A Semi—Classical Picture of Spin

Since there is no classical analogy to quantum
mechanical spin angular momentum, it is difficult to
describe. A picture is often helpful, and though it is a
bad analogy, the initial picture in the Bohr hydrogen
atom was an electron orbiting a proton as in figure 13-
1. Both the electron and proton are charged particles.
The "orbit” of the electron around the proton is a cur-
rent loop, which means there is an orbital magnetic
moment. Further, since each of the charged particles
has intrinsic spin, each particle constitutes a smaller
current loop so each has a spin magnentic moment.
The the potential energy of interaction of a magnetic
moment and a magnetic fieldis V = —f- B. We
will find though quantized, instrinsic spin can have
different orientations, so coupling of various magnetic
moments with a magnetic field will result in different
energies. In an external magnetic field, the coupling
due to orbital and spin magnetic moments is known as
Zeeman effect. The dominant effect is between the IV A HYDROGEL ATOM “ASU r
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Of more importance at the moment, the relative motions of the proton and electron create an
internal magnetic field. Coupling between the different possibilities of the orbital magnetic moment
and the internal magnetic field also results in different energies. When discovered, the splitting
of energies was considered small or very fine, so this name given to this effect is fine structure.
The differences in the energy levels for fine structure splitting is on the order of 0.01eV. Finally,
there is interaction between the magnetic moments of the particles and the magnetic fields created
by spin alone. This results in further splitting of energy levels, finer than that of the fine structure,
and is known as hyperfine structure. The differences in the energy levels for hyperfine structure
splitting is on the order of 10~7 eV.
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The differences in energy levels due to these effects is observable in the spectra of a sample
of hydrogen, for instance. Figure 13-2 illustrates the energy level differences due to spin—orbit
coupling, fine structure, and spin-spin coupling, hyperfine structure. Significantly, the degeneracy
of the energy levels of bydrogen is removed when these smaller effects are considered.
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Figure 13 — 2. A principal energy level, and spectral
splitting due to spin — orbit and spin — spin coupling
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which seems reasonable for atoms with radii on the order of an Angstrom. How fast does this
electron spin? Equivalently, what is the speed of a point on the “equator” of this electron? Setting
the angular momentum of a solid sphere equal to %/2,
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which is definitely superluminal, so is dubious....

Example 13-3: What would be the speed of a point on the “equator” of a billiard ball model
electron if the Compton radius is used?
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which is not much better, and the model has the electron billiard ball radius approach an atomic
radius, which is not good for many electron atoms, in particular. The conclusion is these are not
good estimates for a billiard ball electron radius. And this is consistent with the current picture
that the billiard ball model does not apply to an electron, and the electron has no radius at all....

The Gyromagnetic Ratio

The intent of this section is to introduce some terminology, and more importantly, illustrate
how angular momentum associated with a charged particle means a magnetic moment is present.

The classical definition of a gyromagnetic ratio
is the ratio of the magnetic moment to the angular
momentum. In other words
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Example 13—4: Calculate the gyromagnetic ratio for a single electron in a circular orbit using
classical arguments.

This example illustrates how angular momentum and magnetic moment are related. A circular
current loop has a circumference of 277 and an area of mr2. For a current I in a circular
loop of area A, the magnetic moment is = IA. If the current is composed of one electron
completing a circle during a period T,
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where the direction is normal to the plane of the circle in accordance with the right hand rule.
One circumference is traversed each period, or 2mr = vT, so
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state space as &, and full state space as &, the sets of eigenvalues of appropriate operators span
the respective spaces. Schematically
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Figure 13 — 4. Combination of any representation of orbital state space and spin
space is the set of eigenvalues of orbital and spin operators in full state space

In general, the combination of spaces is done by forming a direct product of the component
spaces. In this case we would write & =& @&, to denote a direct product. A direct product is
a generalization of the outer product of vectors to operators, or in this case, spaces. In general,

A®B =C = Cikjl = A,,;jBkl.

If both A and B are represented by 2X2 matrices,
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You can imagine this is an impractical calculation to do explicitly where one of the component
spaces is an infinite dimensional Hilbert space. Instead, we will develop just the spin space and
combine the results explicitly for a wavefunction of hydrogen to illustrate the meaning.

Though we will develop eigenvalues and eigenvectors in general, spin 1/2 particles will domi-
nate our discussion so that we can address a specific spin space. Spin spaces are infinite dimensional
Hilbert spaces, however, we can represent the operators of spin spaces in subspaces. In particular,
spin 1/2 uses a two dimensional subspace. Therefore, our discussion of spin space will involve a
number of 2X2 matrix operators.

Ladder Operators for Spin Angular Momentum

We are going to address spin angular momentum in a development similar to orbital angular
momentum. The parallels are striking. In fact, spin angular momentum arguments are the same
arguments made for orbital angular momentum in chapter 11. The reason is the commutators of
the components of all types of angular momentum are canonical, and specifically for spin are

[Sz, 8y ] =R S, [Sy, S.] =ihS,, and [, §;] =irS,. (13 - 5)
Like orbital angular momentum, the square of the spin angular momentum operator commutes
with all its components,

(8%, 8] =0, (13 — 6)
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= S, S+]a, g> = (S+ S, + fLS_,_)‘a, 8>
=84 S:|e, B> +1 81|, B>
=S4 Ble, B> +1 S, |a, B>
= (5 + h)5+’a, 8>,

= 5.(Sila, B>) = (B+1)(Ss]a, B> ).

Example 13—8: Show S+la, B> is an eigenvector of S2.

This is a carbon copy of example 11-12. Here
(8%, 84] =5%8, -5, 8*=0
= S?S, =5,8%
= 8*S|a, B> =54 8%, B> = Siale, f> = aS,|a, B>,
= 8(Sile, B>) = aSt|a, B>).

Eigenvalues of s*

The linear algebra arguments for spin angular momentum are the same as for orbital angular
momentum with the exception the operator S takes the place of the operator L. This is
because the commutation relations are the same. Were we to follow the calculations of chapter 11,
explicitly substituting S for £, we would arrive at equations (11-22) and (11-23),
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Equating these two equations and solving for B,.x results in

ﬂmax = -,Bminv . — - -

which is the maximum ladder separation. It gives
us the top and bottom of the ladder. We assume N STEPS - - -
the rungs of the ladder are separated by £, be-
cause that is the amount of change indicated by
the raising and lowering operators. If there is -
other than minimum separation, say there are n
steps between the bottom and top rungs of the lad-
der, there is a total separation of nf between the
bottom and the top. From figure 13-5 we expect

2% = _ nh Flta 13-5. LADDER OF
Hnamnh = o= n STEPS.

= &= fnax (Bmax + h)
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