The Variational Method: Solved Problems

1. Compute the variational upper bounds for the ground state energy of a particle in the linear
potential

V(x)="fi | x|
and in the quartic potential
V(x) = fix*
using the Gaussian trial wavefunction
~(x) = Ae ™

Calculate the normalization constant A. You should find A = (2b=..)3.

Calculate the expectation value of the kinetic energy < T > for the Gaussian trial wavefunc-
tion. Explain why this calculation is the same for the linear and quartic potentials. You
should find < T > = (h%b=2m).

Calculate the expectation value of the potential energy < V > for the Gaussian trial wave-
function in the linear potential. You should find <V > = (fi=v2..h).

Calculate the expectation value of the total energy < H > for the Gaussian trial wavefunction
in the linear potential by adding the expectation values of the kinetic and potential energy
<H>=<T >+ <V >. Then find the value of b that minimizes the expectation value of
the total energy. You should find b = (mfi=\/fh2)%.

Calculate the minimum of the expectation value of the total energy < H > for the Gaussian
trial wavefunction in the linear potential. You should find < H >nqin = %(fi2h2=2...m)%.

Calculate the expectation value of the potential energy < V > for the Gaussian trial wave-
function in the quartic potential. You should find <V > = (3fi=16b?).

Calculate the expectation value of the total energy < H > for the Gaussian trial wavefunction
in the quartic potential by adding the expectation values of the kinetic and potential energy
<H>=<T >+ <V >. Then find the value of b that minimizes the expectation value of
the total energy. You should find b = (3fim=4h?)3.

Calculate the minimum of the expectation value of the total energy < H > for the Gaussian
trial wavefunction in the quartic potential. You should find < H >njn = %(3fih424m2)%.



This problem involves the linear and quartic potentials and the Gaussian trial wavefunction:

V(x)="fi

V(x)=fix and ~(x)=Ae >

1.(a) First, calculate the normalization constant:

< ">=1= / (Ae*m‘z)*Ae*bX2 dx = |A]2/ e 2 dx = |A[?, / 2_b
1=4
A= (Q—b) :

1.(b) Next, calculate the expectation value of the kinetic energy. Note that this will be exactly the
same for both potentials, so we only need to do it once:
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We need the second derivative, so calculating we find
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So, the expectation value of the kinetic energy becomes
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Note that the second integral can be evaluated using form 15.3.1.26 on page 249 of Handbook of
Mathematical Formulas and Integrals by Jeffrey,

/ x2”e_pX2dX:(Qn—Ql()Q'F;)'nﬁS'l\/g for p>0; and n=0;1;2;3;:::
0

For our integral, we have n =1 and p = 2b.
1.(c) Now consider the expectation value of the potential energy for V (X) = fi|x|. We must calculate
~v |~ = x>\ " (i —bx? a2 [T e 20X a2 [T a2k
V)= IV _/ (Ae X ) (fi|x]) Ae™™ dx = fiA / [x|e™* dx = 2fiA / xe™ ™ dx:
0

—0o0 — 00

Form 15.3.1.27 on page 249 of Handbook of Mathematical Formulas and Integrals by Jeffrey, is

> 2n+1,—px? _ : . (10 Qe
/0 X e dX_W for p>0; and nNn=0;1;2;3;:::;

which has the form of our <V > integral with n = 0 and p = 2b. So, we obtain

. 2 2fiA2(01)  2fi [2b
2 2bx — -
2fiA /0 Xe dx = 2(2) TRV

1.(d) The expectation value of the total energy is the sum of the expectation values of the kinetic
energy and the potential energy, so we have

M
om 2. b

The variational parameter in the trial wavefunction is b. We will find the value of b which minimizes
the total energy by taking the partial derivative with respect to b, and then solving for the value
of b which makes the derivative equal to zero:
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Here by denotes the value of b which minimizes the total energy.

