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* xProblem 4.9 A particle of mass m is placed in a finite spherical well:

—Vi if r < a;
vey={ """ "=°
0, if r > a.

Find the ground state, by solving the radial equation with [ = 0. Show that there
is no bound state if Voa® < 7w2h?/8m.

4.2 THE HYDROGEN ATOM

The hydrogen atom consists of a heavy, essentially motionless proton (we may as
well put it at the origin), of charge e, together with a much lighter electron (charge
—e) that orbits around it, bound by the mutual attraction of opposite charges (see
Figure 4.3). From Coulomb’s law, the potential energy (in SI units) is

2
1
V)= ——— =, [4.52]
dreg r
and the radial equation (Equation 4.37) says
h? d%u et 1 RId+ 1D
—_ — -4+ — = Eu. 4.53
2m dr? |: dgegr  2m 1?2 . . [4.53]

Our problem is to solve this equation for u(r), and determine the allowed energies,
E. The hydrogen atom is such an important case that I'm not going to hand you the
solutions this time— we’ll work them out in detail, by the method we used in the
analytical solution to the harmonic oscillator. (If any step in this process is unclear,
you may wish to refer back to Section 2.3.2 for a more complete explanation.)

+e

(proton)

FIGURE 4.3: The hydrogen atom.
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Incidentally, the Coulomb potential (Equation 4.52) admits continuum states (with
E > 0), describing electron-proton scattering, as well as discrete bound states,
representing the hydrogen atom, but we shall confine our attention to the latter.

4,2.1 The Radial Wave Function

Our first task is to tidy up the notation. Let

v =2mE

5 [4.54]

K

(For bound states, E is negative, so « is real.) Dividing Equation 4.53 by E, we
have

1 d%u me? 1 I+ 1)
lau 4y, _me u
k2 dr? 2mephk (k1) (kr)?

This suggests that we introduce

2
me
=«r, and = —, 4.55
[ £0 P [4.55]
so that 5
d Id+1
du_ly o WD [4.56]
dp? o p?

Next we examine the asymptotic form of the solutions. As p — o0, the
constant term in the brackets dominates, so (approximately)

d*u _

p?
The general solution is
u(p) = Ae™” + Be”, [4.57]
but e? blows up (as p — o0), so B = 0. Evidently,

u(p) ~ Ae™”, [4.58]

for large p. On the other hand, as p — O the centrifugal term dominates;!? approx-
imately, then:
d?u a4+
de - /02

u.

12This argument does not apply when [ = 0 (although the conclusion, Equation 4.59, is in fact
valid for that case too). But never mind: All I am trying to do is provide some motivation for a change
of variables (Equation 4.60).



Section 4.2: The Hydrogen Atom 147
The general solution (check it!) is
u(p) = Co'*' + Do,
but p‘l blows up (as p — 0), so D = 0. Thus
u(p) ~ Cp'*1, [4.59]
for small p.
The next step is to peel off the asymptotic behavior, introducing the new
function v(p):

u(p) = pePu(p), [4.60]

in the hope that v(p) will turn out to be simpler than u(p). The first indications
are not auspicious:

B e [+ 1= ot p 2
— =pe = p)v — >
b P o pdp
and
Pu_ o[y PTGl O O d*v
—_—=pe =21 — —p)— — 1 -
il o P TP

In terms of v(p), then, the radial equation (Equation 4.56) reads

d*v

d
P 20+ 1) + 1o =20+ Dy =0, [4.61]
dp dp

Finally, we assume the solution, v(p), can be expressed as a power series
in p:

v(p) = c;pl. [4.62]
j=0

Our problem is to determine the coefficients (cy, ¢1, ¢2, . ..). Differentiating term
by term:

dv 00 ‘ 00 '
d chjpj_l = Z(j + Dejrp’.
j=0 Jj=0

[In the second summation I have renamed the “dummy index”: j — j + 1. If this
troubles you, write out the first few terms explicitly, and check it. You may object
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d?v

d
P + 20+ 1= p) == +[po — 20+ D]y = 0. [4.61]
dp dp

Finally, we assume the solution, v(p), can be expressed as a power series
in p:

j=0

Our problem is to determine the coefficients (cg, ¢1, ¢2, ... ). Differentiating term
by term:

dv o0 ' o0 _
i Y it = G+ Dejapd
j=0 j=0

[In the second summation I have renamed the “dummy index™: j — j + 1. If this
troubles you, write out the first few terms explicitly, and check it. You may object
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that the sum should now begin at j = —1, but the factor (j + 1) kills that term
anyway, so we might as well start at zero.] Differentiating again,

d*v > i1
d—p2 = Z](] + I)Cj+1pj_ .
Jj=0

Inserting these into Equation 4.61, we have

oo o0
DG+ Dejrip! +20+ 1Y G+ Dejrip’
j=0 j=0

> )
=2} jeip + 1o =20+ DY ejp’ =0.
Jj=0 =0
Equating the coefficients of like powers yields
JU+Dejr1 +20+ DG 4 Dejpr = 2jej + [po — 20+ Dlej =0,

or.

2 +1+ 1) —p
0 } ;. [4.63]

= {(j + DG +2+2)
This recursion formula determines the coefficients, and hence the function v(p):
We start with ¢g (this becomes an overall constant, to be fixed eventually by
normalization), and Equation 4.63 gives us c;; putting this back in, we obtain c»,
and so on.!?

Now let’s see what the coefficients look like for large j (this corresponds to
large p, where the higher powers dominate). In this regime the recursion formula
says'4
~ 2] 2
G T

Cj+l

Byou might wonder why I didn’t use the series method directly on u(p)—why factor out the
asymptotic behavior before applying this procedure? Well, the reason for peeling off pl s largely
aesthetic: Without this, the sequence would begin with a long string of zeros (the first nonzero coefficient
being c;41); by factoring out o'T! we obtain a series that starts out with 0°. The ¢ factor is more
critical —if you don’t pull that out, you get a three-term recursion formula, involving ¢; 12, ¢;41, and
cj (try it!) and that is enormously more difficult to work with.

14You might ask why I don’t drop the 1 in j + 1—after all, I am ignoring 2(/ + 1) — pq in the
numerator, and 2/ 4 2 in the denominator. In this approximation it would be fine to drop the 1 as well,
but keeping it makes the argument a little cleaner. Try doing it without the 1, and you’ll see what I
mean.
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Suppose for a moment that this were exact. Then

27
Cj = —;¢0,
J J'
) o
2
v(p) = oy o’ =coe®,
=0T
and hence
u(p) = cop'te?,
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[4.64]

[4.65]

which blows up at large p. The positive exponential is precisely the asymptotic
behavior we didn’t want, in Equation 4.57. (It’s no accident that it reappears here;
after all, it does represent the asymptotic form of some solutions to the radial
equation—they just don’t happen to be the ones we’re interested in, because they
aren’t normalizable.) There is only one way out of this dilemma: The series must

terminate. There must occur some maximal integer, jmax, such that

C(jmax+1) = O’

[4.66]

(and beyond which all coefficients vanish automatically). Evidently (Equation 4.63)

2(Jmax +1+ 1) —pp =0.

Defining
n= jmax +1+1

(the so-called principal quantum number), we have
0o = 2n.
But pg determines E (Equations 4.54 and 4.55):
B2i2 4

E— _ me
2m 87‘[263}12,03’

so the allowed energies are

2 \2
m e 1 E;
E, =—| —{— —_ =, =1,2,3,...
" |:2h2 (47760> :| PR

[4.67]

[4.68]

[4.69]

[4.70]
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This is the famous Bohr formula—by any measure the most important result in
all of quantum mechanics. Bohr obtained it in 1913 by a serendipitous mixture
of inapplicable classical physics and premature quantum theory (the Schrédinger
equation did not come until 1924).

