
Chapter 12
The yellow dress in his peripheral vision walked steadily toward him. “Likely going to the

boutique at the corner of the block,” came as a passing thought without him knowing why. Yet, as
she approached more closely, she slowed perceptibly. And as she reached him, she stopped, facing
him. Not knowing what he would see, he looked up feeling frumpled in the presence of style. Not a
smile or a frown on her mouth or in her eyes, still it was obvious her attention was focused entirely
on him. The moment fought awkwardly for words so he offered some. “Angular momentum?” fell
from his lips without thought. “Edmonds,” she replied without changing expression, and turning
slowly, walked on without looking back1....

Total Angular Momentum
Quantum Mechanical Total Angular Momentum

Total angular momentum is the sum of orbital and spin angular momenta,

~J = ~L + ~S; (14 − 1)

where the vector notation simply serves to remind that there are three components in each operator.
This is not an equation from classical mechanics. Recapping angular momentum developed to this
point, orbital angular momentum operators are

L2 with eigenvalues of l
(
l + 1

)
h̄2; and Lz with eigenvalues of mlh̄; (14 − 2)

and 2l + 1 orbital angular momentum states. Spin angular momentum operators are

S2 with eigenvalues of s
(
s + 1

)
h̄2; and Sz with eigenvalues of msh̄: (14 − 3)

and 2s+1 spin angular momentum states. The reason these are the same except for the symbols
used is the commutators of the components of all types of angular momentum are canonical. This
is true of total angular momentum also, i.e.,

[
Jx; Jy

]
= ih̄Jz;

[
Jy; Jz

]
= ih̄Jx; and

[
Jz; Jx

]
= ih̄Jy: (14 − 4)

Knowing this, we anticipate the total angular momentum operators

J 2 with eigenvalues of j
(
j + 1

)
h̄2; and Jz with eigenvalues of mj h̄: (14 − 5)

We will repeat enough of the ladder operator argument to support these eigenvalues for total
angular momentum.

The point of the moment though, is ~J = ~L + ~S is not a classical vector sum. We need
∣∣J

∣∣,
commonly denoted J , such that the eigenvalue is

√
j(j + 1) h̄, and the component lengths must

be
√

l(l + 1) h̄ and
√

s(s + 1) h̄. All three z–components are quantized also. Further, equation
(14–1) means Ji = Li + Si, where i is any component, x; y, or z. Any useful description

1 Mickey Spillane Physics in the Streets (Publisher, Location, Year), page.

1



of a quantum mechanical system must satisfy all nine conditions. A classical vector sum need not
satisfy the six conditions of quantization in length and quantization in the z–components.

Figure 14–1 is a semi–classical illustration of equation (14–1). The length of ~J ; ~L, and ~S
are fixed, as are the z–components of each. The other two components are not fixed, however,

Figure 14 − 1: Semi − Classical Picture of Orbital and Spin Angular
Momenta Composing Total Angular Momentum

and each can be pictured as precessing such that total length and z–component are constant.
In this picture, orbital, spin, and total angular momenta vectors all precess about the z–axis.
Further, it would appear from the figure that spin and orbital magnetic moments will sum to the
total magnetic moment. We will soon show this is a fact.

Total Angular Momentum Commutators
In addition to the commutation relations (14–4), it is necessary to consider the commutation

relations between orbital and spin angular momentum. Orbital and spin angular momentum
operators commute. They exist in different spaces, cannot interact with an object in another
space, therefore they must commute, i.e.,

[
Li; Sj

]
= 0; (14 − 6)

where i and j both represent all three components. This fact means that total angular momentum
operators commute with orbital and spin angular momentum operators, or

[
Ji; Lj

]
=

[
Ji; Sj

]
= 0; (14 − 7)

for any set of i and j; x; y, or z.

Example 14–1: Show
[
Jx; Lx

]
= 0.

[
Jx; Lx

]
= JxLx − LxJx

=
(
Lx + Sx

)
Lx − Lx

(
Lx + Sx

)

= L2
x + SxLx − L2

x − LxSx

=
(
L2

x − L2
x

)
+

(
LxSx − LxSx

)
= 0;

where we have used the fact Lx and Sx commute to reverse the order of the operations in the
last line. This procedure can be used to show any set of operators Ji and Lj or Sj commute.
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Example 14–2: Show
[
Jx; Jy

]
= ih̄ Jz using component commutators.

Using
[
A; B

]
= −

[
B; A

]
, we can extend a commutation relation introduced in chapter 11,

[
A + B; C

]
=

[
A; C

]
+

[
B; C

]
;

⇒
[
A + B; C + D

]
=

[
A; C + D

]
+

[
B; C + D

]

= −
[
C + D; A

]
−

[
C + D; B

]

= −
[
C; A

]
−

[
D; A

]
−

[
C; B

]
−

[
D; B

]

=
[
A; C

]
+

[
A; D

]
+

[
B; C

]
+

[
B; D

]
:

In terms of component operators,
[
Jx; Jy

]
=

[
Lx + Sx Ly + Sy

]

=
[
Lx; Ly

]
+

[
Lx; Sy

]
+

[
Sx; Ly

]
+

[
Sx; Sy

]

= ih̄Lz + 0 + 0 + ih̄Sz

= ih̄
(
Lz + Sz

)

= ih̄Jz:

Ladder Operator Arguments for J
So the components of total angular momentum share the same canonical commutation rela-

tions of orbital and spin angular momenta. This means the mathematics is the same with exception
that the symbols are different, so we summarize vice duplicate the mathematics. We need to state
the square of the total angular momentum operator commutes with all its components,

[
J 2; Ji

]
= 0; (14 − 8)

where the subscript i indicates any of the three components x; y, or z. The square of total
angular momentum, like orbital and spin angular momentum, is related to its components as

J 2 = J 2
x + J 2

y + J 2
z ⇒ J 2 − J 2

z = J 2
x + J 2

y : (14 − 9)

The sum of the two components J 2
x + J 2

y would appear to factor

(
Jx + iJy

)(
Jx − iJy

)
:

Again, these operators do not commute, so this is not actually factoring. These are the raising
and lowering operators for total angular momentum, specifically

J+ = Jx + iJy ; and J− = Jx − iJy: (14 − 10)

Here [
J 2; J±

]
= 0;

[
Jz; J±

]
= ±h̄ J±:
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The J 2 and Jz operators will have different eigenvalues when they operate on the same basis
vector, so there are two indices for each basis vector. The first index is the eigenvalue for J 2,
denoted fi, and the second index is the eigenvalue for Jz, denoted fl. The form of the
eigenvalue equations must be

J 2
∣∣fi; fl> = fi

∣∣fi; fl>; (14 − 11)

Jz

∣∣fi; fl> = fl
∣∣fi; fl> : (14 − 12)

Equations (14–11) and (14–12) are in total angular momentum state space which is the composition
of orbital state space and spin state space. Using arguments similar to those of chapter 11 and
chapter 13, J±

∣∣fi; fl> is an eigenvector of both J 2 and Jz , meaning

Jz

(
J±

∣∣fi; fl>
)

=
(
fl ± h̄

)(
J±

∣∣fi; fl>
)
; (14 − 13)

and
J 2(J±

∣∣fi; fl>
)

= fi
(
J±

∣∣fi; fl>
)
: (14 − 14)

The braket of eigenvectors and the operator J 2 − Jz tells us

<fi; fl
∣∣ J 2 − Jz

∣∣ fi; fl > = fi − fl2 ≥ 0 ⇒ fi ≥ fl2;

so fl is bounded by fi. This means there is a maximum and minimum value of fl for a given
value of fi, so the “ladder” has a top and a bottom. Operating with the raising operator on the
eigenvector with a maximum value of fl yields the zero vector, or more simply zero, so

J−J+
∣∣fi; flmax> = 0 ⇒ fi = fl2

max + h̄flmax:

Similarly, operating with the lowering operator on the eigenvector with a minimum value of fl
yields the zero vector so

J+J−
∣∣fi; flmin> = 0 ⇒ fi = fl2

min − h̄flmin:

This is true for any eigenvalue fi, however, so we can equate these two equations and attain

flmax = −flmin;

Since the eigenvector of Jz, J±|fi; fl>, is raised
or lowered by h̄, we assume the rungs of the
ladder are separated by h̄. If there are n steps
between the bottom and top rungs of the ladder,
there is a total separation of nh̄ between the
bottom and the top. From figure 14–2 we expect

2flmax = nh̄ ⇒ flmax =
nh̄

2
⇒ fi = flmax

(
flmax + h̄

)

=
nh̄

2

(
nh̄

2
+ h̄

)

= h̄2
(n

2

)(n

2
+ 1

)
: (14 − 15)
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If we let j = n=2,
fi = h̄2j

(
j + 1

)
:

The fact j = n=2 vice just n is not consistent with the assumption that the rungs of the ladder
are separated by h̄. The rungs of the ladder are separated by h̄=2 vice h̄. The unit steps
of h̄ are due to increases/decreases in orbital angular momentum, and the increases/decreases
in steps of h̄=2 are due to increases/decreases in spin angular momentum. The z–component
of total angular momentum is quantized in units of h̄=2. We have brought to complete fruition
the ladder operator argument introduced in chapter 11. Orbital and spin angular momentum are
essentially subsets of total angular momentum.

