propagation
term and the second term as the electron propagation term.
The last factor 1/(2pi•k�) vanishes only when the term in
the bracket vanishes, so this zero residue pole makes no con-
tribution to the integral J2(k� ,r�). We may then study two
separate integrals

J2�k� ,r� ��K3�k� ,r� ��K4�k� ,r� �, �66�

where

K3�k� ,r� ��� d3k�
�2��3

e�i�k��k���•r�
2pi•k�

1
k�2�i�

F� �k��k����

�2�k��2�i�
�67�

and

K4�k� ,r� ��� d3k�
�2��3

e�i�k��k���•r�
2pi•k��k�2�i�

1
2pi•k�

F� �k��k����

�2�k��2�i�
.

�68�

It is clear that we can handle K3 using the same tech-
niques that we used for K1. We derive the following differ-
ential equation for K3:

K3�k� ,r� ��
Jon�k� ,r� �

2pi•�
�

1
2pi•�

2p� i•��� �
�� r

i �k� �K3�k� ,r� �.

�69�

Once again the first term is the separated atom approxi-
mation for this particular term. This dominates K3. For gen-
eral purposes, it is useful to note that Eq. �69� has the formal
solution

K3�k� ,r� ��
1

2pi•��2p� i•��� �k��i�� r�
Jon�k� ,r� �. �70�

Again, this formal solution gives us a controlled way to
study the corrections to the separated atom approximation.
We use

�2pi•��K3�k� ,r� ��Jon�k� ,r� ���Jon
cr �k� ,r� � �71�

with

�Jon
cr �k� ,r� ���2p� i•��� �i�� r�k� �Jon�k� ,r� �. �72�

We find the crossterm correction effects due to �Jon
cr are very

small, as illustrated in Fig. 9.
The term K4 of Eq. �68� represents new physics occurring

in this two-atom process. We use the same techniques we
used for K2. There is a pole in the integrand representing the
long distance propagation of the electron of four-momentum
Xon�(Ei�� ,�p� i�k� � r̂). This allows us to derive the differ-
ential equation

K4�k� ,r� ��
Lon�k� ,r� �

2pi•Xon�m2 �
1

2pi•Xon�m2

�2p� i•�X� on�� �� r

i �k��p� i� �K4�k� ,r� �, �73�

where

Lon�k� ,r� ���� d3k�
�2��3

e�i�k��k���•r 1
2pi•k��k�2

�
F� �k��k����

�2�k��2�i�
. �74�

FIG. 9. The small effects of virtual electron propagation in the
crossed graph in Fig. 2. The real part of the crossed correction
�Jon

cr �dashed line� given by Eq. �72� is compared with the real part
of the on-shell separated atom approximation Jon �solid line� given
by Eq. �27�. Here p̂ i• r̂�0.5.
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Note the appearance of the �m2 term in the denominator of
the first term of K4. This renders the energy denominator
very large, it never vanishes even for infinitely large Ei .
Careful numerical evaluation leads to negligibly small results
for K4. These results are too small to be plotted.

D. Summary of bremsstrahlung cross section
with Thompson scattering

The basic expression for the bremsstrahlung holography
cross section where the object atom scattering can be de-
scribed by the Thompson amplitude is given by Eqs. �21�

and �22�. The full on- and off-shell integral I(k� ,r�) of Eq.
�23� is very well approximated by the on-shell integral
Ion(k� ,r�) of Eq. �26�.
Furthermore, �����0 so that we may perform the sum

