
Chapter 14

The WKB Method

The WKB method is useful to obtain approximate eigenergies of bound states and approxi-
mate transmission coefficients for tunneling problems. Interestingly, eigenergies and transmission
coefficients are calculated without reference to a wave function or the Schrodinger equation for
most applications. Using an assumed form of the wave function in the Schrodinger equation, the
WKB method provides results which are independent of these.

The letters WKB stand for Wentzel of the U.S.A., Kramers of Holland, and Bril-
louin of France. In Holland, it is known as the KWB method, it is known as the BWK
method in France1, and in England, it is known as the JWKB method because Jef-
fries used a similar technique at an earlier time2. The WKB method relates the Bohr-
Sommerfeld quantization rules of old quantum theory with an approximate treatment of
the Schrodinger equation. It is thus occassionally called the semi-classical approximation.
The general mathematical technique dates back to Liouville in 1837, and was furthered
by Lord Rayleigh in 1912.

The WKB method assumes a wave function of the form

ˆ(x) = A(x)eiS(x)=h̄ = A(x)ei`(x);

where A(x) is an amplitude and the quotient S(x)=h̄ = `(x) is a phase. The quantity S(x) is
action which is the time integral of the Lagrangian. Action has dimensions of angular momentum.
Where appropriate, using `(x) simplifies notation and strengthens the association with phase.
The functions A(x) and `(x) must be smooth functions of x.

In regions where the potential varies slowly with respect to the de Broglie wavelength, the
approximation is very good. Said another way, when there are many oscillations of the wave
function over a region where the potential is nearly constant, the WKB approximation is nearly
exact. In still other words, the WKB approximation is good for higher excited states but generally
lacks precision for the ground state and lower excited states.

The Schrodinger equation can be written

H|ˆ> = E|ˆ> ⇒
[
−

h̄2

2m

d2

dx2 + V (x)
]

ˆ = Eˆ

⇒
[

d2

dx2 +
2m (E − V (x))

h̄2

]
ˆ = 0

⇒
[

d2

dx2 +
p2

h̄2

]
ˆ = 0;

1 Griffiths, Introduction to Quantum Mechanics (Prentice-Hall, Englewoods Cliffs, New Jersey,
1995), p. 274.

2 Sakurai, Modern Quantum Mechanics (Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1994), revised ed., p. 105.
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where p = p(x) =
√

2m (E − V (x)). Using the assumed form of the wave function in this form
of the Schrodinger equation,

[
d2

dx2 +
p2

h̄2

]
A(x)eiS(x)=h̄ = 0

⇒
[

d2

dx2 +
p2

h̄2

]
eiS(x)=h̄ = 0

⇒ d2

dx2 eiS(x)=h̄ +
p2

h̄2 eiS(x)=h̄ = 0: (1)

The second derivative in the first term is

d2

dx2 eiS(x)=h̄ =
d

dx
eiS(x)=h̄

(
i

h̄
S ′(x)

)

= eiS(x)=h̄

(
i

h̄
S′(x)

)2

+ eiS(x)=h̄

(
i

h̄
S′′(x)

)

= −
[S ′(x)]2

h̄2 eiS(x)=h̄ +
i

h̄
S ′′(x)eiS(x)=h̄:

Using this in equation (1),

−
[S ′(x)]2

h̄2 eiS(x)=h̄ +
i

h̄
S′′(x)eiS(x)=h̄ +

p2

h̄2 eiS(x)=h̄ = 0

⇒ −
[S′(x)]2

h̄2 +
i

h̄
S ′′(x) +

p2

h̄2 = 0: (2)

We are now going to expand S(x) in a power series in h̄, i.e.,

S(x) = S0(x) + h̄S1(x) +
1
2
h̄2S2(x) + · · · ;

and keep only the first two terms, so

S(x) ≈ S0(x) + h̄S1(x):

Using this in equation (2),

−
[
(S0(x) + h̄S1(x))′]2

h̄2 +
i

h̄
[S0(x) + h̄S1(x)]′′ +

p2

h̄2 = 0

⇒ −
[S′

0(x) + h̄S ′
1(x)]2

h̄2 +
i

h̄
[S′′

0 (x) + h̄S′′
1 (x)] +

p2

h̄2 = 0

⇒ − (S′
0)

