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(c) What is the probability that a measurement of the energy would yield the
value Eq?

(d) Find the expectation value of the energy.

Problem 2.8 A particle of mass m in the infinite square well (of width a) starts
out in the left half of the well, and is (at + = 0) equally likely to be found at any
point in that region.

(a) What is its initial wave function, W(x, 0)? (Assume it is real. Don’t forget
to normalize it.)

(b) What is the probability that a measurement of the energy would yield the
value 72h%/2ma®?

Problem 2.9 For the wave function in Example 2.2, find the expectation value of
H, at time t = 0, the “old fashioned” way:

(H) =/w(x,0)*1{w(x,0)dx.

Compare the result obtained in Example 2.3, using Equation 2.39. Note: because
(H) is independent of time, there is no loss of generality in using 7 = 0.

2.3 THE HARMONIC OSCILLATOR

The paradigm for a classical harmonic oscillator is a mass m attached to a spring
of force constant k. The motion is governed by Hooke’s law,

d*x
F=—kx=m—~
dt?
(ignoring friction), and the solution is
x(t) = Asin(wt) + B cos(wt),

where

k
w=,— [2.41]
m

is the (angular) frequency of oscillation. The potential energy is
1 2
Vix) = Ekx ; [2.42]

its graph is a parabola.
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FIGURE 2.4: Parabolic approximation (dashed curve) to an arbitrary potential, in
the neighborhood of a local minimum.

Of course, there’s no such thing as a perfect harmonic oscillator—if you
stretch it too far the spring is going to break, and typically Hooke’s law fails
long before that point is reached. But practically any potential is approximately
parabolic, in the neighborhood of a local minimum (Figure 2.4). Formally, if we
expand V(x) in a Taylor series about the minimum:

1
V(x) = V(x0) + V'(x0) (x — x0) + EVU(XO)(X —x0) 4,

subtract V (xgp) (you can add a constant to V (x) with impunity, since that doesn’t
change the force), recognize that V/(xp) = 0 (since xq is a minimum), and drop the
higher-order terms (which are negligible as long as (x — xg) stays small), we get

1
Vix) = EV”(xo)(x — x0)%,

which describes simple harmonic oscillation (about the point xg), with an effective
spring constant k = V”(x0).!® That’s why the simple harmonic oscillator is so
important: Virtually any oscillatory motion is approximately simple harmonic, as
long as the amplitude is small.

The guantum problem is to solve the Schrédinger equation for the potential

1
Vix) = Emw2x2 [2.43]

(it is customary to eliminate the spring constant in favor of the classical frequency,
using Equation 2.41). As we have seen, it suffices to solve the time-independent
Schrodinger equation:

Ay ety = By [2.44]

16Note that V"' (xg) > 0, since by assumption xq is a minimum. Only in the rare case V" (xg) = 0
is the oscillation not even approximately simple harmonic.
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In the literature you will find two entirely different approaches to this problem.
The first is a straightforward “brute force” solution to the differential equation,
using the power series method; it has the virtue that the same strategy can be
applied to many other potentials (in fact, we’ll use it in Chapter 4 to treat the
Coulomb potential). The second is a diabolically clever algebraic technique, using
so-called ladder operators. I'll show you the algebraic method first, because it is
quicker and simpler (and a lot more fun);!” if you want to skip the power series
method for now, that’s fine, but you should certainly plan to study it at some
stage.

2.3.1 Algebraic Method

To begin with, let’s rewrite Equation 2.44 in a more suggestive form:

1
—[p? + (mwx)’ly = Evy, [2.45]
2m

where p = (hi/i)d/dx is, of course, the momentum operator. The basic idea is to
factor the Hamiltonian,

H= L[ 2 2
= L [P+ (mon)?). [2.46]
2m

If these were numbers, it would be easy:
2 2 . .
u”+v- = (Gu +v)(—iu +v).