1.(e) Now that we have by, we can substitute it into the total energy expression to obtain the
minimum energy (H):

(H) = T+ (v) = 0+ L

_ k7 fim 2=3+ fi
—2m \ V2..h? _ 9=31 122
2. fim
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1 h*7fi2=s h?73fi2=3
= 5518 1=31=3 | 31=3 1=31=3

= (H)min = g <2 ﬂ2>

1.(f) Now we will go through the analogous procedure for the quartic potential. The expectation
value of the potential energy V (x) = fix%, is given by

VY= (V") = / (Ae_bx2) (fix?) Ae ™ dx = fiA2/ xte 2% gx
= 2fiA2/ xte=2% gx :
0
Form 15.3.1.26 on page 249 of Jeffrey is
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This is the form of our <V > integral, with n = 2 and p = 2b. So our integral is given by
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1.(g) Now the expectation value of the total energy is given by
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Minimizing the total energy by taking the partial derivative with respect to b, and then finding
the value of b that makes the derivative equal to zero, we find
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1.(h) Now, using by to obtain the minimum value of (H), we find
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2. Compute the variational upper bound for the ground state energy of a particle in a harmonic
oscillator using the trial wavefunction

T(x) = A X2+

(a) Calculate the normalization constant A. You should find A = (2b3=..)2.

(b) Calculate the expectation value of the kinetic energy < T > for this trial wavefunction. You
should find < T > = (h*=4mb?).

(c) Calculate the expectation value of the potential energy <V > for this trial wavefunction in
the harmonic oscillator potential. You should find <V > = %m 12p2,

(d) Calculate the expectation value of the total energy < H > for this trial wavefunction in the
harmonic oscillator potential by adding the expectation values of the kinetic and potential
energy <H > =<T >+ <V >. Then find the value of b that minimizes the expectation
value of the total energy. You should find b? = (h=y/2 m1).

(e) Calculate the minimum of the expectation value of the total energy < H > for this wavefunc-
tion in the harmonic oscillator potential. You should find < H >nin = (\/§ h1=2). Note
that this upper bound is about 40 percent larger than the true ground state energy %h! .

2.(a) First, calculate the normalization constant for the wave function

~X) = [P(x)> = A (X2 +b%)

using <7 [7> =1
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Form 15.1.1.16 on page 244 of Jeffrey is

*° dx -
/0 (x2 4+a2) (x2 +¢2) 2ac(a+c)

which is our integral with @ = ¢ = b. Here b is the variational parameter in the trial wave function,
and our integral is given by
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2.(b) Next, find the expectation value of the kinetic energy

1= 0= [ (she) (o) )

Calculate the second derivative

9o 12) 7 = 21 (2 1) Pax = —2x (3 4 12)

dx
d? -1 d -2 2 —3
25 0 +07) = — (<20 (2 +b?) ) = =2 (4 0) = 2x (x4 2) 7 (<2)(20)
. 8x?
= W (X +b ) = (X2 n b2)2 + (X2 n b2)3 :

Then our integral becomes

) = _A%h? ( 1 > -2 8x> dx
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Form 3.241.4 on page 292 of Table of Integrals, Series, and Products by Gradshteyn and Ryzhik is
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(1)

for 0<Z<n+1;p#0; and q#0:

We can use this form to evaluate both of the integrals in equation (1). For the first integral, the

parameters are ,, =3; " =2; Nn=3; =1, and p = b?, so we obtain
AP [ dx Ah 1 b2\** T (3)r(1+3-32)
2m Jo (x2+b2)t 2m | 2.2+ \ 1 T(1+3)
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To evaluate the I' functions, remember that

F(%)zx/?; ra=r@=1 I'(n+l)=n!l and F<n+%>:(Zn_l)ér;ﬂ‘g'lF(%);

so we obtain
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We could also evaluate the second integral in equation (1) using the same form, but it is actually
a simpler integral, and there is a simpler form in Gradshteyn and Ryzhik, namely form 3.249.1 on
page 294, which is