The ladder operator argument is constructed from the eigenvalues of the Jz. Since the step
separation in the z–component of total angular momentum is h̄=2, h̄=2, must be an eigenvalue
of Jz. The ladder has maximum and minimum values of

flmin = −jh̄; flmax = jh̄;

where j is the total angular momentum quantum number. The eigenvalues of Jz are multiples
of h̄=2 ranging from −j to j. The symbol conventionally used to denote the quantum number
for which we have used a generic fl is mj, known as the total magnetic moment quantum
number. The eigenvalue/eigenvector equation is

Jz

∣∣fi; fl > = mj h̄
∣∣fi; fl > : (14 − 16)

Example 14–3: What are the possible results of a measurement of J 2 for an electron?

A solitary electron is a spin 1/2 particle, so has j = 1=2. The orbital angular momentum is
zero for a solitary electron, so spin is the only angular momentum extant in the system. The only
possible result of a measurement of J 2, then is

h̄2 j
(
j + 1

)
= h̄2 1

2

(
1
2

+ 1
)

= h̄2 1
2

(
3
2

)
=

3
4
h̄2:

Example 14–4: What are the possible results of a measurement of Jz for an electron?

The possible results of a measurement of Sz are −h̄=2 or h̄=2 for a particle of spin 1/2.
The reasoning is identical to example 13–10 because the only angular momentum extant in the
system is intrinsic spin.

A comment is appropriate. Even though half integral values of h̄ occur on the ladder, the
ladder operators yield only integral differences in eigenvalues. The raising and lowering operators
never guaranteed to take us everywhere, what they do is to take us to another eigenvalue. The
physics of the situation is we must use an additional argument to attain the eigenvalues in between.
The raising and lowering operators yield eigenvalues which are h̄ apart. The reason for this is
that for a given j, eigenvalues characterized by the quantum number mj are h̄ apart. If we
start with a Jz eigenvalue which is half integral, say mj = 1=2, operation with the raising
operator will yield mj = 3=2 and will bypass mj = 1, because mj = 1 is not a quantum
number for the j which has mj = 1=2. In other words, for a given system, all mj are either
integral or half integral.
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Example 14–5: Show for a particle with total angular momentum characterized by j, there
are 2j + 1 possible eigenstates.

For a particle with a total angular momentum quantum number j, there is but one eigenvalue
of J 2 and the only quantity which can assume different values is mj . The number of eigenstates
is the number of different values mj can assume. The allowed values of mj range from −j to j
in integer steps. There are as many eigenstates which are negative as are positive. The quantum
number j is the same as the maximum positive value as mj . This explains the 2j term in
2j + 1.

Next, is zero included? If zero is included, add one state to 2j for a total of 2j + 1 possible
states. Zero is not included if the total angular momentum quantum number is half integral; 1/2,
3/2, or 5/2 for instance. For instance, if j = 5=2, there are three possible positive values of mj,
namely mj = 5=2; 3=2, and 1=2, and three negative values mj = −1=2;−3=2, and −5=2.
We count six, but 2j = 2(5=2) = 5, so adding 1 to 2j gives the correct number of possible
eigenstates.

The total number of possible eigenstates for a particle of spin j is therefore 2j + 1.

With equation (14–11) and total angular momentum/total magnetic moment quantum num-
bers, the eigenvalue/eigenvector equation for the square of total angular momentum is

J 2
∣∣j; mj> = h̄2 j

(
j + 1

)∣∣j; mj> : (14 − 17)

The eigenvalue/eigenvector equation for the z–component of total angular momentum is

Jz

∣∣j; mj> = mj h̄
∣∣j; mj> : (14 − 18)

The magnitude of spin angular momentum is

∣∣ J
∣∣ =

√
J 2 = h̄

√
j(j + 1): (14 − 19)

The normalized eigenvalue/eigenvector equations for the raising and lowering operators for spin
are

J±
∣∣j; mj> =

√
j(j + 1) − mj(mj ± 1) h̄

∣∣j; mj ± 1> : (14 − 20)

Example 14–6: Calculate J+ and J− for all possible cases where j = 1.

The eigenstates of j = 1 are |j; mj> → |1; mj>. Possible mj are 1; 0; −1, so possible
eigenkets are |1; 1>; |1; 0>, and |1; −1>. There are three possible cases for each of the two
operators, so we desire six total expressions. The three expressions for the raising operator are

J+|1; 1> =
√

1(1 + 1) − 1(1 + 1) h̄|1; 2> = 0|1; 2> = 0;

where we would disallow the eigenstate |1; 2> on physical principals even if its coefficient did not
vanish because |1; 2> does not exist in a system with j = 1. Next

J+|1; 0> =
√

1(1 + 1) − 0(0 + 1) h̄|1; 1> =
√

2 h̄|1; 1>;

J+|1;−1> =
√

1(1 + 1) − −1(−1 + 1) h̄|1; 0> =
√

2 h̄|1; 0> :
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The three expressions for the lowering operator are

J−|1; 1> =
√

1(1 + 1) − 1(1 − 1) h̄|1; 0> =
√

2 h̄|1; 0>;

J−|1; 0> =
√

1(1 + 1) − 0(0 − 1) h̄|1; −1> =
√

2 h̄|1; −1>;

J−|1;−1> =
√

1(1 + 1) − −1(−1 − 1) h̄|1;−2> = 0|1;−2> = 0;

where again we would disallow |1;−2> on a physical basis even if the coefficient did not vanish
because it is an eigenstate which is not in the system.

Matrix Forms of Total Angular Momentum Operators
The section is dominantly examples, The intent is to illustrate the use of equations (14–17)

through (14–20), the raising and lowering operators, additional techniques with Dirac notation,
and a method of forming matrix representations of operators. The matrix forms of components
and the square of total angular momentum for each j are themselves useful results.

Example 14–7: Calculate the matrix form of Jz for j = 1.

Per example 14–6, the eigenstates of j = 1 are |j; mj > → |1; mj>. Possible mj are
1; 0; −1, so possible eigenkets are |1; 1>; |1; 0>, and |1;−1>. With this in mind, the matrix
form of Jz is

Jz =




<1; 1| Jz |1; 1> <1; 1| Jz |1; 0> <1; 1| Jz |1;−1>
<1; 0| Jz |1; 1> <1; 0| Jz |1; 0> <1; 0| Jz |1;−1>
<1; −1| Jz |1; 1> <1;−1| Jz |1; 0> <1; −1| Jz |1; −1>


 :

Employing the eigenvalue/eigenvector equation Jz|j; mj > = mj h̄|j; mj >, where the operator
acts on the eigenket to the right within the braket,

Jz =




<1; 1| h̄ |1; 1> <1; 1| 0 |1; 0> <1; 1| − h̄ |1;−1>
<1; 0| h̄ |1; 1> <1; 0| 0 |1; 0> <1; 0| − h̄ |1;−1>
<1;−1| h̄ |1; 1> <1;−1| 0 |1; 0> <1; −1| − h̄ |1; −1>




=




h̄ <1; 1|1; 1> 0 −h̄ <1; 1|1;−1>
h̄ <1; 0|1; 1> 0 −h̄ <1; 0|1;−1>
h̄ <1; −1|1; 1> 0 −h̄ <1; −1|1;−1>




where the center column is zero because the eigenvalues of the center column are 0. All numbers,
including h̄ commute with the bra to the left so may be brought out of the braket. The result
is the product of a number and an inner product. Since the inner product is also a number, all
elements of the center column are zero times a number, which is zero.

The remaining non–zero elements are h̄ times an inner product. When h̄ is factored out
of the matrix, we are left with elements which are inner products. These are inner products in an
orthonormal basis, so

<1; i|1; j> = –i;j;

and writing the orthonormality condition for each non–vanishing element,

Jz = h̄




<1; 1|1; 1> = 1 0 <1; 1|1;−1> = 0
<1; 0|1; 1> = 0 0 <1; 0|1;−1> = 0
<1; −1|1; 1> = 0 0 <1; −1|1;−1> = 1




= h̄




1 0 0
0 0 0
0 0 1


 ;
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which is the matrix form of Jz for j = 1.

There are a couple of points of instruction before we proceed. First, compare the matrix form
of Jz for j = 1 to Lz of chapter 11. They are identical. The reason is that if spin is not
considered, or if l = anything and s = 0, the total angular momentum operator ~J = ~L + ~S
reduces to the orbital angular momentum operator. In particular, if l = 1 and s = 0, we have
a case where j = 1. A word of caution — adding orbital and spin quantum numbers is not
usually simple addition. Per introductory comments, the quantum numbers represent quantized
observables, and the observables are the things which must make sense. The quantum numbers
are just indices used to uniquely identify eigenstates.

