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(c) If V(x) is an even function (that is, V(—x) = V(x)) then ¥ (x) can always
be taken to be either even or odd. Hint: If ¥ (x) satisfies Equation 2.5, for
a given E, so too does ¥ (—x), and hence also the even and odd linear
combinations ¥ (x) & ¢r(—x).

*Problem 2.2 Show that E must exceed the minimum value of V(x), for every
normalizable solution to the time-independent Schrodinger equation. What is the
classical analog to this statement? Hint: Rewrite Equation 2.5 in the form

>y 2m _
W = h—z[V(x) — Eyr;

if E < Viin, then ¢ and its second derivative always have the same sign —argue
that such a function cannot be normalized.

2.2 THE INFINITE SQUARE WELL

Suppose
0, if0<x<a,

oo, otherwise [2.19]

Vx) = {

(Figure 2.1). A particle in this potential is completely free, except at the two ends
(x = 0 and x = a), where an infinite force prevents it from escaping. A classical
model would be a cart on a frictionless horizontal air track, with perfectly elastic
bumpers—it just keeps bouncing back and forth forever. (This potential is artifi-
cial, of course, but I urge you to treat it with respect. Despite its simplicity—or
rather, precisely because of its simplicity—it serves as a wonderfully accessi-
ble test case for all the fancy machinery that comes later. We’ll refer back to it
frequently.)

V(x)

FIGURE 2.1: The infinite square well poten-
X tial (Equation 2.19).
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Outside the well, ¥ (x) = O (the probability of finding the particle there is
zero). Inside the well, where V = 0, the time-independent Schrédinger equation
(Equation 2.5) reads

R d*y
AV 220
2m dx? v [2.201
or 5
d V2mE
YV 2y where k = YHE [2.21]
dx? h

(By writing it in this way, I have tacitly assumed that £ > 0; we know from
Problem 2.2 that E < 0 won’t work.) Equation 2.21 is the classical simple har-
monic oscillator equation; the general solution is

Y(x) = Asinkx 4+ Bcoskx, [2.22]

where A and B are arbitrary constants. Typically, these constants are fixed by the
boundary conditions of the problem. What are the appropriate boundary con-
ditions for v (x)? Ordinarily, both v and dy/dx are continuous, but where the
potential goes to infinity only the first of these applies. (I’ll prove these boundary
conditions, and account for the exception when V = oo, in Section 2.5; for now I
hope you will trust me.)

Continuity of ¥ (x) requires that

Y(0) =y(a) =0, [2.23]

so as to join onto the solution outside the well. What does this tell us about A and
B? Well,

W(0) = Asin0O+ BcosO = B,

so B =0, and hence
W(x) = Asinkx. [2.24]

Then ¢ (a) = Asinka, so either A = 0 (in which case we’re left with the triv-
ial—non-normalizable—solution ¥ (x) = 0), or else sinka = 0, which means
that

ka=0, tmw, 27, £3m, ... [2.25]

But k¥ = 0 is no good (again, that would imply ¥ (x) = 0), and the negative

solutions give nothing new, since sin(—#) = —sin(8) and we can absorb the
minus sign into A. So the distinct solutions are

k=" withn=123. ... [2.26]
a
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yq(x) Wa(X) Wa(X)

FIGURE 2.2: Thefirstthreestationary states of the infinite square well (Equation 2.28).

Curiously, the boundary condition at x = a does not determine the constant
A, but rather the constant k, and hence the possible values of E:

h*k2  n*m’h?

E, =t _MTTT
" 2m 2ma?

[2.27]

In radical contrast to the classical case, a quantum particle in the infinite square
well cannot have just any old energy—it has to be one of these special allowed
values.® To find A, we normalize -

a2 24 22
/ |A|“sin“(kx)dx = |[A]°= =1, so |A|“"=—.
0 2 a

This only determines the magnitude of A, but it is simplest to pick the positive real
root: A = /2/a (the phase of A carries no physical significance anyway). Inside
the well, then, the solutions are

Y () = ﬁ sin (ﬂx) . [2.28]
a a

As promised, the time-independent Schrédinger equation has delivered an
infinite set of solutions (one for each positive integer n). The first few of these are
plotted in Figure 2.2. They look just like the standing waves on a string of length a;
11, which carries the lowest energy, is called the ground state, the others, whose
energies increase in proportion to n2, are called excited states. As a collection, the
functions v, (x) have some interesting and important properties:

1. They are alternately even and odd, with respect to the center of the well:
Y 1s even, ¥ is odd, ¥3 is even, and so on.?

