The Variational Method: Solved Problems

1. Compute the variational upper bounds for the ground state energy of a particle in the linear potential

\[V(x) = \alpha |x| \]

and in the quartic potential

\[V(x) = \alpha x^4 \]

using the Gaussian trial wavefunction

\[\psi(x) = A e^{-bx^2}. \]

(a) Calculate the normalization constant \(A \). You should find \(A = (2b/\pi)^{1/4} \).

(b) Calculate the expectation value of the kinetic energy \(< T > \) for the Gaussian trial wavefunction. Explain why this calculation is the same for the linear and quartic potentials. You should find \(< T > = (\hbar^2b/2m) \).

(c) Calculate the expectation value of the potential energy \(< V > \) for the Gaussian trial wavefunction in the linear potential. You should find \(< V > = (\alpha/\sqrt{2\pi b}) \).

(d) Calculate the expectation value of the total energy \(< H > \) for the Gaussian trial wavefunction in the linear potential by adding the expectation values of the kinetic and potential energy \(< H > = < T > + < V > \). Then find the value of \(b \) that minimizes the expectation value of the total energy. You should find \(b = (m\alpha/\sqrt{2\pi}\hbar^2)^{1/4} \).

(e) Calculate the minimum of the expectation value of the total energy \(< H > \) for the Gaussian trial wavefunction in the linear potential. You should find \(< H >_{\text{min}} = \frac{3}{2}(\alpha^2\hbar^2/2\pi m)^{3/8} \).

(f) Calculate the expectation value of the potential energy \(< V > \) for the Gaussian trial wavefunction in the quartic potential. You should find \(< V > = (3\alpha/16b^2) \).

(g) Calculate the expectation value of the total energy \(< H > \) for the Gaussian trial wavefunction in the quartic potential by adding the expectation values of the kinetic and potential energy \(< H > = < T > + < V > \). Then find the value of \(b \) that minimizes the expectation value of the total energy. You should find \(b = (3\alpha m/4\hbar^2)^{1/4} \).

(h) Calculate the minimum of the expectation value of the total energy \(< H > \) for the Gaussian trial wavefunction in the quartic potential. You should find \(< H >_{\text{min}} = \frac{3}{4}(3\alpha^2\hbar^4/4m^2)^{3/4} \).
This problem involves the linear and quartic potentials and the Gaussian trial wavefunction:

\[V(x) = \alpha |x| , \quad V(x) = \alpha x^4 \quad \text{and} \quad \psi(x) = Ae^{-bx^2}. \]

1.(a) First, calculate the normalization constant:

\[
< \psi | \psi > = 1 = \int_{-\infty}^{\infty} (Ae^{-bx^2})^* Ae^{-bx^2} \, dx = |A|^2 \int_{-\infty}^{\infty} e^{-2bx^2} \, dx = |A|^2 \sqrt{\frac{\pi}{2b}}
\]

\[
\Rightarrow A = \left(\frac{2b}{\pi} \right)^{1/4}.
\]

1.(b) Next, calculate the expectation value of the kinetic energy. Note that this will be exactly the same for both potentials, so we only need to do it once:

\[
\langle T \rangle = \langle \psi | T | \psi \rangle = \int_{-\infty}^{\infty} (Ae^{-bx^2})^* \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \right) Ae^{-bx^2} \, dx = -|A|^2 \frac{\hbar^2}{2m} \int_{-\infty}^{\infty} e^{-bx^2} \frac{d^2}{dx^2} e^{-bx^2} \, dx.
\]

We need the second derivative, so calculating we find

\[
\frac{d}{dx} e^{-bx^2} = -2bx e^{-bx^2}
\]

\[
\Rightarrow \frac{d^2}{dx^2} e^{-bx^2} = \frac{d}{dx}(-2bx e^{-bx^2}) = -2b \left(e^{-bx^2} + x(-2bx)e^{-bx^2} \right) = -2be^{-bx^2} + 4b^2 x^2 e^{-bx^2}.
\]

So, the expectation value of the kinetic energy becomes

\[
\langle T \rangle = -|A|^2 \frac{\hbar^2}{2m} \int_{-\infty}^{\infty} e^{-bx^2} \left(-2be^{-bx^2} + 4b^2 x^2 e^{-bx^2} \right) \, dx
\]

\[
= -|A|^2 \frac{\hbar^2}{2m} \left[-2b \int_{-\infty}^{\infty} e^{-2bx^2} \, dx + 4b^2 \int_{-\infty}^{\infty} x^2 e^{-bx^2} \, dx \right]
\]

\[
= - \left(\frac{2b}{\pi} \right)^{1/2} \frac{\hbar^2}{2m} \left[-2b \sqrt{\frac{\pi}{2b}} + 4b^2 \frac{1}{2\sqrt{2b}} \sqrt{\frac{\pi}{2b}} \right]
\]