Here, however, it’s not quite so simple, because p and x are operators, and oper-
ators do not, in general, commute (xp is not the same as px). Still, this does
motivate us to examine the quantities

a; = \/ﬁ (Fip + mwx) [2.47]

(the factor in front is just there to make the final results look nicer).
Well, what is the product a_a?

a-ay = (ip + mwx)(—ip + mwx)

1
2hmow

1
= ——[p* + (mwx)? — imw(xp — px)].
2hmo

7We'11 encounter some of the same strategies in the theory of angular momentum (Chapter 4),
and the technique generalizes to a broad class of potentials in super-symmetric quantum mechanics
(see, for example, Richard W. Robinett, Quantum Mechanics, (Oxford U.P., New York, 1997), Section
14.4).
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As anticipated, there’s an extra term, involving (xp — px). We call this the com-
mutator of x and p; it is a measure of how badly they fail to commute. In general,
the commutator of operators A and B (written with square brackets) is

[A,B] = AB — BA. [2.48]
In this notation,
1 2 ) ]
= — - — . 2.49
a-ay 2hmw[p + (mawx)“] 7 [x, pl [2.49]

We need to figure out the commutator of x and p. Warning: Operators are
notoriously slippery to work with in the abstract, and you are bound to make
mistakes unless you give them a “test function,” f(x), to act on. At the end you
can throw away the test function, and you’ll be left with an equation involving the
operators alone. In the present case we have:

hd hd h( d d ,
b, plf ) = | x-— () — - =) | =~ WAL f)=ihfx).
idx i dx i dx dx
{2.50]
Dropping the test function, which has served its purpose,
[x, pl =ih. [2.51]

This lovely and ubiquitous result is known as the canonical commutation rela-
tion.'3
With this, Equation 2.49 becomes

1 1
_ar=—H+ —, 2.52
a-ay = + 7 [2.52]

or .
H=hw <a_a+ - 5) . [2.53]

Evidently the Hamiltonian does not factor perfectly—there’s that extra —1/2 on the
right. Notice that the ordering of a4 and a_ is important here; the same argument,
with a4 on the left, yields

1 1
_=—H—~. 2.54
G+4 how 2 [ ]
In particular,
[a—,a+] = 1. [2.55]

811 a deep sense all of the mysteries of quantum mechanics can be traced to the fact that position
and momentum do not commute. Indeed, some authors take the canonical commutation relation as an
axiom of the theory, and use it to derive p = (h/i)d/dx.



44

Chapter 2 Time-Independent Schriodinger Equation

So the Hamiltonian can equally well be written
1
H=ho (a+a_ + 5) . [2.56]

In terms of a, then, the Schrodinger equation!® for the harmonic oscillator takes
the form

heo (ai_aq: + %) W = Ey [2.57]

(in equations like this you read the upper signs all the way across, or else the lower
signs).

Now, here comes the crucial step: I claim that if Y satisfies the Schrodinger
equation with energy E, (that is: Hyr = Ev), then a.y satisfies the Schridinger
equation with energy (E 4+ hw): H(a1vy) = (E + hw)(ay ). Proof:

1 1
H(a y) = ho <a+a_ + E) (axy¥) = hw <a+a_a+ + §a+> ¥

b1+
=ay(H + ho)y = a1 (E + ho)y = (E + ho)(ar ).

(I used Equation 2.55 to replace a_ay by aya_ + 1, in the second line. Notice
that whereas the ordering of a; and a_ does matter, the ordering of a4 and
any constants—such as h, w, and E—does nor; an operator commutes with any
constant.)

By the same token, a_v is a solution with energy (E — Aw):

H@a_¥) =how (a_a+ - %) (a—¥) = hwa- (a+a_ - %) W

=a_ l:ha) (a_a+ e %) lﬁ] =a_(H —ho)Y =a_(E — ho)yr

= (E — hw)(a-y).

Here, then, is a wonderful machine for generating new solutions, with higher and
lower energies—if we could just find one solution, to get started! We call a4
ladder operators, because they allow us to climb up and down in energy; a. is
the raising operator, and a_ the lowering operator. The “ladder” of states is
illustrated in Figure 2.5.

Prm getting tired of writing “time-independent Schrodinger equation,” so when it’s clear from
the context which one I mean, I'll just call it the “Schridinger equation.”
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FIGURE 2.5: The “ladder” of states for the harmonic oscillator.