over the polarization vectors �̂ �see Ref. 25, Eq. �7.61�� with
the results

�
�

�̂•V� �k ��̂•V� �k ��
2p f•pi
p f•kpi•k�

m2

�p f•k �2
�

m2

�pi•k �2

�75�
and

�
�

�̂•V� �k ��̂•V� ����
p f•pi

p f•kpi•�
�

p f•pi
p f•�pi•k�

m2

p f•kp f•�
�

m2

pi•kpi•�
. �76�

The net result is that

�
�

�M�2�� Ze3�q� �2
�1�F� �p� f�p� i�k� ��� � 2� 2p f•pip f•kpi•k�

m2

�p f•k �2
�

m2

�pi•k �2�
�
Z3e8

�q� �2
�1�F� �q� ���

�1�F� �p� f�p� i��� ���

�p� f�p� i��� �2
2
mReJon�k

� ,r� �� p f•pi
p f•kpi•�

�
p f•pi

p f•�pi•k�
m2

p f•kp f•�
�

m2

pi•kpi•�� .
�77�

The factors in the square brackets account for the peaking of the bremsstrahlung radiation intensity which occurs in the
direction of the initial electron velocity. This feature represents the influence of the vector nature of the photon and is
significantly different than the simple classical result from scalar electrodynamics.
The polarization dependent cross section is obtained simply from Eq. �22�. by replacing the term I(k� ,r�) with Ion of Eq. �26�.

That is, we find

�M����2�� Ze3�q� �2
�1�F� �p� f�p� i�k� ��� � 2� �̂•V� �k ��̂•V� �k ��

Z3e8

�q� �2
2�1�F� �q� ���

m ReIon�k� ,r� �. �78�

VI. BREMSSTRAHLUNG X-RAY HOLOGRAPHY „BXH… INCLUDING RESONANT SCATTERING
We now return to the case where the scattering of the bremsstrahlung photon by the object atoms includes the resonance

correction terms given by Eqs. �15�, �17�, and �18�. We simply use those equations in the expression for the amplitude given
by Eq. �10�. The total Thompson plus resonant hologram amplitudeMT�R is the sum of the Born approximation reference
term R and the Thompson plus resonant object amplitude O. Calculating this amplitude and squaring leads to the resonance
correction ��MR�2 to the nonresonant Thompson squared matrix element �M�2 with

��MR�2��
Z2e6�1�F� �q� ���

�q� �2
S���2Re�̂•V� �k �� d3k�

�2��3
�̂•V� 1�k��e�i�k��k���•r�� �1�F� �q� ����

�q� ��2
F� �k��k����

�2�k��2�i� � , �79�

where S(�) is given by Eq. �18�. If the resonant scattering and the Thompson scattering terms are of comparable strength, the
full square of the resonant and nonresonant hologram amplitude is the sum of the terms given by Eqs. �77� and �79�:

�MT�R�2��M�2���MR�2. �80�

The integral over d3k� is the same as that evaluated in the previous sections. The essential result is that the integral can be
evaluated by removing the expression V� 1(k�)�1�F(�q� ��)�/�q� ��2 and evaluating it for k��� . Recall that ��(� ,� r̂). In that
case,

��MR�2��
Z2e6�1�F� �q� ���

�q� �2
S���2ReJon�k� ,r� ��̂•V� �k ��̂•V� ���

�1�F� �p� f�p� i��� ���

�p� f�p� i��� �2
. �81�
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As explained above, the diagrams with propagating electrons are also potentially troublesome—at high energies these effects
produce the interesting LPM effects. Here the off-shell electron effects are governed by known atomic wave functions which
go into computing the function S(�).
The sum over the polarization vectors of the photon leads to the expression

�
�

��MR�2��
Z2e6�1�F� �q� ���

�q� �2
S���2ReJon�k� ,r� �

�1�F� �p� f�p� i��� ���

�p� f�p� i��� �2
� p f•pi
p f•kpi•�

�
p f•pi

p f•�pi•k�
m2

p f•kp f•�
�

m2

pi•kpi•�� .
�82�

VII. X-RAY FLUORESCENCE HOLOGRAPHY „XFH…
We now briefly consider the physics of x-ray fluorescence

holography �XFH�. In this case, an atom in the sample is
excited from its ground state into an excited state by an in-
coming photon or an incoming electron. After the ionization,
the excited atom decays and we must consider the interfer-
ence effects for the outgoing fluorescence photon via the
direct path to the detector and via the single-scattering paths
to the detector.
The Feynman diagrams for XFH are shown in Fig. 10.

