
Chapter 16

The shadow whispered warning, but the darkness promised sanctuary so he embraced it. He
layered himself into the wall, and pierced the night with the glower of a sentry just attacked. The
three men appeared. He remained a frozen gargoyle in the brick. They strode straight at him,
unwaivering, shoulder to shoulder, the short one in the middle. It couldn’t be...but it was...and
there were two big hands on his biceps as the short one mumbled “Fermi wants to see you,” turned
and lead, as his jailors ensured he followed.

Time-Dependent Perturbation
Theory (TDPT)

Semiclassical Strategy

Without explicit time dependence in the Hamiltonian, the time-evolution is simply a matter
of phase, i.e., ∣∣ˆ(t)> =

∣∣ˆ(0)> e−iEnt=h̄;

where the exponential is a phase factor. If this is the only time dependence, transitions do not
occur. Consider the hydrogen atom. If an electron is in the excited state | n; 0; 0> = | 2; 0; 0>,
time evolution of the system is determined by

∣∣ˆ2;0;0(t)> =
∣∣ˆ2;0;0(0)> e−iE2t=h̄;

and nothing will cause it to decay to the ground state. A geometric interpretation would be that
as time advances, only the “direction” of the phase factor changes. The last equation describes an
electron that would remain in the excited state forever. We know, in fact, that the electron will
decay to the ground state.

This description does not include electromagnetic coupling. And we will say this only once
because it is generally beyond our scope, if there were no vacuum flucuations, the electron would
stay in an excited state forever. The complete way to treat this is with relativisitic quantum
field theory. Another satisfactory way for a specific class of problems is to treat the particles with
quantum mechanics and the electromagnetic fields classically with Maxwell’s equations. Using this
semiclassical treatment, the effect of the radiation field on the particles can be correctly described
(although the effect of the radiation field on the particle cannot).

Time-Dependent Perturbation Theory

The time-dependent Schrodinger equation is

H
∣∣ˆ(t)> = ih̄

d

dt

∣∣ˆ(t)> :

To this point H 6= H(t). This leads to stationary states or “quantum statics,” where atomic
transitions do not occur and time evolution is described only by changes in phase. If H = H(t),
we need a different approach. We make a key assumption—we assume that: the time-dependent
part of the Hamiltonian is small compared to the time-independent part.
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Symbolically, this means that
H(t) = H0 + H1(t);

where the effects of H1(t) are much less than the effects of H0. For atomic physics, we might
interpret this statement as the effects of the electromagnetic field of a photon is small compared
to the effects of the electrostatic field inside an atom.

Satisfactory results from this approach assume we know the solution to

H0
∣∣ n> = En

∣∣ n>;

the time independent portion of the problem. A general solution is a superposition of all stationary
states, i.e.,

∣∣`(t)> =
∞∑

n

an

∣∣ n> e−iEnt=h̄;

where | n> is an orthonormal basis such that <n |m> = –n;m, and we write the wave function
as `(t) to distinguish the simple time dependence where H 6= H(t) from wave functions ˆ(t)
which will represent H = H(t). In light of the current discussion, we could write the coefficients
an(0) vice an. When H = H(t), or equivalently when H1(t) 6= 0, we expect the solution to
the time dependent problem to be,

(
H0 + H1

)∣∣ˆ(t)> = ih̄
d

dt

∣∣ˆ(t)>; (18 − 1)

where the time dependence is denoted implicitly H1(t) = H1, as is the usual convention. We
expect a solution of the form

∣∣ˆ(t)> =
∞∑

n

an(t)
∣∣n> e−iEnt=h̄: (18 − 2)

Note that equation (18–2) is independent of representation. Using expansion (18–2) in equation
(18–1),

(
H0 + H1

) ∞∑

n

an(t)
∣∣n> e−iEnt=h̄ = ih̄

d

dt

∞∑

n

an(t)
∣∣n> e−iEnt=h̄

⇒ H0

∞∑

n

an(t)
∣∣n> e−iEnt=h̄ +H1

∞∑

n

an(t)
∣∣n> e−iEnt=h̄

=
∞∑

n

[(
ih̄

d

dt
an(t)