But wait! What if I apply the lowering operator repeatedly? Eventually I'm
going to reach a state with energy less than zero, which (according to the general
theorem in Problem 2.2) does not exist! At some point the machine must fail.
How can that happen? We know that a_v is a new solution to the Schrddinger
equation, but there is no guarantee that it will be normalizable —it might be zero,
or its square-integral might be infinite. In practice it is the former: There occurs a
“lowest rung” (call it vro) such that

a_yo = 0. [2.58]
We can use this to determine g(x):

1 d
— | A — + mwx =0,
S2hmo ( dx )%
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or
ding mow
ETE
This differential equation is easy to solve:
d
% = _n;l_w xdx = Inyp= —%xz ~+ constant,
SO

Yo(x) = Ae™ 57

We might as well normalize it right away:

[ee)
h
1=|AI2/ e gy = AP | 2
—oo mw

so A2 = mw/mh, and hence

maow 1/4 _sz
Yo(x) = — e W
7

[2.59]

To determine the energy of this state we plug it into the Schrédinger equation (in
the form of Equation 2.57), hw(ata— + 1/2yo = Egvg, and exploit the fact that

a_yo =0: .
Ey = -ho.
0 ) w

[2.60]

With our foot now securely planted on the bottom rung (the ground state of the
quantum oscillator), we simply apply the raising operator (repeatedly) to generate

20

the excited states,”” increasing the energy by Aw with each step:

Yn(x) = Ap(ay)"Yo(x), with E, = (n + %) ho,

[2.61]

where A, is the normalization constant. By applying the raising operator (repeat-
edly) to v, then, we can (in principle) construct all?! the stationary states of

20Tn the case of the harmonic oscillator it is customary, for some reason, to depart from the usual
practice, and number the states starting with n = 0, instead of n = 1. Obviously, the lower limit on the

sum in a formula such as Equation 2.17 should be altered accordingly.

21Note that we obtain all the (normalizable) solutions by this procedure. For if there were some
other solution, we could generate from it a second ladder, by repeated application of the raising and
lowering operators. But the bottom rung of this new ladder would have to satisfy Equation 2.58, and
since that leads inexorably to Equation 2.59, the bottom rungs would be the same, and hence the two

ladders would in fact be identical.
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the harmonic oscillator. Meanwhile, without ever doing that explicitly, we have

determined the allowed energies.

Example 2.4 Find the first excited state of the harmonic oscillator.

Solution: Using Equation 2.61,

Vi) = Ayt = o ( Ly )(’”“’)” =
X)) = a = - — mwx _— [4
! VY0 =" ohme \ dx Th

[2.62]

We can normalize it “by hand”:
mo [(2mw o _mw.,2
/lWIIZdX: A1 ﬁ(T)/ X T dx = 1AL,
—00

so, as it happens, A| = 1.
I wouldn’t want to calculate 5o this way (applying the raising operator fifty
times!), but never mind: In principle Equation 2.61 does the job—except for the

normalization.

You can even get the normalization algebraically, but it takes some fancy

footwork, so watch closely. We know that a4 ¥, is proportional to Y, 41,
[2.63]

A+ = CpV¥ngl, aA_VYn = dpPn_i
5922

but what are the proportionality factors, ¢, and d,? First note that for “any

functions f(x) and g(x),

/ f*(aig)dxzf (axf)*gdx.

(In the language of linear algebra, ax is the hermitian conjugate of a+.)

[2.64]

Proof:

1 o0 d
/ f* (:Fha +ma)x>gdx,
-0

* d —
/_oof (a+g)dx N

20f course, the integrals must exist, and this means that f(x) and g(x) must go to zero at

T o0.
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and integration by parts takes [ f*(dg/dx)dx to — [(df/dx)*g dx (the boundary
terms vanish, for the reason indicated in footnote 22), so

o] 1 o0 d * o0
/ f*(aig)dxsz [(ihZi; +ma)x>f} gdx:/ (axf)*gdx.