\[
= \frac{\hbar^2}{2m} \left[-2b \sqrt{\frac{2b}{\pi}} \sqrt{\frac{\pi}{2b}} - b \sqrt{\frac{2b}{\pi}} \sqrt{\frac{\pi}{2b}} \right] = \frac{\hbar^2}{2m} \left[2b - b \right]
\]

\[
\Rightarrow \langle T \rangle = \frac{\hbar^2 b}{2m}.
\]
Note that the second integral can be evaluated using form 15.3.1.26 on page 249 of *Handbook of Mathematical Formulas and Integrals* by Jeffrey,
\[
\int_0^\infty x^{2n} e^{-px^2} \, dx = \frac{(2n-1) \cdots 5 \cdot 3 \cdot 1}{2(2p)^n} \sqrt{\frac{\pi}{p}} \quad \text{for} \quad p > 0, \quad \text{and} \quad n = 0, 1, 2, 3, \ldots
\]
For our integral, we have \(n = 1 \) and \(p = 2b \).

1.(c) Now consider the expectation value of the potential energy for \(V(x) = \alpha |x| \). We must calculate
\[
\langle V \rangle = \langle \psi | V | \psi \rangle = \int_{-\infty}^{\infty} \left(Ae^{-bx^2} \right)^* (\alpha |x|) Ae^{-bx^2} \, dx = \alpha A^2 \int_{-\infty}^{\infty} |x| e^{-2bx^2} \, dx = 2\alpha A^2 \int_0^\infty x e^{-2bx^2} \, dx.
\]
Form 15.3.1.27 on page 249 of *Handbook of Mathematical Formulas and Integrals* by Jeffrey, is
\[
\int_0^\infty x^{2n+1} e^{-px^2} \, dx = \frac{n!}{2p^{n+1}} \quad \text{for} \quad p > 0, \quad \text{and} \quad n = 0, 1, 2, 3, \ldots,
\]
which has the form of our \(\langle V \rangle \) integral with \(n = 0 \) and \(p = 2b \). So, we obtain
\[
2\alpha A^2 \int_0^\infty x e^{-2bx^2} \, dx = \frac{2\alpha A^2 (0!)}{2(2b)} = \frac{2\alpha}{4b} \sqrt{\frac{2b}{\pi}}
\]
\[
\Rightarrow \quad \langle V \rangle = \frac{\alpha}{\sqrt{2\pi b}}.
\]

1.(d) The expectation value of the total energy is the sum of the expectation values of the kinetic energy and the potential energy, so we have
\[
\langle H \rangle = \langle T \rangle + \langle V \rangle = \frac{\hbar^2 b}{2m} + \frac{\alpha}{\sqrt{2\pi b}}.
\]
The variational parameter in the trial wavefunction is \(b \). We will find the value of \(b \) which minimizes the total energy by taking the partial derivative with respect to \(b \), and then solving for the value of \(b \) which makes the derivative equal to zero:
\[
\frac{\partial}{\partial b} \left(\frac{\hbar^2 b}{2m} + \frac{\alpha}{\sqrt{2\pi}} b^{-1/2} \right) = \frac{\hbar^2}{2m} - \frac{1}{2} \frac{\alpha}{\sqrt{2\pi}} \frac{1}{b^{3/2}} = 0
\]
\[
\Rightarrow \quad b_0^{3/2} = \frac{\alpha}{2\sqrt{2\pi}} \frac{2m}{\hbar^2} = \frac{\alpha m}{2\pi \hbar^2}
\]
\[
\Rightarrow \quad b_0 = \left(\frac{\alpha m}{\sqrt{2\pi \hbar^2}} \right)^{2/3}.
\]
Here \(b_0 \) denotes the value of \(b \) which minimizes the total energy.

1.(e) Now that we have \(b_0 \), we can substitute it into the total energy expression to obtain the minimum energy \(\langle H \rangle \):

\[
\langle H \rangle = \langle T \rangle + \langle V \rangle = \frac{\hbar^2 b_0}{2m} + \frac{\alpha}{\sqrt{2\pi} b_0}
\]

\[
= \frac{\hbar^2}{2m} \left(\frac{\alpha m}{\sqrt{2\pi} \hbar^2} \right)^{2/3} + \frac{\alpha}{\sqrt{2\pi} b_0} \left[\frac{2\pi}{\alpha m \sqrt{2\pi} \hbar^2} \right]^{1/2}
\]

\[
= \frac{\hbar^2}{m^{2/3}} \alpha^{2/3} m^{2/3} + \frac{\alpha^{1/6} \pi^{1/6} \hbar^{2/3}}{21/2 \pi^{1/2} \alpha^{1/3} m^{1/3}}
\]

\[
= \frac{1}{2} \frac{\hbar^2}{21/3 \pi^{1/3} m^{1/3}} + \frac{\hbar^{2/3} \alpha^{2/3}}{21/3 \pi^{1/3} m^{1/3}}
\]

\[
\Rightarrow \langle H \rangle_{\text{min}} = \frac{3}{2} \left(\frac{\hbar^2 \alpha^2}{2\pi m} \right)^{1/3}
\]