Combining Equations 4.55 and 4.68, we find that

me? 1 1
k={——)-=—, [4.71]
dwegh* ) n an
where
4neoh2 _10
a= — =0529x 107" m [4.72]
me

is the so-called Bohr radius.!” It follows (again, from Equation 4.55) that

-
p=—. [4.73]
an

The spatial wave functions for hydrogen are labeled by three quantum numbers (n,
I, and m):
Ynim(r, 6, ¢) = Ru(r) Y[" (0, ¢), [4.74]

where (referring back to Equations 4.36 and 4.60)
1o -
Ru(r) = —p"""e Pu(p), [4.75]

and v(p) is a polynomial of degree jmax =n —! — 1 in p, whose coefficients are
determined (up to an overall normalization factor) by the recursion formula

_ 2Hitl-m
G+DG+2+2 7

Ci+l [4.76]

The ground state (that is, the state of lowest energy) is the case n = 1; putting
in the accepted values for the physical constants, we get:

E mo( e 13.6 eV [4.77]
= — —_— = — . eVv. .
! 242 \4meq

151t is traditional to write the Bohr radius with a subscript: ag. But this is cumbersome and
unnecessary, so I prefer to leave the subscript off.
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Evidently the binding energy of hydrogen (the amount of energy you would have

to impart to the electron in the ground state in order to ionize the atom) is 13.6 eV.
Equation 4.67 forces | = 0, whence also m = 0 (see Equation 4.29), so

Y100(r, 6. ) = Rio(r Y56, ¢). [4.78]

The recursion formula truncates after the first term (Equation 4.76 with j = 0
yields ¢; = 0), so v(p) is a constant (cp), and

Rio(r) = Ca—(’e"/“. [4.79]

Normalizing it, in accordance with Equation 4.31:
*® 2.2 oo [ /a2 20
|Riol"r*dr = —- e redr =|co|”~ =1,
0 a Jo 4

$0 cg = 2/+/a. Meanwhile, Yg = 1/+/4m, and hence the ground state of hydrogen
is

1
Y100(r, 6, ¢) = er/e [4.80]
wa3
If n = 2 the energy is
—13.6 eV
E, = — = —3.4¢eV; [4.81]

this is the first excited state—or rather, states, since we can have either / = 0 (in
which case m = 0) or [l = 1 (with m = —1, 0, or +1); evidently four different
states share this same energy. If I = 0, the recursion relation (Equation 4.76) gives

¢1 = —cg (using j =0), and ¢y =0 (using j = 1),
so v(p) = co(1 — p), and therefore

Ryo(r) = 2 (1 - L) e/, [4.82]
2a 2a

[Notice that the expansion coefficients {c;} are completely different for different

quantum numbers # and [.] If / = 1 the recursion formula terminates the series

after a single term; v(p) is a constant, and we find

Ry (r) = fc%re—r/za_ [4.83]

(In each case the constant cg is to be determined by normalization—see Prob-
lem 4.11.)
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For arbitrary n, the possible values of / (consistent with Equation 4.67) are
[=0,1,2,...,n—1, [4.84]

and for each [ there are (2] + 1) possible values of m (Equation 4.29), so the total
degeneracy of the energy level E, is

n—1
dn) = Z(zl +1) =n? [4.85]
=0

The polynomial v(p) (defined by the recursion formula, Equation 4.76) is a function
well known to applied mathematicians; apart from normalization, it can be written
as

v(p) = L2 20, [4.86]

where

d \?
L] _,x)= (-7 (EE) Ly(x) [4.87]

is an associated Laguerre polynomial, and

X d\* -
Lox)=e (E) (e qu) [4.88]

is the gth Laguerre polynomial.!® (The first few Laguerre polynomials are listed
in Table 4.5; some associated Laguerre polynomials are given in Table 4.6. The
first few radial wave functions are listed in Table 4.7, and plotted in Figure 4.4.)
The normalized hydrogen wave functions are!’

