
Spin: Solved Problems

1. Consider an electron in the spin state

´ = A

(
3i
4

)
:

(a) Determine the normalization constant A.

(b) Find the expectation values of Sx; Sy; and Sz.

(c) Find the stasndard deviations ∆Sx; ∆Sy; and ∆Sz.

(d) Confirm that your results are consistent with all three uncertainty principles,

∆Si∆Sj ≥
h̄

2
|<Sk >| ;

where the indices i; j; and k represent the cyclic permutations of x; y; and z.

Remember all that vector and matrix algebra you studied last quarter—before we started
studying differential equations? Well, this problem is just plain vanilla matrix and vector al-
gebra for spin 1/2 operators. This problem is designed to remind you of all the things you learned
last quarter, and to increase your familiarity and dexterity with spin operators. In the Sz basis,
the spin 1=2 operators are given by h̄=2 times the 2 × 2 Pauli matrices:

Sx =
h̄

2

(
0 1
1 0

)
; Sy =

h̄

2

(
0 −i
i 0

)
; and Sz =

h̄

2

(
1 0
0 −1

)
:

Please remember to conjugate your bras!

1(a) Calculate the normalization constant

〈´|´〉 = (−3i; 4)A∗A

(
3i
4

)
= |A|2 (9 + 16) = |A|2 25

⇒ A =
1
5

:

(b) Calculate the expectation values

〈Sx〉 = 〈´|Sx|´〉 = (−3i; 4)
1
5

h̄

2

(
0 1
1 0

)
1
5

(
3i
4

)

=
h̄

50
(−3i; 4)

(
4
3i

)
=

h̄

50
(−12i + 12i)

1



⇒ 〈Sx〉 = 0:

〈Sy〉 = 〈´|Sy|´〉 = (−3i; 4)
1
5

h̄

2

(
0 −i
i 0

)
1
5

(
3i
4

)

=
h̄

50
(−3i; 4)

(
−4i
−3

)
=

h̄

50
(−12 − 12)

⇒ 〈Sy〉 = −12
25

h̄:

〈Sz〉 = 〈´|Sz|´〉 = (−3i; 4)
1
5

h̄

2

(
1 0
0 −1

)
1
5

(
3i
4

)

=
h̄

50
(−3i; 4)

(
3i
−4

)
=

h̄

50
(9 − 16)

⇒ 〈Sz〉 = − 7
50

h̄:

(c) To calculate the standard deviations, we will use ∆Ω =
[
〈Ω2〉 − 〈Ω〉2

]1=2. We need the S2
i ’s,

which are given by

S2
x =

h̄

2

(
0 1
1 0

)
h̄

2

(
0 1
1 0

)
=

h̄2

4

(
1 0
0 1

)
=

h̄2

4
I

S2
y =

h̄

2

(
0 −i
i 0

)
h̄

2

(
0 −i
i 0

)
=

h̄2

4

(
1 0
0 1

)
=

h̄2

4
I

S2
z =

h̄

2

(
1 0
0 −1

)
h̄

2

(
1 0
0 −1

)
=

h̄2

4

(
1 0
0 1

)
=

h̄2

4
I:

So the corresponding expectation values are given by

〈S2
x〉 = 〈S2

y 〉 = 〈S2
z 〉 = (−3i; 4)

1
5

h̄2

4

(
1 0
0 1

)
1
5

(
3i
4

)

=
h̄2

100
(−3i; 4)

(
3i
−4

)
=

h̄2

100
(9 + 16) =

h̄2

4
:

Combining these results with the results from part b,

〈Sx〉 = 0; 〈Sy〉 = −12
25

h̄; and 〈Sz〉 = − 7
50

h̄;
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we find

∆Sx =
[
〈S2

x〉 − 〈Sx〉2
]1=2

=
[
h̄2

4
− 0

]1=2

=
h̄

2
;

∆Sy =
[
〈S2

y〉 − 〈Sy〉2
]1=2

=

[
h̄2

4
−

(
−12

25
h̄

)2
]1=2

=
[

625
2500

− 576
2500

]1=2

h̄ =
[

49
2500

]1=2

h̄ =
7
50

h̄;

∆Sz =
[
〈S2

z 〉 − 〈Sz〉2
]1=2

=

[
h̄2

4
−

(
− 7

50
h̄

)2
]1=2

=
[

625
2500

− 49
2500

]1=2

h̄ =
[

576
2500

]1=2

h̄ =
12
25

h̄:

(d) To confirm that these results are consistent with all three uncertainty principles, we calculate