1.(f) Now we will go through the analogous procedure for the quartic potential. The expectation value of the potential energy \(V(x) = \alpha x^4 \), is given by

\[
\langle V \rangle = \langle \psi | V | \psi \rangle = \int_{-\infty}^{\infty} \left(A e^{-bx^2} \right)^* (\alpha x^4) A e^{-bx^2} dx = \alpha A^2 \int_{-\infty}^{\infty} x^4 e^{-2bx^2} dx
\]

\[
= 2\alpha A^2 \int_{0}^{\infty} x^4 e^{-2bx^2} dx.
\]

Form 15.3.1.26 on page 249 of Jeffrey is

\[
\int_{0}^{\infty} x^{2n} e^{-px^2} dx = \frac{(2n - 1) \cdots 5 \cdot 3 \cdot 1}{2(2p)^n} \sqrt{\frac{\pi}{p}} \quad \text{for} \quad p > 0, \quad \text{and} \quad n = 0, 1, 2, 3, \ldots
\]

This is the form of our \(\langle V \rangle \) integral, with \(n = 2 \) and \(p = 2b \). So our integral is given by

\[
2\alpha A^2 \int_{0}^{\infty} x^4 e^{-2bx^2} dx = \frac{2\alpha A^2}{2(2 \cdot 2b)^2} \sqrt{\frac{\pi}{2b}} = \frac{3\alpha}{16b^2} \sqrt{\frac{2b}{\pi}} \sqrt{\frac{\pi}{2b}}
\]

\[
\Rightarrow \langle V \rangle = \frac{3\alpha}{16b^2}.
\]

1.(g) Now the expectation value of the total energy is given by

\[
\langle H \rangle = \langle T \rangle + \langle V \rangle = \frac{\hbar^2 b}{2m} + \frac{3\alpha}{16b^2}.
\]
Minimizing the total energy by taking the partial derivative with respect to \(b \), and then finding the value of \(b \) that makes the derivative equal to zero, we find

\[
\frac{d}{db} \left(\frac{\hbar^2}{2m} b + \frac{3\alpha}{16} b^{-2} \right) = \frac{\hbar^2}{2m} - 2 \frac{3\alpha}{16} \frac{1}{b^3} = 0
\]

\[\Rightarrow \quad b^3_0 = \frac{3\alpha}{8} \frac{2m}{\hbar^2}\]

\[\Rightarrow \quad b_0 = \left(\frac{3\alpha m}{4\hbar^2} \right)^{1/3}.
\]

1.(h) Now, using \(b_0 \) to obtain the minimum value of \(\langle H \rangle \), we find

\[
\langle H \rangle_{\text{min}} = \langle T \rangle + \langle V \rangle = \frac{\hbar^2 b_0}{2m} + \frac{3\alpha}{16 b_0^2}
\]

\[= \frac{\hbar^2}{2m} \left(\frac{3\alpha m}{4\hbar^2} \right)^{1/3} + \frac{3\alpha}{16} \left(\frac{4\hbar^2}{3\alpha m} \right)^{2/3}
\]

\[= \frac{\hbar^2}{2m} \frac{3^{1/3} \alpha^{1/3} m^{1/3}}{4^{1/3} \hbar^{2/3}} + \frac{3\alpha}{16} \frac{4^{2/3} \alpha^{4/3} \hbar^{4/3}}{3^{2/3} \alpha^{2/3} m^{2/3}}
\]

\[= \frac{1}{2} \frac{\hbar^{4/3} 3^{1/3} \alpha^{1/3}}{m^{2/3} 4^{1/3}} + \frac{1}{4} \frac{\hbar^{4/3} 3^{2/3} \alpha^{2/3}}{m^{2/3} 4^{1/3}}
\]

\[\Rightarrow \quad \langle H \rangle_{\text{min}} = \frac{3}{4} \left(\frac{3\alpha \hbar^4}{4m^2} \right)^{1/3}.
\]
2. Compute the variational upper bound for the ground state energy of a particle in a harmonic oscillator using the trial wavefunction

$$\psi(x) = A \left(x^2 + b^2\right)^{-1}.$$

(a) Calculate the normalization constant A. You should find $A = \left(\frac{2b^3}{\pi}\right)^{\frac{1}{2}}$.

(b) Calculate the expectation value of the kinetic energy $< T >$ for this trial wavefunction. You should find $< T > = \left(\frac{\hbar^2}{4mb^2}\right)$.

(c) Calculate the expectation value of the potential energy $< V >$ for this trial wavefunction in the harmonic oscillator potential. You should find $< V > = \frac{1}{2}m\omega^2b^2$.