)∣∣n> e−iEnt=h̄ + an(t)
∣∣n>

(
ih̄

d

dt
e−iEnt=h̄

)]

⇒
∞∑

n

H0 an(t)
∣∣n> e−iEnt=h̄ +

∞∑

n

H1 an(t)
∣∣n> e−iEnt=h̄

=
∞∑

n

[
ih̄

d an(t)
dt

+ an(t)ih̄
(

−iEn

h̄

)] ∣∣n> e−iEnt=h̄

⇒
∞∑

n

En an(t)
∣∣n> e−iEnt=h̄+

∞∑

n

H1 an(t)
∣∣n> e−iEnt=h̄ =

∞∑

n

[
ih̄

d an(t)
dt

+ an(t)En

] ∣∣n> e−iEnt=h̄
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⇒
∞∑

n

an(t)En

∣∣n> e−iEnt=h̄

/
+

∞∑

n

H1 an(t)
∣∣n> e−iEnt=h̄

=
∞∑

n

ih̄
d an(t)

dt

∣∣n> e−iEnt=h̄ +
∞∑

n

an(t)En

∣∣n> e−iEnt=h̄

/

⇒
∞∑

n

H1
∣∣n> an(t)e−iEnt=h̄ =

∞∑

n

ih̄
d an(t)

dt

∣∣n> e−iEnt=h̄:

Forming inner products of both sides with an orthonormal state <m |,

<m
∣∣

∞∑

n

H1
∣∣n> an(t)e−iEnt=h̄ = <m

∣∣
∞∑

n

ih̄
d an(t)

dt

∣∣n> e−iEnt=h̄

∞∑

n

<m
∣∣ H1

∣∣n> an(t)e−iEnt=h̄ =
∞∑

n

<m
∣∣ ih̄

d an(t)
dt

∣∣n> e−iEnt=h̄

=
∞∑

n

ih̄
d an(t)

dt
<m

∣∣ n> e−iEnt=h̄;

where < m | commutes with the derivative since it operates on the time dependent coefficient,
and represents a number. This means

∞∑

n

<m
∣∣ H1

∣∣n> an(t)e−iEnt=h̄ =
∞∑

n

ih̄
d an(t)

dt
–m;ne−iEnt=h̄

= ih̄
d am(t)

dt
e−iEmt=h̄;

where the summation is dropped because all terms where n 6= m are zero. Rearranging and
combining the arguments of the exponentials, this is

ih̄
d am(t)

dt
=

∞∑

n

<m
∣∣ H1

∣∣n> an(t)ei(Em−En)t=h̄:

Defining

!m;n =
Em − En

h̄
; (18 − 3)

the last equation becomes

ih̄
d am(t)

dt
=

∞∑

n

<m
∣∣ H1

∣∣n> an(t)ei!mnt: (18 − 4)

Equation (18–4) is the result sought. It is, however, a coupled set of differential equation
which we cannot solve in general. There are, nevertheless, a few important cases where equation
(18–4) can be solved, and these have been exploited for as many as four Nobel prizes.

Example 18–1: Show equation (18–4) is a set of coupled differential equations.

3



Writing the first few terms of the summation explicitly demonstrates the tenet. For n = 1,

ih̄ ȧ1(t) = <1
∣∣ H1

∣∣1> a1(t)+ <1
∣∣ H1

∣∣2> a2(t)ei!12t+ <1
∣∣ H1

∣∣3> a3(t)ei!13t + · · · :

For n = 2,

ih̄ ȧ2(t) = <2
∣∣ H1

∣∣1> a1(t)ei!21t+ <2
∣∣ H1

∣∣2> a2(t)+ <2
∣∣ H1

∣∣3> a3(t)ei!23t + · · · :