Secondly, notice that since j = 1 in the above example, its use in each ket is redundant. Just
as for spin where we uniquely identify spin up |+> vice |12 ; 1

2> or | 12 ; +>, we need only carry
the index that can vary. If j = 1 is understood, |1> uniquely identifies the state |1; 1>, and
|0> uniquely identifies the state |1; 0>. We need not explicitly write all of the eigenvalues of
the complete set of commuting observables to identify the eigenstate, the quantum numbers are
sufficient to uniquely identify the eigenstate. This is an economy which we have already employed.
And since one of the quantum numbers is determined by stating j = 1, we need not write that
index in the ket or bra.

Example 14–8: Calculate the matrix form of Jx for j = 1.

The raising and lowering operators are both composed of Jx and Jy. The strategy will be
to attain expressions of J+ and J− using equation (14–20), then substitute Jx and Jy, and
solve for Jx. We have the expressions of J+ and J− for all six possibilities for j = 1 from
example 14–6. We select two of these,

J+| − 1> =
(
Jx + iJy

)
| − 1> =

√
2 h̄|0>;

J−| − 1> =
(
Jx − iJy

)
| − 1> = 0;

because when we add them we get

2Jx| − 1> =
√

2 h̄|0> ⇒ Jx| − 1> =
h̄√
2
|0> :

When we add
J+|1> =

(
Jx + iJy

)
|1> = 0;

J−|1> =
(
Jx − iJy

)
|1> =

√
2 h̄|0>;

we get

2Jx|1> =
√

2 h̄|0> ⇒ Jx|1> =
h̄√
2
|0> :

Lastly, when we add
J+|0> =

(
Jx + iJy

)
|0> =

√
2 h̄|1>;

J−|0> =
(
Jx − iJy

)
|0> =

√
2 h̄| − 1>;
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we attain
2Jx|0> =

√
2 h̄

(
|1> +| − 1>

)
⇒ Jx|0> =

h̄√
2

(
|1> +| − 1>

)
:

We now have an expression for Jx operating on each possible eigenstate. This is key in the
formation of the matrix, which is

Jx =




<1| Jx |1> <1| Jx |0> <1| Jx | − 1>
<0| Jx |1> <0| Jx |0> <0| Jx | − 1>

<−1| Jx |1> <−1| Jx |0> <−1| Jx | − 1>


 :

The operation of Jx on the ket in the braket leaves

Jx =




<1| h̄√
2

|0> <1| h̄√
2

(|1> +| − 1>) <1| h̄√
2

|0>
<0| h̄√

2
|0> <0| h̄√

2
(|1> +| − 1>) <0| h̄√

2
|0>

<−1| h̄√
2

|0> <−1| h̄√
2

(|1> +| − 1>) <−1| h̄√
2

|0>




=
h̄√
2




<1|0> <1|(|1> +| − 1>) <1|0>
<0|0> <0|(|1> +| − 1>) <0|0>

<−1|0> <−1|(|1> +| − 1>) <−1|0>


 ;

since h̄=
√

2 commutes with the bra and can be factored out of the elements of the matrix as a
coefficient. Then because of the orthonormality of eigenstates,

Jx =
h̄√
2




0 1 + 0 0
1 0 + 0 1
0 0 + 1 0


 =

h̄√
2




0 1 0
1 0 1
0 1 0


 ;

which is the desired result. The matrix is also identical to Lx for orbital angular momentum
discussed in chapter 11.

Using procedures similar to example 14–8,

Jy =
h̄√
2




0 −i 0
i 0 −i
0 i 0


 ;

for j = 1, which is the same as Ly of chapter 11. Were we to square all the component matrices
and add them, we would find

J 2 = J 2
x + J 2

y + J 2
z = 2h̄2I;

per the calculation done in example 11–8.

These are matrices we have seen. We need some examples calculating matrix operators we
have not yet seen.

Example 14–9: Calculate Jx for j = 3=2.

Again, the strategy will be to attain expressions of J+ and J− using equation (14–20),
substitute Jx and Jy , and solve for Jx. For j = 3=2, there are 2

(
3
2

)
+ 1 = 4 possible

eigenstates. For J+ acting on each of these, where we denote
∣∣ 3

2 ; mj> → |mj>,

J+

∣∣∣3
2
> =

√
3
2

(
3
2

+ 1
)

−
3
2

(
3
2

+ 1
)

h̄
∣∣∣5
2
> =

√
15
4

−
15
4

h̄
∣∣∣5
2
> = 0

∣∣∣5
2
> = 0;
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J+

∣∣∣1
2
> =

√
3
2

(
3
2

+ 1
)

−
1
2

(
1
2

+ 1
)

h̄
∣∣∣3
2
> =

√
15
4

−
3
4

h̄
∣∣∣3
2
> =

√
3 h̄

∣∣∣3
2
>;

J+

∣∣∣ −
1
2
> =

√
3
2

(
3
2

+ 1
)

− −
1
2

(
−

1
2

+ 1
)

h̄
∣∣∣1
2
> =

√
15
4

+
1
4

h̄
∣∣∣1
2
> = 2 h̄

∣∣∣1
2
>;

J+

∣∣∣ −
3
2
> =

√
3
2

(
3
2

+ 1
)

− −
3
2

(
−

3
2

+ 1
)

h̄
∣∣∣ −

1
2
> =

√
15
4

−
3
4

h̄
∣∣∣ −

1
2
> =

√
3 h̄

∣∣∣ −
1
2
>;

J−

∣∣∣3
2
> =

√
3
2

(
3
2

+ 1
)

−
3
2

(
3
2

− 1
)

h̄
∣∣∣1
2
> =

√
15
4

−
3
4

h̄
∣∣∣1
2
> =

√
3 h̄

∣∣∣1
2
>;

J−

∣∣∣1
2
> =

√
3
2

(
3
2

+ 1
)

−
1
2

(
1
2

− 1
)

h̄
∣∣∣ −

1
2
> =

√
15
4

+
1
4

h̄
∣∣∣ −

1
2
> = 2 h̄

∣∣∣ −
1
2
>;

J−

∣∣∣ −
1
2
> =

√
3
2

(
3
2

+ 1
)

− −
1
2

(
−

1
2

− 1
)

h̄
∣∣∣ −

3
2
> =

√
15
4

−
3
4

h̄
∣∣∣ −

3
2
> =

√
3 h̄

∣∣∣ −
3
2
>;

J−

∣∣∣ −
3
2
> =

√
3
2

(
3
2

+ 1
)

− −
3
2

(
−

3
2

− 1
)

h̄
∣∣∣ −

5
2
> =

√
15
4

−
15
4

h̄
∣∣∣ −

5
2
> = 0:

We have the expressions of J+ and J− for all eight possibilities for j = 3=2. Then adding,

J+

∣∣∣3
2
> =

(
Jx + iJy

)∣∣∣3
2
> = 0;

J−

∣∣∣3
2
> =

(
Jx − iJy

)∣∣∣3
2
> =

√
3 h̄

∣∣∣1
2
>;

⇒ 2Jx

∣∣∣3
2
> =

√
3 h̄

∣∣∣1
2
> ⇒ Jx

∣∣∣3
2
> =

√
3

2
h̄
∣∣∣1
2
> :

Adding equations where the eigenstate of the raising and lowering operator are identical, the other
three cases are

J+

∣∣∣1
2
> =

(
Jx + iJy

)∣∣∣1
2
> =

√
3 h̄

∣∣∣3
2
>;

J−

∣∣∣1
2
> =

(
Jx − iJy

)∣∣∣1
2
> = 2 h̄

∣∣∣ − 1
2
>;

⇒ 2Jx

∣∣∣1
2
> = h̄

(√
3
∣∣∣3
2
> +2

∣∣∣ − 1
2
>

)
⇒ Jx

∣∣∣1
2
> = h̄

(√
3

2

∣∣∣3
2
> +

∣∣∣ − 1
2
>

)
;

J+

∣∣∣ − 1
2
> =

(
Jx + iJy

)∣∣∣ − 1
2
> = 2 h̄

∣∣∣1
2
>;

J−

∣∣∣ −
1
2
> =

(
Jx − iJy

)∣∣∣ −
1
2
> =

√
3 h̄

∣∣∣ −
3
2
>;

⇒ 2Jx

∣∣∣ −
1
2
> = h̄

(
2
∣∣∣1
2
> +

√
3
∣∣∣ −

3
2
>

)
⇒ Jx

∣∣∣ −
1
2
> = h̄

(∣∣∣1
2
> +

√
3

2

∣∣∣ −
3
2
>

)
;
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J+

∣∣∣ −
3
2
> =

(
Jx + iJy

)∣∣∣ −
3
2
> =

√
3 h̄

∣∣∣ −
1
2
>;

