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The degeneracy in m at each / we understand in terms of rotational in-
variance. The degeneracy of the different / states (which are not related by
rotation operators or the generators) appears mysterious. For this reason
it is occasionally termed accidental degeneracy. This is, however, a mis-
nomer, for the degeneracy in / can be attributed to additional invariance
properties of H. Exactly what these extra invariances or symmetries of H
are, and how they explain the degeneracy in /, we will see in Chapter 15.

Exercise 12.6.11.* (i) By combining Egs. (12.6.48) and (12.6.49) derive the
two-term recursion relation. Argue that C, # 0 if U is to have the right properties
near y = 0. Derive the quantizations condition, Eq. (12.6.50).

(ii) Calculate the degeneracy and parity at each # and compare with Exercise
10.2.3, where the problem was solved in Cartesian coordinates.

(iii) Construct the normalized eigenfunction v,,;, for » = 0 and 1. Write
them as linear combinations of the » = 0 and » = 1 eigenfunctions obtained in
Cartesian coordinates.

13

The Hydrogen Atom

13.1. The Eigenvalue Problem

We have here a two-body problem, of an electron of charge —e and
mass m, and a proton of charge +e and mass M. By using CM and relative
coordinates and working in the CM frame, we can reduce the problem to
the dynamics of a single particle whose mass u = mM/(m + M) is the
reduced mass and whose coordinate r is the relative coordinate of the two
particles. However, since m/M =~ 1/2000, as a result of which the relative
coordinate is essentially the electron’s coordinate and the reduced mass
is essentially m, let us first solve the problem in the limit M — oco. In this
case we have just the electron moving in the field of the immobile proton.
At a later stage, when we compare the theory with experiment, we will
see how we can easily take into account the finiteness of the proton mass.

Since the potential energy of the electron in the Coulomb potential

b =efr (13.1.1)
due to the proton is ¥V = —e?/r, the Schrédinger equation
d? 2m et (I + 1)r? .

{ dr? + 2 [E * r 2mr? ]}Um =0 (131.2)

determines the energy levels in the rest frame of the atom, as well as the
wave functions?

P, 0, ) = Ru()Ym(0, $) = LB ym@ 4y (13.1.3)

r

It is clear upon inspection of Eq. (13.1.2) that a power series ansatz
will lead to a three-term recursion relation. So we try to factor out the

} It should be clear from the context whether m stands for the electron mass or the
z component of angular momentum.
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364 Chap. 13 e The Hydrogen Atom
asymptotic behavior. We already know from Section 12.6 that up to (pos-
sibly fractional) powers of r [Eq. (12.6.19)],
Ug, ~ exp[—QmW/h%)Y2r] (13.1.4)
7r—>00

where
W= —E

is the binding energy (which is the energy it would take to liberate the
electron) and that
Ugi~ riit (13.1.5)

>0

Equation (13.1.4) suggests the introduction of the dimensionless variable
0 = CmW/[h*)V?r (13.1.6)

and the auxiliary function vy, defined by

UEI = e g (13]7)
The equation for v is then
d? dv e*A a-+0n7
ot 2 . 2 v=20 (13.1.8)
where
A= QCm/i2W)V? (13.1.9)

and the subscripts on v are suppressed. You may verify that if we feed in
a series into Eq. (13.1.8), a two-term recursion relation will obtain. Taking
into account the behavior near ¢ = 0 [Eq. (13.1.5)] we try

vg =o't Y Go¥ (13.1.10)
k=0

and obtain the following recursion relation between successive coefficients:

Ciyn —e2 + 2k + 1+ 1) (13.1.11)
G kHI+FDE+I+D -+ o
The Energy Levels
Since
Cina 2 (13.1.12)
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is the behavior of the series p™e%, and would lead to U ~ e~2v ~ gmeee2e
~ g™e? as ¢ — oo, we demand that the series terminate at some k. This
will happen if

EA=2k—+1+1) (13.1.13)
or [from Eq. (13.1.9)]
—met
E=—-W= Wk F LD k=20,1,2,...: I=012,...
(13.1.14)
In terms of the principal quantum number
n=k+1+1 (13.1.15)
the allowed energies are
_me4
En:‘—w, n = 1,2, 3, ‘e (13.1.16)

and at each » the allowed values of / are, according to Eq. (13.1.15),
l=n—k—1=n—-1,n-2,...,1,0 (13.1.17)

That states of different / should be degenerate indicates that H contains
more symmetries besides rotational invariance. We discuss these later.
For the present, let us note that the degeneracy at each »n is

n—1
Z Q2+ 1) = n? (13.1.18)
=o
It is common to refer to the states with /=0,1,2,3,4, ... as s,p, d, f,
g, h, ... states. In this spectroscopic notation, 1s denotes the state (n = 1,

[ = 0); 2s and 2p the / = 0 and / = 1 states at n = 2; 3s, 3p, and 3d the
/=0,1, and 2 states at n = 3, and so on. No attempt is made to keep
track of m.

