Spin: Homework Assignment 1

1. Consider an electron in the spin state

$$
\chi=N\binom{2+3 i}{3+4 i} .
$$

(a) Determine the normalization constant N .
(b) Find the expectation values of S_{x}, S_{y}, and S_{z}.
(c) Find the standard deviations $\Delta S_{x}, \Delta S_{y}$, and ΔS_{z}.
(d) Confirm that your results are consistent with all three uncertainty principles,

$$
\Delta S_{i} \Delta S_{j} \geq \frac{\hbar}{2}\left|<S_{k}>\right|
$$

where the indices i, j, and k represent the cyclic permutations of x, y, and z.
2. Consider the S_{x} operator for spin $1 / 2$

$$
S_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

(a) Find the eigenvalues and the eigenvectors of the S_{x} operator.
(b) If you measure S_{x} on a particle in the general state χ given in Solved Problem 2, what values could you obtain, and with what probabilities would you obtain them? Check that the probabilities add up to 1 .
(c) If you measure S_{x}^{2}, what values could you obtain, and with what probabilities would you obtain them?
3. Consider an electron at rest in a uniform magnetic field $\vec{B}_{0}=B_{0} \hat{z}$. At $t=0$, the spin is pointing in the $+\hat{y}$ direction, i.e., $<S_{y}(t=0)>=+\hbar / 2$. Calculate the expectation value $<\vec{S}(t)>$ for all times t.
4. Consider an electron at rest in the oscillating magnetic field

$$
\vec{B}=B_{0} \cos (\omega t) \hat{z},
$$

where B_{0} and ω are constants.
(a) Construct the Hamiltonian matrix for this system.
(b) The electron starts out at $t=0$ in the spin up state with respect to the y-axis. Determine $\chi(t)$ at all subsequent times by solving the TDSE.
(c) Calculate the probability of getting $-\hbar / 2$ for a measurement of S_{y} at time t.
(d) Calculate the minimum value of B_{0} required to force a complete "spin-flip" in S_{y}.
5. Consider another spin $1 / 2$ system.
(a) Find the eigenvalues and eigenvectors of the operator $O=S_{x}+S_{y}+S_{z}$.
(b) Suppose that a measurement of O is made, and the system is found to be in the state $\mid \alpha>$ that corresponds to the larger eigenvalue. What are the possibilities and probabilities for an immediately following measurement of S_{z} ?
(c) Find, if possible, the direction \mathbf{n} in which the spin measurement will with certainty yield the value $S_{n}=\hbar / 2$.

See Schaum's problem 7.4.
6. Consider a particle with spin $1 / 2$.
(a) What are the eigenvalues and eigenvectors of S_{x}, S_{y}, and S_{z} ?
(b) Consider a particle in the $+S_{y}$ eigenstate. What are the possibilities and the probabilities if we measure S_{z} ?
(c) The particle is in a magnetic field and its Hamiltonian is $H=(e B / m c) S_{z}$. At $t=0$ the particle is in the $-S_{y}$ eigenstate; find $\chi(t)$ for $t \geq 0$.
(d) If we measure S_{y} at $t=t_{1}$, what are the possibilities and probabilities? If we measure S_{z} at $t=t_{1}$, what are the possibilities and probabilities? If we measure S_{x} at $t=t_{1}$, what are the possibilities and probabilities? Explain the differences in the t_{1} dependences.
(e) Calculate the expectation values of S_{x}, S_{y}, and S_{z} at time t_{1}.

See Schaum's problem 7.5.

