
The WKB Method: Solved Problems

1. The WKB approximation for the transmission probability through a finite square barrier.

Since we know the exact result for the transmission probability through a square barrier, we can
compare the WKB approximation with the exact result. The square barrier is also a good choice
because it is fairly easy to calculate the integral required to obtain the WKB approximation.
Of course, the most interesting cases for the WKB approximation are the cases where we cannot
calculate the exact analytic transmission probability. By studying the square potential barrier, you
should also obtain some valuable insight into the conditions that make the WKB approximation
work well—i.e., you should understand when the WKB method is a good approximation, and why!

(a) Calculate the WKB exponential transmission coefficient ° where

° = (1=h̄)
∫ 2a

0
| p(x) | dx:

(b) Then calculate the WKB transmission probability Twkb = e−2°.

(c) The WKB approximation works well when the transmission probability is small. This occurs
when ° is large. Find the large ° expansion of the exact result.

T (E) = [ 1 + [V0
2 = 4 E (V0 − E) ] sinh2 ° ]−1:

Show that for large ° the exact solution takes the form

T (E) ∼ [16E(V0 − E)=V0
2] e−2°

and consequently show that the exact solution has the same functional form as the WKB approx-
imation (Twkb ∼ e−2°) whenever the behavior is dominated by the exponential term.

1.(a) First calculate the WKB exponential transmission coefficient

° =
1
h̄

∫ 2a

0
|p(x)| dx =

1
h̄

∫ 2a

0

∣∣∣
√

2m(E − V0)
∣∣∣ dx :

Since V (x) = V0 with V0 > E, we have p(x) =
√

2m(E − V (x)) : When V0 > E as it is in this
problem, the momentum will be imaginary. But note that we need only the magnitude of the
momentum which is given by |p(x)| =

√
2m(V0 − E). Doing the integral, we find

° =
1
h̄

∫ 2a

0

√
2m(V0 − E) dx =

1
h̄

√
2m(V0 − E)

∫ 2a

0
dx =

1
h̄

√
2m(V0 − E)

[
x

]2a

0
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⇒ ° =
2a

h̄

√
2m(V0 − E) :

1.(b) The WKB transmission probability is given by

TWKB = e−2° = exp
{

−2
(

2a

h̄

√
2m(V0 − E)

)}

⇒ TWKB = exp
{

−
(

4a

h̄

√
2m(V0 − E)

)}
:

1.(c) Now let’s compare this approximate WKB result with the exact result, which is given by

1
T

= 1 +
V 2

0

4E(V0 − E)
sinh2(°);

where ° = 2a
√

2m(V0 − E) = h̄ as above. Expanding the hyperbolic sine function

sinh2(°) =
(

e° − e−°

2

)2

for large °, we find

sinh2(°) ≈
(

e°

2

)2

=
1
4

e2°

⇒
1
T

≈ 1 +
V 2

0

16E(V0 − E)
e2° :

Since ° is large, we must have V0 >> E, so we can neglect the 1 and write

1
T

≈ V 2
0

16E(V0 − E)
e2° ⇒ T ≈ 16E(V0 − E)

V 2
0

e−2° :

Note that this has exactly the same functional form as our WKB result in part b, and that the
addition, the coefficient

16E(V0 − E)
V 2

0

is of order 1. Note further that the dependence on (V0 − E) is dominated by the exponential
factor, and that the WKB method provides a good approximation for the finite square barrier
when V0 >> E.
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2. The WKB solution to the quantum mechanical bouncing ball problem.

(a) First write down the WKB quantization condition for a potential with one hard wall and one
soft wall

∫ x2

x1

p(x) dx = (n −
1
4
) …h̄:

Then find the classical turning points, which are the limits of integration. Since p(x) = 0 at the
two turning points, and since p(x) =

√
2m(E − mgx), we find immediately that the two turning

points are given by x1 = 0 and x2 = (E=mg).

(b) Do the integral to find the bound state energies. You should find

En = [
9
8
…2mg2h̄2 (n −

1
4
)2 ]

1
3 :

(c) Put in the numbers and compare your results with the exact results, you should find that E1
agrees to one percent and that E2, E3, and E4 agree to three significant figures!