J−

∣∣∣ − 3
2
> =

(
Jx − iJy

)∣∣∣ − 3
2
> = 0;

⇒ 2Jx

∣∣∣ − 3
2
> =

√
3 h̄

∣∣∣ − 1
2
> ⇒ Jx

∣∣∣ − 3
2
> =

√
3

2
h̄
∣∣∣ − 1

2
> :

We are ready to form Jx, which is

Jx =




< 3
2 | Jx |32> < 3

2 | Jx | 12> < 3
2 | Jx | − 1

2> < 3
2 | Jx | − 3

2>
< 1

2 | Jx |32> < 1
2 | Jx | 12> < 1

2 | Jx | − 1
2> < 1

2 | Jx | − 3
2>

<− 1
2 | Jx | 32> <−1

2 | Jx | 12> <−1
2 | Jx | − 1

2> <−1
2 | Jx | − 3

2>
<− 3

2 | Jx | 32> <−3
2 | Jx | 12> <−3

2 | Jx | − 1
2> <−3

2 | Jx | − 3
2>




=




< 3
2 | h̄

√
3

2 |12> < 3
2 | h̄(

√
3

2 | 32> +| − 1
2>) < 3

2 | h̄(|12> +
√

3
2 | − 3

2>) < 3
2 | h̄

√
3

2 | − 1
2>

< 1
2 | h̄

√
3

2 |12> < 1
2 | h̄(

√
3

2 | 32> +| − 1
2>) < 1

2 | h̄(|12> +
√

3
2 | − 3

2>) < 1
2 | h̄

√
3

2 | − 1
2>

<−1
2 | h̄

√
3

2 |12> <−1
2 | h̄(

√
3

2 | 32> +| − 1
2>) <−1

2 | h̄(|12> +
√

3
2 | − 3

2>) <− 1
2 | h̄

√
3

2 | − 1
2>

<−3
2 | h̄

√
3

2 |12> <−3
2 | h̄(

√
3

2 | 32> +| − 1
2>) <−3

2 | h̄(|12> +
√

3
2 | − 3

2>) <− 3
2 | h̄

√
3

2 | − 1
2>




= h̄




√
3

2 < 3
2 |12>

√
3

2 < 3
2 |32> + < 3

2 | − 1
2> < 3

2 | 12> +
√

3
2 < 3

2 | − 3
2>

√
3

2 < 3
2 | − 1

2>√
3

2 < 1
2 |12>

√
3

2 < 1
2 |32> + < 1

2 | − 1
2> < 1

2 | 12> +
√

3
2 < 1

2 | − 3
2>

√
3

2 < 1
2 | − 1

2>√
3

2 <−1
2 | 12>

√
3

2 <−1
2 |32> + <−1

2 | − 1
2> <− 1

2 | 12> +
√

3
2 <− 1

2 | − 3
2>

√
3

2 <−1
2 | − 1

2>√
3

2 <−3
2 | 12>

√
3

2 <−3
2 |32> + <−3

2 | − 1
2> <− 3

2 | 12> +
√

3
2 <− 3

2 | − 3
2>

√
3

2 <−3
2 | − 1

2>


 ;

and when we consider the orthonormality of eigenstates, this is

= h̄




0
√

3
2 + 0 0 + 0 0

√
3

2 0 + 0 1 + 0 0
0 0 + 1 0 + 0

√
3

2

0 0 + 0 0 +
√

3
2 0




⇒ Jx =
h̄

2




0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0




Were we to follow similar procedures except subtract vice add the expressions for identical
eigenstates of the raising and lowering operators, we would attain expressions for Jy , and would
find

Jy =
h̄

2




0 −
√

3 i 0 0√
3 i 0 −2i 0
0 2i 0 −

√
3 i

0 0
√

3 i 0




Example 14–10: Calculate Jz for j = 3=2.

Jz =




< 3
2 | Jz |32> < 3

2 | Jz | 12> < 3
2 | Jz | − 1

2> < 3
2 | Jz | − 3

2>
< 1

2 | Jz |32> < 1
2 | Jz | 12> < 1

2 | Jz | − 1
2> < 1

2 | Jz | − 3
2>

<− 1
2 | Jz |32> <−1

2 | Jz | 12> <−1
2 | Jz | − 1

2> <−1
2 | Jz | − 3

2>
<− 3

2 | Jz |32> <−3
2 | Jz | 12> <−3

2 | Jz | − 1
2> <−3

2 | Jz | − 3
2>



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and having seen the orthonormality condition applied repeatedly, we do a bit of mental gymnastics,
since we can see which elements will have identical eigenstates which will eventually be evaluted
as 1, and which elements have eigenstates which differ, and will eventually be evaluated as 0, so

Jz =




< 3
2 | 3

2 h̄ |32> 0 0 0
0 < 1

2 | 1
2 h̄ |12> 0 0

0 0 <− 1
2 | − 1

2 h̄ | − 1
2> 0

0 0 0 <−3
2 | 3

2 h̄ | − 3
2>




⇒ Jz =
h̄

2




3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3




Example 14–11: Show the eigenvalues of the matrix form of Jz for j = 3=2 are consistent
with the eigenvalue/eigenvector equation for Jz for j = 3=2.

The eigenvalues of the diagonal matrix are the elements on the diagonal, times the coefficient
h̄=2, so the eigenvalues are 3h̄=2; h̄=2; −h̄=2, and −3h̄=2. The eigenvalue/eigenvector equation
for Jz is

Jz

∣∣j; m> = mh̄
∣∣j; m>;

where the eigenvalue is mh̄. For j = 3=2, the possible values of m are 3=2; 1=2; −1=2 and
−3=2, so the eigenvalues are 3h̄=2; h̄=2; −h̄=2, and −3h̄=2, and are identical to the eigenvalues
from the matrix form of the operator, as they must be.

Example 14–12: Calculate the matrix form of J 2 for j = 3=2.

From the previous two examples, we have Jx; Jy, and Jz, and attain the desired result
using

J 2 = J 2
x + J 2

y + J 2
z :

The squares of the components are

J 2
x = JxJx =

h̄

2




0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0




h̄

2




0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0




=
h̄2

4




3 0
√

3 0
0 3 + 4 0

√
3√

3 0 4 + 3 0
0

√
3 0 3


 =

h̄2

4




3 0
√

3 0
0 7 0

√
3√

3 0 7 0
0

√
3 0 3


 ;

J 2
y = JyJy =

h̄

2




0 −
√

3 i 0 0√
3 i 0 −2i 0
0 2i 0 −

√
3 i

0 0
√

3 i 0




h̄

2




0 −
√

3 i 0 0√
3 i 0 −2i 0
0 2i 0 −

√
3 i

0 0
√

3 i 0




=
h̄2

4




3 0 −
√

3 0
0 3 + 4 0 −

√
3

−
√

3 0 4 + 3 0
0 −

√
3 0 3


 =

h̄2

4




3 0 −
√

3 0
0 7 0 −

√
3

−
√

3 0 7 0
0 −

√
3 0 3


 ;
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J 2
z = JzJz =

h̄

2




3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3




h̄

2




3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3


 =

h̄2

4




9 0 0 0
0 1 0 0
0 0 1 0
0 0 0 9


 :

The sum of the squares of these components is

J 2 =
h̄2

4




3 0
√

3 0
0 7 0

√
3√

3 0 7 0
0

√
3 0 3


 +

h̄2

4




3 0 −
√

3 0
0 7 0 −

√
3

−
√

3 0 7 0
0 −

√
3 0 3


 +

h̄2

4




9 0 0 0
0 1 0 0
0 0 1 0
0 0 0 9




=
h̄2

4




3 + 3 + 9 0
√

3 −
√

3 0
0 7 + 7 + 1 0

√
3 −

√
3√

3 −
√

3 0 7 + 7 + 1 0
0

√
3 −

√
3 0 3 + 3 + 9


 =

15
4

h̄2




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 =

15
4

h̄2I:

Example 14–13: Show the eigenvalues of the matrix form of J 2 for j = 3=2 are consistent
with the eigenvalue/eigenvector equation for J 2 for j = 3=2.

The eigenvalue/eigenvector equation for J 2 is

J 2
∣∣j; m> = j

(
j + 1

)
h̄2∣∣j; m>;

where the eigenvalue of J 2 is j
(
j + 1

)
h̄2. For j = 3=2, the single possible eigenvalue is

j
(
j + 1

)
h̄2 =

3
2

(
3
2

+ 1
)

h̄2 =
15
4

h̄2;

which is consistent with a matrix of the form 15h̄2I=4, which has the single possible eigenvalue
15h̄2=4.

The Problem of Combining Two Angular Momentum
States
First, we want to clarify the problem and describe the form of the answer. The title to

this section could be “The Problem of Combining Two Total Angular Momentum States,” but the
adjective total is understood at this point. If orbital or spin angular momentum is being addressed,
it should be specified as a subset of total angular momentum.

