3. Probability Waves of Matter

3.1 de Broglie Waves

In Section 2.7 we learned that through the probability interpretation photons
can be described by waves. We have made explicit use of the simple relation
E = c|p| between energy and momentum of the photon, which holds only
for particles moving with the velocity ¢ of light. For particles with a finite rest
mass m, which move with velocities v slow compared to the velocity of light,
the corresponding nonrelativistic relation between energy and momentum is

E=— |, = mv
2m b
Plane waves that are of the same type as those for photons, which were

discussed at the end of Chapter 2, but have the nonrelativistic relation just
given,
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are called de Broglie waves of matter. The factor in front of the exponential is

chosen for convenience. The phase velocity of these de Broglie waves is
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and is thus different from the particle velocity v = p/m.
3.2 Wave Packet, Dispersion

The harmonic de Broglie waves, like the harmonic electric waves, are not
localized in space and therefore are not suited to describing a particle. To
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localize a particle in space, we again have to superimpose harmonic waves
to form a wave packet. To keep things simple, we first restrict ourselves to
discussing a one-dimensional wave packet.

For the spectral function we again choose a Gaussian function,
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The corresponding de Broglie wave packet is then
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For the de Broglie wave packet, as for the light wave packet, we first approx-
imate the integral by a sum,
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where the v, (x, t) are harmonic waves for different values p, = po + nAp
multiplied by the spectral weight f(p,)Ap,

Yn(x,t) = f(pn)¥(x — x0,1)Ap

Figure 3.1a shows the real parts Re,(x,¢) of the harmonic waves
Y, (x,t) as well as their sum being equal to the real part Re ¢ (x, ) of the
wave function v (x, t) for the wave packet at time t = 79 = 0. The point
x = xgo is marked on each harmonic wave. In Figure 3.1b the real parts
Re ¢, (x, t) and their sum Re v (x, t) are shown at later time ¢ = ¢;. Because
of their different phase velocities, the partial waves have moved by different
distances Ax,, = v, (¢; — ty) where v, = p,/(2m) is the phase velocity of the
harmonic wave of momentum p,,. This effect broadens the extension of the
wave packet.

The integration over p can be carried out so that the explicit expression
for the wave packet has the form

Yix,t) = M(x, t)eiq&(x,t)

Here the exponential function represents the carrier wave with a phase ¢ vary-
ing rapidly in space and time. The bell-shaped amplitude function

'We have chosen this spectral function to correspond to the square root of the spectral
function that was used in Section 2.4 to construct a wave packet of light. Since the area under
the spectral function f(k) of Section 2.4 was equal to one, the area under [ f( p)]2 is now
equal to one. This guarantees that the normalization condition of the wave function ¥ in the
next section will be fulfilled.
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Re ¥ = 1I(Re Y,

Fig.3.1. Construction of a wave packet as a sum of harmonic waves ¥, of different
momenta and consequently of different wavelengths. Plotted are the real parts of the
wave functions. The terms of different momenta and different amplitudes begin with
the one of longest wavelength in the background. In the foreground is the wave packet
resulting from the summation. (a) The situation for time 1 = fo. All partial waves are
marked by a circle at point x = xo. (b) The same wave packet and its partial waves at
time #; > #. The partial waves have moved different distances Ax, = v,(t; — o) because
of their different phase velocities v, as indicated by the circular marks which have kept
their phase with respect to those in part a. Because of the different phase velocities, the
wave packet has changed its form and width.
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travels in x direction with the group velocity
Po
v = —
m

The group velocity is indeed the particle velocity and different from the phase
velocity. The localization in space is given by

This formula shows that the spatial extension o, of the wave packet in-
creases with time. This phenomenon is called dispersion. Figure 3.2 shows
the time developments of the real and imaginary parts of two wave packets
with different group velocities and widths. We easily observe the dispersion
of the wave packets in time. The fact that a wave packet comprises a whole
range of momenta is the physical reason why it disperses. Its components
move with different velocities, thus spreading the packet in space.