(d) Calculate the expectation value of the total energy $< H >$ for this trial wavefunction in the harmonic oscillator potential by adding the expectation values of the kinetic and potential energy $< H > = < T > + < V >$. Then find the value of b that minimizes the expectation value of the total energy. You should find $b^2 = \left(\frac{\hbar}{\sqrt{2} m\omega}\right)$.

(e) Calculate the minimum of the expectation value of the total energy $< H >$ for this wavefunction in the harmonic oscillator potential. You should find $< H >_{\text{min}} = \left(\sqrt{2} \frac{\hbar\omega}{2}\right)$. Note that this upper bound is about 40 percent larger than the true ground state energy $\frac{1}{2}\hbar\omega$.

2.(a) First, calculate the normalization constant for the wave function

$$\psi(x) = |\psi(x)| = A \left(x^2 + b^2\right)^{-1}$$

using $< \psi | \psi > = 1$

$$\Rightarrow \int_{-\infty}^{\infty} \left(\frac{A}{(x^2 + b^2)}\right)^* \left(\frac{A}{(x^2 + b^2)}\right) dx = |A|^2 \int_{-\infty}^{\infty} \frac{dx}{(x^2 + b^2)^2} = 2|A|^2 \int_{0}^{\infty} \frac{dx}{(x^2 + b^2)^2} = 1.$$

Form 15.1.1.16 on page 244 of Jeffrey is

$$\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + c^2)} = \frac{\pi}{2ac(a + c)}$$

which is our integral with $a = c = b$. Here b is the variational parameter in the trial wave function, and our integral is given by

$$2|A|^2 \int_{0}^{\infty} \frac{dx}{(x^2 + b^2)^2} = 2|A|^2 \frac{\pi}{2b \cdot b (b + b)} = \frac{|A|^2 \pi}{2b^3} = 1 \Rightarrow |A|^2 = \frac{2b^3}{\pi}$$

$$\Rightarrow A = \left(\frac{2b^3}{\pi}\right)^{1/2}.$$
2. (b) Next, find the expectation value of the kinetic energy

\[
\langle T \rangle = \langle \psi | T | \psi \rangle = \int_{-\infty}^{\infty} \left(\frac{A}{x^2 + b^2} \right) \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \right) \left(\frac{A}{x^2 + b^2} \right) \ dx.
\]

Calculate the second derivative

\[
\frac{d}{dx} (x^2 + b^2)^{-1} = -1 (x^2 + b^2)^{-2} \ 2x = -2x (x^2 + b^2)^{-2}
\]

\[
\frac{d^2}{dx^2} (x^2 + b^2)^{-1} = \frac{d}{dx} \left(-2x (x^2 + b^2)^{-2} \right) = -2 (x^2 + b^2)^{-2} - 2x (x^2 + b^2)^{-3} (-2)(2x)
\]

\[
\Rightarrow \ \frac{d^2}{dx^2} (x^2 + b^2)^{-1} = -\frac{2}{(x^2 + b^2)^2} + \frac{8x^2}{(x^2 + b^2)^3}.
\]

Then our integral becomes

\[
\langle T \rangle = -\frac{A^2 \hbar^2}{2m} \int_{-\infty}^{\infty} \left(\frac{1}{x^2 + b^2} \right) \left(-\frac{2}{(x^2 + b^2)^2} + \frac{8x^2}{(x^2 + b^2)^3} \right) \ dx
\]

\[
= \frac{A^2 \hbar^2}{2m} \left[-8 \int_{-\infty}^{\infty} \frac{x^2 \ dx}{(x^2 + b^2)^4} + 2 \int_{-\infty}^{\infty} \frac{dx}{(x^2 + b^2)^3} \right]
\]

\[
= \frac{A^2 \hbar^2}{2m} \left[-16 \int_{0}^{\infty} \frac{x^2 \ dx}{(x^2 + b^2)^4} + 4 \int_{0}^{\infty} \frac{dx}{(x^2 + b^2)^3} \right]. \quad (1)
\]

Form 3.241.4 on page 292 of Table of Integrals, Series, and Products by Gradshteyn and Ryzhik is

\[
\int_{0}^{\infty} \frac{x^{\mu-1} \ dx}{(p + qx^n)^{n+1}} = \frac{1}{\nu p^{n+1}} \left(\frac{p}{q} \right)^{\mu/\nu} \frac{\Gamma \left(\frac{\mu}{\nu} \right) \Gamma \left(1 + n - \frac{\mu}{\nu} \right)}{\Gamma(1 + n)} \quad \text{for} \quad 0 < \frac{\mu}{\nu} < n + 1, \ p \neq 0, \ \text{and} \ q \neq 0.
\]