The time derivative of a1(t) depends on a2(t), and the time derivative of a2(t) depends on
a1(t). Thus, equation (18–4) is a set of coupled differential equations. Further, the time derivative
of a1(t) depends on a3(t), and the time derivative of a3(t) depends on a1(t), and the time
derivative of a2(t) depends on a3(t), and the time derivative of a3(t) depends on a2(t), and
so on. In general, the first few terms of the summation are

ih̄ ȧm(t) = <m
∣∣ H1

∣∣1> a1(t)ei!m1t+ <m
∣∣ H1

∣∣2> a2(t)ei!m2t+ <m
∣∣ H1

∣∣3> a3(t)ei!m3t + · · · ;

so the coupling in general is infinite.

Equation (18–4) contains the notation of matrix elements, and by convention the braket
portion of these matrix elements are commonly denoted

Wij = <i
∣∣ H1

∣∣j> : (18 − 5)

Example 18–2: What is equation (18–4) in matrix form?

Drawing on example 18–1 and experience with matrices we hope you have developed at this
point, the matrix form of equation (18–4) is

ih̄
d

dt




a1
a2
a3
...


 =




W11 W12e
i!12t W13e

i!13t · · ·
W21e

i!21t W22 W23e
i!23t · · ·

W31e
i!31t W32e

i!32t W33 · · ·
...

...
...

. . .







a1
a2
a3
...


 :

Two–Level Systems
One special case of great importance and utility is based on the assumption there are only two

levels in the system, a ground state and one excited state. This may appear unrealisitic initially,
but real systems may be practically constrained such that only the ground state and one excited
state are accessible. Four Nobel Prizes have been awarded for developments based on two–level
systems. These are Rabi (1944) for work on molecular beams and nuclear magnetic resonance;
Bloch and Purcell (1952) for research on nuclear magnetic moments; Townes, Basov, and Prochorov
(1964) for quantum electronics leading to masers, lasers, and quantum optics; and Kastler (1966)
for developing optical pumping. These four examples serve to illustrate the importance of the
two–level system a wide variety of applications.

Again, the basis of the two level system is that there are but two accessible states, a ground
state and one excited state, so equation (18–4) becomes

ih̄ ȧ1(t) = <1
∣∣ H1

∣∣1> a1(t) + <1
∣∣ H1

∣∣2> a2(t)ei!12t

= W11a1(t) + W12a2(t)ei!12t
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and
ih̄ ȧ2(t) = <2

∣∣ H1
∣∣1> a1(t)ei!21t+ <2

∣∣ H1
∣∣2> a2(t)

= W21a1(t)ei!21t + W22a2(t)
:

We expect H0 is diagonal in some basis, where its eigenvalues are on the diagonal, and all
off diagonal elements are zero. We expect a matrix representation of the complete Hamiltonian,
H0 + H1 to have the eigenvalues of H0 on the diagonal, but also non–zero off diagonal elements
which describe the perturbation. If we subtract H0 to get the matrix representation of just H1,
the diagonal elements will be zero and the only non–zero elements will be off diagonal elements.
This is not absolutely necessary, a perturbation matrix can contain non–zero diagonal elements.
Our discussion is much easier if diagonal elements of the perturbation matrix are zero, and generally
this is the case. We assume diagonal elements of the perturbation matrix to be zero for the present,
which means

W11 = W22 = 0

where only the perturbation Hamiltonian is considered. The two–level specific equations from
equation (18–4) then reduce to

ih̄ ȧ1(t) = W12a2(t)ei!12t;

and
ih̄ ȧ2(t) = W21a1(t)ei!21t:

Further, in a two–level system there are no other En, so there is but one frequency of consequence
with a positive and negative value, i.e., !21 = −!12. In accordance with convention we call this
frequency !0, i.e., !0 ≡ !21. Then

ȧ1(t) = −
i

h̄
W12a2(t)e−i!0t; and ȧ2(t) = −

i

h̄
W21a1(t)ei!0t: (18 − 6)

Equations (16–6) are exact, but not particularly useful because the an(t) are unknown. Subject to
one additional assumption, these equations can be solved by a series of successive approximations.