∆Sx∆Sy ≥
h̄

2
|〈Sz〉| ⇒

(
h̄

2

) (
7
50

h̄

)
≥

h̄

2

∣∣∣∣
(

−
7
50

h̄

)
h̄

∣∣∣∣ ⇒
7h̄2

100
≥

7h̄2

100
which checks;

∆Sy∆Sz ≥
h̄

2
|〈Sx〉| ⇒

(
7
50

h̄

) (
12
25

h̄

)
≥

h̄

2
|0| ⇒

84h̄2

1250
≥ 0 which checks; and

∆Sz∆Sx ≥
h̄

2
|〈Sy h̄〉| ⇒

(
12
25

h̄

)(
h̄

2

)
≥

h̄

2

∣∣∣∣
(

−
12
25

h̄

)
h̄

∣∣∣∣ ⇒
12
50

h̄2 ≥
12
50

h̄2 which also checks:

Note that the first and third cases saturate the inequality.
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2. Given the most general normalized spin 1=2 spinor

´ = A

(
a
b

)
= a´+ + b´−

where

´+ =
(

1
0

)
and ´− =

(
0
1

)

and where |a | 2 + | b | 2 = 1; compute:

(a) <Sx>

(b) <Sy >

(c) <Sz >

(d) <S2
x >

(e) <S2
y >

(f) <S2
z >

(g) Check that <S2
x > + <S2

y > + <S2
z > = <S2>.

This problem is very similar to Problem 1, but it treats the most general normalized spinor instead
of a specific numerical example. You should find similar expectation values in parts e, f, and g.
Since ´ is normalized, you can do your calculations very simply. For example, the calculation for
part c is just

<Sz > = <´ |Sz | ´> = (a∗; b∗)
h̄

2

(
1 0
0 −1

) (
a
b

)
:

2(a) Calculate the expectation value of Sx

〈Sx〉 = 〈´|Sx|´〉 = (a∗; b∗)
h̄

2

(
0 1
1 0

) (
a
b

)
=

h̄

2
(a∗; b∗)

(
b
a

)

⇒ 〈Sx〉 =
h̄

2
(a∗b + b∗a) = h̄ Re (ab∗) :

Note that the last step in the box is a simple exercise with complex numbers. Let a = c + di and
b = e + f i, so a∗b + b∗a = (c − di) (e + fi) + (e − fi) (c + di) = ce + df + (cf − ed) i + ce + df −
(cf − ed) i = 2 (ce + df) = 2 Re (ab∗).
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(b) Calculate the expectation value of Sy

〈Sy〉 = 〈´|Sy|´〉 = (a∗; b∗)
h̄

2

(
0 −i
i 0

) (
a
b

)
=

h̄

2
(a∗; b∗)

(
−bi
ai

)

⇒ 〈Sy〉 =
h̄

2
i(−a∗b + b∗a) = −h̄ Im (ab∗) :

Note that the argument for Im(ab∗) is similar to the argument for Re(ab∗).

(c) Calculate the expectation value of Sz

〈Sz〉 = 〈´|Sz|´〉 = (a∗; b∗)
h̄

2

(
1 0
0 −1

) (
a
b

)
=

h̄

2
(a∗; b∗)

(
a
−b

)

⇒ 〈Sz〉 =
h̄

2
(a∗a − b∗b) =

h̄

2

(
|a|2 − |b|2

)
:

(d, e, f) The squares of the spin matrices were calculated in Problem 7.1. In all three cases they
were found to be

S2
i =

h̄2

4
I:

Since the square of each matrix is identical, the expectation value calculations are identical, i.e.,
we can find the expectation value of all three operators with one calculation:

〈S2
i 〉 = 〈´|S2

i |´〉 = (a∗; b∗)
h̄2

4

(
1 0
0 1

) (
a
b

)
=

h̄2

4
(a∗; b∗)

(
a
b

)
=

h̄2

4
(a∗a + b∗b) =

h̄2

4

(
|a|2 + |b|2

)
:

Remember that the spinor is normalized, so |a|2 + |b|2 = 1, and we conclude

〈S2
x〉 = 〈S2

y〉 = 〈S2
z 〉 =

h̄2

4
:

(g) To find 〈S2〉, we need the S2 operator which is given by

S2 = S2
x + S2

y + S2
z =

h̄2

4
I +

h̄2

4
I +

h̄2

4
I =

3h̄2

4
I:

So the expectation value is given by

〈S2〉 = 〈´|S2|´〉 = (a∗; b∗)
3h̄2

4

(
1 0
0 1

) (
a
b

)