2

h̄2 − 2h̄S ′
1S

′
0

h̄2 − h̄2(S ′
1)

2

h̄2 +
iS′′

0

h̄
+

ih̄S ′′
1

h̄
+

p2

h̄2 = 0;

where both S0 and S1 are understood to be functions of x, and

⇒ −(S ′
0)2

h̄2 − 2S ′
1S

′
0

h̄
− (S ′

1)
2 +

iS ′′
0

h̄
+ iS ′′

1 +
p2

h̄2 = 0
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⇒ iS′′
1 − (S ′

1)
2

h̄0 +
iS′′

0 − 2S ′
1S

′
0

h̄1 +
p2 − (S′

0)
2

h̄2 = 0:

In order for the equation to be zero, the coefficient of each like power of h̄ must be zero, so

iS ′′
1 − (S′

1)
2; iS′′

0 − 2S ′
1S

′
0; and p2 − (S′

0)
2:

The last of these three equations tells us

(S′
0)

2 = p2 ⇒
d

dx
S0 = ±p ⇒ S0 = ±

∫
p(x) dx

⇒ S0 = ±
∫ √

2m (E − V (x)) dx;

and this is the approximation of the action we will use in the assumed form of the wave function,
i.e.,

ˆ(x) = A(x)e± i
h̄

∫
p(x) dx = A(x)e± i

h̄

∫ √
2m(E−V (x)) dx

:

We could use the center equation to solve for S1 in terms of S′
0 and thus express S1 in terms

of the momemtum. It would tell us the wave function is inversely proportional to the square root
of the momentum, which is interesting, but not particularly useful to us.

Of greater interest are the two primary applications of tunneling and bound states. Both
are boundary value problems. Schiff,3 Griffiths,4 Bohm,5 and Mathews and Walker6 and others
provide foundation for the results discussed here.

Result for Tunneling

Consider the three regions x < 0, 0 < x < L, and
x > L as seen in figure 1. Figure 1 represents a rectangular
potential barrier. Any potential barrier can similarly be
divided into three regions. The wave functions may be
written

ˆ(x) =





A(x)eikx + B(x)e−ikx; for x < 0,
C(x)e•x + D(x)e−•x; for 0 < x < L,
F (x)eikx; for x > L,

where k =
√

2mE=h̄ and • =
√

2m(V0 − E)=h̄. We could write ˆ(x) = F (x)eikx + G(x)e−ikx,
for x > L, but we would immediately recognize G(x) = 0 since it is the coefficient of an
oppositely directed incident wave which is not physical. In terms of the WKB approximation, the
wave functions are

ˆ(x) =





A(x)e
i
h̄

∫ 0

−∞
p(x) dx

+ B(x)e
− i

h̄

∫ 0

−∞
p(x) dx

; for x < 0,

C(x)e
1
h̄

∫ L

0
p(x)dx + D(x)e− 1

h̄

∫ L

0
p(x) dx

; for 0 < x < L,

F (x)e
i
h̄

∫ ∞

l
p(x) dx

; for x > L,

3 Schiff, Quantum Mechanics (McGraw-Hill Book Company, New York, 1968), 3rd ed., pp.
268-279.

4 Griffiths, Introduction to Quantum Mechanics (Prentice-Hall, Englewood Cliffs, New Jersey,
1995), 3rd ed., pp. 280-291.