We can use this form to evaluate both of the integrals in equation (1). For the first integral, the parameters are \(\mu = 3, \ \nu = 2, \ n = 3, \ q = 1, \ \text{and} \ p = b^2, \) so we obtain

\[
-16 \frac{A^2 \hbar^2}{2m} \int_{0}^{\infty} \frac{x^2 \ dx}{(x^2 + b^2)^4} = -16 \frac{A^2 \hbar^2}{2m} \left[\frac{1}{2 \cdot b^{2(3+1)}} \left(\frac{b^2}{1} \right)^{3/2} \frac{\Gamma \left(\frac{3}{2} \right) \Gamma \left(1 + 3 - \frac{3}{2} \right)}{\Gamma(1 + 3)} \right]
\]

\[
= -4 \frac{A^2 \hbar^2}{mb^5} \cdot \frac{b^3}{\Gamma(4)} \cdot \frac{\Gamma \left(\frac{3}{2} \right) \Gamma \left(\frac{5}{2} \right)}{\Gamma(4)} = -4 \frac{A^2 \hbar^2}{mb^5} \cdot \frac{\Gamma \left(\frac{3}{2} \right) \Gamma \left(\frac{5}{2} \right)}{\Gamma(4)}.
\]

To evaluate the \(\Gamma \) functions, remember that

\[
\Gamma \left(\frac{1}{2} \right) = \sqrt{\pi}, \ \Gamma(1) = \Gamma(2) = 1, \ \Gamma(n + 1) = n!, \ \text{and} \ \Gamma \left(n + \frac{1}{2} \right) = \frac{(2n - 1) \cdots 5 \cdot 3 \cdot 1}{2^n} \Gamma \left(\frac{1}{2} \right),
\]

so we obtain

\[
-4 \frac{A^2 \hbar^2}{mb^5} \cdot \frac{\Gamma \left(\frac{3}{2} \right) \Gamma \left(\frac{5}{2} \right)}{\Gamma(4)} = -4 \frac{A^2 \hbar^2}{mb^5} \cdot \frac{(1 \cdot \sqrt{\pi})}{3 \cdot 2 \cdot 1} = -\pi A^2 \hbar^2 \frac{4}{4mb^5}. \quad (2)
\]
We could also evaluate the second integral in equation (1) using the same form, but it is actually a simpler integral, and there is a simpler form in Gradshteyn and Ryzhik, namely form 3.249.1 on page 294, which is

\[\int_0^\infty \frac{dx}{(x^2 + a^2)^n} = \frac{(2n - 3)!!}{2(2n - 2)!!} \frac{\pi}{a^{2n-1}}. \]

Here the double factorial means the product of only the odd factors, so for example \((2n + 1)!! = 1 \cdot 3 \cdot 5 \cdots (2n + 1)\). Our second integral becomes

\[\frac{4A^2 h^2}{2m} \int_0^\infty \frac{dx}{(x^2 + b^2)^3} = \frac{2A^2 h^2}{m} \frac{3 \cdot 1}{2(4 \cdot 2)} \cdot \frac{\pi}{b^5} = \frac{3\pi A^2 h^2}{8mb^5}. \]

Adding these two integrals, we obtain the expectation value of the kinetic energy

\[\langle T \rangle = -\frac{\pi A^2 h^2}{4mb^5} + \frac{3\pi A^2 h^2}{8mb^5} = 2b^3 \left(-\frac{2}{8mb^5} + \frac{3}{8mb^5} \right) \]

\[\Rightarrow \quad \langle T \rangle = \frac{h^2}{4mb^2}. \]

2.(c) Now we must calculate the expectation value of the potential energy for \(V(x) = \frac{1}{2} m\omega^2 x^2\), which is given by

\[\langle V \rangle = \langle \psi | V | \psi \rangle = \int_{-\infty}^\infty \left(\frac{A}{x^2 + b^2} \right) \left(\frac{1}{2} m\omega^2 x^2 \right) \left(\frac{A}{x^2 + b^2} \right) \ dx \]

\[= \frac{A^2 m\omega^2}{2} \int_{-\infty}^\infty \frac{x^2 \ dx}{(x^2 + b^2)^3} \]

\[= A^2 m\omega^2 \int_0^\infty \frac{x^2 \ dx}{(x^2 + b^2)^2}. \]

We can evaluate this integral using form 3.241.4 from Gradshteyn and Ryzhik, with the parameters \(\mu = 3\), \(\nu = 2\), \(n = 1\), \(q = 1\), and \(p = b^2\). Then we obtain

\[A^2 m\omega^2 \int_0^\infty \frac{x^2 \ dx}{(x^2 + b^2)^2} = A^2 m\omega^2 \left(\frac{b^2}{1} \right)^{3/2} \frac{\Gamma \left(\frac{3}{2} \right) \Gamma \left(1 + \frac{3}{2} \right)}{\Gamma(1 + 1)} \]

\[= m\omega^2 \left(A^2 \right) \frac{b^3}{2 \cdot b^4} \frac{\Gamma \left(\frac{3}{2} \right) \Gamma \left(\frac{1}{2} \right)}{\Gamma(2)} \]

