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(c) If you differentiate an nth-order polynomial, you get a polynomial of order
(n — 1). For the Hermite polynomials, in fact,

dH,
3

= 2nHy_1(£). [2.88]

Check this, by differentiating Hs and Hs.

(d) H,(&) is the nth z-derivative, at z = 0, of the generating function exp(—z2 +
2z&); or, to put it another way, it is the coefficient of z"/n! in the Taylor
series expansion for this function:

0]

_.2 "
e Ut = Z mH,,(s). [2.89]
n=0 "

Use this to rederive Hy, Hy, and H;.

2.4 THE FREE PARTICLE

We turn next to what should have been the simplest case of all: the free particle
(V(x) = 0 everywhere). Classically this would just mean motion at constant veloc-
ity, but in quantum mechanics the problem is surprisingly subtle and tricky. The
time-independent Schrodinger equation reads

h? d%y
—— - —Ev, 2.90
2m dx? v [2.90]
or 5
d ImE
AV _ iy where k = X" [2.91]
dx?

So far, it’s the same as inside the infinite square well (Equation 2.21), where the
potential is also zero; this time, however, I prefer to write the general solution in
exponential form (instead of sines and cosines), for reasons that will appear in due
course:

Y(x) = Ae™ + Be . [2.92]

Unlike the infinite square well, there are no boundary conditions to restrict the
possible values of k (and hence of E); the free particle can carry any (positive)
energy. Tacking on the standard time dependence, exp(—i Et/h),

W(x, 1) = Ae*— 21 4 Be=ikO+D), [2.93]

Now, any function of x and ¢ that depends on these variables in the special
combination (x * vt) (for some constant v) represents a wave of fixed profile,
traveling in the Fx-direction, at speed v. A fixed point on the waveform (for
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example, a maximum or a minimum) corresponds to a fixed value of the argument,
and hence to x and ¢ such that

x T vt =constant, or x = Fvt+ constant.

Since every point on the waveform is moving along with the same velocity, its
shape doesn’t change as it propagates. Thus the first term in Equation 2.93 repre-
sents a wave traveling to the right, and the second represents a wave (of the same
energy) going to the left. By the way, since they only differ by the sign in front of
k, we might as well write

: hk?
Wi (x, 1) = Ae' =20, [2.94]
and let k run negative to cover the case of waves traveling to the left:

V2mE
h

k > 0= traveling to the right,
k <0 = traveling to the left.

k=1t

I

, with { [2.95]
Evidently the “stationary states” of the free particle are propagating waves; their
wavelength is A = 27 /|k|, and, according to the de Broglie formula (Equation 1.39),

they carry momentum
p = kk. [2.96]

The speed of these waves (the coefficient of 7 over the coefficient of x) is

= hlkl = [2 97]
V, _——_— = _— .
quantum D) )

On the other hand, the classical speed of a free particle with energy E is given by

E=qQ1 /2)mv2 (pure kinetic, since V = 0), so

2E
Vclassical = ? = 2Vquantum- [2.98]

Apparently the quantum mechanical wave function travels at half the speed of the
particle it is supposed to represent! We’ll return to this paradox in a moment—there
is an even more serious problem we need to confront first: This wave function is
not normalizable. For

+00 +oo
/ YW dx = |A|2/ dx = |A]*(c0). [2.99]
-0 —o0

In the case of the free particle, then, the separable solutions do not represent
physically realizable states. A free particle cannot exist in a stationary state; or,
to put it another way, there is no such thing as a free particle with a definite
energy.
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But that doesn’t mean the separable solutions are of no use to us, for they
play a mathematical role that is entirely independent of their physical interpre-
tation. The general solution to the time-dependent Schrodinger equation is still a
linear combination of separable solutions (only this time it’s an integral over the
continuous variable &, instead of a sum over the discrete index n):

W(x, 1) = L +w¢(k)ei<kx—%’> dk [2.100]
3, — 2” oo < . .

(The quantity 1/+/27 is factored out for convenience; what plays the role of the
coefficient ¢, in Equation 2.17 is the combination (1 /2m)p (k) dk.) Now this
wave function can be normalized (for appropriate ¢ (k)). But it necessarily carries
a range of k’s, and hence a range of energies and speeds. We call it a wave
packet.’?

In the generic quantum problem, we are given W(x, 0), and we are asked to
find W(x,t). For a free particle the solution takes the form of Equation 2.100;
the only question is how to determine ¢(k) so as to match the initial wave
function:

W(x,0) = o (k)e™ dk. [2.101]

1 +o0
A/ 27[ ./;oo
This is a classic problem in Fourier analysis; the answer is provided by Plancherel’s
theorem (see Problem 2.20):

+0o0
F(k)e™ dk < F(k)= 1 Fe ™ ax. | [2.102)

1 “+00
f (")‘72;;/_00 NZA N

F (k) is called the Fourier transform of f(x); f(x) is the inverse Fourier trans-
form of F (k) (the only difference is in the sign of the exponent). There is, of
course, some restriction on the allowable functions: The integrals have to exist.*>
For our purposes this is guaranteed by the physical requirement that W(x, 0) itself

328inusoidal waves extend out to infinity, and they are not normalizable. But superpositions of
such waves lead to interference, which allows for localization and normalizability.