(d) Find the principal quantum number n required to make the expectation value < x > = one
meter. Use the result:

< x > = (2En=3mg)

and your expression for En from part b.

2.(a) The potential energy above the surface of the earth is given by

V (x) = mgx for x > 0:

Since the ball cannot pass through the surface, we also have

V (x) = ∞ for x ≤ 0:
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So our idealized potential for the quantum mechanical bouncing ball looks like this

2.(b) The time-independent Schrodinger equation is given by,

−
h̄2

2m

d2

dx2 ˆ(x) + (mgx)ˆ(x) = E ˆ(x):

Change variables

y = x −
E

mg
⇒

d

dy
=

d

dx
⇒

d2

dy2 =
d2

dx2 :

Then our TISE becomes

−
h̄2

2m

d2

dy2 ˆ(y) + mg

(
y +

E

mg

)
ˆ(y) − E ˆ(y) = 0

⇒ − h̄2

2m

d2

dy2 ˆ(y) + mgy ˆ(y) + E ˆ(y) − E ˆ(y) = 0

⇒
d2

dy2 ˆ(y) −
(

2m2g

h̄2

)
y ˆ(y) = 0:

Let

fi =
(

2m2g

h̄2

)1=3

so that the above equation becomes

(
d2

dy2 − fi3y

)
ˆ(y) = 0:

This is Airy’s equation. To put this in the standard form, let

z = fiy = fi

(
x − E

mg

)
⇒ d2

dy2 =
(

d

dz

dz

dy

) (
d

dz

dz

dy

)
=

d

dz
(fi)

d

dz
(fi) = fi2 d2

dz2 :

Then the boxed equation becomes

fi2 d2

dz2 ˆ(z) − (fi2z) ˆ(z) = 0 ⇒
(

d2

dz2 − z

)
ˆ(z) = 0;
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The solutions to Airy’s equation are the Airy functions. There are two linearly independent Airy
functions called Ai (z) and Bi (z). The Bi (z) are unbounded for large z, so they do not apply to
our problem. We require finite solutions and these are given by Ai (z).

2.(c) The first four values of the argument zn for which Ai(zn) = 0, are given by

n zn

1 −2:338
2 −4:088
3 −5:521
4 −6:787

To convert this information into the eigenenergies, first relate zn to yn and then relate yn to x and
En:

zn = fiyn = fi

(
x −

En

mg

)
:

Now use the boundary condition at x = 0, namely that ˆ(0) = 0, to obtain

ˆ(x = 0) = 0 ⇒ ˆ(zn) = 0 when zn = −
fiEn

mg
= −

(
2m2g

h̄2

)1=3
En

mg
:

So, we obtain

zn = −21=3m2=3g1=3

h̄2=3mg
En = − 21=3

h̄2=3m1=3g2=3
En:

Solving for the eigenenergies, we find

En = −
h̄2=3m1=3g2=3

21=3 zn:

Then using g = 9:80m=s2 and m = 0:100 kg, we obtain

En = −
(1:05 × 10−34J · s)2=3(0:100 kg)1=3(9:80m=s2)2=3

21=3 zn

= −
(2:226 × 10−23)(0:464)(4:579)

1:260
zn

= −3:755 × 10−23zn joules:

We conclude that eigenenergies are given by

n zn En

1 −2:338 8:779 × 10−23 J
2 −4:088 1:535 × 10−22 J
3 −5:521 2:073 × 10−22 J
4 −6:787 2:548 × 10−22 J
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2.(d) From the Virial theorem, we have

〈T 〉 =
1
2
〈V 〉 =

1
2
〈mgx〉 =

1
2
mg〈x〉

So, the total energy is given by

〈H〉 = 〈T 〉 + 〈V 〉 =
1
2
〈V 〉 + 〈V 〉 =

3
2
〈V 〉 =

3
2
mg〈x〉:

To calculate the size 〈x〉 versus the quantum number n, solve for 〈x〉 in terms of En

En =
3
2
mg〈x〉 ⇒ 〈x〉 =

2En

3mg
:

So, for the ground state of the “point baseball” we find

〈x〉 =
2(8:779 × 10−23 J)

