1. (c) Sketches of the first four even n wave functions look like
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The perturbation
H1 = ad <l' - g)

1Is a 6 function in the center of the well. and is also illustrated in the sketches. The unperturbed
wave functions for all even n wave functions have the value zero in the center of the well. The
effect is 0 - anything = 0. The perturbation has nothing to perturb at that location so the en-

tire wave function remains unperturbed. If the wave function is unperturbed, the energies are
unperturbed.

Another view is the 6 function is a barrier. An
to go over the barrier, or it can have a node at
already have a node at the base of the barrier s

unperturbed wave function may be altered
the base of the barrier. Even n wave functions
o alteration does not occur. 4
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1.(d) Sketches of the first three odd n wave functions look like
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The & function is in a location relative to the odd n wave functions, and thus probability den-
sities, where the wave functions are nonzero. If the ¢ function barrier were infinite, the wave
function could not alter itself by going over so would have to adjust by having a zero value at
the location of the § function, t.e., by having a node in the center. For our problem this is not
the case, assuming a < 1. The wave function is altered by the perturbation to go over the
barrier. The effect is to raise the level of the energy by 2a/a evenly all along the well. We may
then, want to look at higher order corrections since we might expect more effect in the vicinity
of the perturbation and less effect away from the perturbation. The first order, linear correction,
however, describes a linear response, and the linear response described is the wave function goes
over the barrier by raising itself to the top of the barrier and is otherwise unchanged.

1.(e) Since
2a nmw
1 —_— —_—q] 2 —_—
E.(z)= — sin ( . z),

the maxima will occur at positions where the sin? term is a maximum. For even n, or n =

2,4,6,..., this means
nmw 7T 3m 5w km
—(1—.1'—-2-,?,?,...—7, k—1,3,5,...,(2n—1)
ka
= Ir=-—, k=1,3,5,...,(2n—1) for even n.
n

A sketch of variation as a function of position for n =2 is simply a sketch of
2 2
EMz) = 22 sin? <—1x) ,
a a

which looks like
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1.(f) Similar rationale is applied to find minima for odd n, or n=1,3,5,

The minima
will occur at positions where the sine is zero. This means

oy

- r=0,7r,27r,37r,...=k7r, k=0,1,2,3,...,n




= x=k;q, k=—0,1,2,3,...,n for odd n.
n

A sketch of variation as a function of position for n =3 is a sketch of
2a 3r
El(z) = =sin? [ Zz),
2 (Z) — sin < . :z)

which looks like
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Minima occur at both walls, a/3, and 2a/3.

GRIFFITHS 6.4

(a) Using the potential, wave functions, and perturbation of the last problem, the position
space integrals are

<m|H|n> = /Oa \/gsin(m;m)aé (x— g—) \/gsin (n_;r_:z:) dz

= <m[H1|n>=270/0asin(m:x2§(m—§)sin(nj:—x> dz. .

( b)n This integral is evaluated by substituting the value of z which makes the argument of the
6 function zero for the independent variable z in the integrand so

2 . /mmw\ . /07
<ml|H|n> = —sin (-——) sin (——) .
a 2 2




2
3 (13.6 eV /22) ( 4.2 ) 11.56 eV
1 = ) = — = - 3_ - 3—4
Es <” 2, 2) 2(0.511 x 105 &) c? $+1 2(0.511 x 106)( )
1 .3 -5
= Eg{n=2 5= 7 )= -1.13 x 107" eV.

(c) Forthe n =3 state, there are three calculations using the same approach.

1 (13.6 eV/32)? ( 4.3 ) 2.283 eV
E‘1 = 3, ) = -—) = 3 - = 3 - 12
f (” 77 2) T 20511 x 10° ) 2 I+1) " 205 x 109 712

= E} <n =3, j= %) =-2.01x10"%eV.

4.
. <n=3, j=g> =2.234 x 1076 <3— 5 3) eV =—6.70 x 1076 eV.

1
2+‘2

4.
EL (n=3, j=—)=2.234x10-6(3— - >

) eV =-223x10"6 V.
2

[V

(d) There are six possible transitions from state n =3 ton =2. A diagram which illustrates
transitions may be helpful.
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To calculate the energy differences reflected by spectral line splitting in the fine structure we will
use Griffiths’ equation 6.66,

13.6 §
Enj=——+ [1+a_2(—_n—1—§)} eV where a=
n?\j+3 4

1
137.036 and AF = E3j‘—E3—(E3]‘k - Eg)
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