/ e dx _ (@2n-=-3)! _

o (x2+a2)" T 2(2n-—2)tan-1’

Here the double factorial means the product of only the odd factors, so for example (2n + 1)!I =
1-3-5---(2n+1). Our second integral becomes

JAPRE % dx 2Ah® 3.1 . 3.A%RY

2m Jo (x2+b2)® m 2(4-2) b5 smb°

Adding these two integrals, we obtain the expectation value of the kinetic energy
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2.(c) Now we must calculate the expectation value of the potential energy for V (X) = %m!2X2,

which is given by
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We can evaluate this integral using form 3.241.4 from Gradshteyn and Ryzhik, with the parameters
=23, "=2n=1;, g=1; and p = b Then we obtain
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2.(d) Now find the value of b that minimizes the expectation value of the total energy:

0/ 1, h? )
i -_m! — _ 1 =
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= 0= g
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We know that the ground state energy of the SHO is h1=2 = 0:5h!. From this problem, we see
that the variational method only gives us an upper bound on the ground state energy, specifically

in this case (H)pni, = 0:71hY. Note, however, that if we used a Gaussian trial wave function, we
would have obtained (H),;, = 0:5h1.




3. Generalize the ground state variational method to allow computation of variational upper bounds
for the first excited state energy by using a trial wavefunction that is orthogonal to the ground
state wavefunction.

(a)

Modify the proof for the ground state case. First, expand the trial wavefunction | = > in
energy eigenstates

o0
[T==2 el >
n=0
Then use the fact that the trial wavefunction | ~ > is orthogonal to the exact ground state

wavefunction | T >, i.e., that

—~

to rewrite the energy sum omitting the n = 0 ground state term—i.e., since ¢y = 0,

oo
<H>= ) Enci
n=1

Finally, modify the derivation of the ground state variational principle.

Calculate the normalization constant A for the first excited state trial wavefunction
~(x) = Ax e

You should find A = [4b \/(2b=.]] T =]

Calculate the expectation value of the kinetic energy < T > for this trial wavefunction. You
should find < T > = (3h%b=2m).

Calculate the expectation value of the potential energy <V > for this trial wavefunction in
the harmonic oscillator potential. You should find <V > = (3m12=8b).

Calculate the expectation value of the total energy < H > for this trial wavefunction in the
harmonic oscillator potential by adding the expectation values of the kinetic and potential
energy <H > =<T >+ <V >. Then find the value of b that minimizes the expectation
value of the total energy. You should find b = (m¥=2h).

Calculate the minimum of the expectation value of the total energy < H > for this wavefunc-
tion in the harmonic oscillator potential. You should find < H >nin = %h!. Note that you
obtain the exact energy of the first excited state because you “guessed” the exact excited state
wavefunction!
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3.(a) Any wave function can be expressed as a linear combination of the energy eigenstates, i.e.,

oo
> :ch|"n> =Co[ 0> +C1| 71> 4Co[ 2> + -
n=0

If we pick our trial wave function orthogonal to the ground state wave function, we have
<7|T9>=0; and ¢y =0:

Because they are orthogonal, the projection is zero. To show this, assume that the trial wave
function is normalized, then we have

l=<"|">= <<Z Cm<Am|> <Z Cn|An>> = Z ZC%CH <"m[n>:
m=0 n=0

m=0 n=0

Next consider the inner product of the ground state and the first excited state trial wavefunction

<[ 0>=0 = > ca{Tnlco o) =0

n=0
Then, using the orthonormality, we find
o0 o0
~ |~ 2
Zc;f,co< nl o>=ZC:§Co—n0=CSCOZ|Co| =0
n=0 n=0
= Co=0

