
Chapter 15

Time-Independent Perturbation Theory (TIPT)

Time-independent perturbation theory (TIPT) is an approximation method used for systems
which have small variations from systems we can solve or have already solved. It often gives good
eigenvalues but less accurate eigenvectors.

The strategy is to split the Hamiltonian into two pieces, i.e.,

H = H0 + H1 (1)

where H is the Hamiltonian of the problem we want to
solve, H0 is the soluable Hamiltonian, and H1 is the
deviation from the soluable Hamiltonian. For instance, we
know the solution for an infinite square well. We can treat
an infinite square well with a ”brick” in the middle as a
combination of the infinite square well and the brick.

Since there is no dependence on time, TIPT
necessarily addresses only stationary states. It is
thus also known as stationary state perturbation
theory or stationary perturbation theory. It is
occasionally known as Rayleigh-Schrodinger per-
turbation theory1.

Non-Degenerate TIPT

TIPT gives approximate solutions to the TISE

H |ˆn> = En|ˆn>

in terms of a reference TISE
H0|ˆ(0)

n > = E(0)
n |ˆ(0)

n >;

where superscripts in parenthesis indicate the order of the correction. The unperturbed system
is the zeroth order approximation, so the above equation describes an unperturbed system. We
can adjust the zeroth order approximation by adding a first order correction, which we can further
adjust by adding a second order correction, and so on until the desired degree of precision is
attained, i.e.,

En = E(0)
n + E(1)

n + E(2)
n + · · · : (3)

It is traditional to write equation (1)

H = H0 + ‚H1 (2)

1 Sakurai, Modern Quantum Mechanics (Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1994), revised ed., p. 285.
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where ‚ is a constant that can be varied. Then as ‚ → 0; H → H0, and the TISE returns the
eigenvalues and eigenvectors of the unperturbed problem. When this happens smoothly, TIPT is
a good approach. On occasion, there is a discontinuity in the wave function which is reflected by
a discontinuity as ‚ → 0, and TIPT does not work.

Superconductivity is one such phenomena. A significant portion of the reason that
superconductivity resisted explanation for decades is that a perturbative approach, which
was attempted repeatedly, does not apply. The formation of two bound electrons in a
Cooper pair from two free electrons is discontinuous.

Given that the wave function is continuous, we will form a power series in ‚, and deduce
results independent of ‚ by using the fact that the coefficients of similar powers of ‚ must be
equal. This method was first published by Schrodinger in 1926.

For
H = H0 + ‚H1;

the eigenenergies and eigenfunctions can be written,

En = E(0)
n + ‚E(1)

n + ‚2E(2)
n + · · · ; (4)

|ˆn> = |ˆ(0)
n > +‚|ˆ(1)

n > +‚2|ˆ(2)
n > + · · · : (5)

Notice equations (3) and (4) are the same if ‚ = 1, and that is how equation (3) is justified, as is
the analogous equation for the wave function. Substituting all three of the above equations in the
TISE,

H |ˆn> = En|ˆn>

⇒
(
H0 + ‚H1

)(
|ˆ(0)

n > +‚|ˆ(1)
n > +‚2|ˆ(2)

n > + · · ·
)

=
(
E(0)

n + ‚E(1)
n + ‚2E(2)

n + · · ·
) (

|ˆ(0)
n > +‚|ˆ(1)

n > +‚2|ˆ(2)
n > + · · ·

)

⇒ H0|ˆ(0)
n > +‚H0|ˆ(1)

n > +‚2H0|ˆ(2)
n > + · · ·

+‚H1|ˆ(0)
n > +‚2H1|ˆ(1)

n > +‚3H1|ˆ(2)
n > + · · ·

= E(0)
n |ˆ(0)

n > +‚E(0)
n |ˆ(1)

n > +‚2E(0)
n |ˆ(2)

n > + · · ·

+‚E(1)
n |ˆ(0)

n > +‚2E(1)
n |ˆ(1)

n > +‚3E(1)
n |ˆ(2)

n > + · · ·

+‚2E(2)
n |ˆ(0)

n > +‚3E(2)
n |ˆ(1)

n > +‚4E(2)
n |ˆ(2)

n > + · · · (6)