2\ m—1—1) 2r\!
w/fnzm=\/<;5) 2(:[("?)!)]3«3—”"“(#) [L24 @r/ma)|vm@. 9. | 14:89)

They are not pretty, but don’t complain—this is one of the very few realistic
systems that can be solved at all, in exact closed form. Notice that whereas the
wave functions depend on all three quantum numbers, the energies (Equation 4.70)
are determined by n alone. This is a peculiarity of the Coulomb potential; in the

16 A5 usual, there are rival normalization conventions in the literature; I have adopted the most
nearly standard one.

7yg you want to see how the normalization factor is calculated, study (for example), L. Schiff,
Quantum Mechanics, 2nd ed., (McGraw-Hill, New York, 1968), page 93.
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TABLE 4.5: The first few Laguerre polynomials, Lg (x).

Lo=1

Li==x+1

Ly=x—4x+2

Ly=-x*+9x2— 18x+6

Ly=x%—16x3 +72x% - 96x + 24

Ls = x5 + 25x* - 200x3 + 600x2 — 600x + 120

Lg = x8 — 36x> + 450x* — 2400x3 + 5400x% — 4320x + 720

TABLE 4.6: Some associated Laguerre
polynomials, Lg_p (x).

Li=1 L3=2

LI=-x+1 L= —6x+18
LI=x?-4x+2 L3=12x2 - 96x + 144
Li=1 L3=6

Li=-2x+4 L}= -24x+96
L}=3x>—18x+18 L3 = 60x? — 600x + 1200

case of the spherical well, you may recall, the energies depend also on [ (Equa-
tion 4.50). The wave functions are mutually orthogonal:

/ Yoim Un''m’ rsin@dr d6 dg = 8, 81 S [4.90]

This follows from the orthogonality of the spherical harmonics (Equation 4.33)
and (for n # n’) from the fact that they are eigenfunctions of H with distinct
eigenvalues.

Visualizing the hydrogen wave functions is not easy. Chemists like to draw “den-
sity plots,” in which the brightness of the cloud is proportional to | | (Figure 4.5).
More quantitative (but perhaps harder to read) are surfaces of constant probability
density (Figure 4.6).

*Problem 4.10 Work out the radial wave functions R3p, R31, and Rz, using the
recursion formula (Equation 4.76). Don’t bother to normalize them.
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TABLE 4.7:  The first few radial wave functions for hydrogen,
Ry ().

Ryg =2a732 exp(~rla)

1 3nf,_1 L) _
Ry \Ea (1 > 7 ) exp (—r2a)
Ry =1 g0l exp (—r/2a)
il a

=2 gn(1_2r 1(L)2) _
R3g \/ﬁa (1 WRETAY exp (—r/3a)

Ry =—8_ g3 (1 _1r )(l) exp (=r/3a)
e 6a\a

_1 —3/2( _3r L(L)Z_L(Lf) _
Ry a 1 1 + g3 Y exp (—r/4a)
_ s —3/2( _1r L(L)z T oaxp (=
Ru= 2o (1-g2r (s )aexp(r/4a)

_ 1 _LL)(L)Z -
Ro=—l-a (1 S L)(LY exp (—r/da)

1
| —3/2(r) _
Ryz=————a exp (—r/da

s 76835 a P )

>

*Problem 4.11

(a) Normalize Ryp (Equation 4.82), and construct the function vr2gg.

(b) Normalize Ry; (Equation 4.83), and construct 211, ¥210, and ¥ _p.

*Problem 4.12

{a) Using Equation 4.88, work out the first four Laguerre polynomials.
(b) Using Equations 4.86, 4.87, and 4.88, find v(p), for the case n = 5, | = 2.

(c) Find v(p) again (for the case n = 5, | = 2), but this time get it from the
recursion formula (Equation 4.76).
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FIGURE 4.4: Graphs of the first few hydrogen radial wave functions, R;(r).

xProblem 4.13

(a) Find (r) and (r?) for an electron in the ground state of hydrogen. Express
your answers in terms of the Bohr radius.

(b) Find (x) and (x?) for an electron in the ground state of hydrogen. Hint: This

requires no new integration—note that r> = x% + y2 + z2, and exploit the
symmetry of the ground state.