Suppose the incident photon �Fig. 10�a��—or the incident
electron �Fig. 10�b��—interacts with an atom, knocking
an s-shell electron into a continuum wave function c . A
p-shell electron can spontaneously decay to the s state, emit-
ting a fluorescence photon with the characteristic energies of
the atom ��Ep�Es , and with the reference amplitude
Rpsf(c→i)(k� , �̂) for photostimulated fluorescence, or with the
reference amplitude Resf(c→i)(k� , �̂) for electron stimulated
fluorescence.
First, consider the ionization process. For photoionization,

the incoming photon is real or on shell. For electron induced

ionization, the incoming electron is on shell and the ioniza-
tion occurs via the virtual photon exchange, but the potential
off-shell photon effects are exactly the same as the brems-
strahlung case we have already analyzed in detail. For the
relatively low energies used in the current XFH experiments,
these effects are completely negligible.
Second, consider the intermediate states. What are the

possible off-shell electron effects? The electron promoted
into the continuum is detectable and is therefore on shell.
The virtuality of the continuum electron enters only if there
is another final state interaction; such effects are of higher
order in � and are neglected here. Thus the only possible
off-shell electron effects come from the virtual intermediate
state electron in the s state. But this is governed by well-
known atomic wave functions.
For the characteristic radiation used in XFH, the long

wavelength approximation holds and the radiation is domi-
nated by the electric dipole process. This predominantly di-
pole character, combined with the fact that the initial and
final electron is on shell, indicates immediately that the sepa-
rated atom approximation will be extremely close to the ex-
act quantum electrodynamic solution. Thus the holographic
reference amplitude takes the simple form

Rpsf�c→i ��k� , �̂ ���Tpsf�k� , �̂ � �83�

for photoionization, and

Resf�c→i ��k� , �̂ ���Tesf�k� , �̂ � �84�

for electron ionization, where the Tpsf(k� , �̂) and Tesf(k� , �̂)
factors account for the remainder of the atomic matrix ele-
ment.
The holographic object amplitude contribution to the total

amplitude occurs because the photon is scattered coherently
by the object atoms. When the Thompson rescattering effects
dominate, the on-shell approximations for the FXH holo-
graphic interference terms are given by the expressions

Mpsf
on �k� , �̂ ���Tpsf�k� , �̂ �� 1�

e
m Jon�k� ,r� � � �85�

for photon stimulated XFH, and

Mesf
on �k� , �̂ ���Tesf�k� , �̂ �� 1�

e
m Jon�k� ,r� � � �86�

for electron stimulated XFH. Here the integral Jon(k� ,r�) is
given by Eqs. �27� and �32�.
The cross section is obtained by squaring the amplitude

and summing over the polarization vectors of the photon.

FIG. 10. The Feynman diagrams for x-ray fluorescence holog-
raphy �XFH�. The s-state core hole can be made by photoionization
�a�, or by electron induced ionization �b�. The black dot represents
the photon-object atom scattering amplitude, c the continuum elec-
tron, p the p-state electron, and s the s-state electron. Note that the
black dot is shorthand for two diagrams—namely, the crossed and
uncrossed Compton diagrams shown in Fig. 3.
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Thus the cross section for the intensity of the XFH hologram
in the on-shell approximation is given generically by

d�

d�
��2�T�k� , �̂ ��2� 1�2

e
mReJon�k

� ,r� � � . �87�

And again, when the high electron density regions of the
atoms are sufficiently well separated, we will recover the
usual classical holographic form in the far field limit via Eq.
�30�.

VIII. MULTIPLE-ENERGY X-RAY HOLOGRAPHY„MEXH…
Finally, we consider very briefly the physics of multiple-

energy x-ray holography �MEXH�. In this case, a real photon
is sent into the sample from outside and we must consider
the interference between the direct path to the detector atom
and the single-scattering paths via the object atoms to the
detector atom. The Feynman diagrams for this interference
are shown in Fig. 11. Note that the Feynman diagrams for
MEXH are not just the time reversed Feynman diagrams for
photon induced XFH, and that there are three interfering
terms in MEXH.
Within classical electrodynamics, MEXH has been related