SNotice that the quantization of energy emerged as a rather technical consequence of the bound-
ary conditions on solutions to the time-independent Schrodinger equation.

9To make this symmetry more apparent, some authors center the well at the origin (running it
from —a to +a). The even functions are then cosines, and the odd ones are sines. See Problem 2.36.
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2. As you go up in energy, each successive state has one more node (zero-
crossing): i1 has none (the end points don’t count), v, has one, ¥3 has two, and
S0 on.

3. They are mutually orthogonal, in the sense that

/t/fm () Y (x) dx = 0, [2.29]

whenever m # n. Proof:
« _ 2 (4 /mmw . /AT
/1/’m(x) Yn(x)dx = zl-/(; sin (TX) s1n(7x) dx
) Lo () oo ()
= —/ cos TX | —CoS wx )| dx
afo a a
{ 1 . (m—n > 1 . <m +n )}
= sin TX ) — sin X
(m —n)w a (m+n)m a

1 Isin[(m —n)m] 3 sin[(m + n)rr]} _
T (m — n) (m + n) -

0

Note that this argument does nor work if m = n. (Can you spot the point at which
it fails?) In that case normalization tells us that the integral is 1. In fact, we can
combine orthogonality and normalization into a single statement:'°

/lﬁm O Y (x) dx = S, (2.30]

where 8,,, (the so-called Kronecker delta) is defined in the usual way,

)0, ifm#n;
8""’_{ 1, ifm=n. (2.31]

We say that the i’s are orthonormal.

4. They are complete, in the sense that any orher function, f(x), can be
expressed as a linear combination of them:

f) = ; o (x) = \/g; ¢ sin (%x) . [2.32]

1011 this case the Y’s are real, so the * on ¥, is unnecessary, but for future purposes it’s a good
idea to get in the habit of putting it there.
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I’m not about to prove the completeness of the functions sin (n77x /a), but if you’ve
studied advanced calculus you will recognize that Equation 2.32 is nothing but the
Fourier series for f(x), and the fact that “any” function can be expanded in this
way is sometimes called Dirichlet’s theorem.!!

The coefficients ¢, can be evaluated—for a given f(x)—by a method I call
Fourier’s trick, which beautifully exploits the orthonormality of {1,}: Multiply
both sides of Equation 2.32 by ¥, (x)*, and integrate.

fmeMM=Z%/WWMMM=qu=% [2.33]

n=1 n=1

(Notice how the Kronecker delta kills every term in the sum except the one for
which n = m.) Thus the nth coefficient in the expansion of f(x) is!2

q=/%@%ﬁﬂx [2.34]

These four properties are extremely powerful, and they are not peculiar to the
infinite square well. The first is true whenever the potential itself is a symmetric
function; the second is universal, regardless of the shape of the potential.'* Orthog-
onality is also quite general—I'll show you the proof in Chapter 3. Completeness
holds for all the potentials you are likely to encounter, but the proofs tend to be
nasty and laborious; I'm afraid most physicists simply assume completeness, and
hope for the best.

The stationary states (Equation 2.18) of the infinite square well are evidently

2 s
W, (x. 1) = \/; sin (%x) iR 2mayr [2.35]

I claimed (Equation 2.17) that the most general solution to the (time-dependent;
Schrodinger equation is a linear combination of stationary states:

o0
2 L2 o 2
Wix, )= ey = sin (Tix) iR 2mad) [2.36
a a
n=l1

1See, for example, Mary Boas, Mathematical Methods in the Physical Sciences, 2d ed. (New
York: John Wiley, 1983), p. 313; f(x) can even have a finite number of finite discontinuities.

121t doesn’t matter whether you use m or n as the “dummy index” here (as long as you arc
consistent on the two sides of the equation, of course); whatever letter you use, it just stands for “an;
positive integer.”