Example 18–3: Show !21 = −!12.

Recalling the definition of equation (18–3),

!21 =
E2 − E1

h̄
= −E1 − E2

h̄
= −!12:

The wave function will generally be a linear combination of the two states so equation (18–2)
becomes ∣∣ˆ(t)> = a1(t)

∣∣1> e−iE1t=h̄ + a2(t)
∣∣2> e−iE2t=h̄:

The normalization condition requires
∣∣ a1(t)

∣∣2 +
∣∣ a2(t)

∣∣2 = 1:

Example 18–4: Show the normalization condition requires
∣∣a1(t)

∣∣2 +
∣∣ a2(t)

∣∣2 = 1:

1 = <ˆ(t)
∣∣ ˆ(t)>

=
(
a∗

1(t) <1
∣∣eiE1t=h̄ + a∗

2(t) <2
∣∣eiE2t=h̄

)(
a1(t)

∣∣1> e−iE1t=h̄ + a2(t)
∣∣2> e−iE2t=h̄

)
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= a∗
1(t) <1

∣∣eiE1t=h̄a1(t)
∣∣1> e−iE1t=h̄ + a∗

1(t) <1
∣∣eiE1t=h̄a2(t)

∣∣2> e−iE2t=h̄

+ a∗
2(t) <2

∣∣eiE2t=h̄a1(t)
∣∣1> e−iE1t=h̄ + a∗

2(t) <2
∣∣eiE2t=h̄a2(t)

∣∣2> e−iE2t=h̄

=
∣∣a1(t)

∣∣2 <1
∣∣1> +a∗

1(t)a2(t) <1
∣∣2>

/
ei(E1−E2)t=h̄+a∗

2(t)a1(t) <2
∣∣1>

/
ei(E2−E1)t=h̄+

∣∣a2(t)
∣∣2 <2

∣∣2>;

where the inner product of unlike states is zero so those are struck. The inner product of like
states is 1, so ∣∣ a1(t)

∣∣2 +
∣∣ a2(t)

∣∣2 = 1:

Equations (18–6) can be solved by a series of successive approximations using the additional
assumption that the system originates in an eigenstate. We will pick the ground state. This means
the wave function is the ground state eigenstate vice a linear combination of the two eigenstates.
Systems can be prepared so that this assumption is dominantly true. This means at time t = 0,

a1(0) = 1 and a2(0) = 0;

so a “zeroth” order approximation is

a
(0)
1 (t) = 1 and a

(0)
2 (t) = 0;

Using these in equations (18–6),

da1(t)
dt

= 0 and
da2(t)

dt
= − i

h̄
W21(t)ei!0t:

These are two variables separable differential equations which can be solved by integration to get
first order approximations,

a
(1)
2 (t) = −

i

h̄

∫ t

0
W21(t′)ei!0t′

dt′; (18 − 7)

and
a
(1)
1 (t) = constant = 1 −

∣∣a2(t)
∣∣2 ≈ 1; (18 − 8)

assuming a
(1)
2 (t) ¿ 1.

Example 18–5: What are the second order approximations to a1(t) and a2(t)?

We can repeat the procedure to obtain the second-order corrections,

da2(t)
dt

= −
i

h̄
W21(t)ei!0t ⇒ a

(2)
2 (t) = −

i

h̄

∫ t

0
W21(t′)ei!0t′

dt′;

so the first and second order correction for the coefficient of the excited state are identical. The
coefficient of the ground state is

da1(t)
dt

= −
i

h̄
W12(t)

(
−

i

h̄

∫ t

0
W21(t′)ei!0t′

dt′
)

e−i!0t

= −
1
h̄2 W12(t)e−i!0t

∫ t

0
W21(t′)ei!0t′

dt′
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⇒ a
(2)
1 (t) = −

1
h̄

∫ t

0
W12(t′′)e−i!0t′′

(∫ t′

0
W21(t′)ei!0t′

dt′

)
dt′′;

where primes are used simply to clarify the variables of integration.