QED
In particular,

o0 o
| @evr@svax = [~ @razunyds,
-0 —o0
But (invoking Equations 2.57 and 2.61)

ara_V, =nyy, a-atyy = (n+ Dy, [2.65]

SO

/ (@) (@s ) dx = [cal® / Wt Pdx = (n + 1) / P dx,

o

1Y |* dx.

f (a-Ym)*(a-yn) dx = |dn|2f [Yn—11? dx =n/

But since ¥, and v, 4| are normalized, it follows that |c, 12 =n+1 and |d, |2 =n,
and hence

a¥n =vVn+ 1y, a-vy = \/E‘/fn—L [2.66]
Thus
Vi=ao V2= —=arih = @)
V3= —as¥n = (@)W, Vi = =y s = e (a) s
and so on. Clearly
1 n
Yp = ﬁ(a# Yo, [2.67]

which is to say that the normalization factor in Equation 2.61 is A, = 1/+/a! (in
particular, A; = 1, confirming our result in Example 2.4).
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As in the case of the infinite square well, the stationary states of the harmonic

oscillator are orthogonal:
o0

/ lﬂ:, Y dx = S [2.68]

This can be proved using Equation 2.65, and Equation 2.64 twice —first moving
ay and then moving a_:

/ " Vrara ndx =n / " Vnundx

/ (@) (@) dx = / (G Y dx

—00

m/OO Yo Undx.

Unless m = n, then, f ¥y, dx must be zero. Orthonormality means that we
can again use Fourier’s trick (Equation 2.34) to evaluate the coefficients, when we
expand W(x, 0) as a linear combination of stationary states (Equation 2.16), and
lca|? is again the probability that a measurement of the energy would yield the
value E,,.

Example 2.5 Find the expectation value of the potential energy in the nth state
of the harmonic oscillator.

Solution:

1 2.2 1 2 i * 2
(VY= —2—mw x“) = Ema) Yo x Yy dx.
—o0

There’s a beautiful device for evaluating integrals of this kind (involving powers
of x or p): Use the definition (Equation 2.47) to express x and p in terms of the
raising and lowering operators:

X =, ! (ar+a-);, p=iy hma)(a+ —a-). [2.69]
2mw 2

2.

In this example we are interested in x
2 h 2 2
2= 2 [(@0)? + (apas) + (@-ap) + @2,
me
So

hw

(Vi=— / v [(a+)2 +(aya ) + (a-ay) + (a_)Z] Y dx.
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But (a+)21p,, is (apart from normalization) v, 17, which is orthogonal to ,,, and
the same goes for (a_)zwn, which is proportional to ¥, _>. So those terms drop
out, and we can use Equation 2.65 to evaluate the remaining two:

W) =220 041 = 2ho (n+
= n+n =3 wln 5 )
As it happens, the expectation value of the potential energy is exactly half the
total (the other half, of course, is kinetic). This is a peculiarity of the harmonic
oscillator, as we’ll see later on.

«Problem 2.10

(a) Construct ¥ (x).
(b) Sketch vy, Y1, and yr;.

{(c) Check the orthogonality of v, ¥1, and ¥, by explicit integration. Hint: If
you exploit the even-ness and odd-ness of the functions, there is really only
one integral left to do.

xProblem 2.11

(a) Compute (x), (p), (x2), and (p?), for the states vy (Equation 2.59) and v,
(Equation 2.62), by explicit integration. Comment: In this and other problems
involving the harmonic oscillator it simplifies matters if you introduce the
variable & = /mw/f x and the constant o = (mw/mh)'/*.

(b) Check the uncertainty principle for these states.

(c) Compute (T) (the average kinetic energy) and (V) (the average potential
energy) for these states. (No new integration allowed!) Is their sum what you
would expect?

«Problem 2.12 Find (x), (p), (x*), (p?), and (T, for the nth stationary state of the
harmonic oscillator, using the method of Example 2.5. Check that the uncertainty
principle is satisfied.

Problem 2.13 A particle in the harmonic oscillator potential starts out in the state
V(x,0) = A[BYo(x) +4y1(x)].

(a) Find A.
(b) Construct W(x, 1) and |W(x, 1)|2.
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(c) Find (x) and (p). Don’t get too excited if they oscillate at the classical
frequency; what would it have been had I specified ¥ (x), instead of ¥ (x)?
Check that Ehrenfest’s theorem (Equation 1.38) holds for this wave function.

(d) If you measured the energy of this particle, what values might you get, and
with what probabilities?

Problem 2.14 A particle is in the ground state of the harmonic oscillator with
classical frequency @, when suddenly the spring constant quadruples, so o’ = 2w,
without initially changing the wave function (of course, ¥ will now evolve differ-
ently, because the Hamiltonian has changed). What is the probability that a mea-
surement of the energy would still return the value fiw/2? What is the probability
of getting fiw? [Answer: 0.943.]