=
3h̄2

4
(a∗; b∗)

(
a
b

)
=

3h̄2

4
(a∗a + b∗b)

=
3h̄2

4

(
|a|2 + |b|2

)
=

3h̄2

4
:
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In parts d, e and f, you found

〈S2
x〉 + 〈S2

y 〉 + 〈S2
z 〉 =

h̄2

4
+

h̄2

4
+

h̄2

4
=

3h̄2

4
:

So, both calculations produce the same result, namely

〈S2〉 =
3h̄2

4
:
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3. Now consider the Sy operator for spin 1=2

Sy =
h̄

2

(
0 −i
i 0

)
:

(a) Find the eigenvalues and the eigenspinors of the Sy operator.

(b) If you measure Sy on a particle in the general state ´ given in Problem 2, what values could
you obtain, and with what probabilities would you obtain them? Check that the probabilities
add up to 1.

(c) If you measure S2
y , what values could you obtain, and with what probabilities would you

obtain them?

Spinors are nick names for the eigenvectors of a spin operator. For part b, remember that a general
state can always be written as a superposition of eigenvectors, or eigenspinors. In this case,

´ = C+´
(y)
+ + C−´

(y)
−

where ´
(y)
i are the eigenspinors corresponding to the Sy matrix. The tricky part here arises

because the coefficients can be complex. Remember to use |a | 2 + | b | 2 = 1.

3(a) First, find the eigenvalues and eigenvectors of Sy in the usual manner. Given

Sy =
h̄

2

(
0 −i
i 0

)
=

(
0 −i h̄

2
i h̄
2 0

)
;

calculate

det
(

−! −i h̄
2

i h̄
2 −!

)
= !2 −

h̄2

4
= 0:

Then, solving the characteristic equation gives us the eigenvalues

⇒ ! = ± h̄

2
:

Next, find the eigenvectors. First

h̄

2

(
0 −i
i 0

) (
a
b

)
=

h̄

2

(
a
b

)
⇒ −ib = a

ia = b
⇒ |Sy =

h̄

2
〉 = A

(
1
i

)

and normalizing

⇒ (1;−i)A∗A

(
1
i

)
= |A|2(1 + 1) ⇒ A =

1√
2

:
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And second,

h̄

2

(
0 −i
i 0

) (
a
b

)
= −

h̄

2

(
a
b

)
⇒ −ib = −a

ia = −b
⇒ |Sy = −

h̄

2
〉 = A

(
1
−i

)

⇒ (1; i)A∗A

(
1
−i

)
= |A|2(1 + 1) ⇒ A =

1√
2
:

And we conclude

⇒ ´
(y)
+ = Sy =

h̄

2
〉 =

1√
2

(
1
i

)
; and ´

(y)
− = Sy = − h̄

2
〉 =

1√
2

(
1
−i

)
:

(b) The possible results for a measurement of Sy are the eigenvalues of Sy

+
h̄

2
and − h̄

2
:

For any general state ´ =
(

a
b

)
, we can express ´ as a superposition of the eigenvectors of Sy,

´ = C+´
(y)
+ + C−´

(y)
− where ´

(y)
+ =

1√
2

(
1
i

)
and ´

(y)
− =

1√
2

(
1
−i

)
:

We can find C+ and C− by calculating the inner products, that is

C+ = 〈´(y)
+ |´〉 =

1√
2
(1;−i)

(
a
b

)
=

1√
2
(a − ib);

C− = 〈´(y)
− |´〉 =

1√
2
(1; i)

(
a
b

)
=

1√
2
(a + ib):

If the general state ´ is normalized, the probabilities are given by

|C+|2 = |
1√
2
(a − ib)|2 = for spin up; a:k:a: Sy = +

h̄

2

|C−|2 = |
1√
2
(a + ib)|2 for spin down; a:k:a: Sy = −

h̄

2
:

Note that a and b can be complex! The sum of these two probabilities is given by

|C+|2 + |C−|2 =
∣∣∣∣

1√
2
(a − ib)

∣∣∣∣
2

+
∣∣∣∣

1√
2
(a + ib)

∣∣∣∣
2

=
1
2

((a∗ + ib∗)(a − ib) + (a∗ − ib∗)(a + ib))

=
1
2

(
|a|2 + iab∗ − ia∗b + |b|2 + |a|2 + ia∗b − iab∗ + |b|2

)

=
1
2

(
2|a|2 + 2|b|2

)
= |a|2 + |b|2 = 1:
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And we can conclude that

∑

i

Pi = 1:

(c) In problem 1, we found S2
y = h̄2

4 I , so

the only possible result of a measurement of S2
y is

h̄2

4
with probability P

(
h̄2

4

)
= 1:

Note that an eigenvalue/eigenvector calculation will yield the same result, since the eigenvalues
are degenerate.
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4. Consider an electron at rest at rest (i:e:; ~v = 0) in a uniform magnetic field ~B0 = B0ẑ. At t = 0,
the spin is pointing in the +x̂ direction, i.e., <Sx(t = 0)> = +h̄=2. Calculate the expectation
value < ~S(t)> for all times t.