It is convenient to employ a natural unit of energy, called a Rydberg
(Ry), for measuring the energy levels of hydrogen:

met
in terms of which
E, — _nl:y- (13.1.20)

Figure 13.1 shows some of the lowest-energy states of hydrogen.
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Etor iyl
-t/16f — — — —hn=4
-1/9fF — — —n=3
-1/4} — —n=2
Fig. 13.1. The first few eigenstates of hydrogen.
The energy is measured in Rydbergs and the states
b am are labeled in the spectroscopic notation.

The Wave Functions

Given the recursion relations, it is a straightforward matter to deter-
mine the wave functions and to normalize them. Consider a given #n and /.
Since the series in Eq. (13.1.10) terminates at

k=n—1-—1 (13.1.21)

the corresponding function v, is p!+! times a polynomial of degree n — I — 1.
This polynomial is called the associated Laguerre polynomial, L3, (20).*
The corresponding radial function is

Ry(0) ~ e 'L 1(20) (13.1.22)
Recall that
2mW \1/2 Im met 2
9‘( i ) ’:[ 72 '(2ﬁ2n2)] ’
2
= ’;:22 r (13.1.23)
In terms of the length
h‘).
Ao =~ o (13.1.24)

called the Bohr radius, which provides the natural distance scale for the
hydrogen atom, :

11
R, /(r) ~ e*’/"%(—’—) Li’,*,;(%) (13.1.25)

ha, 0

P L) = (—1D)*(d*[dx*)LS, ., L,° = e*(d?[dxP)(e~*xP).
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As r — oo, L will be dominated by the highest power, r*—-1, and

R, ~ (r)y*—le—"/m% (independent of /) (13.1.26)
(If I = n — 1, this form is valid at all r since L2*! is a constant.) Equation
(13.1.26) was anticipated in the last chapter when we considered the

behavior of Ug; as r — oo, in a Coulomb potential (see Exercise 13.1.4).
The following are the first few normalized eigenfunctions, ¢z, = Yaim:

1 \v2
¥1,0,0 = ( _) e~

wa,®
1 1/2 r
P [ — - —r/2a
Va.0.0 ( 32ma,® ) (2 ay )e '
| " (13.1.27)
r
Yo,1,0 = (_32na03 ) N e~""% cos 6
1 vy . )
Yo1,41 = T (W) N e~ "/% gin fetid
0 0

Exercise 13.1.1. Derive Eqs. (13.1.11) and (13.1.14) starting from Eqgs.
(13.1.8)-(13.1.10).

Exercise 13.1.2. Derive the degeneracy formula, Eq. (13.1.18).

Exercise 13.1.3. Starting from the recursion relation, obtain v,,, (normal-
ized).

Exercise 13.1.4. Recall from the last chapter [Eq. (12.6.19)] that as r — <o,

Ug ~ (r)m*=*%e==r in a Coulomb potential ¥ = —e?/r [x = 2mW/h?)"?]. Show
that this agrees with Eq. (13.1.26).

Let us explore the statement that a, provides a natural length scale
for the hydrogen atom. Consider the state described by

Yon-1m OC €T (6, ¢) (13.1.28)

Let us ask for the probability of finding the electron in a spherical shell
of radius r and thickness dr:

J P(r)r? dr dQ oc e~2"/maoyn gy (13.1.29)
Q

The probability density in r reaches a maximum when

_q._ (efzr/naoan) =0

dr
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or
r = n%a, (13.1.30)

When n = 1, this equals g,. Thus the Bohr radius gives the most probable
value of r in the ground state and this defines the “size” of the atom (to
the extent one may speak of it in quantum theory). If n > 1 we see that the
size grows as n?, at least in the state of / = n — 1. If / 34 n — 1, the radial
function has n — [ — 1 zeros and the density in r has several bumps. In
this case, we may define the size by <{r)>.* It can be shown, by using properties
of L2, that

(Pnim = <5 Bn* — (1 + 1] (13.1.31)

Rather than go through the lengthy derivation of this formula let us con-
sider the following argument, which indicates that the size grows as n’a,.
In any eigenstate

(HY = E =Ty + V) = <{P*2m) — <e¥r) (13.1.32)
It can be shown (Exercise 13.1.5) that

Ty = —KV> (13.1.33)

which is just the quantum version of the classical virial theorem, which
states that if ¥ = cr¥, then the averages T and U are related by

- k -
It follows that
E=XV>= —3§r> (13.1.34)
Now, in the state labeled by n,
—me? —e?
1 p—t . . 5
E. 2h2n? 2a.n® (13.1.35)
from which it follows that
<l> L (13.1.36)
r/n agn

i Even though r represents the abstract operator (X2 + Y2 + Z2)V2 only in the coor-
dinate basis, we shall use the same symbol to refer to it in the abstract, so as to keep
the notation simple.