3(0:100 kg)(9:80m=s2)
= 5:97 × 10−23 m :

To calculate the mean separation of an electron in its ground state, start with

En = −
h̄2=3m1=3g2=3

21=3 zn

and use the mass of an electron 9:11 × 10−31 kg to obtain

E1 = −
(1:05 × 10−34J · s)2=3(9:11 × 10−31 kg)1=3(9:80m=s2)2=3

21=3 (−2:338)

= −(2:226 × 10−23)(9:69 × 10−11)(4:579)
1:260

zn J

= 1:833 × 10−32 J

〈x〉 =
2(1:833 × 10−32 J)

3(9:11 × 10−31 kg)(9:80 m=s2)
= 1:369 × 10−3 m = 1:369 mm:
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3. The WKB solution to the simple harmonic oscillator problem.

(a) First write down the WKB quantization condition for a potential with two soft walls

∫ x2

x1

p(x)dx = (n −
1
2
) …h̄:

Then find the classical turning points, which are the limits of integration. Since p(x) = 0 at the

two turning points, and since p(x) =
√

2m(E − 1
2m!2x2), you should find immediately that the

two turning points are given by x2 = −x1 =
√

(2E=m!2).

(b) Do the integral to find the bound state energies. You should find

En = (n −
1
2
) h̄!:

This turns into the standard form En = (n + 1
2) h̄! when we use the simple harmonic oscillator

convention of starting from n = 0 instead of the WKB convention of starting from n = 1. Note
that the WKB approximation yields the exact energies for the simple harmonic oscillator!

3.(a) For a potential well with two “soft” walls, the WKB quantization condition becomes

∫ x2

x1

p(x) dx =
(

n − 1
2

)
…h̄ with n = 1; 2; 3; : : :

The classical turning points for the SHO are given by

1
2
m!2x2 = En ⇒ x2 =

2En

m!2

⇒ x = ±
(

2En

m!2

)1=2

:

3.(b) To evaluate the WKB quantization condition integral, we need the momentum which is given
by

p(x) =
√

2m(E − V (x)) =
[
2mE − 2m

(
1
2
m!2x2

)]1=2

=
[
2mE − m2!2x2]1=2

:
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Putting this in the integral and noting E = 1
2m!2x2

2, we obtain

∫ x2

x1

p(x) dx =
∫ x2

x1

[
2mE − 2m

(
1
2
m!2x2

)]1=2

dx =
∫ x2

x1

[
2m

(
1
2
m!2x2

2

)
− 2m

(
1
2
m!2x2

)]1=2

dx

= m!

∫ x2

x1

[
x2

2 − x2]1=2
dx = 2m!

∫ x2

0

[
x2

2 − x2]1=2
dx:

Form 4.3.3.1.2 on page 158 of Jeffrey is the indefinite integral we need, namely

∫
(a + cx2)1=2 dx =

1
2
x(a + cx2)1=2 +

1
2

a√
−c

sin−1

(
x

√
−c

x2
2

)
; a > 0; c < 0:

For our integral, a = x2
2 and c = −1, so both qualifying conditions are met, and our integral

becomes

2m!

∫ x2

0

[
x2

2 − x2]1=2
dx = 2m!

[
1
2
x(x2

2 − x2)1=2 +
1
2

x2
2√
1

sin−1

(
x

√
1
x2

2

)]x2

0

= 2m!

[
1
2
x(x2

2 − x2
2)

1=2 −
1
2
(0)(x2

2 − 0)1=2 +
x2

2

2
sin−1

(
x

x2

) ∣∣∣∣
x2

0

]

= m!x2
2
[
0 − 0 + sin−1(1) − sin−1(0)

]

= m!x2
2

[…

2
− 0

]
= m!

…

2
x2

2

= m!
…

2

(
2En

m!2

)
=

…E

!
:

So, the WKB quantization condition becomes

…E

!
=

(
n −

1
2

)
…h̄ ⇒ E =

(
n −

1
2

)
h̄!; n = 1; 2; 3; : : : :

Switching to the standard convention n = 0; 1; 2; 3; we find

En =
(

n +
1
2

)
h̄!:

Note that we have obtained the exact eigenenergies of the quantum mechanical SHO.
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