\[= m\omega^2 \left(\frac{2b^3}{\pi} \right) \frac{b^3}{2 \cdot b^4} \frac{\Gamma \left(\frac{3}{2} \right) \Gamma \left(\frac{1}{2} \right)}{\Gamma(2)} \]

\[= m\omega^2 b^2 \frac{\sqrt{\pi}}{\pi} \frac{\sqrt{\pi}}{1} \]

\[\Rightarrow \quad \langle V \rangle = \frac{1}{2} m\omega^2 b^2. \]
2.(d) Now find the value of b that minimizes the expectation value of the total energy:

\[
\frac{\partial}{\partial b} \left(\frac{\hbar^2}{4mb^2} + \frac{1}{2}m\omega^2b^2 \right) = -\frac{\hbar^2}{2mb^2} + m\omega^2b = 0
\]

\[\Rightarrow b_0^4 = \frac{\hbar^2}{2m^2\omega^2}\]

\[\Rightarrow b_0^2 = \frac{\hbar}{\sqrt{2}m\omega}.
\]

2.(e) The minimum expectation value of the total energy is given by

\[
\langle H \rangle_{\text{min}} = \frac{\hbar^2}{4mb_0^2} + \frac{1}{2}m\omega^2b_0^2
\]

\[= \frac{\hbar^2}{4m(h/\sqrt{2}m\omega)} + \frac{1}{2}m\omega^2(h/\sqrt{2}m\omega)\]

\[= \frac{\sqrt{2}\hbar\omega}{4} + \frac{h\omega}{2\sqrt{2}}\]

\[= \left(\frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} \right) \hbar\omega = \frac{2\sqrt{2}}{4} \hbar\omega\]

\[\Rightarrow \langle H \rangle_{\text{min}} = \frac{\sqrt{2}}{2} \hbar\omega.
\]

We know that the ground state energy of the SHO is $\hbar\omega/2 = 0.5\hbar\omega$. From this problem, we see that the variational method only gives us an upper bound on the ground state energy, specifically in this case $\langle H \rangle_{\text{min}} = 0.71\hbar\omega$. Note, however, that if we used a Gaussian trial wave function, we would have obtained $\langle H \rangle_{\text{min}} = 0.5\hbar\omega$.

9
3. Generalize the ground state variational method to allow computation of variational upper bounds for the first excited state energy by using a trial wavefunction that is orthogonal to the ground state wavefunction.

(a) Modify the proof for the ground state case. First, expand the trial wavefunction $|\psi\rangle$ in energy eigenstates

$$|\psi\rangle = \sum_{n=0}^{\infty} c_n |\psi_n\rangle.$$

Then use the fact that the trial wavefunction $|\psi\rangle$ is orthogonal to the exact ground state wavefunction $|\psi_0\rangle$, i.e., that

$$<\psi|\psi_0> = 0,$$

to rewrite the energy sum omitting the $n = 0$ ground state term—i.e., since $c_0 = 0$,

$$<H> = \sum_{n=1}^{\infty} E_n c_n^2.$$

Finally, modify the derivation of the ground state variational principle.

(b) Calculate the normalization constant A for the first excited state trial wavefunction

$$\psi(x) = A \, x \, e^{-bx^2}.$$

You should find $A = \left[4b \, \sqrt{(2b/\pi)}\right]^{1/2} = \left[32b^3/\pi\right]^{1/4}$.

(c) Calculate the expectation value of the kinetic energy $<T>$ for this trial wavefunction. You should find $<T> = (3\hbar^2b/2m)$.

(d) Calculate the expectation value of the potential energy $<V>$ for this trial wavefunction in the harmonic oscillator potential. You should find $<V> = (3m\omega^2/8b)$.

(e) Calculate the expectation value of the total energy $<H>$ for this trial wavefunction in the harmonic oscillator potential by adding the expectation values of the kinetic and potential energy $<H> = <T> + <V>$. Then find the value of b that minimizes the expectation value of the total energy. You should find $b = (m\omega/2\hbar)$.

(f) Calculate the minimum of the expectation value of the total energy $<H>$ for this wavefunction in the harmonic oscillator potential. You should find $<H>_{\text{min}} = 3/2 \hbar \omega$. Note that you obtain the exact energy of the first excited state because you “guessed” the exact excited state wavefunction!
3.(a) Any wave function can be expressed as a linear combination of the energy eigenstates, i.e.,

$$|\psi> = \sum_{n=0}^{\infty} c_n |\psi_n> = c_0 |\psi_0> + c_1 |\psi_1> + c_2 |\psi_2> + \cdots.$$

