
Homework Set 5 Solutions

(a) The four matrices are obtained by straightfoward calculation

L2
x = LxLx =

h̄√
2




0 1 0
1 0 1
0 1 0


 h̄√

2




0 1 0
1 0 1
0 1 0




⇒ L2
x =

h̄2

2




1 0 1
0 2 0
1 0 1




L2
y = LyLy =

h̄√
2




0 −i 0
i 0 −i
0 i 0


 h̄√

2




0 −i 0
i 0 −i
0 i 0




⇒ L2
y =

h̄2

2




1 0 −1
0 2 0

−1 0 1




L2
z = LzLz = h̄




1 0 0
0 0 0
0 0 −1


 h̄




1 0 0
0 0 0
0 0 −1




⇒ L2
z = h̄2




1 0 0
0 0 0
0 0 1




L2 = L2
x + L2

y + L2
z = h̄2






1
2 0 1

2
0 1 0
1
2 0 1

2


 +




1
2 0 − 1

2
0 1 0

− 1
2 0 1

2


 +




1 0 0
0 0 0
0 0 1







= h̄2




2 0 0
0 2 0
0 0 2




⇒ L2 = 2h̄2




1 0 0
0 1 0
0 0 1


 = 2h̄2I
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(b) The ladder operator matrices are also obtained by straightforward calculation

L+ =
h̄√
2




0 1 0
1 0 1
0 1 0


 + i

h̄√
2




0 −i 0
i 0 −i
0 i 0




=
h̄√
2




0 1 0
1 0 1
0 1 0


 +

h̄√
2




0 1 0
−1 0 1
0 −1 0




=
h̄√
2




0 2 0
0 0 2
0 0 0




⇒ L+ =
√

2 h̄




0 1 0
0 0 1
0 0 0




and

L− =
h̄√
2




0 1 0
1 0 1
0 1 0


 − i

h̄√
2




0 −i 0
i 0 −i
0 i 0




=
h̄√
2




0 1 0
1 0 1
0 1 0


 +

h̄√
2




0 −1 0
1 0 −1
0 1 0




=
h̄√
2




0 0 0
2 0 0
0 2 0




⇒ L− =
√

2 h̄




0 0 0
1 0 0
0 1 0




(c) First, check the effect of the L− operator on the three l = 1 eigenvectors:

L− | 1; 1> =
√

2 h̄




0 0 0
1 0 0
0 1 0







1
0
0


 =

√
2 h̄




0
1
0




L− | 1; 0> =
√

2 h̄




0 0 0
1 0 0
0 1 0







0
1
0


 =

√
2 h̄




0
0
1




L− | 1;−1> =
√

2 h̄




0 0 0
1 0 0
0 1 0







0
0
1


 =

√
2 h̄




0
0
0



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So
L− | l;m> =

√
l(l + 1) − m(m − 1) h̄ | l; m − 1> :

Next, check the effect of the L+ operator on the three l = 1 eigenvectors:

L+ | 1; 1> =
√

2 h̄




0 1 0
0 0 1
0 0 0







1
0
0


 =

√
2 h̄




0
0
0




L+ | 1; 0> =
√

2 h̄




0 1 0
0 0 1
0 0 0







0
1
0


 =

√
2 h̄




1
0
0




L+ | 1; −1> =
√

2 h̄




0 1 0
0 0 1
0 0 0







0
0
1


 =

√
2 h̄




0
1
0




So L+ | l;m> =
√

l(l + 1) − m(m + 1) h̄2 | l; m + 1> :

Now, check the effect of the L2 operator on the three l = 1 eigenvectors:

L2 | 1; 1> = 2h̄2




1 0 0
0 1 0
0 0 1







1
0
0


 = 2h̄2




1
0
0




L2 | 1; 0> = 2h̄2




1 0 0
0 1 0
0 0 1







0
1
0


 = 2h̄2




0
1
0




L2 | 1;−1> = 2h̄2




1 0 0
0 1 0
0 0 1







0
0
1


 = 2h̄2




0
0
1




So L2 | l; m> = l(l + 1)h̄2 | l; m> :