The substance of this and the following sections is commonly called the addition of angular
momentum. A better description is the one used; combination of angular momentum states of
two or more particles. We have two individual eigenstates and want an eigenstate for the combi-
nation. In classical vector addition, the resultant must be the vector sum of the two component
angular momenta. Also, the z–components must sum to that of the resultant. These constraints
must be satisfied in a quantum mechanical system. A quantum mechanical system has additional
constraints, the “length” and “length” of the z–component of an angular momentum “vector”
is quantized. A semi–classical description is seen in figure 14–3. This could be a classical figure,
other than the quantum mechanical length must be J =

√
j(j + 1) h̄, in all three cases. As

indicated in the figure, a resultant can be composed of an infinite number of classical vectors.
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Quantum mechanically, there are a limited number of possible combinations because of quantiza-
tion of “length.”

Figure 14 − 2: A Semi − Classical Picture of Combination of Angular Momentum

For simplicity, we will address only two particles, though three or more particles can be
addressed by a similar conceptual development.

“Addition of angular momentum” means we want to find the angular momentum eigenstates of
the system or possible angular momentum eigenstates of the system given the angular momentum
eigenstates or possible angular momentum of the two particles composing the system. We are
looking for eigenstates where

~J = ~J1 + ~J2:

The first step in solving this problem is to realize each of the three angular momenta have compo-
nents which are canonical, i.e.,

[
J1i ; J1j

]
= ih̄J1k ;

[
J2i ; J2j

]
= ih̄J2k ; and

[
Ji; Jj

]
= ih̄Jk:

Each of the three angular momenta satisfies the eigenvalue/eigenvector equations,

J 2
1

∣∣j1; m1> = j1
(
j1 + 1

)
h̄2∣∣j1; m1>; J 2

2

∣∣j2; m2> = j2
(
j2 + 1

)
h̄2∣∣j2; m2>;

and
J

∣∣j; m> = j
(
j + 1

)
h̄2∣∣j; m>;

and

J1z

∣∣j1; m1> = m1h̄
∣∣j1; m1>; J2z

∣∣j2; m2> = m2h̄
∣∣j2; m2>; and Jz

∣∣j; m> = mh̄
∣∣j; m> :

Part of the reason to write these explicitly is to point out the notation and the difference
in eigenstates. The eigenstates are denoted differently because they exist in different subspaces.
Each particle and the combined system have there own total angular momentum and total magnetic
moment quantum numbers. The eigenstates of the first particle are |j1; m1>, which is a complete
set of eigenstates for the first particle. The eigenstates of the second particle are |j2; m2>, which
is a complete set of eigenstates for the second particle. And the eigenstates of the combined system
are |j; m>, which is a complete set of eigenstates for the system. The eigenstates of the combined
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system are described by the direct product of the components, |j1; m1>
⊗

|j2; m2>, and since
there are four quantum numbers, we would write this as

|j1; m1; j2; m2> = |j1; m1>
⊗

|j2; m2>; (14 − 21)

which describes the subspace in which the desired eigenstates exist. This is the subspace in which
the eigenstates |j; m> exist. Once in the space where |j1; m1; j2; m2> describe the eigenstates,
the transition to |j; m> is a change of basis.

Some authors use two consecutive kets vice a ket with four indices, i.e.,

| j1; m1> | j2; m2> = | j1; m1; j2; m2> :

Realize this is just a different method of specifying a combined eigenstate.

Since there are 2j1 + 1 possible eigenstates for a particle with angular momentum quantum
number j1, and there are 2j2 + 1 possible eigenstates for a particle with angular momentum
quantum number j2, there are a total of

(
2j1 + 1

)(
2j2 + 1

)

possible eigenstates for the combined system. There are
(
2j1 + 1

)(
2j2 + 1

)
possible values of

|j1; m1; j2; m2> or |j; m>.

Besides conceptual development and notation, equation (14–21) highlights the fact the eigen-
states of the two particles exist in different subspaces. That the eigenstates of the two particles
exist in different subspaces means they commute, i.e.,

[
J1; J2

]
= 0: (14 − 22)

Further, since they exist in different subspaces, operators of the first particle have no effect on the
second, and operators of the second particle have no effect on the first. The following two examples
use Dirac notation to symbolically “prove” equations (14–22) and (14–21), though the argument
is completely dependent upon the fact the angular momentum states exist in different subspaces.

Example 14–14: Show
[
J1x ; J2y

]
= 0.

This example is a partial proof of equation (14–22). If the component operators were for the
same particle, we would expect them to be canonical, i.e., the commutator would be ih̄ times the
z–component operator of that particle. The subscripts indicate operators of different particles,
and therefore different subspaces though, so the operators of particle one have no effect on the
eigenkets of particle two, and vice versa. Symbolically,

J 2
1

∣∣j2; m2> =
(
J 2

1x
+ J 2

1y
+ J 2

1z

)∣∣j2; m2>

= J 2
1x

∣∣j2; m2> +J 2
1y

∣∣j2; m2> +J 2
1z

∣∣j2; m2>

= J1xJ1x

∣∣j2; m2> +J1yJ1y

∣∣j2; m2> +J1zJ1z

∣∣j2; m2>

= J1x

(
0
)

+ J1y

(
0
)

+ J1z

(
0
)

= 0 + 0 + 0 = 0:

Similarly, J 2
2

∣∣j1; m1>.
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There are two cases, the commutator can act on an eigenstate of particle one or particle two.
If it acts on an eigenket of particle one,

[
J1x ; J2y

]∣∣j1; m1> = J1x J2y

∣∣j1; m1> −J2y J1x

∣∣j1; m1>

= J1x

(
0
)

− J2y fi
∣∣j1; m1>

= 0 − fiJ2y

∣∣j1; m1> = 0 − fi
(
0
)

= 0 − 0 = 0;

where fi is a generic eigenvalue. Using similar procedures, there is an identical result for the
second case, [

J1x ; J2y

]∣∣j2; m2> = 0;

therefore,
[
J1x ; J2y

]
= 0. Equation (14–22) follows by repeating the same argument for the

other sets of components and adding all the zeros. However it is expressed, equation (14–22)
is a consequence of the fact the individual particle operators and eigenstates exist in different
subspaces.

Example 14–15: Show the components of the combined angular momentum operators are
canonical.

One commutator of the components of the combined angular momentum operators is
[
Jx; Jy

]
=

[
J1x + J2x ; J1y + J2y

]
;

and using the development of example 14–2 and the fact operators of different particles exist in
different subspaces so have no effect on one another, this is

[
Jx; Jy

]
=

[
J1x ; J1y

]
+

[
J1x ; J2y

]
+

[
J2x; J1y

]
+

[
J2x ; J2y

]

= ih̄J1z + 0 + 0 + ih̄J2z

= ih̄
(
J1z + J2z

)
= ih̄Jz:

Other components are addressed similarly, so
[
Ji; Jj

]
= ih̄Jk:

Clebsch–Gordan Coefficients
The fact a set of kets spans a space is expressed in the completeness relation,

∑

i

∣∣i><i
∣∣ = I:

If the kets are eigenstates of angular momentum we can write this
∑

j; m

∣∣j; m><j; m
∣∣ = I;

or ∑

j1; m1; j2; m2

∣∣j1; m1; j2; m2><j1; m1; j2; m2
∣∣ = I:
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The last two equations are both statements in the space of the combined angular momentum of
the two particles. They are, therefore, equivalent statements except they are expressed in different
bases. We want |j; m> because it uses the quantum numbers of the combined angular momenta,
though on occasion it may be useful to go in the other direction. A change of basis is a unitary
transformation. Here, this is accomplished by multiplication by the identity, which is the matrix
equivalent of multiplication by one.

|j; m> = I
∣∣j; m>

=
∑

j1; m1; j2; m2

∣∣j1; m1; j2; m2><j1; m1; j2; m2
∣∣j; m>

=
∑

j1; m1; j2; m2

<j1; m1; j2; m2
∣∣j; m>

∣∣j1; m1; j2; m2>

where < j1; m1; j2; m2
∣∣j; m> are known as the Clebsch–Gordan coefficients. There are a

variety of different names and notations used for these. Clebsch–Gordan coefficients is the most
popular name, but they are called Wigner, vector addition, and vector coupling coefficients by some
authors. The symbol C is often used to denote them, and it will often have a variety of quantum
numbers as superscripts, subscripts, or arguments, such as Cj1; j2; j

m1; m2; m, or C(j1; m1; j2; m2; j; m).
We will use just C, and the quantum state will be apparent from the eigenstates for which it
is a coefficient. If a Clebsch–Gordan coefficient is used apart from eigenstates, superscripts and
subscripts are practical.

The Clebsch–Gordan coefficient, < j1; m1; j2; m2
∣∣j; m >, is an inner product which is a

number that can be complex. There is a choice of phase in defining them, and the dominant
convention is to choose the phase such that they are real numbers.