Though approximation can be made to arbitrary precision following the procedure illustrated
in example 18–5, we will deal primarily with the first order approximations of equations (18–6).

Example 18–6: What is the first order coefficient of the excited state for a two level system for
a small constant pertubation of finite duration?

Figure 18–1 illustrates a constant pertubation
of finite duration. Using equation (18–7),

a
(1)
2 (t) = − i

h̄

∫ t

0
W21(t′)ei!0t′

dt′

= −
i

h̄
W21

∫ t

0
ei!0t′

dt′

where W21(t′) = W21 is a constant, so can be
brought outside the integral. Then

a
(1)
2 (t) = − i

h̄
W21

1
i!0

ei!0t′
∣∣∣
t

0

= −
W21

h̄!0

(
ei!0t − 1

)
:

Example 18–7: Calculate the probability for measuring the excited state of a two level system
to a first order approximation for a small constant pertubation of finite duration.

We can calculate the indicated probability given
the result of example 18–6, because probability is the
square of the amplitude, i.e.,

P2(t) =
∣∣ a

(1)
2 (t)

∣∣2

=
∣∣∣∣−

W21

h̄!0

(
ei!0t − 1

)∣∣∣∣
2

=
W 2

21

h̄2!2
0

(
e−i!0t − 1

) (
ei!0t − 1

)

=
W 2

21

h̄2!2
0

(
1 − ei!0t − e−i!0t + 1

)

=
W 2

21

h̄2!2
0

(
2 − cos !0t − i sin !0t

/
− cos !0t + i sin!0t

/ )

=
2W 2

21

h̄2!2
0

(
1 − cos !0t

)

=
2W 2

21

h̄2!2
0

2 sin2
(

!0t

2

)
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=
4W 2

21

h̄2!2
0

sin2
(

!0t

2

)
:

Figure 18–2 illustrates this probability function.

Example 18–8: What is the first order coefficient of the excited state for a two level system for
the periodic pertubation H1(t) = V0(~r) cos !t?

The first order coefficient is

a
(1)
2 (t) = − i

h̄

∫ t

0
W21(t′)ei!0t′

dt′

where
W21(t) = <2

∣∣ H1(t)
∣∣1>

= <2
∣∣ V0(~r) cos !t

∣∣1>
= <2

∣∣ V0(~r)
∣∣1> cos !t;

where V0(~r) is not removed from the braket because it is a function of spatial coordinates. The
first order coefficient is

a
(1)
2 (t) = −

i

h̄

∫ t

0
<2

∣∣ V0(~r)
∣∣1> cos !t′ei!0t′

dt′

= −
i

h̄
<2

∣∣ V0(~r)
∣∣1>

∫ t

0

(
1
2
ei!t′

+
1
2
e−i!t′

)
ei!0t′

dt′

= −
i

2h̄
<2

∣∣ V0(~r)
∣∣1>

(∫ t

0
ei(!0+!)t′

dt′ +
∫ t

0
ei(!0−!)t′

dt′
)

= −
i

2h̄
<2

∣∣ V0(~r)
∣∣1>




[
ei(!0+!)t′

i(!0 + !)

]t

0

+

[
ei(!0−!)t′

i(!0 − !)

]t

0




= −
1
2h̄

<2
∣∣ V0(~r)

∣∣1>
(

ei(!0+!)t′ − 1
(!0 + !)

+
ei(!0−!)t′ − 1

(!0 − !)

)
:

Example 18–9: Evaluate the first order coefficient of the excited state for a two level system
for the periodic pertubation H1(t) = V0(~r) cos !t at resonance.

Resonance means ! ≈ !0. If ! ≈ !0, the second term dominates the first, or

a
(1)
2 (t) ≈ −

1
2h̄

<2
∣∣ V0(~r)

∣∣1> ei(!0−!)t′ − 1
(!0 − !)