This problem combines many concepts and topics from last quarter in a spin problem. Take a look
at Griffiths, pages 160 - 165 where he presents very useful comments and example calculations for
this problem. You will probably want to develop your arguments by following the first part of his
discussion on Larmor precession. You need to be able to express a Hamiltonian in terms of the
gyromagnetic ratio. Problems 6 and 7, in addition to this problem, depend on this. Remember that
if you measure, the state immediately after the measurement is the eigenvector which corresponds
to the eigenvalue you obtained. So, you will want to find the eigenvalues and eigenvectors of Sx to
determine | ˆ(0)>. Then you will want to find the time-dependent state vector by expanding the
t = 0 state vector in eigenstates of Sz, and using

|ˆ(t)> =
∑

i

| i><i |ˆ(0)> e−iEnt=h̄:

Here the | i>’s are the normalized eigenvectors of the Hamiltonian. You will obtain

|ˆ(t)> =
1√
2

(
ei°B0t=2

e−i°B0t=2

)

if you do everything correctly. Finally, find the expectation values of each component, and then
calculate the vector sum

< ~S(t)> = <Sx > x̂ + <Sy > ŷ + <Sz > ẑ

to complete the problem.

4(a) Given ~B0 = B0ẑ, the corresponding Hamiltonian is given by

H = −~„ · ~B = −° ~S · ~B = −° ~S · B0ẑ = −° B0Sz

where „ is the magnetic dipole moment and ° is the gyromagnetic ratio. In matrix form, we have

H = −° B0
h̄

2

(
1 0
0 −1

)
=

° B0h̄

2

(
−1 0
0 1

)
;

so we can find the eigenvalues by inspection

E = −
° B0h̄

2
and −

° B0h̄

2
:

Next, we find the eigenvectors in the usual way,

°B0h̄

2

(
−1 0
0 1

) (
a
b

)
=

°B0h̄

2

(
a
b

)
⇒ −a = a

b = b
⇒ |E =

°B0h̄

2
〉 =

(
0
1

)
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°B0h̄

2

(
−1 0
0 1

)(
a
b

)
= −

°B0h̄

2

(
a
b

)
⇒ −a = −a

b = −b
⇒ |E = −

°B0h̄

2
〉 =

(
1
0

)

At time t = 0, the spin is pointing in the x̂ direction, i.e., 〈Sx(t = 0)〉 = h̄=2, which means the
state vector is the same as the eigenvector associated with eigenvalue h̄=2 of the Sx operator. So,
we need to find the corresponding eigenvector of the Sx operator:

det
(

−! h̄=2
h̄=2 −om

)
= !2 − h̄2=4 ⇒ ! = ±h̄=2 are the eigenvalues and

h̄=2
(

0 1
1 0

)(
a
b

)
= h̄=2

(
a
b

)
⇒ b = a

a = b
⇒ |Sy = h̄=2〉 =

1√
2

(
1
1

)

when normalized. This is the initial state vector |ˆ(0)〉. The problem now is to calculate the time-
dependent expectation value, so we must first calculate the time evolution of the state vector:

|ˆ(t)〉 =
∑

i

|i〉〈i|ˆ(0)〉e−iEnt=h̄

=
(

1
0

)
(1; 0)

1√
2

(
1
1

)
e−i(−°B0t=2) +

(
0
1

)
(0; 1)

1√
2

(
1
1

)
e−i(°B0t=2)

=
1√
2

(
1
0

)
ei°B0t=2 +

1√
2

(
0
1

)
e−i°B0t=2

=
1√
2

(
e+i°B0t=2

e−i°B0t=2

)
:

We want the expectation value of the vector spin 〈~S(t)〉, which is given by

〈~S(t)〉 = 〈Sx〉x̂ + 〈Sy〉ŷ + 〈Sz〉ẑ:

So, we need the expectation value of each components:

〈Sx〉 =
1√
2

(
e−i°B0t=2; ei°B0t=2

) h̄

2

(
0 1
1 0

)
1√
2

(
ei°B0t=2

e−i°B0t=2

)

=
h̄

4

(
e−i°B0t=2; ei°B0t=2

) (
e−i°B0t=2

ei°B0t=2

)

=
h̄

4
(
e−i°B0t + ei°B0t

)

=
h̄

2
cos(°B0t)

〈Sy〉 =
1√
2

(
e−i°B0t=2; ei°B0t=2

) h̄

2

(
0 −i
i 0

)
1√
2

(
ei°B0t=2

e−i°B0t=2

)

=
h̄

4

(
e−i°B0t=2; ei°B0t=2

) (
−ie−i°B0t=2

iei°B0t=2

)

=
h̄

4
(
−ie−i°B0t + iei°B0t

)

= − h̄

2
sin(°B0t)
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〈Sz〉 =
1√
2

(
e−i°B0t=2; ei°B0t=2

) h̄

2

(
1 0
0 −1

)
1√
2

(
ei°B0t=2

e−i°B0t=2

)

=
h̄

4

(
e−i°B0t=2; ei°B0t=2

) (
ei°B0t=2

−e−i°B0t=2

)

=
h̄

4
(
e0 − e0) = 0:

Then the vector sum is given by

〈~S(t)〉 = 〈Sx〉x̂ + 〈Sy〉ŷ + 〈Sz〉ẑ =
h̄

2
cos(°B0t)x̂ − h̄

2
sin(°B0t)ŷ + 0ẑ:

⇒ 〈~S(t)〉 =
h̄

2
[cos(°B0t) x̂ − sin(°B0t) ŷ]
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5. Consider another spin 1/2 system.

(a) What are the eigenvalues and eigenvectors of the Sx + Sy operator?

(b) Suppose a measurement of this operator is made, and the system is found to be in the state
corresponding to the larger eigenvalue. What is the probability that an immediately following
measurement of Sz yields h̄=2?

Add the Sx and the Sy matrices to get the Sx + Sy matrix. Then find the eigenvalues and
the eigenvectors of Sx + Sy in the usual way. The eigenvalues will look very familiar, and the
eigenvectors will be complex valued. The state vector immediately after a measurement is the
eigenvector which corresponds to the eigenvalue measured. So you will need the eigenvectors of
Sz, since that is what is being measured. Your probability should be 1/2.

5(a) First, find the eigenvalues of the Sx + Sy operator:

Sx + Sy =
h̄

2

(
0 1
1 0

)
+

h̄

2

(
0 −i
i 0

)

=
h̄

2

(
0 1 − i

1 + i 0

)
=

(
0 h̄

2 (1 − i)
h̄
2 (1 + i) 0

)

so the characteristic equation is given by

det
(

−! h̄
2 (1 − i)

h̄
2 (1 + i) −!

)
= !2 − h̄2

4
(1 − i)(1 + i) = !2 − h̄2

4
(1 + 1) = !2 − h̄2

2
= 0:

And solving this equation yields the eigenvalues

+
h̄√
2

and −
h̄√
2
:

Next, find the eigenvectors:

h̄

2

(
0 1 − i

1 + i 0

)(
a
b

)
=

h̄√
2

(
a
b

)
⇒

(i − i)b = 2√
2
a

(1 + i)a = 2√
2
b

⇒ a =
√

2
2

(1 − i)b and a = 1 ⇒ b =
√

2
2

(1 + i) ⇒ |
h̄√
2
〉 = A

(
1√

2
2 (1 + i)

)
:

Calculate the normalization constant:
(

1;

√
2

2
(1 − i)

)
A∗A

(
1√

2
2 (1 + i)

)
= |A|2

(
1 +

2
4
(2)

)
= 1 ⇒ A =

1√
2
:
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Find the second eigenvector

h̄

2

(
0 1 − i

1 + i 0

)(
a
b

)
= − h̄√

2

(
a
b

)
⇒

(i − i)b = − 2√
2
a

(1 + i)a = − 2√
2
b

⇒ a = −
√

2
2

(1 − i)b and a = 1 ⇒ b = −
√

2
2

(1 + i) ⇒ | −
h̄√
2
〉 = A

(
1

−
√

2
2 (1 + i)

)
:

And calculate the normalization constant:
(

1; −
√

2
2

(1 − i)

)
A∗A

(
1

−
√

2
2 (1 + i)

)
= |A|2

(
1 +

2
4
(2)