If you find the eigenstate(s) |j; m> in terms of a linear combination of the |j1; m1; j2; m2>,
which are just a specification of the component eigenstates, you have “added” the angular mo-
menta. The problem of combination or addition of angular momenta reduces to attaining a linear
combination of appropriate eigenstates each with an appropriate coefficient. These coefficients are
the Clebsch–Gordan coefficients.

A conventional assumption is that j1 and j2 do not vary for a given problem. In other
words, we assume we know the angular momenta of the two particles which compose the system.
The problem becomes simpler and more practical if you know j1 = 3=2 and j2 = 2, or j1 = 1
and j2 = 1=2 for instance. If the ji’s are fixed, the summation for the change of basis is simplified
to

|j; m> =
∑

m1; m2

<j1; m1; j2; m2
∣∣j; m>

∣∣j1; m1; j2; m2>;

since we cannot sum over an index that does not vary.

We are going to change the notation slightly in light of this assumption. Clebsch–Gordan
coefficients are commonly compiled in tables such as table 14–1. Each subsection represents a
portion of a matrix. These are subsections for various possibilities of j1 and j2, j1 = 3=2 and
j2 = 2, or j1 = 1 and j2 = 1=2 for instance. The indices for vertical columns are generally j
and m. The indices for horizontal columns are generally m1 and m2, where j1 and j2 are
understood because they are fixed for that portion of the table. If we write the two ji indices
first, as |j1; j2; m1; m2>, it is easier to put the quantum numbers where they belong. Keeping
track of indices can become formidable, so the change in the order of the quantum numbers is
worthwhile for the purposes of organization.
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We will construct two of the lower order subsections of the table 14–1. We intend to summarize
theory, practice using tools developed to this point, and develop competency in using table 14–1
in doing so.

Example 14–16: Show <j1; j2; m1; m2|j; m> = 0 unless m = m1 + m2.

Since Jz = J1z + J2z ,

Jz|j; m> =
(
J1z + J2z

) ∑

m1; m2

<j1; j2; m1; m2
∣∣j; m>

∣∣j1; j2; m1; m2>

where the indices of the summation indicate j1 and j2 are fixed. The inner product
< j1; j2; m1; m2

∣∣j; m> is the Clebsch–Gordan coefficient which we will write as C, so the
above equation becomes

Jz|j; m> =
(
J1z + J2z

) ∑

m1; m2

C
∣∣j1; j2; m1; m2>

=
∑

m1; m2

C
(
J1z + J2z

)∣∣j1; j2; m1; m2>

=
∑

m1; m2

C
(
J1z

∣∣j1; j2; m1; m2> +J2z

∣∣j1; j2; m1; m2>
)

⇒ mh̄
∣∣j; m> =

∑

m1; m2

C
(
m1h̄

∣∣j1; j2; m1; m2> + m2h̄
∣∣j1; j2; m1; m2>

)

since J1z has no effect on the indices of the second particle, and J2z has no effect on the indices
describing the first particle. Then

mh̄
∣∣j; m> = h̄

∑

m1; m2

C
(
m1 + m2

)∣∣j1; j2; m1; m2>

⇒ m
∣∣j; m> =

∑

m1; m2

C
(
m1 + m2

)∣∣j1; j2; m1; m2> :

But
|j; m> =

∑

m1; m2

<j1; j2; m1; m2
∣∣j; m>

∣∣j1; j2; m1; m2>

so

m
∑

m1; m2

<j1; j2; m1; m2
∣∣j; m>

∣∣j1; j2; m1; m2> =
∑

m1; m2

C
(
m1 + m2

)∣∣j1; j2; m1; m2>

⇒
∑

m1; m2

C m
∣∣j1; j2; m1; m2> −

∑

m1; m2

C
(
m1 + m2

)∣∣j1; j2; m1; m2> = 0

⇒
∑

m1; m2

C
(
m − m1 − m2

)∣∣j1; j2; m1; m2> = 0:

Since the |j1; j2; m1; m2> must be linearly independent, each coefficient must vanish individually,
i.e.,

C
(
m − m1 − m2

)
= 0:
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Therefore, either m − m1 − m2 = 0 ⇒ m = m1 + m2, or C = 0.

Combination of Angular Momenta for Spin 1/2 Particles
The first system we examine is the simplest and possibly the most important, the system of

two spin 1/2 particles where orbital angular momentum is zero. In other words, j1 = j2 = 1=2.
The tools needed to derive the j1 = j2 = 1=2 subsection of table 14–1 are knowledge of the
relationships between angular momentum and total magnetic moment quantum numbers, the
normalization condition, the lowering operator, and the orthonormality condition. Since these
have been previously developed, we present the derivation in the next four examples using these
tools of calculation.

Example 14–17: What are the possible eigenstates of two particles with spin 1/2 for each
eigenbasis?

For j1 = j2 = 1=2,
∣∣j1; j2; m1; m2> =

∣∣1
2
;

1
2
; m1; m2> :

Since j1 and j2 do not change for this problem, we can write just
∣∣j1; j2; m1; m2> =

∣∣ m; m2> :

Remembering | m | ≤ j for each particle, and eigenstates of mi are separated by integral values
of h̄, the possible eigenstates of each particle are

∣∣ 1
2
>;

∣∣ −
1
2
> :

As in chapter 13, we can refer to these as spin up and spin down. The possible eigenstates of each
particle can also be denoted

|+>; |−> :

Simply substituting these into |j1; j2; m1; m2 > =
∣∣ m; m2 >, the possible eigenstates of the

combined system are

∣∣ 1
2
;

1
2
>;

∣∣ 1
2
; −1

2
>;

∣∣ − 1
2
;

1
2
>;

∣∣ − 1
2
; −1

2
>;

or
| +; +>; |+; −>; |−; +>; | −; −> :

The possible eigenstates of the | j; m> are easier. Since | m | ≤ j and jmax = 1=2+1=2 = 1,
and the eigenvalues of Jz are separated by integral values of h̄, the possible eigenstates in the
| j; m> basis are

∣∣ 1; 1>;
∣∣ 1; 0>;

∣∣ 1; −1>; and
∣∣0; 0> :

It is important to know that there are

(
2j1 + 1

)(
2j2 + 1

)
=

(
2
(

1
2

)
+ 1

)(
2
(

1
2

)
+ 1

)
= (2)(2) = 4

19



possible eigenstates in either basis, and that is apparent from example 14–17.

Example 14–18: Derive the Clebsch–Gordan coefficient for a system with two particles with
spin up.

For two spin up particles, each with eigenstate | +>,

j = j1 + j2 =
1
2

+
1
2

= 1

is the maximum value of total angular momentum. The maximum value of the total magnetic
moment for the system is

mmax = j = 1:

For two spin up particles, this is the only possibility, so one eigenstate in the | j; m> basis is
| 1; 1>. This corresponds to | +; +> in the |j1; j2; m1; m2 > basis. There are no other
possibilities to attain this | j; m> state. Therefore

∣∣ j; m> =
∑

m1; m2

C
∣∣ m1; m2>

⇒
∣∣ 1; 1> = C

∣∣ +; +> :

Normalizing

1 = <1; 1
∣∣ 1; 1> = <+; +

∣∣ C∗C
∣∣+; +> = C2 <+; +

∣∣+; +> = C

because of the orthonormality of eigenstates, the innner product of identical eigenstates is one,
and thus the Clebsch–Gordan coefficient is 1.

Example 14–19: Derive the Clebsch–Gordan coefficient for | j; m> = | 1; 0>.

We can attain | 1; 0 > from | 1; 1 > by using the lowering operator on both sides of
| 1; 1> = | +; +>. The strategy is to use the eigenvalue/eigenvector equation on each side
of the equation, so we need to keep track of the mi’s, and thus it is more practical to write the
mi’s, vice + and − to specify the kets. Realizing J− = J1− + J2− , in general

J−
∣∣ j; m> =

(
J1− + J2−

)∣∣ m1; m2>

which for this problem is

J−
∣∣ 1; 1> =

(
J1− + J2−

)∣∣∣ 1
2
;

1
2
>

= J1−

∣∣∣ 1
2
;

1
2
> + J2−

∣∣∣ 1
2
;

1
2
>

⇒
√

j(j + 1) − m(m − 1) h̄
∣∣ 1; 1 − 1>

=
√

j1(j1 + 1) − m1(m1 − 1) h̄
∣∣∣ 1
2

− 1;
1
2
> +

√
j2(j2 + 1) − m2(m2 − 1) h̄

∣∣∣ 1
2
;

1
2

− 1>

where J1− acts only on m1 and J2− acts only on m2. Explicitly

⇒
√

1(1 + 1) − 1(1 − 1) h̄
∣∣ 1; 0>
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=

√
1
2

(
1
2

+ 1
)

−
1
2

(
1
2

− 1
)

h̄
∣∣∣− 1

2
;

1
2
> +

√
1
2

(
1
2

+ 1
)

−
1
2

(
1
2

− 1
)

h̄
∣∣∣ 1
2
; −

1
2
>

⇒
√

2 − 0
∣∣ 1; 0> =

√
3
4

+
1
4

∣∣∣− 1
2
;

1
2
> +

√
3
4

+
1
4

∣∣∣ 1
2
; −

1
2
>

⇒
√

2
∣∣ 1; 0> =

∣∣∣− 1
2
;

1
2
> +

∣∣∣ 1
2
; −

1
2
>

⇒
∣∣ 1; 0> =

1√
2

∣∣∣− 1
2
;

1
2
> +

1√
2

∣∣∣ 1
2
; −1

2
> :

Using the “spin up/spin down” notation, this is

∣∣ 1; 0> =
1√
2

∣∣∣ −; +> +
1√
2

∣∣∣ +; −> :

Here we have a linear combination of two eigenstates of the other basis.