13See, for example, John L. Powell and Bernd Crasemann, Quantum Mechanics (Addison:
Wesley, Reading, MA, 1961), p. 126.
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(If you doubt that this is a solution, by all means check it!) It remains only for
me to demonstrate that I can fit any prescribed initial wave function, ¥(x, 0), by
appropriate choice of the coefficients ¢;:

W(x, 0) =Y et (x).
n=1

The completeness of the 1’s (confirmed in this case by Dirichlet’s theorem) guar-
antees that I can always express W(x,0) in this way, and their orthonormality
licenses the use of Fourier’s trick to determine the actual coefficients:

¢, = \/2/ sin (ﬂx) W(x, 0)dx. [2.37]
a Jjo a

That does it: Given the initial wave function, W(x, 0), we first compute the
expansion coefficients c¢,,, using Equation 2.37, and then plug these into Equation 2.36
to obtain W (x, 1). Armed with the wave function, we are in a position to compute any
dynamical quantities of interest, using the procedures in Chapter 1. And this same
ritual applies to any potential—the only things that change are the functional form
of the ¥’s and the equation for the allowed energies.

Example 2.2 A particle in the infinite square well has the initial wave function
W(x,0)=Ax(a—-x), (0<x<a),

for some constant A (see Figure 2.3). OQutside the well, of course, ¥ = 0. Find
W(x,1).

A W(x, 0)

> Y

a

FIGURE 2.3: The starting wave function in Example 2.2.
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Solution: First we need to determine A, by normalizing W (x, 0):
a a aS
1 =/ |W(x,0)?dx = |A|2/ x*(a — x)?dx = |A* =,
0 0 30

SO

30

A= .
ad

The nth coefficient is (Equation 2.37)

a?
_ 25;_5 ( [(ﬁ)zsm () = 2 co (gx)] 0

_ [2 () xsin (") - ﬁm’;:;j;; 2 cos (gx)]

)

3 2 _
= 2V15 [—a— cos(nm) + a3(nl—2 cos(nm) + a 2 cos(0)
a3 nw (nm)3 (nm)3
44/15
- (—ng [cos(0) — cos(n)]
. 0, if n is even,
{ 8/15/(nm)?, if n is odd.

Thus (Equation 2.36):

B 3 fm(yeson

=13

Loosely speaking, ¢, tells you the “amount of v, that is contained in ¥.”
Some people like to say that |c,|? is the “probability of finding the particle in the
nth stationary state,” but this is bad language; the particle is in the state W, not
W, and, anyhow, in the laboratory you don’t “find a particle to be in a particular
state”—you measure some observable, and what you get is a number. As we’ll
see in Chapter 3, what |c,|* tells you is the probability that a measurement of the
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energy would yield the value E, (a competent measurement will always return one
of the “allowed” values—hence the name—and |c, |* is the probability of getting
the particular value E,).

Of course, the sum of these probabilities should be 1,

o0

D el =1. [2.38]

n=1

Indeed, this follows from the normalization of W (the ¢,’s are independent of time,
so I’'m going to do the proof for ¢ = 0; if this bothers you, you can easily generalize
the argument to arbitrary ).

- [1weora= [ (Zcmvfm(x)) <ch1/fn(X)> dx
m=1 n=1

= ZZc cn/wmu) Yn(x) dx

o0
Z ' Crdmn —Z|Cn|2

i PH18 ||

(Again, the Kronecker delta picks out the term m = » in the summation over m.)
Moreover, the expectation value of the energy must be

= Z lcn | En, [2.39]

and this too can be checked directly: The time-independent Schrodinger equation
(Equation 2.12) says
Hwn = Ep¥n, [2.40]

SO

)= [wrwar= [(Cewm) #(Taw)ds
= ZZC;CnEn / Yo bn dx = Z lcn | Ey.

Notice that the probability of getting a particular energy is independent of time, and
so, a fortiori, is the expectation value of H. This is a manifestation of conservation
of energy in quantum mechanics.
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Example 2.3 In Example 2.2 the starting wave function (Figure 2.3) closely re-
sembles the ground state v (Figure 2.2). This suggests that |cy |2 should dominate,

and in fact
2
815
le1? = (—3) = 0.998555. .. .
b4

The rest of the coefficients make up the difference:'4

2
. o [8V15 = 1
Ylal={—5"] > =1
n=1 n=1,3,5,...

The expectation value of the energy, in this example, is

o 2 x
815\ n2nx2h®  480R* 1 5h2

3.3 2 ) 4 2
n=L35.. nm 2ma Tema n=1,3‘5.u.n ma

As one might expect, it is very close to E| = 72h% /2ma*—slightly larger, because

of the admixture of excited states.