Other than a trivial solution, the only way for equation (6) to be true is that terms with the same
power of ‚ are equal, i.e.,

H0|ˆ(0)
n > = E(0)

n |ˆ(0)
n >

‚H0|ˆ(1)
n > +‚H1|ˆ(0)

n > = ‚E(0)
n |ˆ(1)

n > +‚E(1)
n |ˆ(0)

n >

‚2H0|ˆ(2)
n > +‚2H1|ˆ(1)

n > = ‚2E(0)
n |ˆ(2)

n > +‚2E(1)
n |ˆ(1)

n > +‚2E(2)
n |ˆ(0)

n >

‚3H0|ˆ(3)
n > +‚3H1|ˆ(2)

n > = ‚3E(0)
n |ˆ(3)

n > +‚3E(1)
n |ˆ(2)

n > +‚3E(2)
n |ˆ(1)

n > +‚3E(3)
n |ˆ(0)

n >
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Dividing each equation by the appropriate power of ‚,

H0|ˆ(0)
n > = E(0)

n |ˆ(0)
n > (7)

H0|ˆ(1)
n > +H1|ˆ(0)

n > = E(0)
n |ˆ(1)

n > +E(1)
n |ˆ(0)

n > (8)
H0|ˆ(2)

n > +H1|ˆ(1)
n > = E(0)

n |ˆ(2)
n > +E(1)

n |ˆ(1)
n > +E(2)

n |ˆ(0)
n > (9)

H0|ˆ(3)
n > +H1|ˆ(2)

n > = E(0)
n |ˆ(3)

n > +E(1)
n |ˆ(2)

n > +E(2)
n |ˆ(1)

n > +E(3)
n |ˆ(0)

n > (10)

which are independent of ‚ as desired. The eigenvalues and eigenvectors for equation (7) are
zeroth order; they are the eigenvalues and eigenvectors of the unperturbed system. The eigenvalues
and eigenvectors of equation (8), the equation formerly linear in ‚, yield the first order corrections.
Equation (9), formerly quadratic in ‚, yields second order corrections; equation (10), formerly
cubic in ‚, yields third order corrections, and you can go to the order correction you want.
First order corrections generally dominate, so we will do that explicitly, illustrating the general
procedure.

Forming the inner product of <ˆ
(0)
n | with both sides of equation (8),

<ˆ(0)
n |H0|ˆ(1)

n > + <ˆ(0)
n |H1|ˆ(0)

n > = <ˆ(0)
n |E(0)

n |ˆ(1)
n > + <ˆ(0)

n |E(1)
n |ˆ(0)

n > (11)

⇒ <ˆ(0)
n |E(0)

n |ˆ(1)
n >

/
+ <ˆ(0)

n |H1|ˆ(0)
n > = <ˆ(0)

n |E(0)
n |ˆ(1)

n >

/
+ <ˆ(0)

n |E(1)
n |ˆ(0)

n > (12)

⇒ <ˆ(0)
n |H1|ˆ(0)

n > = E(1)
n <ˆ(0)

n |ˆ(0)
n > (13)

⇒ E(1)
n = <ˆ(0)

n |H1|ˆ(0)
n >

is the first order correction to the eigenenergy. Now, in equation (11), we let the Hermitian
Hamiltonian H0 act to the left which resulted in the eigenvalue E

(0)
n being in the first braket

in equation (12). The first brakets on both sides of the equation are then equal, so we subtract
both of them resulting in equation (13). The eigenvalue E

(1)
n on the right side of the equation

is a constant so can be moved outside the braket. The braket that remains, <ˆ
(0)
n |ˆ(0)

n >, is an
inner product of identical states, i.e., <i|j> = –ij , so is one, and we have an expression for the
first order correction to the eigenenergy.