If we pick our trial wave function orthogonal to the ground state wave function, we have

$$<\psi |\psi_0> = 0, \text{ and } c_0 = 0.$$

Because they are orthogonal, the projection is zero. To show this, assume that the trial wave function is normalized, then we have

$$1 = <\psi |\psi> = \left(\sum_{m=0}^{\infty} c_m <\psi_m|\psi_m>\right) \left(\sum_{n=0}^{\infty} c_n |\psi_n>\right) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_m^* c_n <\psi_m |\psi_n>.$$

Next consider the inner product of the ground state and the first excited state trial wavefunction

$$<\psi |\psi_0> = 0 \Rightarrow \sum_{n=0}^{\infty} c_n <\psi_n |\psi_0> = 0.$$

Then, using the orthonormality, we find

$$\sum_{n=0}^{\infty} c_n^* c_0 <\psi_n |\psi_0> = \sum_{n=0}^{\infty} c_n^* c_0 \delta_{n0} = |c_0|^2 = 0$$

$$\Rightarrow c_0 = 0.$$

This means that the general expansion of our trial wavefunction can be written as usual, except that the sum starts at $n = 1$ instead of $n = 0$. For example, the normalization equation becomes

$$\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_m^* c_n <\psi_m |\psi_n> = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_m^* c_n <\psi_m |\psi_n> = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_m^* c_n \delta_{mn} = \sum_{n=1}^{\infty} |c_n|^2 = 1.$$

Now we are ready to derive the inequality for the first excited state energy. Write down the expectation value of the energy:

$$\langle H \rangle = <\psi |H|\psi> = \left(\sum_{m=1}^{\infty} c_m <\psi_m|\psi_m>\right) H \left(\sum_{n=1}^{\infty} c_n |\psi_n>\right)$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_m^* c_n E_n <\psi_m |\psi_n> = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_m^* c_n E_n \delta_{mn}$$

$$= \sum_{n=1}^{\infty} |c_n|^2 E_n \geq E_1 \sum_{n=1}^{\infty} |c_n|^2 = E_1.$$

$$\Rightarrow \langle H \rangle \geq E_1.$$

11
3.(b) Calculate the normalization constant for the first excited state trial wave function

\[<\psi|\psi> = 1 \Rightarrow \int_{-\infty}^{\infty} (Axe^{-bx^2})^* (Axe^{-bx^2}) \, dx = |A|^2 \int_{-\infty}^{\infty} x^2 e^{-2bx^2} \, dx = 2|A|^2 \int_{0}^{\infty} x^2 e^{-2bx^2} \, dx. \]

One easy way to evaluate this integral is using form 15.3.1.26 from page 249 of Jeffrey, which we have encountered previously in Problem 1. Then we have

\[\int_{0}^{\infty} x^{2n} e^{-px^2} \, dx = \frac{(2n-1) \cdots 5 \cdot 3 \cdot 1}{2(2p)^n} \sqrt{\frac{\pi}{p}} \quad \text{for} \quad p > 0, \quad \text{and} \quad n = 0, 1, 2, 3, \ldots . \]

For our integral, the parameters are \(n = 1 \) and \(p = 2b \), so we obtain

\[2|A|^2 \int_{0}^{\infty} x^2 e^{-2bx^2} \, dx = 2|A|^2 \left(\frac{2(1)}{2(2\cdot2b)^1} \right) \sqrt{\frac{\pi}{2b}} = \frac{|A|^2}{4b} \sqrt{\frac{\pi}{2b}} = 1 \]

\[\Rightarrow |A|^2 = 4b \sqrt{\frac{2b}{\pi}} = 4 \sqrt{\frac{2b^3}{\pi}} \quad \text{or} \quad A = 2 \left(\frac{2b^3}{\pi} \right)^{1/4}. \]

3.(c) Calculate the expectation value for the kinetic energy

\[\langle T \rangle = <\psi|T|\psi(x)> = \int_{-\infty}^{\infty} (Axe^{-bx^2})^* \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \right) (Axe^{-bx^2}) \, dx \]

\[= -\frac{|A|^2 \hbar^2}{2m} \int_{-\infty}^{\infty} (xe^{-bx^2})^* \left(\frac{d^2}{dx^2} (xe^{-bx^2}) \right) \, dx. \]

Again, we need the second derivative of the trial wave function. This is given by

\[\frac{d^2}{dx^2} (xe^{-bx^2}) = \frac{d}{dx} \left(\frac{d}{dx} (xe^{-bx^2}) \right) = \frac{d}{dx} \left(e^{-bx^2} - 2bx^2 e^{-bx^2} \right) \]

\[= -2bxe^{-bx^2} - 4bx^2 e^{-bx^2} + 4b^2 x^3 e^{-bx^2} \]

\[= -6bxe^{-bx^2} + 4b^2 x^3 e^{-bx^2}. \]