This means that the general expansion of our trial wavefunction can be written as usual, except
that the sum starts at n = 1 instead of n = 0. For example, the normalization equation becomes

o0 oo o0 oo o0 oo o0 9
E g C*an <Am’An> = E g C*an <Am”\n> = E g C:fncn_mn = E ’Cn‘ =1
m=0n=0 m=1n=1 m=1n=1 n=1

Now we are ready to derive the inequality for the first excited state energy. Write down the
expectation value of the energy:

<TIHIT> = (Z Cm<’\m|> H (chm)
m=1 n=1
=3 cilnEn <"mlmn> =Y Y chenEnmmn
n=1

(H)

m=1 m=1n=1
n=1 n=1
= <H> Z El:
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3.(b) Calculate the normalization constant for the first excited state trial wave function
~~ - bx?) bx> 2 [ 2, —obx? 2 [T 20— onx?
< I">=1= / (Axe* ) (Axe* ) dx = |A| / x“e” " dx = 2|A] / x“e 7 dx:
— 00 —oo 0

One easy way to evaluate this integral is using form 15.3.1.26 from page 249 of Jeffrey, which we
have encountered previously in Problem 1. Then we have

/ x2”e_p"2dx:(n 2€2p)5 3 ,/6 for p>0; and n=0;1;2;3;::::
0

For our integral, the parameters are n =1 and p = 2b, so we obtain

2 [ g2t gy _ g a2 =D [ AR [
2’A‘/O e = A ey Vb T @ V3

[2b [op3 2p3\ '
= |APP=4by/= =44/~  or A:2(—> .
3.(c) Calculate the expectation value for the kinetic energy
M =<"Treo> = [

i (Axe*bxz)* <_%dd—x22> (Axe*bXQ) dx

2K 2 ) N 2 R
— _%/ <xe_bx> (&(xe_bx )) dx:

o0

o0

Again, we need the second derivative of the trial wave function. This is given by

d? b2 d d 2 d 2 b
o X bx):& <&(xe bx )> :&(e bx" _ obx%e bx)

— —9bxe P _ 4bhxe P 1 4h2x3e—0*

— _6bhxe ™ 4 4p2x3eX":

So, the expectation value of kinetic energy is given by

2hp2 o0 2\ * 2 2
(T) = — |A;|mh (xe*bx ) <—6bxe*bx + 4b?x3e b ) dx
22 ') )
— % [Gb/ x2e 2% gy 4b2/ xte—20%* dx]

2R2 o9 2 o) R
- Lr’nh [6b/ x%e 2 dx —4b2/ xte 20X dx} ;
0

0
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We can evaluate both integrals using the same general integral from Jeffrey used in part b. For
the first integral, N = 1 and p = 2b, and for the second integral, N = 2 and p = 2b. Then the
expectation value of the kinetic energy becomes

RPN ()
O BRICE)
M

(T) =

3h%h
2m

3.(d) Next, calculate the expectation value of the potential energy

(V) =<"IV[T(x)> = /_Oo (Axe*b"Q)* (;mI2 2) (Axe*bx ) dx

_ |A[?m12 /OO xte—20 g4y
2 )

3.(e) The expectation value of the total energy is the sum of the kinetic and potential energies, so

3’ 3m12,

(H) = (T) + (V) = 22+ 2

To find the value of b that minimizes the expectation value of total energy, we differentiate with
respect to the variational parameter, set the resulting expression equal to zero, and solve for by as
before, i.e.,

b2 =0

@ 3h2b 3mi2 .\  3h®  3m1?
@b 8 “om 8
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b= =
= 8 3n%  4h?

m!

= bo—ﬁz

3.(f) The minimum value of the total energy is obtained by substituting by into the equation for
(H). We find

3h? 3m12
H min — S
< > 2m o+ 8b()
~ 3h’m! 3mi2 3

3
— _ - @ = 1 —Rh!
m 2h | 8(mi=2n) gt ght

Note that this is the exact energy of the first excited state of the quantum mechanical SHO because
we have successfully “guessed” the exact first excited state wavefunction.

14