:

Example 18–10: Calculate the probability for measuring the excited state of a two level system
to a first order approximation for a small periodic pertubation.
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The only significant contribution to this probability will be when ! ≈ !0, so

P2(t) =
∣∣ a

(1)
2 (t)

∣∣2

≈

(
−

1
2h̄

<2
∣∣ V0(~r)

∣∣1>∗ e−i(!0−!)t′ − 1
(!0 − !)

) (
−

1
2h̄

<2
∣∣ V0(~r)

∣∣1> ei(!0−!)t′ − 1
(!0 − !)

)

=
1

4h̄2

∣∣ <2
∣∣ V0(~r)

∣∣1>
∣∣2

(
2(1 − cos(!0 − !)t)

(!0 − !)2

)

=
1

2h̄2

∣∣ W21
∣∣2




2 sin2
(

(!0−!)
2 t

)

(!0 − !)2




=
1
h̄2

∣∣ W21
∣∣2




sin2
(

(!0−!)
2 t

)

(!0 − !)2




Figure 18 − 3: The probability curve for a two level system:

Figure 18–3 illustrates the probability curve for a two level system. Notice that it is sharply peaked
around the resonant frequency.

Multi–Level Systems
Equation (18–4),

ih̄
d am(t)

dt
=

∞∑

n

<m
∣∣ H1

∣∣ n> an(t)ei!mnt;

is exact. This set of coupled differential equations is equivalent to the Schrodinger equation.
Two–level systems are convenient because the summation is short. However, even in “real two–
level systems” there are actually an infinite number of eigenstates; we make all but two states
inaccessible to obtain a practical two–level system. We return to equation (18–4) to address
systems where more than two states are accessible. Remember we are treating a system with
a time dependent Hamiltonian H(t) as a sum of a time independent Hamiltonian and a small
pertubation Hamiltonian, H(t) = H0 + H1(t). We can express the same idea using

H(t) = H0 + ‚ H1(t); (18 − 9)
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where the factor ‚ is a parameter which can be varied to meter the amount of the perturbation.
If ‚ = 1, equation (18–9) reduces to H(t) = H0 + H1(t), as before. The parameter ‚ does not
actually appear in the solution we seek, so can be any constant, though the development is likely
most approachable if you picture ‚ to be one or less. Were we to use equation (18–9) to develop
equation (18–4), we would obtain

ih̄
d am(t)

dt
=

∞∑

j

<m
∣∣ ‚ H1

∣∣ j> aj(t)ei!mjt;

=
∞∑

j

<m
∣∣ H1

∣∣ j> ‚ aj(t)ei!mjt: (18 − 10)

We can also expand the coefficient an(t) in a power series in the parameter ‚, meaning

an(t) = a(0)
n (t) + ‚ a(1)

n (t) + ‚2 a(2)
n (t) + ‚3 a(3)

n (t) + · · · ;

where the order of the correction is indicated by the superscript. Using this expansion in equation
(18–10),

ih̄
d

dt

(
a(0)

m (t)+‚a(1)
m (t)+‚2a(2)

m (t)+· · ·
)

=
∞∑

j

<m
∣∣H1

∣∣j> ‚
(
a
(0)
j (t)+‚a

(1)
j (t)+‚2a

(2)
j (t)+· · ·

)
ei!mj t

=
∞∑

j

<m
∣∣H1

∣∣j>
(
‚a

(0)
j (t) + ‚2a

(1)
j (t) + ‚3a

(2)
j (t) + · · ·

)
ei!mjt:

The mysterious reason to use the parameter ‚ is that the last equation must be true term by
term for similar powers of ‚, i.e.,

ih̄
d

dt
‚ka(k)

m (t) =
∞∑

j

<m
∣∣H1

∣∣j> ‚ka
(k−1)
j (t)ei!mjt

⇒ ih̄
d

dt
a(k)

m (t) =
∞∑

j

<m
∣∣H1

∣∣j> a
(k−1)
j (t)ei!mj t;

where the factor ‚k is canceled from both sides. Most importantly,

ih̄
d

dt
a(1)

m (t) =
∞∑

j

<m
∣∣H1

∣∣j> a
(0)
j (t)ei!mj t;