So, the expectation value of kinetic energy is given by

\[\langle T \rangle = -\frac{|A|^2 \hbar^2}{2m} \int_{-\infty}^{\infty} (xe^{-bx^2})^* \left(-6bxe^{-bx^2} + 4b^2 x^3 e^{-bx^2} \right) \, dx \]

\[= \frac{|A|^2 \hbar^2}{2m} \left[6b \int_{-\infty}^{\infty} x^2 e^{-2bx^2} \, dx - 4b^2 \int_{-\infty}^{\infty} x^4 e^{-2bx^2} \, dx \right] \]

\[= \frac{|A|^2 \hbar^2}{m} \left[6b \int_{0}^{\infty} x^2 e^{-2bx^2} \, dx - 4b^2 \int_{0}^{\infty} x^4 e^{-2bx^2} \, dx \right]. \]
We can evaluate both integrals using the same general integral from Jeffrey used in part b. For the first integral, \(n = 1 \) and \(p = 2b \), and for the second integral, \(n = 2 \) and \(p = 2b \). Then the expectation value of the kinetic energy becomes

\[
\langle T \rangle = \frac{|A|^2 \hbar^2}{m} \left[6b \left(\frac{(2(1) - 1)!!}{2(2 \cdot 2b)^1} \sqrt{\frac{\pi}{2b}} \right) - 4b^2 \left(\frac{(2(2) - 1)!!}{2 \cdot (2 \cdot 2b)^2} \sqrt{\frac{\pi}{2b}} \right) \right]
\]

\[
= \frac{\hbar^2}{m} \left(|A|^2 \right) \left[6b \left(\frac{1}{8b} \sqrt{\frac{\pi}{2b}} \right) - 4b^2 \left(\frac{3 \cdot 1}{32b^2} \sqrt{\frac{\pi}{2b}} \right) \right]
\]

\[
= \frac{\hbar^2}{m} \left(4b \sqrt{\frac{2b}{\pi}} \right) \sqrt{\frac{\pi}{2b}} \left[\frac{3}{4} - \frac{3}{8} \right]
\]

\[
\Rightarrow \langle T \rangle = \frac{3\hbar^2 b}{2m}.
\]

3.(d) Next, calculate the expectation value of the potential energy

\[
\langle V \rangle = \langle \psi | V | \psi(x) \rangle = \int_{-\infty}^{\infty} (Axe^{-bx^2})^* \left(\frac{1}{2} m \omega^2 x^2 \right) (Axe^{-bx^2}) \, dx
\]

\[
= \frac{|A|^2 m \omega^2}{2} \int_{-\infty}^{\infty} x^4 e^{-2bx^2} \, dx
\]

\[
= |A|^2 m \omega^2 \int_{0}^{\infty} x^4 e^{-2bx^2} \, dx
\]

\[
= |A|^2 m \omega^2 \left(\frac{(2(2) - 1)!!}{2 \cdot (2 \cdot 2b)^2} \sqrt{\frac{\pi}{2b}} \right)
\]

\[
= m \omega^2 \cdot 4b \sqrt{\frac{2b}{\pi}} \left(\frac{3 \cdot 1}{32b^2} \sqrt{\frac{\pi}{2b}} \right) = m \omega^2 \cdot \frac{12}{32b}
\]

\[
\Rightarrow \langle V \rangle = \frac{3m \omega^2}{8b}.
\]

3.(e) The expectation value of the total energy is the sum of the kinetic and potential energies, so

\[
\langle H \rangle = \langle T \rangle + \langle V \rangle = \frac{3\hbar^2 b}{2m} + \frac{3m \omega^2}{8b}.
\]

To find the value of \(b \) that minimizes the expectation value of total energy, we differentiate with respect to the variational parameter, set the resulting expression equal to zero, and solve for \(b_0 \) as before, \(i.e., \)

\[
\frac{\partial}{\partial b} \left(\frac{3\hbar^2 b}{2m} + \frac{3m \omega^2}{8b} \right) = \frac{3\hbar^2}{2m} - \frac{3m \omega^2}{8} b^{-2} = 0
\]

13
\[b_0^2 = \frac{3m\omega^2}{8} \frac{2m}{3\hbar^2} = \frac{m^2\omega^2}{4\hbar^2} \]

\[\Rightarrow b_0 = \frac{m\omega}{2\hbar} \]

3.(f) The minimum value of the total energy is obtained by substituting \(b_0 \) into the equation for \(\langle H \rangle \). We find

\[\langle H \rangle_{\text{min}} = \frac{3\hbar^2}{2m} b_0 + \frac{3m\omega^2}{8b_0} \]

\[= \frac{3\hbar^2}{2m} \frac{2m\omega}{2\hbar} + \frac{3m\omega^2}{8(m\omega/2\hbar)} = \frac{3}{4} \hbar \omega + \frac{3}{4} \hbar \omega \]

\[\Rightarrow \langle H \rangle_{\text{min}} = \frac{3}{2} \hbar \omega \]

Note that this is the exact energy of the first excited state of the quantum mechanical SHO because we have successfully “guessed” the exact first excited state wavefunction.