5 Bohm, Quantum Theory (Dover Publications, New York, 1979), pp. 264-295.
6 Mathews and Walker, Mathematical Methods of Physics (Benjamin/Cummings Publishing

Company, Menlo Park, California, 1970), 3rd ed., pp. 27-37.
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The amplitude of the incoming incident wave is A(x) and the amplitude of the portion which
tunnels through the barrier is F (x). The transmission coefficient is

T =

∣∣F
∣∣2

∣∣A
∣∣2 :

If the barrier was infinite, a step function, C(x) = 0, the exponentially increasing portion of
the wave function would be unbounded, so would be non-physical. Similarly, if we expect a small
transmission, then the ratio of the incident wave and the transmitted wave would be dominated
by the decreasing exponential, or

∣∣F
∣∣

∣∣A
∣∣ ≈ e

− 1
h̄

∫ L

0
p(x) dx so

T =

∣∣F
∣∣2

∣∣A
∣∣2 ≈ e

− 2
h̄

∫ L

0
p(x) dx = e−2° where ° = − 1

h̄

∫ L

0
p(x) dx: (3)

This is simply a feasibility argument. To solve the problem properly, we would have to use the
fact the wave functions and their first derivatives must be equal at the boundaries. Problem 19-1
is similar to this. Exceptions are to solve this problem, we would need to retain the integral form
of the WKB wave function, and consider that the wave function is inversely proportional to the
square root of the momentum. At this point, we are interested solely in the result denoted in
equation (3),

T ≈ e−2°:

Incidently,

° =
1
h̄

∫ x2

x1

∣∣p(x′)
∣∣ dx′

where x1 and x2 define the boundaries of the barrier, is called the integral of the action under
the barrier.

Bound States

Figure 2 illustrates an excited state in an arbitrary
potential. Notice in the central region, the wave function
oscillates rapidly compared to the variation in the poten-
tial. In this region, the wave function is nearly exactly that
provided by the WKB approximation. The wave function
must go to zero outside the walls of the potential, so we
can ascertain the wave function by its asymptotic behavior
in those regions. In the regions near the boundaries of the
potential, near the classical turning points, the WKB ap-
proximation is poor. Where the wave functions have the
least oscillation compared to the variation of the poten-
tial, the WKB approximation is poorest. Ground states
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and low quantum number excited states have little oscil-
lation, so the WKB approximation works least well with
them.

We can, nevertheless, obtain an approximation by connecting the wave function inside the well
with the asymptotic wave forms outside the well, which is still a good approximation for excited
states. Though it is often a good approximation for all energies, we expect increasingly inaccuracy
as the ground state is approached.

Connnection formulas are based on an approximation to the potential function at the classical
turning points. Near the classical turning point x1,

V (x) ≈ V (x1) + V ′(x1)(x − x1):

The calculation is simplified if we let the location of the classical turning point be zero, i.e., x1 = 0,
so

V (x) ≈ V (0) + V ′(0)x
= E + V ′(0)x:

where V (0) = E precisely at the boundary; the energy associated with the wave function is the
same as the potential where the wave function intersects it. The Schrodinger equation for this
potential is [

d2

dx2 +
2m

h̄2 [E − V (0)]
]

ˆ = 0

⇒
[

d2

dx2 +
2m

h̄2 [E − E − V ′(0)x]
]

ˆ = 0

⇒
[

d2

dx2 −
2m

h̄2 [V ′(0)x]
]

ˆ = 0

⇒
[

d2

dx2 − fi3x

]
ˆ = 0 where fi =

(
2m

h̄2 V ′(0)
)1=3

:

Changing variables where y = fix ⇒ x = 1
fiy, so

d2

dx2 =
(

d

dy

dy

dx

) (
d

dy

dy

dx

)
=

(
d

dy
fi

) (
d

dy
fi

)
= fi2 d2

dy2

⇒
[
fi2 d2

dy2 − fi3 1
fi

y

]
ˆ = 0

⇒
[

d2

dy2 − y

]
ˆ = 0:

This is Airy’s equation and its solutions are Airy functions Ai(y) and Bi(y). The Bi(y) are
unbounded for large y, so are often not useful to describe a physical system. The Airy functions
are the basis for general connection formulas. Abramowitz and Stegun7 provide both commentary
on Airy functions and tabular data.