Sec. 13.2 e Degeneracy of the Hydrogen Spectrum 369
Although
1 1
sl
<r> r

the two are of the same order of magnitude (see Exercise 9.4.2) and we infer
that
{rop ~ n*a, (13.1.37)

which agrees with the result Eq. (13.1.31). (One must be somewhat cautious
with statements like <1/r> ~ 1/{r>. For example it is not true in an s
state that {1/r*d =~ 1/{r*), since {1/r*) is divergent while 1/{r*) is not.
In the present case, however, {1/r) is well defined in all states and indeed
{1/r> and 1/{r) are of the same order of magnitude.)

This completes our analysis of the hydrogen spectrum and wave func-
tions. Several questions need to be answered, such as (i) What are the
numerical values of E,, a,, etc.? (ii)) How does one compare the energy
levels and wave functions deduced here with experiment?

These questions will be taken up in Section 13.3. But first let us address
a question raised earlier: What is the source of the degeneracy in / at each n?

_ Exercise 13.1.5* (Virial Theorem). Since |n,l,m)> is a stationary state,
2> = 0 for any Q. Consider 2 = R - P and use Ehrenfest’s theorem to show
that <T)> = (—1/2)<V> in the state | n, [, m).

13.2. The Degeneracy of the Hydrogen Spectrum

The hydrogen atom, like the oscillator, exhibits ‘“‘accidental degener-
acy.” Quotation marks are used once again, because, as in the case of
the oscillator, the degeneracy can be explained in terms of other symmetries
the Hamiltonian has besides rotational invariance. Now, we have seen
that the symmetries of H imply the conservation of the generators of the
symmetries. Consequently, if there is an extra symmetry (besides rotational
invariance) there must be some extra conserved quantities (besides angular
momentum). Now it is well known classically that the Coulomb? potential
is special (among rotationally invariant potentials) in that it conserves the
Runge—Lenz vector

px1 e’

n="too - g (13.2.1)

¥ Or generally any 1/r potential, say, gravitational.
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The conservation of n implies that not only is the orbit confined to a plane
perpendicular to 1 (as in any rotationally invariant problem) it is also
closed (Exercise 13.2.1).
In quantum theory then, there will be an operator N which commutes
with H:
IN,H] =0 (13.2.2)

and is given byt

e’R
(X2 + Y2 + 22)112

1
NZEn—[PXL_LXP]_ (13.2.3)

We have seen that the conservation of L implies that [L,, H] =0,
which means that we can raise and lower the m values at a given / without
changing the energy. This is how the degeneracy in m is “explained” by
rotational invariance.

So it must be that since [N, H] = 0, we must be able to build some
operator out of the components of N, which commutes with H and which
raises / by one unit. This would then explain the degeneracy in / at each n.
Precisely what this operator is and how it manages to raise / by one unit
will be explained in Section 15.4, devoted to the study of “accidental”
degeneracy. You will also find therein the explanation of the degeneracy
of the oscillator.

Exercise 13.2.1. Let us see why the conservation of the Runge-Lenz vector
n implies closed orbits.

(i) Express n in terms of r and p alone (get rid of ).

(i) Since the particle is bound, it cannot escape to infinity. So, as we follow
it from some arbitrary time onwards, it must reach a point rp,, where its distance
from the origin stops growing. Show that

. 2
n= rmax(ZE + ¢ )

Fmax

at this point. (Use the law of conservation of energy to eliminate p%.) Show that,
for similar reasons, if we wait some more, it will come to ry;,, where

2
n = rmm(2E + ¢ )

Fmin
Thus rpae and ry, are parallel to each other and to n. The conservation or con-

stancy of n implies that the maximum (minimum) separation is always reached

¥ Since [P, L]+ 0, we have used the symmetrization rule to construct N from n, i.e.,
px1— 3[(PXL) + (PxL)!] = }[PxL — LxP] (verify this).
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at the same point ry.,(run), i.e., the orbit is closed. In fact, all three vectors
Imaxs Tmin, and n are aligned with the major axis of the ellipse along which the
particle moves; n and ry,, are parallel, while n and rg,, are antiparallel. (Why?)
Convince yourself that for a circular orbit, n must and does vanish.