To attain the first order correction to the wave function, remember we can express |ˆ(1)
n > as

a linear combination of any appropriate eigenstates. In this case, because we know |ˆ(0)
n >, we can

express the first order correction to the wave function as a linear combination of its eigenstates,
i.e.,

|ˆ(1)
n > =

∞∑

m6=n

am|ˆ(0)
m > (14)

where we have not included an|ˆ(0)
n > in the summation. This is because |ˆ(0)

n > is the zeroth
order term for this particular wave function. In equation (5),

|ˆn> = |ˆ(0)
n > +‚|ˆ(1)

n > +‚2|ˆ(2)
n > + · · ·

we see |ˆ(0)
n > as the first term on the right side of the equation so we do not include it as any

portion of the first order correction. Similarly, the zeroth and first order corrections need to be
excluded from the second order correction, and so on.
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As previously indicated, equation (8) will yield first order corrections. Equation (8) is

H0|ˆ(1)
n > +H1|ˆ(0)

n > = E(0)
n |ˆ(1)

n > +E(1)
n |ˆ(0)

n >

⇒
(
H0 − E(0)

n

)
|ˆ(1)

n > = −
(
H1 − E(1)

n

)
|ˆ(0)

n > : (15)

Substituting equation (14) into equation (15) yields

(
H0 − E(0)

n

) ∞∑

m 6=n

am|ˆ(0)
m > = −

(
H1 − E(1)

n

)
|ˆ(0)

n > :

Forming an inner product with <ˆ
(0)
l |,

<ˆ
(0)
l |

(
H0 − E(0)

n

) ∞∑

m6=n

am|ˆ(0)
m > = − <ˆ

(0)
l |

(
H1 − E(1)

n

)
|ˆ(0)

n > (16)

⇒ <ˆ
(0)
l |H0

∞∑

m6=n

am|ˆ(0)
m > − <ˆ

(0)
l |E(0)

n

∞∑

m6=n

am|ˆ(0)
m > = − <ˆ

(0)
l |H1|ˆ(0)

n > + <ˆ
(0)
l |E(1)

n |ˆ(0)
n >

⇒ <ˆ
(0)
l |E(0)

l

∞∑

m 6=n

am|ˆ(0)
m > − <ˆ

(0)
l |E(0)

n

∞∑

m 6=n

am|ˆ(0)
m > = − <ˆ

(0)
l |H1|ˆ(0)

n > + <ˆ
(0)
l |E(1)

n |ˆ(0)
n >

where the Hermitian Hamiltonian has operated to the left in the first term. If l = n, the left
side of the equation is the difference of two identical terms, so would be zero. We have already
exploited that relationship to develop an expression for E

(1)
n . If l 6= n, the last equation can

be written,

E
(0)
l

∞∑

m 6=n

am <ˆ
(0)
l |ˆ(0)

m > −E(0)
n

∞∑

m6=n

am <ˆ
(0)
l |ˆ(0)

m > = − <ˆ
(0)
l |H1|ˆ(0)

n > +E(1)
n <ˆ

(0)
l |ˆ(0)

n >

(
E

(0)
l − E(0)

n

) ∞∑

m6=n

am <ˆ
(0)
l |ˆ(0)

m > = − <ˆ
(0)
l |H1|ˆ(0)

n > +E(1)
n <ˆ

(0)
l |ˆ(0)

n >

Remembering <i|j> = –ij , so the left side of the equation is non-zero unless l = m. If l = m,
the last term on the right is zero. Then

(
E(0)

m − E(0)
n

)
am = − <ˆ(0)

m |H1|ˆ(0)
n > (17)

⇒ am =
<ˆ

(0)
m |H1|ˆ(0)

n >

E
(0)
n − E

(0)
m

:

Substituting this into equation (14) yields

|ˆ(1)
n > =

∞∑

m 6=n

<ˆ
(0)
m |H1|ˆ

(0)
n >

E
(0)
n − E

(0)
m

|ˆ(0)
m > :

4



A common notation is to place a prime on the summation to denote m 6= n, and to leave the
limit of the summation understood as ∞, so the result is written

|ˆ(1)
n > =

′∑

m

<ˆ
(0)
m |H1|ˆ

(0)
n >

E
(0)
n − E

(0)
m

|ˆ(0)
m > :

To find the second order correction for the energy, start with the equation formerly second
order in ‚, equation (9).