Finally, check the effect of the Lz operator on the three l = 1 eigenvectors:

Lz | 1; 1> = h̄




1 0 0
0 0 0
0 0 −1







1
0
0


 = h̄




1
0
0




Lz | 1; 0> = h̄




1 0 0
0 0 0
0 0 −1







0
1
0


 = h̄




0
0
0




Lz | 1;−1> = h̄




1 0 0
0 0 0
0 0 −1







0
0
1


 = −h̄




0
0
1



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So Lz | l;m> = mh̄ | l;m> :

(d) To calculate the normalization constant, we want to choose A so that < ˆ(0) | ˆ(0) > = 1:
Then, since we have

| ˆ(t = 0)> = A




3
2
4




⇒ (3; 2; 4)∗
A∗ A




3
2
4


 = 1

⇒ |A | 2 (9 + 4 + 16) = |A | 2 (29) = 1

⇒ A =
1√
29

:

(e) To calculate the possibilities and the probabilities of L2 measurements, we need to know the
eigenvalues and the eigenvectors of L2. In part a, we found

L2 = 2h̄2




1 0 0
0 1 0
0 0 1


 =




2h̄2 0 0
0 2h̄2 0
0 0 2h̄2


 :

So there is a triply degenerate eigenvalue equal to 2h̄2. Consequently, that is the only possible result
of a measurement. Since there is only one possible result of an L2 measurement, the probability is
1. We conclude

2h̄2 with P (L2 = 2h̄2) = 1

(f) We need to find the eigenvalues and eigenvectors of Lz, where

Lz = h̄




1 0 0
0 0 0
0 0 −1


 =




h̄ 0 0
0 0 0
0 0 −h̄


 :

So the eigenvalues are h̄; 0, and −h̄, and these are the only possible results of an Lz measurement.

4



The corresponding probabilities are given by

P (Lz = h̄) =
∣∣∣ (1; 0; 0)

1√
29




3
2
4




∣∣∣
2

=
∣∣∣ 3√

29

∣∣∣
2

=
9
29

;

P (Lz = 0) =
∣∣∣ (0; 1; 0)

1√
29




3
2
4




∣∣∣
2

=
∣∣∣ 2√

29

∣∣∣
2

=
4
29

;

P (Lz = −h̄) =
∣∣∣ (0; 0; 1)

1√
29




3
2
4




∣∣∣
2

=
∣∣∣ 4√

29

∣∣∣
2

=
16
29

:

So the possible results, and the corresponding probabilities are

Lz = h̄ with P (Lz = h̄) =
9
29

;

Lz = 0 with P (Lz = 0) =
4
29

;

Lz = −h̄ with P (Lz = −h̄) =
16
29

:

(g) To calculate the expectation value of the L2 operator, we can use the L2 matrix which is given
by

L2 = 2h̄2




1 0 0
0 1 0
0 0 1


 :

⇒ <L2> = <ˆ | L2 |ˆ> =
1√
29

(
3; 2; 4

)
2h̄2




1 0 0
0 1 0
0 0 1


 1√

29




3
2
4




=
2h̄2

29
(
3; 2; 4

)



3
2
4




=
2h̄2

29
(
9 + 4 + 16

)
=

2h̄2

29
(
29

)

⇒ <L2 > = 2h̄2:

Next, calculate the standard deviation of the L2 operator,

∆L2 = <(L2− <L2 > I)2>1=2= <(2h̄2I − 2h̄2I)2 >1=2= 0:
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Since there is only one possible value of L2, and there can be no variation in it, we also could have
immediately concluded that ∆L2 = 0 without a detailed calculation.