Problem 2.3 Show that there is no acceptable solution to the (time-independent)
Schrodinger equation for the infinite square well with E = Q or E < 0. (This is a
special case of the general theorem in Problem 2.2, but this time do it by explicitly
solving the Schridinger equation, and showing that you cannot meet the boundary
conditions.)

xProblem 2.4 Calculate (x), (x2), (p), (p?), ox, and op, for the nth stationary state
of the infinite square well. Check that the uncertainty principle is satisfied. Which
state comes closest to the uncertainty limit?

«Problem 2.5 A particle in the infinite square well has as its initial wave function
an even mixture of the first two stationary states:

Y(x,0) = Aly1(x) + ¥ ()]

14you can look up the series

and

in math tables, under “Sums of Reciprocal Powers” or “Riemann Zeta Function.”
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(a) Normalize W(x, 0). (That is, find A. This is very easy, if you exploit the
orthonormality of v; and ;. Recall that, having normalized ¥ at t = 0,
you can rest assured that it stays normalized—if you doubt this, check it
explicitly after doing part (b).)

(b) Find W(x,r) and |W(x, 1)|%. Express the latter as a sinusoidal function of
time, as in Example 2.1. To simplify the result, let w = 7%#/2ma>.

(c) Compute {x). Notice that it oscillates in time. What is the angular frequency
of the oscillation? What is the amplitude of the oscillation? (If your amplitude
is greater than a/2, go directly to jail.)

(d) Compute (p). (As Peter Lorre would say, “Do it ze kveek vay, Johnny!”)

(e) If you measured the energy of this particle, what values might you get, and
what is the probability of getting each of them? Find the expectation value
of H. How does it compare with E| and E;?

Problem 2.6 Although the overall phase constant of the wave function is of no
physical significance (it cancels out whenever you calculate a measurable quantity),
the relative phase of the coefficients in Equation 2.17 does matter. For example,
suppose we change the relative phase of ¥, and vy, in Problem 2.5:

W (x,0) = A[Y1(x) + Py ()],
where ¢ is some constant. Find W(x, 1), |¥(x, t)|?, and (x), and compare your

results with what you got before. Study the special cases ¢ = 7/2 and ¢ = 7.
(For a graphical exploration of this problem see the applet in footnote 7.)

*Problem 2.7 A particle in the infinite square well has the initial wave function'?

Ax, 0<

X /2,
Ala—x), a/2<

a.

Y(x,0) = {

= IA
IAN B

(a) Sketch W(x,0), and determine the constant A.

(b} Find W(x,r).

15There is no restriction in principle on the shape of the starting wave function, as long
as it is normalizable. In particular, W(x,0) need not have a continuous derivative—in fact, it
doesn’t even have to be a continuous function. However, if you try to calculate (H) using
f W(x, 0)* H¥ (x,0)dx in such a case, you may encounter technical difficulties, because the second
derivative of W(x, 0} is ill-defined. It works in Problem 2.9 because the discontinuities occur at the end
points, where the wave function is zero anyway. In Problem 2.48 you’ll see how to manage cases like
Problem 2.7.
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(c) What is the probability that a measurement of the energy would yield th
value E(?

(d) Find the expectation value of the energy.

Problem 2.8 A particle of mass m in the infinite square well (of width a) start
out in the left half of the well, and is (at + = 0) equally likely to be found at an’
point in that region.

(a) What is its initial wave function, W (x, 0)? (Assume it is real. Don’t forge
to normalize it.)

(b) What is the probability that a measurement of the energy would yield th
value 72h?/2ma*?

Problem 2.9 For the wave function in Example 2.2, find the expectation value o
H, at time = 0, the “old fashioned” way:

(H) =/w(x,0)*1f1\1/(x,0)dx.

Compare the result obtained in Example 2.3, using Equation 2.39. Note: becaust
(H) is independent of time, there is no loss of generality in using ¢ = 0.

2.3 THE HARMONIC OSCILLATOR

The paradigm for a classical harmonic oscillator is a mass m attached to a spring
of force constant k. The motion is governed by Hooke’s law,

(ignoring friction), and the solution is
x(t) = Asin(wt) + B cos(wt),

where

k |
w=,— [2.41
m

is the (angular) frequency of oscillation. The potential energy is

1
Vix) = 5kxz; [2.42

its graph is a parabola.