H0|ˆ(2)
n > +H1|ˆ(1)

n > = E(0)
n |ˆ(2)

n > +E(1)
n |ˆ(1)

n > +E(2)
n |ˆ(0)

n > (9)

Forming the inner product with <ˆ
(0)
n |

<ˆ(0)
n |H0|ˆ(2)

n > + <ˆ(0)
n |H1|ˆ(1)

n >

= <ˆ(0)
n |E(0)

n |ˆ(2)
n > + <ˆ(0)

n |E(1)
n |ˆ(1)

n > + <ˆ(0)
n |E(2)

n |ˆ(0)
n > (18)

⇒ <ˆ(0)
n |E(0)

n |ˆ(2)
n >

/
+ <ˆ(0)

n |H1|ˆ(1)
n >

= <ˆ(0)
n |E(0)

n |ˆ(2)
n >

/
+ E(1)

n <ˆ(0)
n |ˆ(1)

n > +E(2)
n <ˆ(0)

n |ˆ(0)
n > (19)

⇒ E(2)
n = <ˆ(0)

n |H1|ˆ(1)
n >

= <ˆ(0)
n |H1|

′∑

m

<ˆ
(0)
m |H1|ˆ(0)

n >

E
(0)
n − E

(0)
m

|ˆ(0)
m >

=
′∑

m

<ˆ
(0)
m |H1|ˆ(0)

n >

E
(0)
n − E

(0)
m

<ˆ(0)
n |H1|ˆ(0)

m > (20)

⇒ E(2)
n =

′∑

m

∣∣ <ˆ
(0)
m |H1|ˆ(0)

n >
∣∣2

E
(0)
n − E

(0)
m

:

In equation (18), the Hermitian H0 operated to the left resulting in the eigenvalue E
(0)
n in the

braket. The first term on both sides of the equation are identical so are subtracted in equation (19).
Also in (19), the constants in the last two terms are moved outside the brakets. Because of the
orthonormality condition, <i|j> = –ij ; E

(1)
n <ˆ

(0)
n |ˆ(1)

n > = 0 and E
(2)
n <ˆ

(0)
n |ˆ(0)

n > = E
(2)
n .

The two brakets in equation (20) are Hermitian adjuncts so have the same magnitude, so the
second order correction is usually written in terms of the magnitude squared.

This process should look familiar to the calculations for first order corrections. The strategy
for all higher order corrections is similar. You attain the desired order correction by addressing
the equation formerly of that order in ‚. You need the results from all lower order equations to

5



use in the desired solution. The Hi can operate to the left or right because they are Hermitian.
Constants can be removed from brakets, just like constants can be removed from integrals. The
orthornormality relation, <i|j> = –ij , will apply to bras and kets which are adjacent. Calculations
for higher order corrections will be longer because there are more terms to consider. Also, you
need to exclude terms which are already included in lower order corrections.

Notation. Not everyone places parenthesis on superscripts to differentiate them from expo-
nents, in which case you must discriminate that E2

n means second order correction and ‚2 means
‚ squared, for instance. Also, a common economy is to express a zeroth order bra or ket by is
subscript only. These mean

E(0)
n → En; E(1)

n → E1
n; and |ˆ(0)

l >→ |l >;

so our results may be written

E1
n = <n|H1|n>

|ˆ1
n> =

′∑

m

<m|H1|n>

En − Em
|m>

E2
n =

′∑

m

∣∣ <m|H1|n>
∣∣2

En − Em

Notice the perturbation Hamiltonian appears in all corrections, and a difference of eigenenergies
appears in two of three. Taking advantage of these recurrences, notation is sometimes further
shortened to

<m|H1|n>→ H
′

mn; and En − Em = h̄!nm;

so in this notation our results appear as

E1
n = H

′

nn

|ˆ1
n> =

′∑

m

H′

mn

h̄!nm
|m>

E2
n =

′∑

m

∣∣H′

mn

∣∣2

h̄!nm
:

Corrections to energies are the primary application of TIPT, and on occasion, the first order
corrections vanish so second order corrections are necessary to attain any amendment. Recognize
that |ˆ1

n> and E2
n are infinite sums so may required some cleverness to calculate. The first

order correction to the energy is dominantly the most useful of the above results.