⇒ a(1)
m (t) = −

i

h̄

∫ t

0

∞∑

j

<m
∣∣H1

∣∣j> a
(0)
j (t′)ei!mjt′

dt′: (18 − 11)

Similar to the two–level system, if the system originates in an eigenstate, say the eigenstate n,
a
(0)
j 6=n(0) = 0, and for the system in which the system originates, a

(0)
j=n(0) = 1, because we assume

the system is normalized. In other words,

a
(0)
j (0) = –j;n
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for a system in the jth eigenstate at time t = 0. The summation is then one term, so equation
(18–11) becomes

a(1)
m (t) = −

i

h̄

∫ t

0
<m

∣∣H1
∣∣n> ei!mnt′

dt′;

where the coefficient is excluded because a
(0)
n (t′) ≈ 1 if the pertubation is small. Using the

notation
Wmn = <m

∣∣ H1
∣∣n>;

the last equation becomes

a(1)
m (t) = −

i

h̄

∫ t

0
Wmn(t′)ei!mnt′

dt′; (18 − 12)

which is the result we seek. This is the first order correction to the mth coefficient. If higher
order corrections are small,

am(t) ≈ a(0)
m (t) + a(1)

m (t) = a(1)
m (t):

Because of this fact, the superscripts are often simply excluded.

The quantity
∣∣ a

(1)
m (t)

∣∣2 is the probability of finding the system in state m at time t. If
the system started in the jth state,

∣∣ a
(1)
m (t)

∣∣2 is the probability a transition from state n to
state m will have occurred during time t.

Notice the similarity between equations (18–12) and (18–7). Except for the indices, they are
identical.

Example 18–11: Assume a multi–level system is in an eigenstate. Find the probability of
measuring the mth excited state at time t if the system is disturbed by a small constant
perturbation of duration t.

The math is the same as examples 18–6 and 18–7, so we will simply give the results in multi–
state notation. The coefficient of the mth state is

a(1)
m (t) = − Wmn

h̄!mn

(
ei!mnt − 1

)
;

following the development of example (18–6). The index n denotes the original eigenstate. Here

Wmn = <m
∣∣ V0

∣∣ n>; and h̄!mn = Em − En:

The probability is the square of this coefficient,

Pm(t) =
∣∣ a(1)

m (t)
∣∣2 =

4W 2
mn

h̄2!2
mn

sin2
(

!mnt

2

)

following the development of example 18–7.

Example 18–12: For a multi–level system, find the probability of a transition to the mth state
for a periodic perturbation near the resonant frequency.

11



A periodic perturbation would be of the form H1(t) = V0(~r) cos !t. The coefficient of the
mth state is

a(1)
m (t) = −

1
2h̄

<m
∣∣ V0(~r)

∣∣ n>

(
ei(!mn+!)t′ − 1

(!mn + !)
+

ei(!mn−!)t′ − 1
(!mn − !)

)
:

Near the resonant frequency,

a(1)
m (t) ≈ −

1
2h̄

<m
∣∣ V0(~r)

∣∣ n>
ei(!mn−!)t′ − 1

(!mn − !)
:

The probability is

Pm(t) =
∣∣ a(1)

m (t)
∣∣2 =

1
h̄2

∣∣ Wmn

∣∣2



sin2
(

(!mn−!)
2 t

)

(!mn − !)2


 :

The mathematical development follows that seen in examples 18–8 through 18–10.

Example 18–13: A multi–level system is exposed to the electric field ~E = E0 cos(!t)k̂. What
is the probability of a transition from the nth eigenstate to the mth eigenstate as a function of
time?

