1. Consider an electron in the spin state

$$\chi = N \begin{pmatrix} 2+3i\\ 3+4i \end{pmatrix}.$$

- (a) Determine the normalization constant N.
- (b) Find the expectation values of S_x , S_y , and S_z .
- (c) Find the standard deviations ΔS_x , ΔS_y , and ΔS_z .
- (d) Confirm that your results are consistent with all three uncertainty principles,

$$\Delta S_i \Delta S_j \ge \frac{\hbar}{2} \left| < S_k > \right|,$$

where the indices i, j, and k represent the cyclic permutations of x, y, and z.

2. Consider the S_x operator for spin 1/2

$$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}.$$

- (a) Find the eigenvalues and the eigenvectors of the S_x operator.
- (b) If you measure S_x on a particle in the general state χ given in Solved Problem 2, what values could you obtain, and with what probabilities would you obtain them? Check that the probabilities add up to 1.
- (c) If you measure S_x^2 , what values could you obtain, and with what probabilities would you obtain them?

3. Consider an electron at rest in a uniform magnetic field $\vec{B}_0 = B_0 \hat{z}$. At t = 0, the spin is pointing in the $+\hat{y}$ direction, *i.e.*, $\langle S_y(t=0) \rangle = +\hbar/2$. Calculate the expectation value $\langle \vec{S}(t) \rangle$ for all times t.

4. Consider an electron at rest in the oscillating magnetic field

$$B = B_0 \, \cos(\omega t) \, \hat{z},$$

where B_0 and ω are constants.

- (a) Construct the Hamiltonian matrix for this system.
- (b) The electron starts out at t = 0 in the spin up state with respect to the *y*-axis. Determine $\chi(t)$ at all subsequent times by solving the TDSE.
- (c) Calculate the probability of getting $-\hbar/2$ for a measurement of S_y at time t.
- (d) Calculate the minimum value of B_0 required to force a complete "spin-flip" in S_y .

- 5. Consider another spin 1/2 system.
- (a) Find the eigenvalues and eigenvectors of the operator $O = S_x + S_y + S_z$.
- (b) Suppose that a measurement of O is made, and the system is found to be in the state $| \alpha \rangle$ that corresponds to the larger eigenvalue. What are the possibilities and probabilities for an immediately following measurement of S_z ?
- (c) Find, if possible, the direction **n** in which the spin measurement will with certainty yield the value $S_n = \hbar/2$.

See Schaum's problem 7.4.

6. Consider a particle with spin 1/2.

- (a) What are the eigenvalues and eigenvectors of S_x , S_y , and S_z ?
- (b) Consider a particle in the $+S_y$ eigenstate. What are the possibilities and the probabilities if we measure S_z ?
- (c) The particle is in a magnetic field and its Hamiltonian is $H = (eB/mc) S_z$. At t = 0 the particle is in the $-S_y$ eigenstate; find $\chi(t)$ for $t \ge 0$.
- (d) If we measure S_y at $t = t_1$, what are the possibilities and probabilities? If we measure S_z at $t = t_1$, what are the possibilities and probabilities? If we measure S_x at $t = t_1$, what are the possibilities and probabilities? Explain the differences in the t_1 dependences.
- (e) Calculate the expectation values of S_x , S_y , and S_z at time t_1 .

See Schaum's problem 7.5.