Two additional caveats. Our development applies to an energy spectrum that is discrete
and non-degenerate. If the spectrum is not discrete, continuum states need to be addressed and
Σ → Σ

∫
. Also, if two states have the same energy, if the system is degenerate, the denominator
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in both summations includes a term that would be zero, and we don’t like that. We need another
approach for a degenerate system.

An example application is an infinite square well with a
brick of height V0 as pictured at the right. If we use x = 0
and x = L as the walls of the box, we can express all wave
functions in terms of sines and

|ˆ(0)
n > =

√
2
L

sin
(n…x

L

)
;

E(0)
n = n2 h̄2…2

2mL2 ; where n = 1; 2; 3; : : :

The Hamiltonian for the unperturbed infinite square well is

H =
p2

2m
+ V (x) =

p2

2m

if the bottom of the well is defined as V (x) = 0. We can
write the Hamiltonian for the perturbed system as

H = H0 + H1 =
p2

2m
+ V (x) =

p2

2m
+ V0

|RA H0 =
p2

2m
; and H1 = V0:

The first order correction to the energy is

E1
n = <n|H1|n>

=
〈√

2
L

sin
(n…x

L

) ∣∣∣∣V (x)
∣∣∣∣

√
2
L

sin
(n…x

L

) 〉

=
2
L

∫ ∞

−∞

(
sin

(n…x

L

))∗
V0 sin

(n…x

L

)
dx

=
2V0

L

∫ L

L=2
sin2

(n…x

L

)
dx

=
2V0

L

[
1
2
x − L

4n…
sin

(
2n…

L
x

)]L

L=2

=
2V0

L

[
1
2

(
L −

L

2

)
−

L

4n…

(
sin (2n…) − sin (n…)

)]

where both sine terms are zero for all n, so

E1
n =

V0

L

L

2
=

V0

2

⇒ En = n2 h̄2…2

2mL2 +
V0

2
;
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so the first order correction is like the ”area of the perturbation” being spread evenly over the
width of the well.

Degenerate TIPT

Two-fold degeneracy means two eigenenergies are identical. The Hamiltonian is diagonal in
the energy basis. Two-fold degeneracy can occur anywhere in the matrix, and arbitrarily, we will
represent the degeneracy at the lowest energy, so

H0 =




E0 0 0 0 · · ·
0 E0 0 0 · · ·
0 0 E1 0 · · ·
0 0 0 E2 · · ·
...

...
...

...
. . .




:

Treat the non-degenerate states with non-degenerate TIPT. We need to use degenerate TIPT
only on degenerate states. This not only simplifies the treatment of what is likely the bulkiest part
of this problem, but it also allows us to address just the subspace containing the degeneracy to
examine that portion of the problem. In the degenerate subspace,

H0 =
(

E0 0
0 E0

)
; and |ˆ(0)

n > =
(

|ˆ(0)
a >

|ˆ(0)
b >

)
;

where the subscripts a and b are used to denote distinctly different states. The eigenvalue
equation in this subspace is

H0

(
|ˆ(0)

a >

|ˆ(0)
b >

)
=

(
E0 0
0 E0

) (
|ˆ(0)

a >

|ˆ(0)
b >

)

⇒ H0|ˆ(0)
a > = E0|ˆ(0)

a > and H0|ˆ(0)
b > = E0|ˆ(0)

b > :

This is simply a statement of degeneracy. If degeneracy exists in unperturbed states, then any
linear combination,

|ˆ(0)
n > = fi|ˆ(0)

a > +fl|ˆ(0)
b >

is an eigenstate of H0.