The perturbation is described by H1 = −q Φ(~r). Elementary electromagnetics tells us

E = −
dΦ(~r)

dr
= −

dΦ(~r)
dz

for a field oriented in the k̂ direction. Then

d Φ(~r) = −E dz = E0 cos(!t) dz

⇒ Φ(~r) = −
∫

E0 cos(!t) dz = −E0 cos(!t)
∫

dz = −E0 z cos(!t);

so the perturbation in terms of the periodic electric field is

H1(t) = E0 q z cos(!t);

and what we have is an application of the last example where V0 → E0qz. Using this in the
result of example 18–12,

Pm(t) =
1
h̄2

∣∣ <m
∣∣ E0qz

∣∣ n>
∣∣2




sin2
(

(!mn−!)
2 t

)

(!mn − !)2




=
E2

0q2

h̄2

∣∣ <m
∣∣ z

∣∣ n>
∣∣2




sin2
(

(!mn−!)
2 t

)

(!mn − !)2


 :
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Transition Rates
Generally, transition rate is the time rate of change of probability,

R ≡
dP (t)

dt
; (18 − 13)

however, in a multi–level system, there is an additional consideration. Notice that figure 18–3,
for instance, is sharply spiked, but it is not a delta function. We could only use equation (18–13)
for a two level system, or we could say that equation (18–13) is the transition rate per state. We
are interested in the probability

∑∣∣ am(t)
∣∣2 vice just

∣∣ am(t)
∣∣2. One convention is to use a

density of states ‰(!), which is a number per unit frequency interval !. Assuming the states
are spaced closely enough to approximate a continuum,

P (t) =
∑∣∣ am(t)

∣∣2 →
∫ ∞

−∞

∣∣ am(t)
∣∣2‰(!) d!:

Now equation (18–13) applies, i.e.,

Rn→m =
d

dt

∫ ∞

−∞

∣∣ am(t)
∣∣2‰(!) d!;

and since the definite integral is an unevaluated number, this can be treated as a variable separable
differential equation, or

Rn→mdt = d

(∫ ∞

−∞

∣∣ am(t)
∣∣2‰(!) d!

)

⇒ Rn→m =
1
t

∫ ∞

−∞

∣∣ am(t)
∣∣2‰(!) d!:

The last equation is used often assuming ‰(!) varies slowly over the range of interest, so is treated
as a constant. Treating the density of states as a constant, the transition rate described in example
18–13 is

Ri→f =
‰(!if )

t

∫ ∞

−∞

∣∣ af (t)
∣∣2 d!; (18 − 14)

where i and f stand for initial and final states respectively.

Example 18–14: What is the transition rate for the multi–level system exposed to the electric
field ~E = E0 cos(!t)k̂?

Using equation (18–14),

Ri→f =
‰(!if )

t

∫ ∞

−∞

E2
0q2

h̄2

∣∣ <f
∣∣ z

∣∣ i>
∣∣2




sin2
(

(!fi−!)
2 t

)

(!fi − !)2


 d!

=
E2

0q2

h̄2

∣∣ <f
∣∣ z

∣∣ i>
∣∣2 ‰(!if )

t

∫ ∞

−∞




sin2
(

(!fi−!)
2 t

)

(!fi − !)2


 d!:

Changing variables to do the integration, where

(! − !fi)
2

t = x ⇒ !fi − ! = −
2
t
x

13



⇒ d! =
2
t
dx and (!fi − !)2 =

4
t2

x2;

and notice the sign of the differential is not particularly pertinent, because it only indicates an
increase or decrease in energy, so

Ri→f =
E2

0q2

h̄2

∣∣ <f
∣∣ z

∣∣ i>
∣∣2 ‰(!if )

t

∫ ∞

−∞

sin2 (x)
4x2 t2

2
t
dx

=
E2

0q2

2h̄2

∣∣ <f
∣∣ z

∣∣ i>
∣∣2‰(!if )

∫ ∞

−∞

sin2 (x)
x2 dx

and since ∫ ∞

−∞

sin2 (x)
x2 dx = …;

Ri→f =
E2

0q2…

2h̄2

∣∣ <f
∣∣ z

∣∣ i>
∣∣2‰(!if ):
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