Using the lowering operator on | j; m> = | 1; 0> in the form J− = J1− +J2− , we conclude

∣∣ 1; −1> =
∣∣∣ −

1
2
; −

1
2
> or

∣∣ 1; −1> =
∣∣ −; −> :

The Clebsch–Gordan coefficient here is 1.

Example 14–20: What are the Clebsch–Gordan coefficients for the state | j; m> = | 0; 0 >?

There are two ways to attain j = 0. These are m1+m2 = 1=2−1=2 or m1+m2 = −1=2+1=2,
so | 0; 0 > is a linear combination of | +; −> and |−; +>. This linear combination must be
orthonormal to the other three eigenstates, including | 1; 0 > which is itself a linear combination
of these eigenstates. We can write the orthonormality condition for these two eigenstates

0 = <1; 0
∣∣ 0; 0> =

(
<−; +

∣∣ 1√
2
+ <+; −

∣∣ 1√
2

) (
a
∣∣ +; −> +b

∣∣ −; +>

)

where a and b are the numbers we seek. Multiplying these

0 =
1√
2

(
a< −;+

∣∣+;−>

/
+ b< −;+

∣∣−; +> + a< +;−
∣∣+;−> + b< +; −

∣∣−; +>

/ )
;

where inner products with eigenstates which are not identical are zero so are struck. The other
two inner products are one, so

a + b = 0 ⇒ a = −b;

which means ∣∣ 0; 0> = a
∣∣+;−> − a

∣∣−;+> :

Normalizing,

1 = <0; 0
∣∣0; 0> =

(
<+; −

∣∣a∗− <−; +
∣∣a∗

)(
a
∣∣+;−> −a

∣∣−; +>
)

⇒ <+; −
∣∣a∗a

∣∣+; −> − <+; −
∣∣a∗a

∣∣−;+> − <−; +
∣∣a∗a

∣∣+;−> + <−; +
∣∣a∗a

∣∣−;+> = 1
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⇒
∣∣a

∣∣2
(

<+;−
∣∣+;−> − <+;−

∣∣−;+>

/
− <−;+

∣∣+; −>

/
+ <−; +

∣∣−;+>
)

= 1

where inner products are either zero or one, so

2
∣∣ a

∣∣2 = 1 ⇒ a =
1√
2

and
| 0; 0 > =

1√
2

∣∣+;−> −
1√
2

∣∣−;+>;

or
| 0; 0 > =

1√
2

∣∣∣1
2
;−

1
2
> −

1√
2

∣∣∣ −
1
2
;
1
2
>;

where the mi’s are denoted specifically.

We could complete the entire matrix where < j1; j2; m1; m2 | j; m> are the elements. We
have attained all the non–zero elements, have derived enough matrices in this chapter to illustrate
their construction, so will jump to the matrix without deriving all the zeros. The j1 = j2 = 1=2
portion of table 14–1 is a condensation of the matrix




1 0 0 0
0

√
1
2

√
1
2 0

0
√

1
2 −

√
1
2 0

0 0 0 1


 :

If we write the matrix in tabular form, and denote indices of different quantum numbers, this is

j = 1 1 0 1
m = 1 0 0 −1

j1 j2 m1 m2
1
2

1
2

1
2

1
2 1 0 0 0

1
2

1
2

1
2 −1

2 0
√

1
2

√
1
2 0

1
2

1
2 −1

2
1
2 0

√
1
2 −

√
1
2 0

1
2

1
2 −1

2 −1
2 0 0 0 1

Since j1 = j2 = 1=2 for the entire table, we need not write them. This is the way Schiff2 writes
these. Most others use something like table 14–1. To read table 14–1, you need to know that the
numbers at the top of each rectangle are j and m, the numbers at the left of each rectangle are
m1 and m2, the numbers in the rectangle which is their intersection are the Clebsch–Gordan
coefficients, there is a radical over each Clebsch–Gordan coefficient, and the negative signs on some
coefficients go outside the radical. ...Other than that, they are straight forward....

We will shortly derive the portion of table 14–1 for j1 = 1 and j2 = 1=2. This is most easily
addressed in a different subspace than what we have done for j1 = 1=2 and j2 = 1=2. Realize
both cases are in a subspace of a Hilbert space. This is true of other cases where j1 = anything
and j2 = anything. What we have done without calling attention to it is to take a small portion

2 Schiff Quantum Mechanics (McGraw–Hill, New York, 1968), 3rd ed., p 218.
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of a bigger problem and solve the bite sized portion. This is a primary use of subspaces. It is not
critical you consciously grasp the implications of working in a subspace of a Hilbert space, but to
be aware that bite sized problems are often part of a larger scheme can aid understanding.

Combination of Angular Momenta for Two Particles of
Angular Momentum 1 and 1/2
We are going to parallel the derivation of the last section for a two particle system where

individual angular momenta quantum numbers are j = 1 and j = 1=2. Because of the
similarities to the last section, some of the development is abbreviated.

Example 14–21: How many combined eigenstates are possible for a two particle system where
individual angular momenta quantum numbers are j = 1 and j = 1=2?

There are (
2j1 + 1

)(
2j2 + 1

)
=

(
2 (1) + 1

)(
2

(
1
2

)
+ 1

)
= (3)(2) = 6

possible eigenstates in a basis of combined states.

Example 14–22: What are jmax and mmax in the | j: m> basis?

jmax = j1max + j2max = 1 +
1
2

=
3
2
;

and since | m | ≤ j,

mmax = jmax =
3
2
:

This leads to the conclusion that one state in the | j:m> basis is
∣∣ 3

2 ; 3
2>. There is but one

way to attain this state, and that is when the maximum values of mi are present for each ji.
In a calculation essentially the same as example 14–18, we find the Clebsch–Gordan coefficient is
one, so ∣∣∣ 3

2
;

3
2
> =

∣∣∣ 1;
1
2
; 1;

1
2
> or

∣∣∣ 3
2
;

3
2
> =

∣∣∣ 1;
1
2
>

where the last eigenstate must be understood to be |m1; m2>. You can see from the last equation
that you need to be clear about the meaning of the indices. It is impossible to tell whether either
ket in the last equation is in the | j:m> basis or the |m1; m2> basis from the context.

Example 14–22: Derive the Clebsch–Gordan coefficients for | j; m> =
∣∣ 3

2 ; 1
2>.

Similar to example 14–19, we can act on both sides of the eigenstate equation
∣∣ 3

2 ; 3
2 > =∣∣ 1; 1

2 ; 1; 1
2 > with the lowering operator, where we will use only the last two indices to denote

| m1; m2 >, but will express the final answer using all four indices | j1; j2; m1; m2 >. The
lowering operator acting on ∣∣∣ 3

2
;

3
2
> =

∣∣∣ 1;
1
2
>

is
J−

∣∣∣ 3
2
;

3
2
> =

(
J1− + J2−

) ∣∣∣ 1;
1
2
>

= J1−

∣∣∣1;
1
2
> +J2−

∣∣∣ 1;
1
2
>
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⇒
√

j(j + 1) − m(m − 1) h̄
∣∣∣ 3
2
;

3
2
−1>

=
√

j1(j1 + 1) − m1(m1 − 1) h̄
∣∣∣ 1 − 1;

1
2
> +

√
j2(j2 + 1) − m2(m2 − 1) h̄

∣∣∣ 1;
1
2

− 1>

where J1− acts only on m1 and J2− acts only on m2. On the right side of the equation, we
use j1 = 1 and j2 = 1=2, though neither is explicitly stated in the | m1; m2> notation,

⇒

√
3
2

(
3
2

+ 1
)

− 3
2

(
3
2

− 1
)

h̄
∣∣∣ 3
2
;

1
2
>

=
√

1
(
1 + 1

)
− 1

(
1 − 1

)
h̄
∣∣∣0;

1
2
> +

√
1
2

(
1
2

+ 1
)

− 1
2

(
1
2

− 1
)

h̄
∣∣∣ 1; −1

2
>

⇒
√

15
4

−
3
4

∣∣∣ 3
2
;

1
2
> =

√
2 − 0

∣∣∣ 0;
1
2
> +

√
3
4

+
1
4

∣∣∣ 1; −
1
2
>

⇒
√

3
∣∣∣ 3
2
;

1
2
> =

√
2
∣∣∣ 0;

1
2
> +

∣∣∣ 1; −
1
2
>

⇒
∣∣∣ 3
2
;

1
2
> =

√
2
3

∣∣∣ 0;
1
2
> +

√
1
3

∣∣∣ 1; −
1
2
>;

or ∣∣∣ 3
2
;

1
2
> =

√
2
3

∣∣∣ 1;
1
2
; 0;

1
2
> +

√
1
3

∣∣∣ 1;
1
2
; 1; −

1
2
> :

Example 14–23: Derive the Clebsch–Gordan coefficients for | j; m> =
∣∣ 3

2 ; −1
2>.