to XFH by the reciprocity theorem, which can be para-
phrased roughly as follows: Put the source outside the
sample and the detector inside the sample, turn on the
source, and measure the electric field at the detector; if the
positions of the source and the detector are interchanged, the
electric field measured at the detector will be the same. This
result comes from the time reversal invariance of Maxwell’s
equations.
How does this very reasonable classical result emerge

from the quantum electrodynamic treatment? It clearly is not
just simple time reversal invariance, since there are three
interfering diagrams in MEXH and only two interfering dia-
grams in XFH. There are three diagrams in MEXH because
the incoming photons interfere to produce the atomic excita-
tions that lead to the fluorescence, and the outgoing fluores-
cence photons interfere just as they do in XFH. However
since MEXH must average over many outgoing directions to
increase the signal level, the interference effects in the out-
going photons will be washed out,32 and we need only con-
sider the first two diagrams in Fig. 11. Then our question
becomes how are these two diagrams related to the analo-
gous diagrams for XFH shown in Fig. 10. They still are not
just the simple time reversed diagrams: in MEXH the Th-
ompson process �or, in general, the Compton process� occurs
in the incoming state of the photon that will produce the
photoionization, whereas in XFH the Thompson process is in
the outgoing photon state of energy (Ep�Es) that will be

detected. Since the incoming photon energy used in MEXH
is not equal to (Ep�Es), the two processes are not related by
time reversal invariance.
We discuss this further by displaying the relevant equa-

tion. In MEXH, the holographic object amplitude contribu-
tion to the total amplitude occurs because the initial photon
in the incoming beam with momentum kb and polarization
�̂b is scattered elastically by the object atoms prior to absorp-
tion by the detector atom. If the total matrix element to pro-
duce the outgoing angle averaged MEXH fluorescence decay
is denoted Rme(c→i)(k� b , �̂b) and if the Thompson scattering
effects dominate, then the on-shell approximation for the ho-
lographic interference term is given by the expression

Mme
on �k� b , �̂b��� 1�

e
m Jon�k� b ,r� � ��Tme�k� b , �̂b�, �88�

where �Tme(k� b , �̂b) represents the photon absorption pro-
cess, and once again the integral Jon(k� b ,r�) is given by Eqs.
�27� and �32�. The amplitude for MEXH given by Eq. �88�
and the amplitude for FXH given by Eqs. �85� and �86� are
not complex conjugates of one another. However, the phys-
ics of these two amplitudes is closely related.

IX. SUMMARY AND DISCUSSION

We have shown that, if the energy of the bremsstrahlung
photons is measured, the bremsstrahlung radiation produced
inside a crystal will produce a holographic interference pat-
tern in the far field outside the crystal. To use this new form
of generalized holography,33 we must know the reference
and object amplitudes. These amplitudes were calculated us-
ing quantum electrodynamics, and compared with the corre-
sponding predictions of classical scalar electrodynamics. The
essential results for bremsstrahlung holography are displayed
in Eqs. �77�, �78�, and �82�.
The total amplitudeM is the sum of the reference ampli-

tude R and the object amplitude O. To obtain very accurate
results, the full expression for the quantity Jon(k� ,r�) given by
Eq. �32� must be used. Its simpler asymptotic form given by
Eq. �30� is not accurate for the case in which the separation
r� between the source atom and the object atom is parallel to
the direction k̂ of the detected photon, as shown in Fig. 5.
The key feature in obtaining Eqs. �77� and �82� is that the

photons that propagate from the source atom to the object
atoms are essentially on-shell—the square of their four-
momenta is very close to zero. Section V is devoted to the
detailed arguments for our on-shell separated atom approxi-
mation. We show explicitly that all of the known short
ranged off-shell virtual effects are negligibly small for the
low �40–60 keV� electron energies used in the current ex-
periments. The underlying reason for this is that the atoms in
solids are too far apart for the off-shell photons or electrons,
produced via bremsstrahlung or via fluorescence, to propa-
gate from one atom to another.
It is interesting to compare the present case in which pho-

tons propagate between atoms with two examples from
nuclear physics: �1� hadronic scattering from nuclei, and �2�
pion production in nucleon-nucleon or nucleon-nucleus col-
lisions. Beg’s theorem34 applies to hadron-nuclear scattering
and states that, if the target nucleons are separated by dis-

FIG. 11. The Feynman diagrams for multiple energy x-ray ho-
lography �MEXH�. The notation is the same as Fig. 10.