13.3. Numerical Estimates and Comparison with Experiment

In this section we (i) obtain numerical estimates for various quantities
such as the Bohr radius, energy levels, etc.; (ii) ask how the predictions of
the theory are actually compared with experiment.

Numerical Estimates

Consider first the particle masses. We will express the rest energies of
the particles in million-electron volts or MeV:

me? ~ 0.5 MeV (0.511 is a more exact value) (13.3.1)
Mc? = 1000 MeV (938.3)¢ (13.3.2)
m|M ~ 1/2000 (1/1836)* (13.3.3)

Consequently the reduced mass u and electron mass m are almost equal:

mM mM

= ~ = 3.4
u M 7] m (13.3.4)

as are the relative coordinate and the electron coordinate.
Consider now an estimate of the Bohr radius

a, = h%/me? (13.3.5)
To find this we need the values of # and e. It was mentioned earlier that
fi = 1.054x 1027 erg sec
A more useful thing to remember for performing quick estimates ist
fic~2000eV A (1973.3) (13.3.6)

where 1 angstrom (A) = 10-8 cm. The best way to remember ¢2 is through

} A more exact value.
§ Many of the tricks used here were learned from Professor A. Rosenfeld at Berkeley.
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the fine-structure constant:

e? 1 1
= % T 137 ( 137.04 ) (13.3.7)

This constant plays a fundamental role in quantum mechanical problems
involving electrodynamics. Since it is dimensionless, its numerical value
has an absolute significance: no matter what units we use for length, mass,
and time, a will be 1/137. Thus, although no one tries to explain why
¢ = 3x10* cm/sec, several attempts have been made to arrive at the magic
figure of 1/137. Since it is a God-given number (independent of mortal
choice of units) one tries to relate it to fundamental numbers such as
7, e, €, 7%, the number of space-time dimensions, etc.

Anyway, returning to our main problem, we can now estimate a,:

Qy =~ =

me? —;n? ~ (.55 A (0.53)

h? fic (_@) _(2000)(137) A
e ) 0.5x10°
Consider next the energy levels

E, = _RY/n2

We estimate

met me? [ e2 \?
Ry =% = (%)
(1]
~ M eV ~ 13.3eV (13.6)

(137)?
So, using the more accurate value of R,

—13.6
——¢€

E =
n ]12

\%
The electron in the ground state needs 13.6 eV to be liberated or ionized.
One may imagine that it is 13.6 eV down the infinitely deep Coulomb
potential.
Let us digress to consider two length scales related to a,. The first
2 e? f

aoa ] me2 . % = W = € (13.3-8)

is called the Compton wavelength of the electron and is 137 times smaller
than the Bohr radius. What does %, represent? In discussing the nuclear
force, it was pointed out that the Compton wavelength of the pion was the
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distance over which it could be exchanged. It can also be defined as the lower
limit on how well a particle can be localized. In the nonrelativistic theory
we are considering, the lower limit is zero, since we admit position eigen-
kets | x). But in reality, as we try to locate the particle better and better,
we use more and more energetic probes, say photons to be specific. To
locate it to some AX, we need a photon of momentum

fi
APN—AX

Since the photon is massless, the corresponding energy is

fic
AE ~ ——
AX
in view of Einstein’s formula E? = ¢%p? -} m2ct
If this energy exceeds twice the rest energy of the particle, relativity
allows the production of a particle-antiparticle pair in the measurement

process. So we demand

AE < 2mc?
fic
< 2
X = 2mc
or
2mc me

If we attempt to localize the particle any better, we will see pair creation
and we will have three (or more) particles instead of the one we started to
locate.

In our analysis of the hydrogen atom, we treated the electron as a
localized point particle. The preceding analysis shows that this is not strictly
correct, but it also shows that it is a fair approximation, since the “fuzziness”
or “size” of the electron is o times smaller than the size of the atom, a,

s oy~ 1

a, 137

Had the electric charge been ten times as big, « would have been of order
unity, and the size of the electron and the size of its orbit would have been
of the same order and the point particle approximation would have been
untenable. Let us note that

1 1 s
I, =0a-a,~05 XWA_WA_wm A
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If we multiply 2, by o we get another length, called the classical radius of
the electron:
fi e? e’

re=al,=—— . o = ——~3x10%A (13.3.9)

If we imagine the electron to be a spherical charge distribution, the Coulomb
energy of the distribution (the energy it takes to assemble it) will be of the
order e?/r,, where r, is the radius of the sphere. If we attribute the rest
energy of the electron to this Coulomb energy, we arrive at the classical
radius. In summary

) (54) ()

Let us now return to the hydrogen atom. The mnemonics discussed
so far are concerned only with the numbers. Let us now consider mnemonics
that help us remember the dynamics. These must be used with caution,
for they are phrased in terms not allowed in quantum theory.