To calculate the expectation value of the Lz operator, we can use the Lz matrix which is given by

Lz = h̄




1 0 0
0 0 0
0 0 −1


 :

⇒ <Lz > = <ˆ | Lz |ˆ> =
1√
29

(
3; 2; 4

)
h̄




1 0 0
0 0 0
0 0 −1


 1√

29




3
2
4




=
h̄

29
(
3; 2; 4

)



3
0

−4




=
h̄

29
(
9 + 0 − 16

)
=

h̄

29
(

− 7
)

⇒ <Lz > = − 7
29

h̄:

To calculate the standard deviation of the Lz operator, we’ll use

∆Lz =
[
<L2

z > − <Lz >2]1=2
:

So we need L2
z, and in part a we found

L2
z = h̄2




1 0 0
0 0 0
0 0 1


 :

First calculate <L2
z >,

<L2
z > = <ˆ | L2

z | ˆ> =
1√
29

(
3; 2; 4

)
h̄2




1 0 0
0 0 0
0 0 1


 1√

29




3
2
4




=
h̄2

29
(
3; 2; 4

)



3
0
4




=
h̄2

29
(
9 + 0 + 16

)
=

h̄2

29
(
25

)
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Then combine <L2
z > with <Lz >2 to obtain ∆Lz,

⇒ ∆Lz =

[
25
29

h̄2 −
(

−
7
29

h̄

)2
]1=2

=
[
25
29

h̄2 −
49
292 h̄2

]1=2

= h̄

[
29 · 25 − 49

292

]1=2

= h̄

[
676
292

]1=2

⇒ ∆Lz =
26
29

h̄:

(h) Combining our results from parts e, f and g, we will now evaluate

<Ω> =
∑

i

P (!i) !i and ∆Ω =
√∑

i

P (!i) (!i− <Ω>)2

first for Ω = L2, and then for Ω = Lz.

For <L2 >, we find

<L2 > = P (2h̄2) 2h̄2 = 1 · 2h̄2 = 2h̄2;

and for ∆L2, we find

∆L2 =
√

P (2h̄2)
(
2h̄2 − 2h̄2)2

=
√

1 · 0 = 0:

For <Lz >; we find

<Lz > =
∑

i

P (!i) !i =
9
29

(+h̄) +
4
29

(0) +
16
29

(−h̄) =
9 − 16

29
(h̄) = −

7
29

h̄;
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and for ∆Lz, we find

∆Lz =
√ ∑

i

P (!i) (!i− <Lz >)2

=

[
9
29

(
+h̄ −

(
−7
29

h̄

))2

+
4
29

(
0 −

(
−7
29

h̄

))2

+
16
29

(
−h̄ −

(
−7
29

h̄

))2
]1=2

=

[
9
29

(
36
29

h̄

)2

+
4
29

(
7
29

h̄

)2

+
16
29

(
−22
29

h̄

)2
]1=2

=
[

9
29

(
1296
292 h̄2

)
+

4
29

(
49
292 h̄2

)
+

16
29

(
484
292 h̄2

)]1=2

=
[
11664 + 196 + 7744

293

]1=2

h̄

=
[
19604
293

]1=2

h̄ =
[
676
292

]1=2

h̄

⇒ ∆Lz =
26
29

h̄:

We conclude that the probability-based method produces exactly the same results as the direct
matrix calculation.

(i) The plot of P (L2) versus L2 looks like this
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and the plot of P (Lz) versus Lz looks like this

(j) First, calculate the expectation value of the Lx operator for the three eigenstates of Lz:

<1 |Lx | 1> = (1; 0; 0)
h̄√
2




0 1 0
1 0 1
0 1 0







1
0
0


 =

h̄√
2

(1; 0; 0)




0
1
0


 = 0

<2 |Lx | 2> = (0; 1; 0)
h̄√
2




0 1 0
1 0 1
0 1 0







0
1
0


 =

h̄√
2

(0; 1; 0)




1
0
1


 = 0

<3 |Lx | 3> = (0; 0; 1)
h̄√
2




0 1 0
1 0 1
0 1 0







0
0
1


 =

h̄√
2

(0; 0; 1)