2414 56GERALD A. MILLER AND LARRY B. SORENSEN



tances greater than the range of the hadron-nucleon interac-
tion, then the hadron-nucleus scattering amplitude can be
expressed in terms of on-shell hadron nucleon scattering am-
plitudes. This is called the separated scatterer
approximation.17–20 In this language, our results can be
stated as the confirmation that the analogous separated atom
approximation is valid.
In our first example, we want to consider the scattering of

hadrons from the nucleons inside the nucleus. In our con-
densed matter physics example, we were able to consider the
scattering of photons from essentially stationary atoms and
slowly moving electrons. However, in nuclei, the nucleons
move extremely rapidly so that the separations between the
nucleons fluctuate and, in addition, the nucleons can overlap.
The average separation distance between nucleons is about
1.8 fm, which is about twice as big as the typical range of
hadron-nucleon interactions ��1 fm�. However, in the case
of very high energy hadronic beams, we can be reasonably
sure that the nucleons will not move during the passage of
the hadron through the target, and that the use of on-shell
hadron nucleon amplitudes based on the average separation
distance is valid
In our second example, the pion ��� production reactions

pp→d� or p�A→(A�1)��, are the strong interaction
analogs of bremsstrahlung holography. In this case, Fig. 2
also applies, but the wiggly lines represent pions and the
solid vertical lines represent nucleons or nuclei. These pro-
cesses involve high momentum transfer �for pions produced
with low energy� and small internucleon separations. There-
fore off-shell pions can and do propagate between nucleons.
As a result, no cross sections can be computed to better than
about a factor of 2.35 In contrast, in this present paper, we

can calculate cross sections reliably at the 10�4 level or
better because the atoms and the electrons in the atoms move
relatively slowly.
The separability argument works extremely well for the

three x-ray holographies �FXH, MEXH, and BXH� currently
under experimental development. In a sense, it is quantum
electrodynamics that requires the separated atom approxima-
tion to work so well since it supplies the forces responsible
for the relatively slow motion of the atoms and of the elec-
trons in the atoms, and it also supplies the interactions be-
tween the atoms and the incoming and outgoing photons and
electrons.
Thus it is quantum electrodynamics that gives us our main

results for bremsstrahlung holography summarized in Eqs.
�21�–�25�, Eq. �77�, and Eq. �82�. Quantum electrodynamics
shows that bremsstrahlung holography should work—the re-
maining problems are experimental.
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Tabletop Bremsstrahlung X-Ray Holography: Making Multiwavelength X-Ray Holograms
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We have used a tabletop x-ray holography apparatus to measure the bremsstrahlung x-ray intensity

distribution produced by electron bombardment of a single crystal Ag anode over a far-field hemisphere
to parts in 104. Using simple computer analysis, we have holographically reconstructed the image of
the atoms without the need for detailed crystallographic modeling. We have successfully imaged the
silver atoms using both 27.6 and 19.6 keV bremsstrahlung photons.

PACS numbers: 61.10.– i, 07.85.–m, 42.40.– i, 61.14.Nm

Dennis Gabor’s dream was to holographically image
atoms with an external source of electrons produced us-
ing an electron microscope to focus the electrons down to
a very small region in front of the sample [1]. Gabor’s
dream has never been fully realized because the quality of
the best electromagnetic lenses is only about as good as
the quality of a raindrop is for imaging visible light [2].
However, his dream has been partially realized over the
past ten years using electrons produced from a very small
region inside the sample as the reference wave [3]. In prin-
ciple, much better holographic images can be made using
x rays instead of electrons [4]. Recently, two forms of
internal reference wave x-ray holography have been real-
ized [5,6]. In this Letter, we present a third: multiwave-
length bremsstrahlung x-ray holography.
The basis of bremsstrahlung x-ray holography is simple:

when bremsstrahlung x-ray photons are produced inside
a single crystal sample, the resulting far-field intensity
pattern is a Gabor hologram [7]. The holographic refer-
ence amplitude is provided by the bremsstrahlung photons
which travel directly (without scattering) to the detector,
and the holographic object amplitude is provided by the
bremsstrahlung photons which undergo single elastic scat-
tering (by the object atoms) on their way to the detector.
Since these two final states are indistinguishable, the direct
and indirect amplitudes interfere to form a holographic in-
terference pattern. Simple Fourier analysis can be used to
reconstruct the image of the atoms around the source atom
from this interference pattern.
Bremsstrahlung x-ray holography is attractive for four

reasons: (1) Short wavelength x rays can be produced from
low-Z materials, thereby allowing higher spatial resolu-
tion than their low-energy characteristic x rays would
permit. (2) The bremsstrahlung production cross section
is large, allowing the measurement of holograms with a
tabletop apparatus. (3) X rays interact very weakly with
atoms compared to electrons and thereby avoid the strong
multiple-scattering problems present in the electron holo-
graphies. (4) The bremsstrahlung spectrum is continuous
and, consequently, many holograms can be made simul-
taneously at different photon energies; these multiwave-
length holograms may be combined to produce much better

quality reconstructions than single energy holograms [8].
Extensive numerical simulations have demonstrated the
feasibility of bremsstrahlung x-ray holography [9].
Figure 1 shows a schematic of the experimental ap-

paratus. A tungsten filament was used to provide elec-
trons which were accelerated toward the single crystal
silver anode by a 40 kV bias. The interaction of the elec-
trons with the target atoms produced both characteristic
and bremsstrahlung photons. The target and the electron
gun were housed in a vacuum enclosure maintained at
1028 torr. The x rays exited the vacuum system through
a 0.020 inch thick, semicylindrical beryllium window.
The experimental apparatus has been described in detail
elsewhere [10].
Although, the x-ray production efficiencies are small

(about 1023), so that most of the electron’s energy is con-
verted into heat inside the anode, a modest electron beam
current of 10 mA still produces about 6 3 1013 x-ray pho-
tons into 4p steradians. A recirculating chiller system was
used to flow water at 10 ±C across the back side of the
sample to prevent overheating, since the electron heating
would change the lattice spacing, reduce the amplitude of
the holograms, and distort or melt the sample.
We used a silver single crystal to demonstrate and

develop bremsstrahlung holography. Silver is an excellent

FIG. 1. Schematic of the x-ray holography experimental
apparatus. The x rays produced inside the sample exit the
vacuum chamber through a beryllium window. They are first
energy filtered and then detected. The far-field hemisphere
is measured by rotating the crystal 360± about its azimuthal
axis f and by rotating the vacuum chamber 90± about its polar
axis u. The detectors remain fixed in space.
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electrical and thermal conductor. In addition, silver has a
reasonably high melting point (961 ±C), and a relatively
high atomic number (Z ! 47). Silver has a face-centered
cubic structure with a room temperature lattice constant of
a ! 4.0856 Å. The crystal we used as the anode was a
disk 1.5 mm thick and 12 mm in diameter; its surface nor-
mal was oriented along the 001 crystal axis to within 0.5±.

The holographic information is contained in the varia-
tions of the measured intensities for different outgoing pho-
ton directions. As a result, we need two angular degrees of
freedom to cover the surface of the far-field sphere. The
most convenient way to cover this surface is to rotate the
sample inside the vacuum chamber to vary the azimuthal
angle f, and to rotate the entire vacuum chamber to vary
the polar angle u.

The photon interference necessary for atomic resolution
holography requires sufficiently monochromatic photons.
The longitudinal coherence length lc of the beam is directly
related to the energy distribution, lc ! hc!DE, and this is
approximately the maximum distance over which we will
be able to image the neighboring atoms. This issue is par-
ticularly important for bremsstrahlung holography, where
we need to eliminate the relatively intense characteristic
fluorescence radiation, select a narrow energy region from
the continuous bremsstrahlung spectrum, and maintain suf-
ficient photon flux for the experiment even after the energy
filtering.