The function ¢ (x, t) determines the phase of the carrier wave. It has the
form
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For fixed time ¢ it represents the phase of a harmonic wave modulated in wave

number. The effective wave number ke is the factor in front of x — xg — vot

and is given by
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At the value x = (x) corresponding to the maximum value of the bell-
shaped amplitude modulation M (x, t), that is, its position average

(x) = xo+vot
the effective wave number is simply equal to the wave number that corre-
sponds to the average momentum pg of the spectral function,
1 1
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Fig. 3.2. (a, d) Spectral functions and time developments of (b, e) the real parts and (c,
f) the imaginary parts of the wave functions for two different wave packets. The two
packets have different group velocities and different widths and spread differently with
time.

For values x > xg + vof, that is, in front of the average position (x) of the
moving wave packet, the effective wave number increases,

kegr(x > xg +vot) > ko

so that the local wavelength

2

PO el

decreases.
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For values x < xg + vgt, that is, behind the average position (x), the
effective wave number decreases,

ketr(x < x0 + vot) < kg

This decrease leads to negative values of kg of large absolute value, which,
far behind the average position, makes the wavelengths A(x) short again.
This wave number modulation can easily be verified in Figures 3.1 and 3.2.
For a wave packet at rest, that is, pg = 0, vp = po/m = 0, the effective wave

number s

kegr(x) = ——& —(x —
eff (X) 7o22m (x — x0)
has the same absolute value to the left and to the right of the average position
xo. This implies a decrease of the effective wavelength that is symmetric on
both sides of xg. Figure 3.4 corroborates this statement.

3.3 Probability Interpretation, Uncertainty Principle

Following Max Born (1926), we interpret the wave function ¥ (x, t) as fol-
lows. Its absolute square

P, 1) =¥, 0% = M(x, 1)

is identified with the probability density for observing the particle at position
x and time ¢, that is, the probability of observing the particle at a given time
t in the space region between x and x + Ax is AP = p(x,t)Ax. This is
plausible since p(x, t) is positive everywhere. Furthermore, its integral over
all space is equal to one for every moment in time so that the normalization
condition

+00 +00
/ ¥ (0P dx = Y, DY de =1
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holds.

Notice, that there is a strong formal similarity between the average energy
density w(x, t) = eo|E.(x, t)|?/2 of a light wave and the probability density
p(x,t). Because of the probability character, the wave function v (x, t) is
not a field strength, since the effect of a field strength must be measurable
wherever the field is not zero. A probability density, however, determines the
probability that a particle, which can be point-like, will be observed at a given
position. This probability interpretation is, however, restricted to normalized
wave functions. Since the integral over the absolute square of a harmonic
plane wave is
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and diverges, the absolute square | (x, 1)|? of a harmonic plane wave cannot
be considered a probability density. We shall call the absolute square of a wave
function that cannot be normalized its intensity. Even though wave functions
that cannot be normalized have no immediate physical significance, they are
of great importance for the solution of problems. We have already seen that
normalizable wave packets can be composed of these wave functions. This
situation is similar to the one in classical electrodynamics in which the plane
electromagnetic wave is indispensable for the solution of many problems.
Nevertheless, a harmonic plane wave cannot exist physically, for it would
fill all of space and consequently have infinite energy.

Figure 3.3 shows the time developments of the probability densities of
the two Gaussian wave packets given in Figure 3.2. Underneath the two time
developments the motion of a classical particle with the same velocity is pre-
sented. We see that the center of the Gaussian wave packet moves in the ex-
act same way as the classical particle. But whereas the classical particle at
every instant in time occupies a well-defined position in space, the quantum-
mechanical wave packet has a finite width o, It is a measure for the size of
the region in space surrounding the classical position in which the particle
will be found. The fact that the wave packet disperses in time means that the
location of the particle becomes more and more uncertain with time.

The dispersion of a wave packet with zero group velocity is particularly
striking. Without changing position it becomes wider and wider as time goes
by (Figure 3.4a).