0
1
0


 = 0

⇒ <Lx > = 0 for any eigenstate of Lz:

Then, calculate the expectation values of the Ly operator for the three eigenstates of Lz:

<1 | Ly | 1> = (1; 0; 0)
h̄√
2




0 −i 0
i 0 −i
0 i 0







1
0
0


 =

h̄√
2

(1; 0; 0)




0
i
0


 = 0

<2 | Ly | 2> = (0; 1; 0)
h̄√
2




0 −i 0
i 0 −i
0 i 0







0
1
0


 =

h̄√
2

(0; 1; 0)




−i
0
i


 = 0

<3 | Ly | 3> = (0; 0; 1)
h̄√
2




0 −i 0
i 0 −i
0 i 0







0
0
1


 =

h̄√
2

(0; 0; 1)




0
−i
0


 = 0
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⇒ <Ly > = 0 for any eigenstate of Lz:

Now, to show that <L2 −L2
z > = <L2

x +L2
y >; note that we can just show that the L2 −L2

z matrix
is equal to the L2

x + L2
y matrix. So, calculating we find

L2 − L2
z = 2h̄2




1 0 0
0 1 0
0 0 1


 − h̄2




1 0 0
0 0 0
0 0 1


 = h̄2




2 − 1 0 0
0 2 0
0 0 2 − 1


 = h̄2




1 0 0
0 2 0
0 0 1


 ;

and

L2
x + L2

y =
h̄2

2




1 0 1
0 2 0
1 0 1


 +

h̄2

2




1 0 −1
0 2 0

−1 0 1




=
h̄2

2




1 + 1 0 1 − 1
0 2 + 2 0

1 − 1 0 1 + 1




= h̄2




1 0 0
0 2 0
0 0 1


 :

The matrices are identical, so the corresponding operators must have the same expectation values.

(k) The standard sketch of the semiclassical vector model for l = 1 angular momentum states looks
like this
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Note that this picture shows all three eigenvectors of Lz to be vectors of fixed length
√

l(l + 1) h̄2 =
2h̄ precessing around the z-axis. However, even though they are precessing, the three eigenvectors
of Lz have fixed projections of Lz: h̄, 0, and −h̄.

Because the three eigenvectors of Lz are precessing around the z-axis, the time-averaged expecta-
tion values of Lx and of Ly for the eigenstates of Lz are zero.

The geometry also shows the physical significance of the equation <L2 − L2
z > = <L2

x +L2
y >: the

in-plane projection of the precessing vector is fixed and has length squared L2
x + L2

y:

(l) The Hamiltonian is given by

H =
L2

z

2I
:

And we know that

Lz = h̄




1 0 0
0 0 0
0 0 −1


 ⇒ L2

z = h̄2




1 0 0
0 0 0
0 0 1


 :

So we find

H =
h̄2

2I




1 0 0
0 0 0
0 0 1


 =




h̄2=2I 0 0
0 0 0
0 0 h̄2=2I


 :

This is diagonal, so we can read off the eigenvalues from the diagonal entries. They are

h̄2

2I
; 0; and

h̄2

2I;

and the corresponding eigenvectors are




1
0
0


 ;




0
1
0


 ; and




0
0
1


 :

(m) The initial state vector is given by

|ˆ(t = 0)> =
1√
29


3




1
0
0


 + 2




0
1
0


 + 4




0
0
1





 :
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So, the time-dependent state vector is given by

|ˆ(t)> =
1√
29


3




1
0
0


 e−ih̄t=2I + 2




0
1
0


 + 4




0
0
1


 e−ih̄t=2I


 :

(n) The time-dependent state vector can be rewritten as

|ˆ(t)> =
1√
29




3e−ifi

2
4e−ifi


 ;

where we have introduced fi = h̄t=2I for compactness.