2.3.2 Analytic Method
We return now to the Schrodinger equation for the harmonic oscillator,

n? d? 1
"ﬁd_;/; + Emwzle/r =Evy, [2.70]

and solve it directly, by the series method. Things look a little cleaner if we
introduce the dimensionless variable

= [T, 271
E: 7)67 [ ]

in terms of £ the Schrédinger equation reads

d*y

2
— = — K)y, 2.72
il 9 [2.72]
where K is the energy, in units of (1/2)hw:
2E
= —, 2.73
PP [2.73]

Our problem is to solve Equation 2.72, and in the process obtain the “allowed”
values of K (and hence of E).
To begin with, note that at very large £ (which is to say, at very large x), &2
completely dominates over the constant K, so in this regime
>y
— , 2.74
e ~EV [2.74]
which has the approximate solution (check it!)

V(&) ~ Ae /2 4 et [2.75]
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The B term is clearly not normalizable (it blows up as |x| — ©0); the physically
acceptable solutions, then, have the asymptotic form

(&) = (e /2 atlarge £. [2.76]
This suggests that we “peel off” the exponential part,

Y(E) = hE)e 52, [2.77]

in hopes that what remains, A(£), has a simpler functional form than ¥ () itself. 23

Differentiating Equation 2.77,
dv _ (@ _ $h> N

ds — \dé
and
so the Schrodinger equation (Equation 2.72) becomes
ﬂ - 25@ + (K - 1h=0. [2.78]
dg? d&

I propose to look for solutions to Equation 2.78 in the form of power series
i g.24
in &:

o0
hE) =ag+ak +aE +-- =) a;El. [2.79]
=0
Differentiating the series term by term,
dh ad ‘
E =a) + 2mk + 30382 + - = Zjajéj_l,
j=0
and
Zh ) i .
g2 =2+ 2 3aE 43 da e = J;}u + 1 +2)ajt.

23Note that although we invoked some approximations to motivate Equation 2.77, what fol-
lows is exact. The device of stripping off the asymptotic behavior is the standard first step in
the power series method for solving differential equations—see, for example, Boas (footnote 11),
Chapter 12.

24This is known as the Frobenius method for solving a differential equation. According to
Taylor’s theorem, any reasonably well-behaved function can be expressed as a power series, so
Equation 2.79 ordinarily involves no loss of generality. For conditions on the applicability of the
method, see Boas (footnote 11) or George B. Arfken and Hans-Jurgen Weber, Mathematical Methods
for Physicists, Sth ed., Academic Press, Orlando (2000), Section 8.5.
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Putting these into Equation 2.78, we find

Y [G+ DG +Daji2 - 2jaj + (K — Daj] €/ =0. [2.80]
j=0

-

It follows (from the uniqueness of power series expansions®) that the coefficient
of each power of & must vanish,

U+ DG +2ajs2 — 2ja; + (K — Da; =0,

and hence that .
_@2j+1-K) .
G+DG+2
This recursion formula is entirely equivalent to the Schrédinger equation.
Starting with ap, it generates all the even-numbered coefficients:

aj+2 [2.81]

1-K) 5-K) (S—K)(l—K)a
- —-— et a frd 5 ...’
2 0. a4 2 “ 24 0

and starting with aj, it generates the odd coefficients:

az

3-K) (7T—-K) (7-K)3-K)
= ———— R as = ay = a ,
e b b 20 = 120 !

We write the complete solution as

as

h(&) = heven(§) + hoda(£), [2.82]
where
heven(8) = ag + a2t? + ast* + - -
is an even function of &, built on ag, and
hodd(§) = a1€ + a3&> +as&> + - -

is an odd function, built on a;. Thus Equation 2.81 determines 4(§) in terms of
two arbitrary constants (ag and a;)—which is just what we would expect, for a
second-order differential equation.

However, not all the solutions so obtained are normalizable. For at very large
J, the recursion formula becomes (approximately)

a. ~ _a.
j+2 cAj,
J

25 See, for example, Arfken (footnote 24), Section 5.7.
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with the (approximate) solution
C
aj = ———,
/2!
for some constant C, and this yields (at large &, where the higher powers dominate)
1
/2!