It is interesting to study the behavior of the real and imaginary parts of the
wave packet at rest. Their time developments are shown in Figures 3.4b and
3.4c. Starting from a wave packet that at initial time 7 = 0 was chosen to be a
real Gaussian packet, waves travel in both positive and negative x directions.
Obviously, the harmonic waves with the highest phase velocities, those whose
wiggles escape the most quickly from the original position x = 0, possess the
shortest wavelengths. The spreading of the wave packet can be explained in
another way. Because the original wave packet at 1 = 0 contains spectral
components with positive and negative momenta, it spreads in space as time
elapses.

The probability interpretation of the wave function now suggests that we
use standard concepts of probability calculus, in particular the expectation
value and variance. The expectation value or average value of the position of
a particle described by a wave function ¥ (x, 1) is
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ng. 3.3. Time developments of the probability densities for the two wave packets of
Figure 3.2. The two packets have different group velocities and different widths. Also
shown, by the small circles, is the position of a classical particle moving with a velocity
equal to the group velocity of the packet.
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Fig. 3.4. Time developments of the probability density for a wave packet at rest and of
the real part and the imaginary part of its wave function.
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which, in general, remains a function of time. For a Gaussian wave packet the
integration indeed yields

po
(x) =xp+wvot vo=— |,
m

corresponding to the trajectory of classical unaccelerated motion. We shall
therefore interpret the Gaussian wave packet of de Broglie waves as a quan-
tum-mechanical description of the unaccelerated motion of a particle, that
is, a particle moving with constant velocity. Actually, the Gaussian form of
the spectral function f (k) allows the explicit calculation of the wave packet.
With this particular spectral function, the wave function ¥ (x, t) can be given
in closed form.

The variance of the position is the expectation value of the square of the
difference between the position and its expectation:

varr) = (G = (0)?)
+00

= YHo, D (x — () P (x, 1) dx

—00

Again, for the Gaussian wave packet the integral can be carried out to give

—al=_"_ P
var(x) = oy = 461% (1 + W2 m2 ,
which agrees with the formula quoted in Section 3.2.
Calculation of the expectation value of the momentum of a wave packet

+00

Yix, 1) = F(P)¥p(x —xo,1)dp

—00
is carried out with the direct help of the spectral function f(p), that is,
+00 )
v = [ pfwra
-0

For the spectral function f(p) of the Gaussian wave packet given at the be-
ginning of Section 3.2, we find

too 1 (p — po)*
(p) = exp| —————|d
—00 pv2n’o’p P |: 20'3 P

We replace the factor p by the identity

p=po+(p— po)

Since the exponential in the integral above is an even function in the variable
P — po, the integral
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vanishes, for the contributions in the intervals —oo < p < po and po <
p < oo cancel. The remaining term is the product of the constant pg and the
normalization integral,

+00
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so that we find
(p) = po

This result is not surprising, for the Gaussian spectral function gives the
largest weight to momentum po and decreases symmetrically to the left and
right of this value. At the end of Section 3.2, we found vo = po/m as the
group velocity of the wave packet. Putting the two findings together, we
have discovered that the momentum expectation value of a free, unaccelerated
Gaussian wave packet is the same as the momentum of a free, unaccelerated
particle of mass m and velocity v in classical mechanics:

(p) = po = muo

The expectation value of momentum can also be calculated directly from
the wave function ¥ (x, t). We have the simple relation

X Chaf 1 i
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This relation translates the momentum variable p into the momentum operator

The momentum operator allows us to calculate the expectation value of mo-
mentum from the following formula:

+oo Ao
{p) = Y )T =Y dx
—o0 1dx
It is completely analogous to the formula for the expectation value of position
given earlier. We point out that the operator appears between the functions
¥*(x,t) and ¥ (x, t), thus acting on the second factor only. To verify this
formula, we replace the wave function v (x, 1) by its representation in terms
of the spectral function:
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is by Fourier’s theorem the inverse of the representation
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of the complex conjugate of the wave packet v (x, t). Thus we have
+00