The source of these mnemonics is the Bohr model of the hydrogen
atom. About a decade or so prior to the formulation of quantum mechanics
as described in this text, Bohr proposed a model of the atom along the
following lines. Consider a particle of mass m in V(r) = —e?/r, moving in
a circular orbit of radius ». The dynamical equation is

2 2
e 2 (13.3.10)
or
e2
mv? = T (133.11)

Thus any radius is allowed if r satisfies this equation. It also follows that
any energy is allowed since

1 . et et 1 )

Bohr conjectured that the only allowed orbits were those that had
integral angular momentum:

mor = nfi (13.3.13)
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Feeding this into Eq. (13.3.11) we get

n%h? e?
TmEt T
or
h2
r = n*— = n%a, (13.3.14)
me
and . R 1
e e
S = 13.3.15
E, 2r 2a, ( n® ) ( )

Thus, if you ever forget the formula for g, or E,, you can go back to this
model for the formulas (though not for the physics, since it is perched on
the fence between classical and quantum mechanics; it speaks of orbits,
but quantizes angular momentum and so on). The most succinct way to
remember the Bohr atom (i.e., a mnemonic for the mnemonic) is the equa-
tion

a=_4 (13.3.16)

where f is the velocity of the electron in the ground state of hydrogen
measured in units of velocity of light (8 = v/c). Given this, we get the ground
state energy as

_ 1 2 __ 1 2 2__L 2 2____1_ 2.2
El_—7mv ﬂ—Tmc(v/c)—— 2mC/3—~ 5 meta
2 \2 4
:_%mcz(%) _ ’;;2 (13.3.17)

Given this, how could one forget that the levels go as n~2, i.e,,

If we rewrite E;, as —e?/2q,, we can get the formula for a,. The equation
a = f also justifies the use of nonrelativistic quantum mechanics. An
equivalent way (which avoids the use of velocity) is Eq. (13.3.17), which
states that the binding energy is ~ (1/137)? times the rest energy of the
electron.

Exercise 13.3.1.* The pion has a range of 1 Fermi = 10-° A as a mediator
of nuclear force. Estimate its rest energy.

Exercise 13.3.2.* Estimate the deBroglie wavelength of an electron of kinetic
energy 200eV. (Recall 1 = 2a#i/p.)
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Comparison with Experiment

Quantum theory makes very detailed predictions for the hydrogen
atom. Let us ask how these are to be compared with experiment. Let us
consider first the energy levels and then the wave functions. In principle,
one can measure the energy levels by simply weighing the atom. In practice,
one measures the differences in energy levels as follows. If we start with the
atom in an eigenstate | nlm), it will stay that way forever. However, if we
perturb it for a time 7, by turning on some external field (i.c., change the
Hamiltonian from H°, the Coulomb Hamiltonian, to H® + H?Y) its state
vector can start moving around in Hilbert space, since | n/m) isn’t a sta-
tionary state of H° - H'. If we measure the energy at time r > T, we may
find it corresponds to another state with n’ 5= n. One measures the energy

by detecting the photon emitted by the atom. The frequency of the detected
photon will be

En — Enl
Wypr = —T (13.3.18)
Thus the frequency of light coming out of hydrogen will be
Ry 1 1\
‘“nn':T(‘?*F)
Ry 1 1
-5 <_n,2 _ 7) (13.3.19)

For a fixed value n’ = 1, 2, 3, ..., we obtain a family of lines as we vary n.
These families have in fact been seen, at least for several values of #'.
The n' = 1 family is called the Lyman series (it corresponds to transitions
to the ground state from the upper ones):

o, Ry (11
= (1 p ) (13.3.20)
The n’ = 2 family is called the Balmer series and corresponds to transitions
to the states | 2/m)> from n = 3,4, ..., etc. The n’ = 3 family called the
Paschen series, etc. Let us estimate the wavelength of a typical line in the
Lyman series, say the one corresponding to the transition n = 2 —n' = 1:

13.5eV 1
o= 251

:%CV
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The wavelength is estimated to be

PR ——i’é (fic) ~ 1200 A

w

A more refined estimate gives a value of 1216 A, in very good agreement
with experiment. Equally good is the agreement for all other observed lines.
However, there are, in all cases, small discrepancies. Much of these may be
explained by corrections that are calculable in theory. First we must correct
for the fact that the proton is not really immobile; that we have here a
two-body problem. As explained in Chapter 10, this is done by writing
Schrédinger’s equation for the relative (and not electron) coordinate and
working in the CM frame. This equation would differ from Eq. (13.1.2)
only in that m would be replaced by . This in fact would be the only change
in all the formulas that follow, in particular Eq. (13.1.16) for the energy
levels. This would simply rescale the entire spectrum by a factor u/m =
M/(M + m), which differs from 1 by less than a tenth of a percent. This
difference is, however, observable in practice: one sees it in the difference
between the levels of hydrogen and deuterium (whose nucleus has a proton
and a neutron).