)
= 1 ⇒ A =

1√
2
:

So, the eigenvectors are given by

|
h̄√
2
〉 =

1√
2

(
1√

2
2 (1 + i)

)
and | −

h̄√
2
〉 =

1√
2

(
1

−
√

2
2 (1 + i)

)
:

(b) A measurement that yields the larger eigenvalue of Sx + Sy indicates that the state vector is
then equal to the eigenvector of Sx + Sy that corresponds to that eigenvalue. That is to say:

measuring
h̄√
2

⇒ |ˆ〉 =
1√
2

(
1√

2
2 (1 + i)

)
:

Now for the Sz operator, the eigenvalues and eigenvectors are given by

|Sz =
h̄

2
〉 =

(
1
0

)
and |Sz = − h̄

2
〉 =

(
0
1

)
:

A measurement of Sz which yields h̄=2 corresponds to the eigenvector
(

1
0

)
, so the probability is

given by

P (Sz =
h̄

2
) =

∣∣∣∣(1; 0)
1√
2

(
1√

2
2 (1 + i)

)∣∣∣∣
2

=
1
2

|1 + 0|2 =
1
2
:
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6. A spin 1/2 particle is in an eigenstate of Sx with eigenvalue +h̄=2 at time t = 0. At time
t = 0, it is placed in a magnetic field ~B = (0; 0; B), in which it is allowed to precess for a time T .
At time t = T , the magnetic field is very rapidly rotated to the ŷ direction, so that its components
are (0; B; 0). After another time interval T , a measurement of Sx is conducted. What is the
probability that the value h̄=2 will be found?

There’s a lot in this problem. First you need to construct |ˆ(0)> from the measured eigenvalue.
Then you will need to calculate the time-dependent |ˆ(t)> from the initial state |ˆ(0)>. Remem-
ber that you have already calculated an analogous time-dependent |ˆ(t)> in Problem 4. However,
here you will need to use the Hamiltonian appropriate to each direction of the field. For the times
t > T; you will start with the new initial state vector | ˆ(0′) > = | ˆ(T ) >, and then you will
evaluate its time dependence using the new Hamiltonian H = −° B0 Sy. So for t > T , you should
find

| ˆ(t′)> =
∑

i′

| i′ ><i′ | ˆ(T )> e−iE′
nt′=h̄:

Here t′ = t−T , the total time the system has evolved in the new field, the En’s are the eigenvalues
of the new Hamiltonian, and the | i′ >’s are the eigenvectors of the new Hamiltonian. When you
are all done, you should obtain

|ˆ(t = 2T )> =
1

2
√

2

(
1 − i + ei°BT + ie−i°BT

1 − i + e−i°BT + iei°BT

)
:

To calculate the probabilities, calculate the inner product with the appropriate eigenvector of the
observable operator being measured, namely | Sx = +1=2>. You should obtain

P

(
Sx =

h̄

2

)
=

1
2

[
1 + cos2(

°Bt

2
)
]

:

6. A spin 1/2 object with an eigenvalue of +h̄=2 for the operator Sx at t = 0, has the initial state
vector

|Sx = +h̄=2〉 = |ˆ(0)〉 =
1√
2

(
1
1

)
:

We calculated this eigenvector in Problem 4. This system is placed in a magnetic field in the z
direction. We need the time-dependent state vector in this magnetic field. We also calculated this
in Problem 4, where we found

|ˆ(t)〉 =
1√
2

(
ei°B0t=2

e−i°B0t=2

)
:

At time t = T , the direction of the magnetic field is switched Bẑ → Bŷ. So the new Hamiltonian
is given by

H ′ = −~„ · ~B = −°~S · ~B = −°~S · Bŷ = −°BSy = −
°Bh̄

2

(
0 −i
i 0

)
:
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The new eigenvalues and eigenvectors of the Hamiltonian follow directly from the results of Problem
3, and are given by

|E =
°Bh̄

2
〉 =

1√
2

(
1
−i

)
; |E = −°Bh̄

2
〉 =

1√
2

(
1
i

)
:

For times t > T; |ˆ(t)〉 evolves as if |ˆ(t = T )〉 was the initial state |ˆ(t = 0)〉 in the new field.
We can use this fact to simply calculate |ˆ(t)〉 and we find

|ˆ(t > T )〉 =
∑

i′

|i′〉〈i′|ˆ(t = T )〉e−iEi′ t′=h̄

where t′ = t − T the time the system has evolved in the new field, the Ei′ ’s are the eigenvalues of
H ′, and the |i′〉’s are the eigenvectors of H ′.