Y, DY p(x — xo, 1) dx = f*(p)
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Substituting this result for the inner integral of the expression for (p), we
rediscover the expectation value of momentum in the form
400 +o0
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This equation justifies the identification of momentum p with the operator

(/i)(9/0x) acting on the wave function. The variance of the momentum for
a wave packet is

) +o0 ho9 2
var(p) = ((p — (p))*) = ¥*(x, 1) (T_ - PO) ¥(x,1)dx
oo idx
For our Gaussian packet we have
var(p) = 05

again independent of time because momentum is conserved.
The square root of the variance of the position,

Ax = y/var(x) = oy

3

determines the width of the wave packet in the position variable x and there-
fore is a measure of the uncertainty about where the particle is located. By
the same token, the corresponding uncertainty about the momentum of the

particle is
Ap = /var(p) = op
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For our Gaussian wave packet we found the relation

n 1+4U; i v
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For time ¢ = O this relation reads
h

0x0p =7

For later moments in time, the product becomes even larger so that, in

general, "

Ax - Ap = >
This relation expresses the fact that the product of uncertainties in position
and momentum cannot be smaller than the fundamental Planck’s constant £
divided by 4.

We have just stated the uncertainty principle, which is valid for wave
packets of all forms. It was formulated by Werner Heisenberg in 1927. This
relation says, in effect, that a small uncertainty in localization can only be
achieved at the expense of a large uncertainty in momentum and vice versa.
Figure 3.5 illustrates this principle by comparing the time development of
the probability density p(x, ) and the square of the spectral function £2(p).
The latter, in fact, is the probability density in momentum. Looking at the
spreading of the wave packets with time, we see that the initially narrow wave
packet (Figure 3.5, top right) becomes quickly wide in space, whereas the ini-
tially wide wave packet (Figure 3.5, bottom right) spreads much more slowly.
Actually, this behavior is to be expected. The spatially narrow wave packet
requires a wide spectral function in momentum space. Thus it comprises com-
ponents with a wide range of velocities. They, in turn, cause a quick dispersion
of the packet in space compared to the initially wider packet with a narrower
spectral function (Figures 3.5, bottom left and bottom right).

At its initial time ¢ = O the Gaussian wave packet discussed at the
beginning of Section 3.2 has the smallest spread in space and momentum
because Heisenberg’s uncertainty principle is fulfilled in the equality form
oy - 0p = h/2. The wave function at r = O takes the simple form

LI e e
(2n)1/4\/0_16_exp|_— 403 exp hpox X0
= M(x,0)explig(x,0)]

¥(x,0)

The bell-shaped amplitude function M (x, 0) is centered around the position
xo with the width o; ¢ is the phase of the wave function at ¢ = 0 and has the
simple linear dependence
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Fig. 3.5. Heisenberg’s uncertainty principle. For three different Gaussian wave packets
the square f2(p) of the spectral function is shown on the left, the time development
of the. probability density in space on the right. All three packets have the same group
velocity but different widths o, in momentum. At r = 0 the widths o, in space and o, in

momen.tum fulfill the equality 0,0, = //2. For later moments in time the wave packets
spread in space so that 0,0, > //2.

6, 0) = 2 pox ~ )

This phase ensures that the wave packet at ¢ = 0 stands for a particle with an
average momentum pg. We shall use this observation when we have to prepare
wave functions for the initial state of a particle with the initial conditions
{x) = x0, {p) = po at the initial moment of time ¢ = fg.
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3.4 The Schrodinger Equation

Now that we have introduced the wave description of particle mechanics, we
look for a wave equation, the solutions of which are the de Broglie waves.
Starting from the harmonic wave

P2
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we compare the two expressions
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Equating the two left-hand sides, we obtain the Schrodinger equation for

a free particle,
2 a2
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It was formulated by Erwin Schrddinger in 1926.