Then there is the correction due to the fact that the kinetic energy
of the electron is not imw? = p¥2m in Einstein’s theory, but instead
mc?[(1 — v?/c?)~V2 — 1], which is the difference between the energy at
velocity v and the energy at rest. The 3mwv? term is just the first in the power
series expansion of the above, in the variable v?/c?. In Chapter 17 we will take
into account the effect of the next term, which is —3mv?%/8¢?, or in terms of
the momentum, —3p%/8m3c?. This is a correction of order v%/c? relative
to the p?/2m piece we included, or since v/c =~ a, a correction of order o?
relative to main piece. There are other corrections of the same order, and
these go by the name of fine-structure corrections. They will be included
(in some approximation) in Chapter 17. The Dirac equation, which we
will not solve in this book, takes into account the relativistic corrections to
all orders in v/c. However, it too doesn’t give the full story; there are tiny
corrections due to quantum fluctuations of the electromagnetic field (which
we have treated classically so far). These corrections are calculable in theory
and measurable experimentally. The agreement between theory and experi-
ment is spectacular. It is, however, important to bear in mind that all these
corrections are icing on the cake; that the simple nonrelativistic Schrodinger
equation by itself provides an excellent description of the hydrogen spec-
trum. (Much of the present speculation on what the correct theory of ele-
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mentary particles is will be put to rest if one can come up with a description
of these particles that is half as good as the description of the hydrogen
atom by Schrédinger’s equation.)

Consider next the wave functions. To test the predictions, one once
again relies on perturbing the system. The following example should give
you a feeling for how this is done. Suppose we apply an external perturba-
tion H! for a short time &. During this time, the system goes from | nim> to

9> = [1— 5 o + 1| [

= | nim) — ( "an n ng_) | nim

The probability of it being in a state | #'I'm') (assuming | n'l'm’) is different
from |nlm)) is

[ <n'l'm' | p(e)y P = |— % n'l'm' | HY fn!m>’2

Thus quantum theory can also determine for us the rate of transition
to the state |n'I'm')>. This rate is controlled by the matrix element
(n'l'm" | H' | nlm), which in coordinate space, will be some integral over
Wnrvme and ,,, with H' sandwiched between them. The evaluation of the
integrals entails detailed knowledge of the wave functions, and conversely,
agreement of the calculated rates with experiment is a check on the predicted
wave functions. We shall see a concrete example of this when we discuss
the interaction of radiation with matter in Chapter 18.

Exercise 13.3.3. Instead of looking at the emission spectrum, we can also
look at the absorption spectrum of hydrogen. Say some hydrogen atoms are sitting
at the surface of the sun. From the interior of the sun, white light tries to come out
and the atoms at the surface absorb what they can. The atoms in the ground state
will now absorb the Lyman series and this will lead to dark lines if we analyze the
light coming from the sun. The presence of these lines will tell us that there is
hydrogen at the surface of the sun. We can also estimate the surface temperature
as follows. Let T be the surface temperature. The probabilities P(n — 1) and
P(n = 2) of an atom being at n = 1 and n = 2, respectively, are related by
Boltzmann’s formula

P(” - 2) — 48—(E2—E1)/kT

P(n=1)
where the factor 4 is due to the degeneracy of the n = 2 level. Now only atoms
in n = 2 can produce the Balmer lines in the absorption spectrum. The relative

X
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strength of the Balmer and Lyman lines will tell us P(n = 2)/P(n = 1), from which
we may infer 7. Show that for T = 6000°K, P(n = 2)/P(n = 1) is negligible and
that it becomes significant only for 7 =z 10° °K. (The Boltzmann constant is
k ~9x10-%eV/°K. A mnemonic is kT = % eV at room temperature, 7 = 300°K.)