Now, if & goes like exp(&2), then ¥ (remember 1/ ?—that’s what we’re trying to
calculate) goes like exp(£2/2) (Equation 2.77), which is precisely the asymptotic
behavior we didn’t want?® There is only one way to wiggle out of this: For
normalizable solutions the power series must terminate. There must occur some
“highest” j (call it ), such that the recursion formula spits out a,42 = 0 (this will
truncate either the series heyen 0Or the series hoqq; the other one must be zero from
the start: a; = 0 if »n is even, and gp = 0 if n is odd). For physically acceptable
solutions, then, Equation 2.81 requires that

hE) ~C Yo ! %CZ%&”%@SZ.

K =2n+1,

for some non-negative integer n, which is to say (referring to Equation 2.73) that
the energy must be

1
En:(n+§>hw, forn=0,1,2,.... [2.83]

Thus we recover, by a completely different method, the fundamental quantization
condition we found algebraically in Equation 2.61.

It seems at first rather surprising that the quantization of energy should
emerge from a technical detail in the power series solution to the Schrodinger
equation, but let’s look at it from a different perspective. Equation 2.70 has
solutions, of course, for any value of E (in fact, it has rwo linearly independent
solutions for every E). But almost all of these solutions blow up exponentially at
large x, and hence are not normalizable. Imagine, for example, using an E that
is slightly less than one of the allowed values (say, 0.49Aw), and plotting the
solution (Figure 2.6(a)); the “tails” fly off to infinity. Now try an E slightly larger
(say, 0.51%w); the “tails” now blow up in the other direction (Figure 2.6(b)). As
you tweak the parameter in tiny increments from 0.49 to 0.51, the tails flip over
when you pass through 0.5—only at precisely 0.5 do the tails go to zero, leaving
a normalizable solution.?’

261¢s no surprise that the ill-behaved solutions are still contained in Equation 2.81; this recursion
relation is equivalent to the Schrédinger equation, so it’s got to include both the asymptotic forms we
found in Equation 2.75.

Mt is possible to set this up on a computer, and discover the allowed energies “experimentally.”
You might call it the wag the dog method: When the tail wags, you know you’ve just passed over an
allowed value. See Problems 2.54-2.56.
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FIGURE 2.6: Solutions to the Schrodinger equation for (a) E = 0.49 hw, and
(b) E = 0.51 ho.

For the allowed values of K, the recursion formula reads

—2(n—j)

G+hG+2" [2.54]

aj+2 =

If n = 0, there is only one term in the series (we must pick a; = 0 to kill sogg,
and j = 0 in Equation 2.84 yields ay = 0):

ho(§) = ao,

and hence

Yo(§) = age /2
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(which, apart from the normalization, reproduces Equation 2.59). For n = 1 we
take ap = 0,%® and Equation 2.84 with j = 1 yields a3 = 0, so

h1(§) = aié.
and hence
Vi) =age 7

(confirming Equation 2.62). For n = 2, j = 0 yields ay = —24g, and j = 2 gives
as =0, so

ha(€) = ap(1 — 2£%),
and
Y2(8) = ap(1 — 26H)e 72,

and so on. (Compare Problem 2.10, where this last result was obtained by algebraic
means.)

In general, i, () will be a polynomial of degree » in &, involving even powers
only, if n is an even integer, and odd powers only, if n is an odd integer. Apart
from the overall factor (ap or a;) they are the so-called Hermite polynomials,
H,(£).2° The first few of them are listed in Table 2.1. By tradition, the arbitrary
multiplicative factor is chosen so that the coefficient of the highest power of &
is 2. With this convention, the normalized® stationary states for the harmonic
oscillator are

_ ()" e 2.85

They are identical (of course) to the ones we obtained algebraically in Equation 2.67.

TABLE 2.1: The first few Hermite
polynomials, Hy (§).

HOZI,

Hy =128,

Hy =482 -2,
Hy= 8% — 12¢,

Hy= 1654 - 4882 + 12,
Hs = 3285 - 16083 + 120E.

28Note that there is a completely different set of coefficients a j for each value of n.
29The Hermite polynomials have been studied extensively in the mathematical literature, and
there are many tools and tricks for working with them. A few of these are explored in Problem 2.17.