Since the solution ¥, occurs linearly in this equation, an arbitrary linear
superposition of solutions, that is, any wave packet, is also a solution of Schro-
dinger’s equation. Thus this Schrodinger equation is the equation of motion
for any free particle represented by an arbitrary wave packet Yx,1):

" K2 32
i 'a—t‘ﬂ(x, 1) = —En—zé_x-zlp(x’ 1)

In the spirit of representing physical quantities by differential operators, as we
did for momentum, we can now represent kinetic energy T, which is equal to
the total energy of the free particle T = p?/(2m), by

1 (Rd\ (RO n? 9?
- — | - e =
2m \i 9x /) \ |1 0x 2m dx?
The equation can be generalized to describe the motion of a particle in a

force field represented by a potential energy V (x). This is done by replacing
the kinetic energy T with the total energy,

n? 92
E=T+V—>——+V
Vo TV

With this substitution we obtain the Schrodinger equation for the motion of a
particle in a potential V (x):
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We now denote the operator of total energy by the symbol
B2 9
H=———
2m dx V@)

In analogy to the Hamilton function of classical mechanics, operator H is
called the Hamilton operator or Hamiltonian. With its help the Schrodinger

equation for the motion of a particle under the influence of a potential takes
the form

., 0
1h§1ﬁ(x,t) =Hy(x,t)

At this stage we should point out that the Schrédinger equation, general-
ized to three spatial dimensions and many particles, is the fundamental law
of nature for all of nonrelativistic particle physics and chemistry. The rest of
this book will be dedicated to the pictorial study of the simple phenomena
described by the Schrodinger equation.

3.5 Bivariate Gaussian Probability Density

To facilitate the physics discussion in the next section we now introduce a
Gauss1qn probability density of two variables x| and x, and demonstrate its
properties. The bivariate Gaussian probability density is defined by

olx1,x2) = Aexp[ 1 [(xl — (x1))?

T 2(1 = ¢?) o?

+ 2
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The normalization constant
_ 1
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ensures that the probability density is properly normalized:

+o00  p+o0
/ / p(x1, x2)dxydx; =1
—00 —0

The bivariate Gaussian is completely described by five parameters. They are
the exgectation values {x1) and {x2), the widths o and o5, and the correlation
coefficient c. The marginal distributions defined by

A
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Fig. 3.1. Construction of a wave packet as a sum of harmonic waves v,, of different momenta and
consequently of different wavelengths. Plotted are the real parts of the wave functions. The
terms of different momenta and different amplitudes begin with the one of longest wavelength
in the background. In the foreground is the wave packet resulting from the summation. (a)
The situation for time ¢ = ¢;,. All partial waves are marked by a circle at point z = ;. (b)
The same wave packet and its partial waves at time ¢; > t;. The partial waves have moved
different distances Az, = v,(t; — ty) because of their different phase velocities v,, as indicated
by the circular marks which have kept their phase with respect to those in part a. Because of
the different phase velocities, the wave packet has changed its form and width.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3Td ed., © 2001 by Springer-Verlag New York.
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Fig. 3.2. (a, d) Spectral functions and time developments of (b, e) the real parts and (c, f) the
imaginary parts of the wave functions for two different wave packets. The two packets have
different group velocities and different widths and spread differently with time.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3td ed., © 2001 by Springer-Verlag New York.



Fig. 3.3. Time developments
of the probability densities
for the two wave packets of
Figure 3.2. The two pack-
ets have different group ve-
locities and different widths.
Also shown, by the small cir-
cles, is the position of a classi-
cal particle moving with a ve-
locity equal to the group ve-
locity of the packet.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3td ed., © 2001 by Springer-Verlag New York.
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packet at rest and of the real part and the imaginary part of its wave
function.

ook of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3td ed., © 2001 by Springer-Verlag New York
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Fig. 3.5. Heisenberg’s uncertainty principle. For three different Gaussian wave packets the
square f2(p) of the spectral function is shown on the left, the time development of the prob-
ability density in space on the right. All three packets have the same group velocity but
different widths 0, in momentum. At ¢ = 0 the widths o, in space and ¢, in momentum fulfill
the equality 0,0, = h/2. For later moments in time the wave packets spread in space so that
oz0p > /2.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3td ed., © 2001 by Springer-Verlag New York.
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