13.4. Multielectron Atoms and the Periodic Table

It is not possible to treat multielectron atoms analytically even if we
treat the nucleus as immobile. Although it is possible, in principle, to treat
an arbitrarily complex atom by solving the exact Schrodinger equation
numerically, a more practical method is to follow some approximation
scheme. Consider the one due to Hartree. Here one assumes that each
electron obeys a one-particle Schrodinger equation wherein the potential
energy ¥V = —ed(r) is due to the nucleus and the other electrons. In
computing the electronic contribution to ¢(r), each electron is assigned a
charge distribution which is (—e) times the probability density associated
with its wave function. And what are the wave functions? They are the
eigenstates in the potential ¢(r)! To break the vicious circle, one begins
with a reasonable guess for the potential, call it ¢4(r), and computes the
allowed energy eigenstates. One then fills them up in the order of increasing
energy, putting in just two electrons in each orbital state, with opposite
spins (the Pauli principle will not allow any more)?* till all the electrons
have been used up. One then computes the potential ¢,(r) due to this elec-
tronic configuration.$ If it coincides with ¢4(r) (to some desired accuracy)
one stops here and takes the configuration one got to be the ground state
of the atom. If not, one goes through one more round, this time starting
with ¢,(r). The fact that, in practice, one soon finds a potential that repro-
duces itself, signals the soundness of this scheme.

What do the eigenstates look like? They are still labeled by (n/m) as
in hydrogen, with states of different m degenerate at a given » and /. [This
is because ¢(r) is rotationally invariant.] The degeneracy in / is, however,
lost. Formally this is because the potential is no longer 1/r and physically
this is because states with lower angular momentum have a larger amplitude
to be near the origin and hence sample more of the nuclear charge, while
states of high angular momentum, which are suppressed at the origin, see
the nuclear charge shielded by the electrons in the inner orbits. As a result,

1 In this discussion electron spin is viewed as a spectator variable whose only role is to
double the states. This is a fairly good approximation.
§ If necessary, one averages over angles to get a spherically symmetric ¢.
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at each n the energy goes up with l. The “radius” of each state grows with
n, with a slight dependence on /. States of a given # are thus said to form a
shell (for, in a semiclassical sense, they may be viewed as moving on a sphere
of radius equal to the most probable value of r). States of a given / and n
are said to form a subshell.

Let us now consider the electronic configurations of some low Z (Z is
the nuclear charge) atoms. Hydrogen (*H) has just one electron, which is
in the 1s state. This configuration is denoted by 1s!. Helium (*He) has two
electrons in the 1s state with opposite spins, a configuration denoted by
1s%. *He has its n = 1 shell filled. Lithium (3Li) has its third electron in the
2s state, i.e., it is in the configuration 1s22s!. (Recall that the s state is lower
than the p state.) We keep going this way through beryllium (*Be), boron
(°B), carbon (°C), nitrogen (’N), oxygen (®0), fluorine (°F), till neon
(*°Ne). Neon is in the configuration 1522522p®, i.e., has its n = 2 shell filled.
The next element, sodium (*'Na), has a solitary electron in the 3s state.
The 3s and 3p subshells are filled when we get to argon (*8Ar). The next
one, potassium (**K) has its nineteenth electron in the 4s and not 3d state.
This is because the growth in energy due to a change in # from 3 to 4 is less
than the growth due to change in / from 2 to 3 at n = 3. This phenomenon
occurs often as we move up in Z. For example, in the “rare earth” elements,
the 65 shell is filled before the 4f shell.

Given the electronic configurations, one can anticipate many of the
chemical properties of the elements. Consider an element such as 10N,
which has a closed outer shell. Since the total electronic charge is spherically
symmetric (| R,; |*3l,—_;| Y/ |* is independent of 6 and &), it shields
the nuclear charge very effectively and the atom has no significant electro-
static affinity for electrons in other atoms. If one of the electrons in the
outer shell could be excited to a higher level, this would change, but there
is a large gap in energy to cross. Thus the atom is rarely excited and is
chemically inert. On the other hand, consider an element like 1Na, which
has one more electron, which occupies the 3s state. This electron sees a
charge of +e when it looks inward (the nuclear charge of 11 shielded by the
10 electrons in the n = 1 and 2 shells) and is thus very loosely bound.
Its binding energy is 5.1 eV compared to an n = 2 electron in Ne, which
has a binding energy of 21.6eV. If 'Na could get rid of this electron,
it could reach a stable configuration with a closed n = 2 shell. If we look
one place to the left (in Z) of 1°Ne, we see a perfect acceptor for this electron :
we have here °F, whose n = 2 shell is all full except for one electron. So

when *Na and °F get together, Na passes on its electron to F and the system
as a whole lowers its energy, since the binding energy in F is 17.4 eV.
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Having carried out the transfer, the atoms cannot part company, for they
have now become charged ions, Na*+ and F-, which are held together by
electrostatic attraction, called the ionic bond and form the NaF molecule.