To measure after a second time interval of T , means that t′ = 2T − T = T , so we have

|ˆ(2T )〉 =
1√
2

(
1
−i

)
1√
2

(1;+i)
1√
2

(
ei°BT=2

e−i°BT=2

)
e−i°BT=2 +

1√
2

(
1
i

)
1√
2

(1; −i)
1√
2

(
ei°BT=2

e−i°BT=2

)
ei°BT=2

=
1

2
√

2

[(
1
−i

)
(1;+i)

(
1

e−i°BT

)
+

(
1
i

)
(1;−i)

(
ei°BT

1

)]

=
1

2
√

2

[(
1
−i

) (
1 + ie−i°BT

)
+

(
1
i

)(
ei°BT − i

)]

=
1

2
√

2

(
1 − i + ei°BT + ie−i°BT

1 − i + e−i°BT + iei°BT

)
:

The probability of measuring h̄=2 for Sx at time 2T can be calculated as the inner product of the
state vector and the eigenvector of Sx associated with the eigenvalue h̄=2, or

P

(
Sx =

h̄

2

)
=

∣∣∣∣
1√
2

(1; 1)
1

2
√

2

(
1 − i + ei°BT + ie−i°BT

1 − i + e−i°BT + iei°BT

)∣∣∣∣
2

=
1
16

∣∣1 − i + ei°BT + ie−i°BT + 1 − i + e−i°BT + iei°BT
∣∣2

=
1
16

∣∣2 − 2i +
(
ei°BT + e−i°BT

)
+ i

(
ei°BT + e−i°BT

)∣∣2

=
1
4

|1 − i + cos(°BT ) + i cos(°BT )|2

=
1
4

|(1 + cos(°BT )) − i (1 − cos(°BT ))|2 (‡ see note below)

=
1
4

[
(1 + cos(°BT ))2 + (1 − cos(°BT ))2

]

=
1
4

[
1 + 2 cos(°BT ) + cos2(°BT ) + 1 − 2 cos(°BT ) + cos2(°BT )

]

=
1
4

[
2 + 2 cos2(°BT )

]
=

1
2

[
1 + cos2(°BT )

]
:

In terms of the original time parameter, t = 2T ⇒ T = t=2, so we have

P

(
Sx =

h̄

2

)
=

1
2

[
1 + cos2(

°Bt

2
)
]

:
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‡ There was some confusion about this in class. Remember that |A|2 = A∗A. In this case, we put
the expression in the form where a complex conjugate is easily identified, i.e., |(1+fi)+i(1−fi)|2 =
[(1 + fi) + i(1 − fi)][(1 + fi) − i(1 − fi)]. The product of the complex conjugates will be the sum of
the squares of the real and imaginary terms.
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7. Consider an electron at rest in the oscillating magnetic field

~B = B0 cos(!t)ẑ;

where B0 and ! are constants.

(a) Construct the Hamiltonian matrix for this system.

(b) The electron starts out at t = 0 in the spin up state with respect to the x-axis. Determine
´(t) at all subsequent times by solving the TDSE.

(c) Show that the probability of getting −h̄=2 for a measurement of Sx at time t is

P (Sx = − h̄

2
) = sin2

(
°B0

2!
sin(!t)

)
:

(d) Calculate the minimum value of B0 required to force a complete “spin-flip” in Sx.

As before, the Hamiltonian is just given by

H = −° B0 cos(!t)Sz:

However, note that now the Hamiltonian is time dependent because the field is time dependent!
Because we have a time-dependent Hamiltonian, we must use the TDSE—we cannot use the TISE.
This problem is one of the very few time-dependent Hamiltonian problems that we can solve!!! To
solve the TDSE, assume the most general form of the state vector

|ˆ(t)> =
(

fi(t)
fl(t)

)
:

Put this into the TDSE, and take the time derivatives to obtain two first-order differential equa-
tions, one for fi and another for fl. We can solve this problem because the fi and fl dependence
is completely decoupled! Solve these two completely decoupled differential equations to obtain
fi(t) and fl(t). You should obtain

|ˆ(t)> = A




exp
(

i°B0
2! sin(!t)

)

exp
(
− i°B0

2! sin(!t)
)


 :