(c) Find (x?) in the state n = 2, [ = 1, m = 1. Warning: This state is not
symmetrical in x, y, z. Use x = r sinf cos ¢.
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(2,0,0) (4,0,0)

(4,1,0) (4,2,0) (4,3,0)

FIGURE 4.5: Density plots for the hydrogen wave functions (n, [, m). Imagine each
plot to be rotated about the (vertical) z axis. Printed by permission using “Atom in a
Box,” v1.0.8, by Dauger Research. You can make your own plots by going to the Web
site http://dauger.com.

Problem 4.14 What is the most probable value of r, in the ground state of hydro-
gen? (The answer is not zero!) Hint: First you must figure out the probability that
the electron would be found between » and r + dr.

Problem 4.15 A hydrogen atom starts out in the following linear combination of
the stationary states n =2, =1, m=1landn =2,/ =1, m = —1:

1
V2

(a) Construct W(r, 7). Simplify it as much as you can.

V(r, 0) = (211 +¥21-1).

(b) Find the expectation value of the potential energy, (V). (Does it depend on
t7) Give both the formula and the actual number, in electron volts.
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and moving down.!® In practice such perturbations are always present; transitions
(or, as they are sometimes called, “quantum jumps”) are constantly occurring, and
the result is that a container of hydrogen gives off light (photons), whose energy
corresponds to the difference in energy between the initial and final states:

11
E,=E —Ef=-136eV|———]. [4.91]
n; nf

Now, according to the Planck formula,'® the energy of a photon is propor-
tional to its frequency:
E, = hv. [4.92]

Meanwhile, the wavelength is given by A = c/v, so

1 1 1
“R(=-=]). [4.93]
A Oy
where
m 82 2
R= . (——> =1.097 x 10" m™! [4.94]
drch’ \4meg

is known as the Rydberg constant. Equation 4.93 is the Rydberg formula for the
spectrum of hydrogen; it was discovered empirically in the nineteenth century, and
the greatest triumph of Bohr’s theory was its ability to account for this result—and
to calculate R in terms of the fundamental constants of nature. Transitions to the
ground state (ny = 1) lie in the ultraviolet; they are known to spectroscopists as
the Lyman series. Transitions to the first excited state (ny = 2) fall in the visible
region; they constitute the Balmer series. Transitions to ny = 3 (the Paschen
series) are in the infrared; and so on (see Figure 4.7). (At room temperature, most
hydrogen atoms are in the ground state; to obtain the emission spectrum you must
first populate the various excited states; typically this is done by passing an electric
spark through the gas.)

*Problem 4.16 A hydrogenic atom consists of a single electron orbiting a nucleus
with Z protons (Z = 1 would be hydrogen itself, Z = 2 is ionized helium, Z = 3

18By its nature, this involves a time-dependent interaction, and the details will have to wait for
Chapter 9; for our present purposes the actual mechanism involved is immaterial.

19The photon is a quantum of electromagnetic radiation; it’s a relativistic object if there ever was
one, and therefore outside the scope of nonrelativistic quantum mechanics. It will be useful in a few
places to speak of photons, and to invoke the Planck formula for their energy, but please bear in mind
that this is external to the theory we are developing.
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FIGURE 4.7: Energy levels and transitions in the spectrum of hydrogen.

is doubly ionized lithium, and so on). Determine the Bohr energies E,(Z), the
binding energy E;(Z), the Bohr radius a(Z), and the Rydberg constant R(Z) for a
hydrogenic atom. (Express your answers as appropriate multiples of the hydrogen
values.) Where in the electromagnetic spectrum would the Lyman series fall, for
Z =2 and Z = 3? Hint: There’s nothing much to calculate here—in the potential
(Equation 4.52) €2 — Ze?, so all you have to do is make the same substitution in
all the final results.

Problem 4.17 Consider the earth-sun system as a gravitational analog to the hydro-
gen atom.

(a) What is the potential energy function (replacing Equation 4.52)? (Let m be
the mass of the earth, and M the mass of the sun.)

(b) What is the “Bohr radius,” ag, for this system? Work out the actual number.

(c) Write down the gravitational “Bohr formula,” and, by equating E, to the
classical energy of a planet in a circular orbit of radius r,, show that n =
VTo/ag. From this, estimate the quantum number n of the earth.