To demonstrate the linear combination is an eigenstate,

H0|ˆ(0)
n > = H0

[
fi|ˆ(0)

a > +fl|ˆ(0)
b >

]

= fiH0|ˆ(0)
a > +flH0|ˆ

(0)
b >

= fiE0|ˆ(0)
a > +flE0|ˆ(0)

b >

= fiE0

[
|ˆ(0)

a > +fl|ˆ(0)
b >

]

⇒ H0|ˆ(0)
n > = E0|ˆ(0)

n >;

where the eigenvalue will be the appropriate eigenvalue which we have denoted as E0 consistent
with our assumed Hamiltonian.
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Having established background and meaning of degeneracy, and the fact that a linear combi-
nation of degenerate states is an eigenstate, we return to equation (8),

H0|ˆ(1)
n > +H1|ˆ(0)

n > = E(0)
n |ˆ(1)

n > +E(1)
n |ˆ(0)

n > : (8)

Forming an inner product with <ˆ
(0)
a |,

<ˆ(0)
a |H0|ˆ(1)

n > + <ˆ(0)
a |H1|ˆ(0)

n > = <ˆ(0)
a |E(0)

n |ˆ(1)
n > + <ˆ(0)

a |E(1)
n |ˆ(0)

n > (21)

⇒ <ˆ(0)
a |E(0)

n |ˆ(1)
n >

/
+ <ˆ(0)

a |H1|ˆ(0)
n > = <ˆ(0)

a |E(0)
n |ˆ(1)

n >

/
+ <ˆ(0)

a |E(1)
n |ˆ(0)

n > (22)

⇒ <ˆ(0)
a |H1|

(
fi|ˆ(0)

a > +fl|ˆ(0)
b >

)
= E(1)

n <ˆ(0)
a |

(
fi|ˆ(0)

a > +fl|ˆ(0)
b >

)
(23)

⇒ fi <ˆ(0)
a |H1|ˆ(0)

a > +fl <ˆ(0)
a |H1|ˆ

(0)
b > = fiE(1)

n <ˆ(0)
a |ˆ(0)

a > +flE(1)
n <ˆ(0)

a |ˆ(0)
b > (24)

⇒ fi <ˆ(0)
a |H1|ˆ(0)

a > +fl <ˆ(0)
a |H1|ˆ(0)

b > = fiE(1)
n (25)

⇒ fiE1
n = fiH′

aa + flH′
ab (26)

in the compact notation. In equation (21), the Hamiltonian acts to the left resulting in the
eigenvalue being in the first braket. The first term on both sides of the equation are identical so
are subtracted in equation (22). A linear combination is substituted in equation (23), is distributed
in equation (24) where the orthonormality condition is applied, resulting in equation (25). When
the inner product of equation (8) and <ˆ

(0)
b |, is formed,

fi <ˆ
(0)
b |H1|ˆ(0)

a > +fl <ˆ
(0)
b |H1|ˆ

(0)
b > = flE(1)

n

⇒ flE1
n = fiH′

ba + flH′
bb (27)

results in a parallel development. Solving equation (27) for fl,

fl =
fiH′

ba

E1
n − H′

bb

;

and substituting this into equation (26),

fiE1
n = fiH′

aa +
fiH′

ba

E1
n − H′

bb

H′
ab

⇒ fi
(
E1

n − H′
aa

)(
E1

n − H′
bb

)
= fiH′

baH′
ab

⇒
(
E1

n

)2
− E1

n

(
H′

aa + H′
bb

)
+ H′

aaH′
bb − H′

baH′
ab = 0

which is quadratic in E1
n. Using the quadratic formula

E1
n± =

1
2

(
H′

aa + H′
bb ±

√
(H′

aa + H′
bb)

2 − 4 (H′
aaH′

bb − H′
baH′

ab)
)

=
1
2

(
H′

aa + H′
bb ±

√
(H′

aa)2 + 2H′
aaH′

bb + (H′
bb)

2 − 4H′
aaH′

bb + 4H′
baH′

ab

)

=
1
2

(
H′

aa + H′
bb ±

√
(H′

aa)2 − 2H′
aaH′

bb + (H′
bb)

2 + 4H′
baH′

ab

)
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and since H′
ba = (H′

ab)
∗,

E1
n± =

1
2

(
H′

aa + H′
bb ±

√
(H′

aa − H′
bb)

2 − 4 |H′
ab|

2
)

for a two-fold degeneracy.