7 Abramowitz and Stegun, Handbook of Mathematical Functions (Dover Publications, inc., New
York, 1972), pp. 446-454 and 475-478.
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The WKB wave function at the right potential wall is

ˆ(x) =

{
A(x)e

i
h̄

∫ x2
0

p(x′) dx′
+ B(x)e− i

h̄

∫ x2
0

p(x′)dx′
; for x < x2,

C(x)e
− 1

h̄

∫ ∞

x2
p(x′) dx′

; for x > x2

where x2 is now defined as the classical turning point. The top case is inside the potential. We
could refine the form of the wave function outside the potential by examining its asymptotic form,
and equate the two at x2, the right boundary wall. We could then repeat the procedure for the
left boundary wall, and have two equations with three unknowns, the unknowns being A(x); B(x),
and C(x). We could solve these in terms of C(x) and obtain

A(x) = −iei…=4C(x); B(x) = ie−i…=4C(x):

We could use these in the equations for the wave function inside the right potential wall and obtain

ˆ(x) =

{
2C(x) sin

[
1
h̄

∫ x2

0 p(x′) dx′ + …
4

]
; for x < x2,

C(x)e
− 1

h̄

∫ ∞

x2
p(x′) dx′

; for x > x2

Now suppose the potential had a vertical wall, an impermeable barrier, at x = 0, and a soft or
permeable non-vertical wall at the right boudary x = x2. The boundary condition at x = 0
dictates that ˆ(0) = 0,

⇒ sin
[

1
h̄

∫ x2

0
p(x′) dx′ +

…

4

]
= 0

⇒
1
h̄

∫ x2

0
p(x′) dx′ +

…

4
= n…; n = 1; 2; 3; : : :

⇒
∫ x2

0
p(x′) dx′ =

(
n −

1
4

)
…h̄ for one permeable wall:

Examples of systems with one permeable wall are the half harmonic oscillator and the quantum
mechanical bouncing ball.

If the potential has two non-vertical walls, two soft or permeable walls as would most real
potentials, we would still expect the sine function to be zero at the center, x = 0. This is
equivalent to having two adjacent potentials with one permeable wall with their vertical walls in
the center, so

∫ x2

x1

p(x′) dx′ =
(

n −
1
2

)
…h̄ for two permeable walls;

where x1 and x2 are the classical turning points.
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If neither wall is permeable, for instance in an infinite square well,

∫ x2

x1

p(x′) dx′ = n…h̄ for two impermeable walls;

As promised, notice there is no reference to a wave function or the Schrodinger equation in any of
the boxed equations; the equations you will actually use.

The Bohr-Sommerfeld (on occasion the Bohr-Wilson or Wilson-Sommerfeld) quan-
tization condition is ∮

p dq = nh:

The difference in this and the WKB results is the phase change in the action by the amount
…=4 at a boundary. Landau and Lifshitz8 considers this difference so cosmetic that
they include the appropriate phase changes in their discussion of the Bohr-Sommerfeld
quantization condition.

A roadmap for using the WKB approximation for bound states is
step 1) determine the classical turning points,
step 2) evaluate the integral

∫ x2

x1

p(x′) dx′ =
∫ x2

x1

√
2m(E − V (x′)) dx′;

step 3) equate the result to the correct quantization condition.

Applying the WKB method to a particle in a one dimensional box of width 2L, (step 1) the
turning points are at −L and L, (step 2) the integral of interest is

∫ L

−L

p(x′) dx′ =
∫ L

−L

√
2m(E − V (x′)) dx′ =

∫ L

−L

√
2m(E) dx′

if we define the floor of the box to be V (x) = 0. Then
∫ L

−L

p(x′) dx′ =
√

2m(E)
∫ L

−L

dx′ =
√

2m(E)
∣∣∣∣
L

−L

= 2L
√

2m(E):

(step 3) Equate this result to the quantization condition for two impermeable walls,

2L
√

2m(E) = n…h̄ ⇒
√

2m(E) =
n…h̄

2L
⇒ 2mE =

n2…2h̄2

4L2

⇒ E =
n2…2h̄2

8mL2

which are the same eigenenergies as we obtained in chapter 6. The WKB method gives exact
eigenenergies here because the exponential WKB wave function models sinusoidal waves, as exist
for the particle in a box, exactly.

8 Landau and Lifshitz, Quantum Mechanics (Pergamon Press, Oxford, 1977), pp 170-175.

7