The time-dependent expectation value of the energy is given by

<ˆ | H |ˆ> =
1√
29

(
3e+ifi; 2; 4e+ifi

) h̄2

2I




1 0 0
0 0 0
0 0 1


 1√

29




3e−ifi

2
4e−ifi




=
h̄2

58I

(
3e+ifi; 2; 4e+ifi

)



3e−ifi

0
4e−ifi




=
h̄2

58I
(9 + 16)

⇒ <ˆ | H | ˆ>=
25
29

h̄2:

The time-dependent expectation value of the L2 operator is given by

<ˆ |L2 |ˆ> =
1√
29

(
3e+ifi; 2; 4e+ifi

)
2h̄2




1 0 0
0 1 0
0 0 1


 1√

29




3e−ifi

2
4e−ifi




=
2h̄2

29
(
3e+ifi; 2; 4e+ifi

)



3e−ifi

2
4e−ifi




=
2h̄2

29
(9 + 4 + 16)

⇒ <ˆ |L2 | ˆ>= 2h̄2:
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The time-dependent expectation value of the Lz operator is given by

<ˆ | Lz |ˆ> =
1√
29

(
3e+ifi; 2; 4e+ifi

)
h̄




1 0 0
0 0 0
0 0 −1


 1√

29




3e−ifi

2
4e−ifi




=
h̄

29
(
3e+ifi; 2; 4e+ifi

)



3e−ifi

0
−4e−ifi




=
h̄

29
(9 + 0 − 16)

⇒ <ˆ | Lz | ˆ>= − 7
29

h̄:

The time-dependent expectation value of the Lx operator is given by

<ˆ | Lx | ˆ> =
1√
29

(
3e+ifi; 2; 4e+ifi

) h̄√
2




0 1 0
1 0 1
0 1 0


 1√

29




3e−ifi

2
4e−ifi




=
h̄

29
√

2

(
3e+ifi; 2; 4e+ifi

)



2
7e−ifi

2




=
h̄

29
√

2

(
6e+ifi + 14e−ifi + 8e+ifi

)

=
14h̄

29
√

2

(
e+ifi + e−ifi

)
=

14
√

2h̄

29

(
e+ifi + e−ifi

2

)

=
14

√
2h̄

29
cos fi

⇒ <ˆ |Lx |ˆ>=
14

√
2h̄

29
cos

(
h̄t

2I

)
:
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And, the time-dependent expectation value of the Ly operator is given by

<ˆ |Ly | ˆ> =
1√
29

(
3e+ifi; 2; 4e+ifi

) h̄√
2




0 −i 0
i 0 −i
0 i 0


 1√

29




3e−ifi

2
4e−ifi




=
h̄

29
√

2

(
3e+ifi; 2; 4e+ifi

)



−2i
−ie−ifi

2i




=
ih̄

29
√

2

(
−6e+ifi − 2e−ifi + 8e+ifi

)

=
ih̄

29
√

2

(
2e+ifi − 2e−ifi

)
= −

2
√

2h̄

29

(
e+ifi − e−ifi

2i

)

= −
2
√

2h̄

29
sinfi

⇒ <ˆ |Ly | ˆ>= −2
√

2 h̄

29
sin

(
h̄t

2I

)
:

Now, why are L2 and Lz time-independent, in contrast to Lx and Ly which are time-dependent?
Time dependence is related to whether the operator commutes with the Hamiltonian, or not.

Let’s check which operators commute with the Hamiltonian: H; L2; and Lz are all diagonal, so
they all commute with one another. Remember that you demonstrated that any two diagonal
matrices commute in Problem Set 3. Now, let’s check whether Lx and Ly commute with the
Hamiltonian:

[H; Lx] =
h̄2

2I




1 0 0
0 0 0
0 0 1


 h̄√

2




0 1 0
1 0 1
0 1 0


 − h̄√

2




0 1 0
1 0 1
0 1 0


 h̄2

2I




1 0 0
0 0 0
0 0 1




=
h̄3

2
√

2I




0 1 0
0 0 0
0 1 0


 −

h̄3

2
√

2I




0 0 0
1 0 1
0 0 0


 =

h̄3

2
√

2I




0 1 0
−1 0 −1
0 1 0


 6= 0

so H and Lx do not commute. Next check

[H; Ly] =
h̄2

2I




1 0 0
0 0 0
0 0 1


 h̄√

2




0 −i 0
i 0 −i
0 i 0


 − h̄√

2




0 −i 0
i 0 −i
0 i 0


 h̄2

2I




1 0 0
0 0 0
0 0 1




=
h̄3

2
√

2I




0 −i 0
0 0 0
0 −i 0


 −

h̄3

2
√

2I




0 0 0
i 0 −i
0 0 0


 =

h̄3

2
√

2I




0 −i 0
−i 0 i
0 i 0


 6= 0
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so H and Ly do not commute.

Since L2 and Lz commute with H, they share a common eigenbasis with H, and therefore their
commom eigenvectors all have the same time-dependence. Consequently, <L2 > and <Lz > are
time-independent.

Since Lx and Ly do not commute with H, they do not share a common eigenbasis with H.
Consequently, Lx and Ly will necessarily evolve in time differently than H, because the eigenvectors
of Lx and Ly are both combinations of several eigenvectors of H with different time-dependent
exponential phase factors.

(o) The three relevant spherical harmonics are

Y1;1 =

√
3
8…

sin µei`; Y1;0 =

√
3
4…

cos µ; and Y1;−1 =

√
3
8…

sin µe−i`:

These are the energy eigenfunctions pertinent to this problem. If our initial wave function is
rewritten as a function of polar and azimuthal angles, it becomes

ˆ(µ; `; t = 0) =
1√
29

[
3

√
3
8…

sin µ ei` + 2

√
3
4…

cos µ + 4

√
3
8…

sin µ e−i`

]
:

Since the Hamiltonian is given by

H =
L2

z

2I
;

and the Lz operator is given by

Lz = −ih̄
@

@`
;

we find

H =
1
2I

(
−ih̄

@

@`

) (
−ih̄

@

@`

)
= −

h̄2

2I

@2

@`2 :

And, in position space, the TISE becomes the differential equation

−
h̄2

2I
@2

@`2 ˆlm(µ; `) = En ˆlm(µ; `):

Here the energy eigenfunctions are the three l = 1 spherical harmonics (i:e:; the ˆlm’s), and for
l = 1, the equation above represents three equations: one for m = 1, one for m = 0 and one for
m = −1.
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The general form of the TDSE is given by

H |ˆn > = ih̄
d

dt
| ˆn > :

So, in position space, the TDSE becomes the differential equation

−
h̄2

2I

@2

@`2 ˆ(µ; `; t) = i h̄
d

dt
ˆ(µ; `; t);

where full time-dependent position space wave function is given by

ˆ(µ; `; t) =
1√
29

[
3

√
3
8…

sin µ ei` e−ih̄t=2I + 2

√
3
4…

cos µ + 4

√
3
8…

sin µ e−i` e−ih̄t=2I

]
:

(p) By combining the Hamiltonian matrix from part l, with the three l = 1 eigenvectors, the TISE
becomes the following three matrix equations

h̄2

2I




1 0 0
0 0 0
0 0 1







1
0
0


 = E1




1
0
0


 ;

h̄2

2I




1 0 0
0 0 0
0 0 1







0
1
0


 = E2




0
1
0


 ;

h̄2

2I




1 0 0
0 0 0
0 0 1







0
0
1


 = E3




0
0
1


 :

And, the TDSE becomes the following matrix equation

h̄2

2I




1 0 0
0 0 0
0 0 1


 1√

29




3e−ih̄t=2I

2
4e−ih̄t=2I




=
ih̄√
29

d

dt




3e−ih̄t=2I

2
4e−ih̄t=2I


 :

Note that if you do the matrix multiplication on the left hand side, and the differentiation on the
right hand side, it works—it’s a bona fide equality!

16