To energy filter the bremsstrahlung photons we used
balanced Ross filters [11]. The Ross balanced-filter tech-
nique uses a combination of two filters made of materi-
als with a small difference in their atomic numbers. This
technique relies on the fact that the x-ray absorption co-
efficients for elements with nearby Z’s vary in approxi-
mately the same way versus photon energy, except near
the absorption edges. If the filter thicknesses are adjusted
properly (see Fig. 2), the difference signal will provide a
narrow energy bandpass signal. We measure the transmit-
ted beam first through one filter and then through the other
filter, and then we take the difference between these two
signals.

Two sets of balanced-filter pairs were used: silver and
tin provided a passband 3.7 keV wide centered at E !
27.6 keV; niobium and molybdenum provided a passband
1.0 keV wide centered at E ! 19.6 keV. Figure 2 shows
the measured signal transmitted through each filter mea-
sured with a solid state Si detector, the calculated transmis-
sion factor of the filters [12], and the measured difference
signal for the Ag!Sn pair. Note that the cancellation is
not perfect at low energies and that this will introduce an
additional source of noise in the measured hologram. The
filters were mounted on a linear translation stage which
moved them in and out of the beam under computer con-
trol. The x rays were detected using NaI scintillators op-
erated in current mode.

We measured the intensity of the x rays over an entire
hemisphere, varying u and f in 1± steps, from u ! 0±
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FIG. 2. Operation of the Ross filters measured with a Si de-
tector for the Ag!Sn filter pair. (a) The measured transmission
signals. Note that they match well, except in the passband.
(b) The calculated energy-dependent transmission factors for
the Ag and Sn filters. (c) The measured energy passband for
the Ag!Sn pair.

to u ! 90±, and from f ! 0± to f ! 360±. With a mea-
suring time of 2.5 sec, about 1.5 3 109 photons per point
were detected. Holograms at two different energies were
measured simultaneously to allow direct intercomparisons.

The background was predicted to be uniform and 103

times larger than the holographic fringes. To extract the
hologram from the measured data—and to correct it for
long term fluctuations and sample absorption—we used
an area-normalization technique. First, we normalized
the data so that curves of constant f had the same
integrated area. Then we normalized the (already f
normalized) curves of constant u in the same way.
This area-normalization technique very effectively filtered
out fluctuations whose time scales were greater than
0.18 mHz. Slow variations in the x-ray intensity due to
tungsten deposition on the target, scintillator temperature
changes, and barometric pressure changes were all greatly
reduced. However, this normalization technique also
removed all azimuthally symmetric information from the
data, thereby removing all of the interference fringes from
atoms along the 001 direction.

The u and f area-normalized, background-subtracted
signal for the data measured using the Ag!Sn filter pair
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was about 0.5% of the background level. This was in good
agreement with numerical simulations [9]. However, in
the case of the Mo!Nb pair, the amplitude of the area-
normalized background-subtracted hologram was about
2% of the background. This was larger than the simu-
lations, and indicated additional noise. Fortunately, this
extra noise was at different frequencies than the atomic
signals, and consequently was separated from the atomic
signals by the Fourier filter in the reconstruction algorithm.

To reconstruct the hologram we used Barton’s algo-
rithm [13]

c"r# !
1

2pR2

Z

x"k#e2ik?r sinu du df

to obtain our holographic images of the atoms inside the
silver crystal. In this equation, the measured hologram is
denoted x"k# where k is the outgoing photon wave vector.
To avoid interpolating our data, we used slow Fourier
transforms (simple numerical integration) directly on the
grid of our data.