307 shall not work out the normalization constant here; if you are interested in knowing how it is
done, see for example Leonard Schiff, Quantum Mechanics, 3rd ed., McGraw-Hill, New York (1968),
Section 13.
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In Figure 2.7(a) I have plotted v, (x) for the first few n’s. The quantum
oscillator is strikingly different from its classical counterpart—not only are the
energies quantized, but the position distributions have some bizarre features. For
instance, the probability of finding the particle outside the classically allowed range
(that is, with x greater than the classical amplitude for the energy in question) is
not zero (see Problem 2.15), and in all odd states the probability of finding the
particle at the center is zero. Only at large n do we begin to see some resemblance
to the classical case. In Figure 2.7(b) I have superimposed the classical position
distribution on the quantum one (for n = 100); if you smoothed out the bumps,
the two would fit pretty well (however, in the classical case we are talking about
the distribution of positions over fime for one oscillator, whereas in the quantum
case we are talking about the distribution over an ensemble of identically prepared
systf:ms).31

Problem 2.15 In the ground state of the harmonic oscillator, what is the probability
(correct to three significant digits) of finding the particle outside the classically
allowed region? Hint: Classically, the energy of an oscillator is E = (1 /2ka? =
(1/2)mw?a®, where a is the amplitude. So the “classically allowed region” for an
oscillator of energy E extends from —y/2E /mw? to ++/2E/mw?. Look in a math
table under “Normal Distribution” or “Error Function” for the numerical value of
the integral.

Problem 2.16 Use the recursion formula (Equation 2.84) to work out H5(¢) and
Heg(£). Invoke the convention that the coefficient of the highest power of & is 2"
to fix the overall constant.

x *Problem 2.17 In this problem we explore some of the more useful theorems (stated
without proof) involving Hermite polynomials.

{a) The Rodrigues formula says that
> d\" 2
Hy(8) = (—1)7ef <£> s 2.86]
Use it to derive H3 and Hj.

(b) The following recursion relation gives you H,y in terms of the two preced-
ing Hermite polynomials:

Hyy1(8) = 26 Hy(§) — 2nHy— 1 (5). (2.87]

Use it, together with your answer in (a), to obtain Hs and He.

3 The parallel is perhaps more direct if you interpret the classical distribution as an ensemble of
oscillators all with the same energy, but with random starting times.
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FIGURE 2.7: (a) The first four stationary states of the harmonic oscillator. This
material is used by permission of John Wiley & Sons, Inc.; Stephen Gasiorowicz,
Quantum Physics, John Wiley & Sons, Inc., 1974. (b) Graph of |¥109|%, with the
classical distribution (dashed curve) superimposed.
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(c) If you differentiate an nth-order polynomial, you get a polynomial of order
(n — 1). For the Hermite polynomials, in fact,

dHy,
d§

=2nH,_1(§). [2.88]

Check this, by differentiating Hs and Hg.

(d) H, (&) is the nth z-derivative, at z = 0, of the generating function exp(—z>+
2z§); or, to put it another way, it is the coefficient of z"/n! in the Taylor
series expansion for this function:

o0

e~ HE 3 fl—’:H,,(S). [2.89]

n=0

Use this to rederive Hy, Hy, and H,.

2.4 THE FREE PARTICLE

We turn next to what should have been the simplest case of all: the free particle
(V(x) = 0 everywhere). Classically this would just mean motion at constant veloc-
ity, but in quantum mechanics the problem is surprisingly subtle and tricky. The
time-independent Schrédinger equation reads

h* d?
_%d—;g — £y, [2.90]
or )
d 2mE
d—lg — —k*y, where k = X" [2.91]
X

So far, it’s the same as inside the infinite square well (Equation 2.21), where the
potential is also zero; this time, however, I prefer to write the general solution in
exponential form (instead of sines and cosines), for reasons that will appear in due
course:

¥ (x) = Ae™ + Be [2.92]

Unlike the infinite square well, there are no boundary conditions to restrict the
possible values of k (and hence of E); the free particle can carry any (positive)
energy. Tacking on the standard time dependence, exp(—i Et/h),

W(x, 1) = AekC=3m0) | Bkt 30, [2.93]

Now, any function of x and ¢ that depends on these variables in the special
combination (x * vt) (for some constant v) represents a wave of fixed profile,
traveling in the Fx-direction, at speed v. A fixed point on the waveform (for