The Fine Structure of Hydrogen

A prominent application of TITP is explaining the minute splitting of the principal lines of the
hydrogen spectrum. This splitting is known as the fine structure of hydrogen. The spectrum is
the record of photons emitted or absorbed during electronic transitions between different quantum
energy states.

Fine structure is explained by a combination of a relativistic correction, i.e. the orbital
momentum of the electron p 6=

√
2mE, and a magnetic coupling correction. Spin-orbit coupling

is the magnetic effect from the spin magnetic moment of the electron in the magnetic field of the
proton caused by relative motion. Magnetic coupling dominated by an external magnetic field is
known as Zeeman effect. The Hamiltonian

H = − h̄2

2m
∇2 − e2

4…†0

1
r

explains the principal spectrum but not the fine structure. The strategy is to treat this as H0
and treat the relativistic and magnetic coupling corrections as perturbations, i.e.,

H = H0 + H1 = H0 +
(
Hrel + Hso

)

where Hrel describes the pertubation due to relativistic effects and Hso describes the perturbation
due to spin-orbit coupling, for instance.

Detailed development of these phenomena is available in many volumes including Griffiths,
pp 235 – 244, Gasiorowicz, pp 271 – 282, Sakurai, pp 304 – 311, Cohen-Tannoudji, chapter 12,
Shankar, pp 466 – 471, and numerous others. We will present only pertinent results.

The relativistic correction/energy shift is given by

E
(1)
rel =

E2
n

2mc2

(
3 − 4n

l + 1=2

)
: (28)

Magnetic coupling yields an energy shift is modelled as Hmag = −~„ · ~B from classical theory.
The spin-orbit correction/energy shift is

E(1)
so =

E2
n

mc2

(
n [j(j + 1) − l(l + 1) − 3=4]

l(l + 1=2)(l + 1)

)
(29)

where ~J = ~L + ~S and addition of angular momentum states is a necessary consideration. Com-
bining equations (28) and (29), we can calculate fine structure splitting using

E
(1)
fs =

E2
n

2mc2

(
3 −

4n

j + 1=2

)
:
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If you want to derive this from equations (28) and (29), realize the intrinsic spin of an electron is
1/2, so j = l ± 1=2 and the result is the boxed equation for both j = l + 1=2 and j = l − 1=2.

The principal energy levels of hydrogen are

En = −
[

m

2h̄

(
e2

4…†0

)
1
n2

]
= −

13:6eV

n2 = −
mc2fi2

2n2

in terms of the fine structure constant

fi =
e2

4…†0h̄c
≈

1
137

:

This is the uncorrected energy, so the energy including both the relativistic and spin-orbit correc-
tions is

En + E
(1)
fs = −

mc2fi2

2n2 +
(

mc2fi2

2n2

)2 1
2mc2

(
3 −

4n

j + 1=2

)

= −
mc2fi2

2n2

[
1 +

mc2fi2

2n2

1
2mc2

(
4n

j + 1=2
− 3

)]

⇒ En + E
(1)
fs = −

13:6eV

n2

[
1 +

fi2

n2

(
n

j + 1=2
−

3
4

)]
:

If an external magnetic field dominates, Zeeman effect,

H1 = −~„ · ~B = −
„B

h̄

(
~L + 2~S

)
· ~B

where „B =
eh̄

2m
= 5:788 × 10−5eV=T

is a convenient constant known as the Bohr magnetron. Including perturbative effects with energies

H = H0 + H1 ⇒ En + „BgjBextmj

where

gj =
[
1 +

j(j + 1) − l(l + 1) + 3=4
2j(j + 1)

]

is known as the Lande g-factor. The Lande g-factor expresses the ratio of the total magnetic
moment to the total angular momentum of the electron.
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