We are going to do one more because there are a few details in this reduction for which
illustration may be useful. Employing the lowering operator,

J−

∣∣∣ 3
2
;

1
2
> =

(
J1− + J2−

)
(√

1
3

∣∣∣ 1; −
1
2
> +

√
2
3

∣∣∣ 0;
1
2
>

)

= J1−

√
1
3

∣∣∣ 1; −1
2
> +J1−

√
2
3

∣∣∣ 0;
1
2
> +J2−

√
1
3

∣∣∣ 1; −1
2
> +J2−

√
2
3

∣∣∣ 0;
1
2
> :

Notice the coefficients from example 14–23 are retained. Notice also that four terms are created
when the individual lowering operators are distributed. As the ji to be added get larger, the
number of terms becomes greater. Though each of the individual calculations is not difficult, the
total number of calculations and indices of which to keep track becomes significant for j1 = 2 and
j2 = 2, for instance. Economy becomes more important. The last equation becomes

J−

∣∣∣ 3
2
;

1
2
> =

√
1
3
J1−

∣∣∣ 1; −1
2
> +

√
2
3
J1−

∣∣∣ 0;
1
2
> +

√
1
3
J2−

∣∣∣ 1; −1
2
> +

√
2
3
J2−

∣∣∣0;
1
2
> :

Since we have seen all the radicals formed and evaluated numerous times, this becomes

2
∣∣∣ 3
2
; −

1
2
> =

√
1
3

√
2
∣∣∣ 0; −

1
2
> +

√
2
3

√
2
∣∣∣ − 1;

1
2
> +

√
1
3

√
0
∣∣∣ 1; −

3
2
>

/
+

√
2
3

√
1
∣∣∣ 0; −

1
2
>

⇒ 2
∣∣∣ 3
2
; −

1
2
> =

√
2
3

∣∣∣ 0; −
1
2
> + 2

√
1
3

∣∣∣ − 1;
1
2
> +

√
2
3

∣∣∣ 0; −
1
2
>

⇒ 2
∣∣∣ 3
2
; −

1
2
> = 2

√
2
3

∣∣∣ 0; −
1
2
> + 2

√
1
3

∣∣∣ − 1;
1
2
>
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where the same state in the same basis is added algebraically. Therefore

∣∣∣ 3
2
; −

1
2
> =

√
2
3

∣∣∣0; −
1
2
> +

√
1
3

∣∣∣ − 1;
1
2
>;

or ∣∣∣ 3
2
; −

1
2
> =

√
2
3

∣∣∣ 1;
1
2
; 0; −

1
2
> +

√
1
3

∣∣∣ 1;
1
2
; −1;

1
2
>

when all four indices are used.

We could attain ∣∣∣ 3
2
; −

3
2
> =

∣∣∣ 1;
1
2
; −1; −

1
2
>

by an additional application of the lowering operators. That gives us four of the six possible
eigenstates in the combined system. We attain

∣∣∣ 1
2
;

1
2
> =

√
2
3

∣∣∣ 1;
1
2
; 1; −1

2
> −

√
1
3

∣∣∣ 1;
1
2
; 0;

1
2
>

from the orthogonality condition and then normalize it. Applying the lowering operator to this
yields the sixth state which is

∣∣∣ 1
2
; −1

2
> =

√
1
3

∣∣∣ 1;
1
2
; 0; −1

2
> −

√
2
3

∣∣∣ 1;
1
2
; −1;

1
2
> :

The associated matrix, which spans the entire subspace but represents only a miniscule portion
of the Hilbert space, is 



1 0 0 0 0 0
0

√
1
3

√
2
3 0 0 0

0
√

2
3 −√

3 0 0 0

0 0 0
√

2
3

√
1
3 0

0 0 0
√

1
3 −

√
2
3 0

0 0 0 0 0 1




:

In tabular form,
j = 3

2
3
2

1
2

3
2

1
2

3
2

m = 3
2

1
2

1
2 − 1

2 −1
2 −3

2
m1 m2
1 1

2 1 0 0 0 0 0

1 − 1
2 0

√
1
3

√
2
3 0 0 0

0 1
2 0

√
2
3 −

√
1
3 0 0 0

0 − 1
2 0 0 0

√
2
3

√
1
3 0

−1 1
2 0 0 0

√
1
3 −

√
2
3 0

−1 − 1
2 0 0 0 0 0 1

which is condensed to form the 1 X 1=2 subsection of table 14–1.
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Combination of Other Angular Momenta States
This section provides some specific examples of how table 14–1 is read and used.

Example 14–24: What is | j; m> = | 2; 0> for a two particle system in terms of a linear
combination of two individual particle states where both particles have j = 1?

Going to the 1 X 1 subsection of table 14–1, the first coefficient under the j = 2; m = 0

column is 1
6 which means

√
1
6 , and the row to the immediate left is |m1; m2> = | 1; −1>. The

second coefficient under the j = 2; m = 0 column is also 2
3 ⇒

√
2
3 , and sliding to the left,

this is the coefficient of |m1; m2> = | 0; 0>. The third element in this column is 1
6 ⇒

√
1
6 ,

and ⇒ | m1; m2> = | − 1; 1>. The combined eigenstate in terms of individual eigenstate
quantum numbers is

∣∣ 2; 0> =

√
1
6

∣∣ 1; −1> +

√
2
3

∣∣ 0; 0> +

√
1
6

∣∣ − 1; 1>

or including all four indices,

∣∣ 2; 0> =

√
1
6

∣∣ 1; 1; 1; −1> +

√
2
3

∣∣ 1; 1; 0; 0> +

√
1
6

∣∣ 1; 1; −1; 1> :

Example 14–25: What is the probability of measuring J1z = h̄ for the state of example 14–24?

The statement J1z = h̄ ⇒ m1 = 1. There is but one component of
∣∣ 2; 0> for which

m1 = 1, which is | 1; −1>. If we measure J1z = h̄, then we have sampled | 1; −1>. The
probability of measuring this state by postulate is

P (m1 = 1) =
∣∣∣ <1; −1

∣∣
(√

1
6

∣∣ 1; −1> +

√
2
3

∣∣ 0; 0> +

√
1
6

∣∣ − 1; 1>

) ∣∣∣
2

=
∣∣∣ <1; −1

∣∣
√

1
6

∣∣ 1; −1>
∣∣∣
2

because the inner product of <1; −1| with the other two states is zero, so

P (m1 = 1) =
1
6

∣∣∣ <1; −1
∣∣ 1; −1>

∣∣∣
2

=
1
6
:

By the way, how important is it that we know the composition of the system? If we know
| j; m> = | 2; 0> without knowing j1 = j2 = 1, we cannot answer the question of example 14–25.
Look at table 14–1; | j; m> = | 2; 0> appears in the 1 X 1; 3

2 X 1
2 ; 2 X 1; 3

2 X 3
2 , and

2 X 2 subsections. And there are many more subsections not shown that span a Hilbert space.
It is critical if we actually want to answer questions like those asked in the previous two examples
that we know the composition.

Example 14–26: What is the linear combination of | j; m> for | j1; j2; m1; m2> = | 2; 1; 1; 0>?
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The tables work in both directions. The state | 2; 1; 1; 0> tells us j1 = 2 and j2 = 1.
From the 2 X 1 subsection of table 14–1, we find the row where | m1; m2> = | 1; 0>. It says

∣∣ 2; 1; 1; 0> =

√
8
15

∣∣ 3; 1> +

√
1
6

∣∣ 2; 1> −
√

3
10

∣∣ 1; 1> :

Example 14–27: What is the probability of measuring J 2 = 12h̄2 for the state of example
14–26?

The statement J 2 = 12h̄2 means j = 3, because the eigenvalues of J 2 are j(j + 1)h̄2.
There is but one state with j = 3 in the linear combination of

∣∣ 2; 1; 1; 0> which is | 3; 1>.
We know which inner products will be zero or one, so the probability of measuring 12h̄ reduces
to the square of the appropriate coefficient, so

P
(
j(j + 1) = 12

)
=

8
15

:
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