Figure 3 shows our reconstructions at different z lev-
els for the hologram measured using the Ag!Sn filters.
The reconstruction at z ! 0 shows four bright spots 4.0 6
0.2 Å apart in good agreement with the expected value of
4.086 Å. Near the origin there are strong artifacts, which
correspond to low spatial frequency noise due to our in-
ability to remove all of the background. The dark spot at
the center is related to the area-normalization procedure
described above. Some artifacts are also present near the
origin in the numerical simulations (see Fig. 5 below), yet

FIG. 3. Reconstructions of the hologram measured with the
Ag!Sn filter pair. Each side of the square is 7 Å. (a) Results
for the z ! 0 level. There are four bright atomic images
4.0 6 0.2 Å apart, and some spurious images near the center.
(b) Results for the z ! a!2 level. The four atoms separated
by 2.98 6 0.16 Å can clearly be distinguished.

these are much weaker and are due to small errors inher-
ent in the single-energy reconstruction technique. The re-
construction at z ! a!2 ! 2.043 Å shows multiple bright
spots, most of which do not correspond to atomic im-
ages (see below). However, the four spots closest to the
center do represent atoms. Their orientation and separa-
tion (2.98 6 0.16 Å) agree with the known structure and
known orientation of the crystal in our apparatus. The
reconstruction at z ! 2a!2 shows identical features, as
expected because of the inversion symmetry with respect
to the origin of single-energy holograms. The reconstruc-
tion at z ! a ! 4.0856 Å (not shown here) does not show
any features corresponding to atoms. Contributions to the
interference fringes from atoms farther than the nearest
neighbors were too small to be detected due to the lim-
ited longitudinal coherence length of the bremsstrahlung
photons and the falloff of the reference wave away from
the source [9]. Reconstructions at intermediate z levels
did not show any features.

Figure 4 shows the same reconstructions for the holo-
gram measured using the Mo!Nb filters. As expected
from the narrower passband of this filter pair, these images
have better resolution, and the atoms are closer to their ex-
pected positions. Other than this, they have essentially the
same features as the reconstructions for the Ag!Sn holo-
gram. The z ! 0 level shows four atoms, 4.1 6 0.1 Å
apart. Again, there are spurious images near the center.
The reconstruction at z ! a!2 clearly shows four atoms
separated by 2.87 6 0.15 Å again in agreement with the
known values. As in Fig. 3, there are extra spots that do

FIG. 4. Reconstructions of the hologram measured with the
Mo!Nb filter pair. Each side of the square is 7 Å. (a) Results
for the z ! 0 level. There are four bright atomic images
4.1 6 0.1 Å apart, and some spurious images near the center.
(b) Results for the z ! a!2 level. The four atoms separated
by 2.87 6 0.15 Å can clearly be distinguished.
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FIG. 5. Reconstructions of the numerically simulated holo-
grams for 22 atom silver clusters [9]. Each side of the
square is 7 Å. (a) Reconstruction for the Ag!Sn simulation
at z ! 0. (b) For the Ag!Sn simulation at z ! a!2. (c) For
the Mo!Nb simulation at z ! 0. (d) For the Mo!Nb simula-
tion at z ! a!2.

not represent atoms. These are due to noise in the data,
and can be safely discarded since they appear at different
positions for different x-ray energies.

Figure 5 shows reconstructions of holograms numeri-
cally simulated for 22 atom clusters. These simulations
included the anisotropic nature of the bremsstrahlung ref-
erence wave, the effects of finite energy resolution, the
effects of finite angular resolution, and a holographic
Debye-Waller factor [9]. Panels 5(a) and 5(b) show the
reconstructions for the Ag!Sn pair, and panels 5(c) and
5(d) show the reconstructions for the Mo!Nb pair. These
reconstructions agree well with the holographic reconstruc-
tions calculated from the data.

In conclusion, we have developed a new technique,
bremsstrahlung x-ray holography, to image the atoms
inside a crystal. From the measured far-field interference

pattern, we have successfully imaged the nearest-neighbor
atoms inside a silver crystal using Barton’s holographic
reconstruction procedure. This work demonstrates the
feasibility of this technique to provide atomic structures
without detailed modeling.

What is the future of these new x-ray holographies? Will
they grow up to be healthy and strong x-ray structural
tools? Only time will tell, but it seems clear that great
improvements are possible—and will be needed—before
these techniques are mature.
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