Once we grasp that the chemical behavior is dictated by what is hap-
pening in the outermost shell, we can see that several elements will have
similar chemical properties because they have similar outer shells. For
example, we expect all elements with filled outer shells to be chemically
inert. This is true. It is also true that some elements with filled subshells
are also inert, such as 18Ar, in which just the 3s and 3p subshells are filled.
The origin of this inertness is the same as in the case with filled shells:
a spherically symmetric electronic charge distribution and a large excitation
energy. If we move one place to the right of the inert elements, we meet
those that behave like Na, i.e., eager to give up an electron, while if we
move one place to the left, we meet the likes of F, eager to accept an electron.
If we move two places to the left, we see the likes of oxygen, which want
two electrons, while two places to the right we have elements like magnesium,
which want to get rid of two electrons. It follows that as we move in Z,
we see a certain chemical tendency over and over again. This quasiperiodic
behavior was emphasized in 1869 by Mendeleev, who organized the elements
into a periodic table, in which the elements are arranged into a matrix, with
all similar elements in the same column. As we go down the first column,
for example, we see H, Li, Na, etc., i.e., elements with one electron to spare.
In the last column we see the inert elements, He, Ne, etc. Given the maxim
that happiness is a filled outer shell, we can guess who will interact with
whom. For instance, not only can Na give its electron to F, it can give
to Cl, which is one shy of a filled 3p subshell. Likewise F can get its electron
from K as well, which has a lone electron in the 4s state. More involved
things can happen, such as the formation of H,O when two H atoms get
together with an oxygen atom, forming the covalent bond, in which each
hydrogen atom shares an electron with the oxygen atom. This way all
three atoms get to fill their outer shells at least part of the time.

There are many more properties of elements that follow from the
configuration of the outer electrons. Consider the rare earth elements,
%Ce through Lu, which have very similar chemical properties. Why
doesn’t the chemical behavior change with Z in this range? The answer is
that in these elements the 6s subshell is filled and the 4f subshell, deep in
the interior (but of a higher energy), is being filled. Since what happens in
the interior does not affect the chemical properties, they all behave alike.
The same goes for the actinides, ®*Th to '®Lw, which have a filled 7s sub-
shell and a 5f subshell that is getting filled up.
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Since we must stop somewhere, let us stop here. If you want to know
more, you must consult books devoted to the subject.t

Exercise 13.4.1.* Show that if we ignore interelectron interactions, the energy
levels of a multielectron atom go as Z2 Since the Coulomb potential is Ze/r,
why is the energy oc Z?2?

Exercise 13.4.2.* Compare (roughly) the sizes of the uranium atom and the
hydrogen atom. Assume levels fill in the order of increasing », and that the non-
relativistic description holds. Ignore interelectron effects.

Exercise 13.4.3.* Visible light has a wavelength of approximately 5000 A.
Which of the series—-Lyman, Balmer, Paschen—do you think was discovered
first?

t See, for a nice trip through the Periodic Table, Chapter 18 of Basic Physics of Atoms
and Molecules, U. Fano and L. Fano, Wiley, New York (1959).

14

Spin

14.1. Introduction

In this chapter we consider a class of quantum phenomena that cannot
be handled by a straightforward application of the four postulates. The
reason is that these phenomena involve a quantum degree of freedom called
spin, which has no classical counterpart. Consequently, neither can we
obtain the spin operator by turning to Postulate II, nor can we immediately
write down the quantum Hamiltonian that governs its time evolution.
The problem is very important, for most particles—electrons, protons,
neutrons, photons—have the spin degree of freedom. Fortunately the
problem can be solved by a shrewd mixture of classical intuition and
reasoning by analogy. In this chapter we study just electron spin. The
treatment of the spins of other particles is quite similar, with the exception
of the photon, which moves at speed ¢ and can’t be treated nonrelativis-
tically. Photon spin will be discussed in Chapter 18.

In the next three sections we address the following questions:

(i) What is the nature of this new spin degree of freedom?

(ii) How is the Hilbert space modified to take this new degree of
freedom into account? What do the spin operators look like in this space
(kinematics of spin)?

(iii) How does spin evolve with time, i.e., how does it enter the Hamil-
tonian (dynamics of spin)?

14.2. What is the Nature of Spin?

The best way to characterize spin is as a form of angular momentum.
It is, however, not the angular momentum associated with the operator L,
as the following experiment shows. An electron is prepared in a state of
zero linear momentum, i.e., in a state with a constant (space-independent)
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