Now the only things left to do, are (1) to normalize your time-dependent state vector, and (2) to
calculate the probabilities of the measurement. Note that these probabilities are time-dependent
because fi and fl are. Also note that you have calculated the probability of measuring spin down.
In part b, the electron was in the spin up state. So if your probability from part c is equal to one,
you know that a “spin-flip” has occurred. To conclude this problem, set the probability function
of part c equal to one, and solve for the minimum value of B0.
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7(a) First, we need the Hamiltonian. Since ~B = B0 cos(!t)ẑ; the Hamiltonian is given by

H = −~„ · ~B = −°~S · B0 cos(!t)ẑ

= −°SzB0 cos(!t) = −°B0 cos(!t)
h̄

2

(
1 0
0 −1

)

⇒ H =
°B0h̄

2
cos(!t)

(
−1 0
0 1

)
:

(b) Since the electron starts out at t = 0 in the spin up state with respect to the x-axis, we have

|ˆ(0)〉 = |Sx = h̄=2〉 =
1√
2

(
1
1

)
:

The TDSE is given by

ih̄
d

dt
|ˆ(t)〉 = H|ˆ(t)〉:

Now we have |ˆ(0)〉, but we need |ˆ(t)〉, which is unknown to us at the moment. Let

|ˆ(t)〉 =
(

fi(t)
fl(t)

)
;

and plug this into the TDSE to find

ih̄
d

dt

(
fi(t)
fl(t)

)
=

°B0h̄

2
cos(!t)

(
−1 0
0 1

) (
fi(t)
fl(t)

)

⇒ ih̄

(
fi̇(t)
fl̇(t)

)
=

°B0h̄

2
cos(!t)

(
−fi(t)
fl(t)

)
:

This gives us two equations

ih̄fi̇(t) = −
°B0h̄

2
cos(!t)fi(t) and ih̄fl̇(t) =

°B0h̄

2
cos(!t)fl(t):

Solving the equation with fi, we find

fi̇ =
i°B0

2
cos(!t)fi

⇒
dfi

dt
=

i°B0

2
cos(!t)fi

⇒ dfi

fi
=

i°B0

2
cos(!t)dt

⇒ lnfi =
i°B0

2!
sin(!t)

⇒ fi(t) = exp
(

i°B0

2!
sin(!t)

)
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Similarly, solving the equation with fl yields

fl(t) = exp
(

−
i°B0

2!
sin(!t)

)
:

So, the time dependent state vector is given by

|ˆ(t)〉 = A

(
exp ((i°B0=2!) sin(!t))

exp ((−i°B0=2!) sin(!t))

)
:

To find the normalization constant, we calculate

(
exp

(
−

i°B0

2!
sin(!t)

)
; exp

(
i°B0

2!
sin(!t)

))
A∗A

(
exp ((i°B0=2!) sin(!t))

exp ((−i°B0=2!) sin(!t))

)

= |A|2
(
e0 + e0) = 2|A|2 = 1 ⇒ A =

1√
2
:

So, the normalized, time-dependent state vector is given by

|ˆ(t)〉 = ´(t) =
1√
2

(
exp ((i°B0=2!) sin(!t))

exp ((−i°B0=2!) sin(!t))

)
:

(c) If a measurement of Sx yields −h̄=2, we know the state vector is identical to the eigenvector
corresponding to that eigenvalue, which is

|Sx = −h̄=2〉 = |ˆ〉 =
1√
2

(
1

−1

)
:

So, the probability is given by

P

(
Sx = −

h̄

2

)
=

∣∣∣∣
1√
2
(1; −1)

1√
2

(
exp ((i°B0=2!) sin(!t))

exp ((−i°B0=2!) sin(!t))

)∣∣∣∣
2

=
1
4

∣∣∣∣exp
(

i°B0

2!
sin(!t)

)
− exp

(
− i°B0

2!
sin(!t)

)∣∣∣∣
2

=
1
4

∣∣∣∣i2 sin
(

°B0

2!
sin(!t)

)∣∣∣∣
2

=
(

i sin
(

°B0

2!
sin(!t)

)) (
−i sin

(
°B0

2!
sin(!t)

))

⇒ P

(
Sx = − h̄

2

)
= sin2

(
°B0

2!
sin(!t)

)
:
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(d) The electron was spin up in part b, and in part c we calculated the probability that it will be
measured spin down. If the probability it is measured spin down is equal to 1, we know that a
complete spin flip has occurred. So we have

sin2
(

°B0

2!
sin(!t)

)
= 1 ⇒

°B0

2!
sin(!t) =

…

2
+ n…:

The minimum value of the field B0 which makes this true occurs when sin(!t) = 1. So, the
minimum field occurs when

°B0

2!
=

…

2

⇒ B0 =
…!

°
:
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