B The necessary and sufficient condition on f(x) is that ffooc | f(x)|2dx be finite. (In that

case ffcoo |F (k)lzdk is also finite, and in fact the two integrals are equal.) See Arfken (footnote 24),
Section 15.5.
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be normalized. So the solution to the generic quantum problem, for the free particle,
is Equation 2.100, with

w .
W(x, 0)e ™ dx. [2.103]

.
k)= ——
o0 m‘f_m

Example 2.6 A free particle, which is initially localized in the range —a < x < a,
is released at time ¢t = O:

A, if —a<x<a,
0, otherwise,

Y(x,0) = {

where A and a are positive real constants. Find W (x, 1).

Solution: First we need to normalize W (x, 0):

o0 a
1
1=/ W(x,0))2dx = |AP | dx=2alA> = A= —.
—0 —a v 2a

Next we calculate ¢ (k), using Equation 2.103:

—ikx
—zkx 1 € a

o) = J—_Jz_/ = 2yma —ik |-

1 elka _ gika _ 1 sin(ka)
N 2i T Jma kO
Finally, we plug this back into Equation 2.100:

s1n(ka) 1(kx—

W(x, 1) = 0 dk, [2.104]

il

Unfortunately, this integral cannot be solved in terms of elementary functions,
though it can of course be evaluated numerically (Figure 2.8). (There are, in fact,
precious few cases in which the integral for W (x, 1) (Equation 2.100) can be cal-
culated explicitly; see Problem 2.22 for a particularly beautiful example.)

It is illuminating to explore the limiting cases. If a is very small, the starting
wave function is a nicely localized spike (Figure 2.9(a)). In this case we can use
the small angle approximation to write sin(ka) =~ ka, and hence

¢ (k) ’*/\/E;
4
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FIGURE 2.8: Graph of |¥(x, £)|2 (Equation 2.104) at ¢ = 0 (the rectangle) and at
t = ma? [h (the curve).
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FIGURE 2.9: Example 2.6, for small 4. (a) Graph of ¥ (x, 0). (b) Graph of ¢ (k).

it’s flat, since the k’s cancelled out (Figure 2.9(b)). This is an example of the
uncertainty principle: If the spread in position is small, the spread in momentum
(and hence in k—see Equation 2.96) must be large. At the other extreme (large
a) the spread in position is broad (Figure 2.10(a)) and

00 = \/Esin(ka).
T ka

Now, sinz/z has its maximum at z = 0, and drops to zero at z = + 7 (which, in
this context, means k = T n/a). So for large a, ¢ (k) is a sharp spike about k = 0
(Figure 2.10(b)). This time it’s got a well-defined momentum but an ill-defined
position.
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FIGURE 2.10: Example 2.6, for large a. (a) Graph of ¥(x, 0). (b) Graph of ¢ (k).

I return now to the paradox noted earlier: the fact that the separable solution
W;(x,1) in Equation 2.94 travels at the “wrong” speed for the particle it osten-
sibly represents. Strictly speaking, the problem evaporated when we discovered
that W is not a physically realizable state. Nevertheless, it is of interest to dis-
cover how information about velocity is contained in the free particle wave function
(Equation 2.100). The essential idea is this: A wave packet is a superposition of
sinusoidal functions whose amplitude is modulated by ¢ (Figure 2.11); it consists of
“ripples” contained within an “envelope.” What corresponds to the particle velocity
is not the speed of the individual ripples (the so-called phase velocity), but rather
the speed of the envelope (the group velocity)—which, depending on the nature
of the waves, can be greater than, less than, or equal to, the velocity of the ripples
that go to make it up. For waves on a string, the group velocity is the same as the
phase velocity. For water waves it is one-half the phase velocity, as you may have
noticed when you toss a rock into a pond (if you concentrate on a particular ripple,
you will see it build up from the rear, move forward through the group, and fade
away at the front, while the group as a whole propagates out at half the speed). What
I need to show is that for the wave function of a free particle in quantum mechanics

£

FIGURE 2.11: A wave packet. The “enve-
lope” travels at the group velocity; the “rip-
ples” travel at the phase velocity.
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the group velocity is twice the phase velocity—just right to represent the classical
particle speed.

The problem, then, is to determine the group velocity of a wave packet with
the general form

W(x, 1) = L +Ooq&(k)e"“”‘—“”) dk
’ N A 27 —00 .

(In our case w = (fk%/2m), but what 1 have to say now applies to any kind
of wave packet, regardless of its dispersion relation—the formula for w as a
function of k.) Let us assume that ¢ (k) is narrowly peaked about some particular
value ko. (There is nothing illegal about a broad spread in k, but such wave packets
change shape rapidly —since different components travel at different speeds—so
the whole notion of a “group,” with a well-defined velocity, loses its meaning.)
Since the integrand is negligible except in the vicinity of ko, we may as well
Taylor-expand the function (k) about that point, and keep only the leading terms:

w (k) = wo + wyk — ko),

where w}, is the derivative of w with respect to k, at the point kg.
Changing variables from k to s = k — ko (to center the integral at ko), we
have

1 +00 ) )
Yx, )= ? / & (ko + 5)é' [(ko+s)x ~(wotwps)t] 4o
Y —00

Att =0,

1 oo i (ko-+s)
Y(x,0) = —/ @ (ko + s)e' 0T ds,
A/ 2 —00
and at later times

1 : / +w : /
W(x, 1) = el o0 Hhoeg) / b (ko + 5)et Kot &= g,
v/ 2 —00
Except for the shift from x to (x — wét), the integral is the same as the one in
W (x, 0). Thus
W(x, 1) = e @ h@) g (x — wit, 0). [2.105]

Apart from the phase factor in front (which won’t affect |¥|? in any event) the
wave packet evidently moves along at a speed w:

dw

Vgroup = E‘Ig [2.106]

(evaluated at k = ko). This is to be contrasted with the ordinary phase velocity

w
Uphase = - [2.107]
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In our case, w = (hk2/2m), so w/k = (hk/2m), whereas dw/dk = (hk/m), which
is twice as great. This confirms that it is the group velocity of the wave packet,
not the phase velocity of the stationary states, that matches the classical particle
velocity:

Uclassical = Vgroup = 2vphase- [2.108]

Problem 2.18 Show that [Ae® + Be~**] and [C cos kx + D sin kx] are equivalent
ways of writing the same function of x, and determine the constants C and D in
terms of A and B, and vice versa. Comment: In quantum mechanics, when V = 0,
the exponentials represent traveling waves, and are most convenient in discussing
the free particle, whereas sines and cosines correspond to standing waves, which
arise naturally in the case of the infinite square well.

Problem 2.19 Find the probability current, J (Problem 1.14) for the free particle
wave function Equation 2.94. Which direction does the probability current flow?

« xProblem 2.20 This problem is designed to guide you through a “proof” of Plan-

cherel’s theorem, by starting with the theory of ordinary Fourier series on a finite
interval, and allowing that interval to expand to infinity.

(a) Dirichlet’s theorem says that “any” function f(x) on the interval [—a, +a]
can be expanded as a Fourier series:

fx)= Z[an sin(nmx/a) + b, cos(nmx/a)].

n=0

Show that this can be written equivalently as

f(x) = Z cneinnx/a.

n=—00
What is ¢, in terms of a, and b,?
(b) Show (by appropriate modification of Fourier’s trick) that
1 +a

Cp = — f(x)e_i"”/a dx.
2a J_4

(c) Eliminate n and ¢, in favor of the new variables k = (nw/a) and F(k) =
2/7 ac,. Show that (a) and (b) now become

+a

R . 1 .
- F)e™ Ak; F(k) = — ~Rdx,
f&) Jﬁn;oo (ke =—= | f@e ™ dx

where Ak is the increment in k from one n to the next.
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(d) Take the limit @ — oo to obtain Plancherel’s theorem. Comment: In view
of their quite different origins, it is surprising (and delightful) that the two
formulas—one for F(k) in terms of f(x), the other for f(x) in terms of
F(k)—have such a similar structure in the limit a — co.

Problem 2.21 A free particle has the initial wave function
W(x,0) = Ae™M,
where A and g are positive real constants.
{a) Normalize V¥ (x, 0).
(b) Find ¢ (k).
(¢) Construct W(x,t), in the form of an integral.
)

(d

Discuss the limiting cases (a very large, and a very small).

xProblem 2.22 The gaussian wave packet. A free particle has the initial wave
function

W(x,0) = Ae™",
where A and a are constants (a is real and positive).
(a) Normalize ¥ (x, 0).
(b) Find W¥(x, t). Hint: Integrals of the form

+00 5
/ e—(ax“+bx) dx
—00

can be handled by “completing the square”: Let y = /a [x + (b/2a)], and
note that (ax? + bx) = y? — (b*/4a). Answer:

W(x, 1) <2a)1/4 ¢ 1+ Ciar/m)]
x,)=|— .
b4 1+ QRihat/m)

(c) Find |W(x, n)|%. Express your answer in terms of the quantity

we |— 2
1 + (2har/m)?

Sketch |\-If[2 (as a function of x) at + = 0, and again for some very large ¢.
Qualitatively, what happens to [W|%, as time goes on?

(d) Find (x), (p), (x%), (p?), o, and op. Partial answer: (p?) = ah?, but it
may take some algebra to reduce it to this simple form.

(e} Does the uncertainty principle hold? At what time ¢ does the system come
closest to the uncertainty limit?




