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(The subscript x denotes differentiation.) Comparison of this equation with (7.101)
permits the identification

(7.106) g =" (w*%_ av.p:)

* 7 Omi Ox Ox

Note that the dimensions of J, are number per second. In three dimensions the current
density is written

h * *
(7.107) I =5V — YY)

and has dimensions cm~2s™ 1,

Transmission and Reflection Coefficients

For one-dimensional scattering problems, the particles in the beam are in plane-wave
states with definite momentum. Given the wavefunctions relevant to incident, re-
flected, and transmitted beams, one may calculate the corresponding current densities
according to (7.106). The transmission coefficient T and reflection coefficient R are
defined as

J

trans

J

‘ﬂrefl

7.108 T=
(7.108) ]

, R=

inc inc
These one-dimensional barrier problems are closely akin to problems on the trans-
mission and reflection of electromagnetic plane waves through media of varying
index of refraction (see Fig. 7.16). In the quantum mechanical case, the scattering is
also of waves.

For one-dimensional barrier problems there are three pertinent beams. Particles
in the incident beam have momentum

(7.109) Dinc = hk,
Particles in the reflected beam have the opposite momentum

(7.110) Prent = —hk,

In the event that the environment (i.e., the potential) in the domain of the
transmitted beam (x = + oo) is different from that of the incident beam (x = — o0),
the momenta in these two domains will differ. Particles in the transmitted beam will
have momentum hk, # hk,,

(7111) Dtrans = th
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In all cases the potential is constant in the domains of the incident and trans-
mitted beams (see Fig. 7.14), so the wavefunctions in these domains describe free
particles, and we may write

. hzk 2
Yine = Ae*r¥™ 10, hw, = E;. = 1
2m
Yeen = Be 6% @0 hoy = E = Eine
(7.112) | e
wtrans = Cel(kzx—wzl), hwz = Elrans = __Em_ + V
= Einc = hwl

Energy is conserved across the potential hill so that frequency remains constant
(w, = w,). The change in wavenumber k corresponds to changes in momentum and
kinetic energy. Using (7.106) permits calculation of the currents

h
J]inc = 2lk1|A|2
2mi

ho.. ,
(7.113) Jans = 5 2ik2 | C|

ho. ,

et = = 5,21k | B

It should be noted that these relations are equivalent to the classical prescription for
particle current, J = pv, with p = | |* and v = hk/m. These formulas, together with
(7.108), give the T and R coefficients

¢
A

BZ

A

“ka

114 T =
(7.114) K’

In the event that the potentials in domains of incident and transmitted beams are
equal,k, = k,and T = | C/A|*. More generally, to calculate C/4 and B/A as functions
of the parameters of the scattering experiment (namely, incident energy, structure of
potential barrier), one must solve the Schrédinger equation across the domain of the
potential barrier.

PROBLEMS

7.34 Show that the current density J may be written
1 3
=5 L+ W*p)*]
m

where p is the momentum operator.



ONE-DIMENSIONAL BARRIER PROBLEMS 211

7.35 Show that for a one-dimensional wavefunction of the form
Y(x, t) = Aexp [ip(x, 1)]

h a
5= ap®
m 0x

7.36 Show that for a wave packet Y(x, t), one may write

® 1 <P
[sax=scm+om-2

—® m m
7.37 Show that a complex potential function, V*(x) # V(x), contradicts the continuity equation
(7.97).

7.38 (a) Show that if y(x, ¢) is real, then
J=0

for all x.
(b) What type of wave structure does a real state function correspond to?

7.6 ONE-DIMENSIONAL BARRIER PROBLEMS

In a one-dimensional scattering experiment, the intensity and energy of the particles
in the incident beam are known in addition to the structure of the potential barrier
V(x). Three fundamental scattering configurations are depicted in Fig. 7.17. The
energy of the particles in the beam is denoted by E.

The Simple Step

Let us first consider the simple step (Fig. 7.17a) for the case E > V. We wish to obtain
the space-dependent wavefunction ¢ for all x. The potential function is zero for x <0
and is the constant V, for x > 0. The incident beam comes from x = —co. To con-
struct ¢ we divide the x axis into two domains: region I and region II, depicted in
Fig. 7.18. In region I, ¥ = 0, and the time-independent Schrodinger equation appears
as

hz

7.115 —— . .=E
( ) o P ()

[n this domain the energy is entirely kinetic. If we set
hky?

E
2m

(7.116)

then the latter equation becomes

(7.117) 0., = —k’¢  inregionl
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FIGURE 7.17 (a) The simple step. (b) The rectangular barrier. (c) The rectangular well.
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to the simple-step scattering prob-
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In region II the potential is the constant ¥ and the time-independent Schrodinger
equation appears as
h2

2m

The kinetic energy decreases by V and is given by

2, 2
(7.119) Wk g
2m
In terms of k,, (7.118) appears as
(7.120) .. = —k,?¢  inregionII

Writing ¢, for the solution to (7.117) and ¢y for the solution to (7.120), one obtains

— Aeik|x+ Be—iklx
(7.121) =re |
(p" — Cezkzx + De—lkzx

Since the term De™ *2* (together with the time-dependent factor e~ *“*') represents a
wave emanating from the right (x = + oo in Fig. 7.18), and there is no such wave, we
may conclude that D = 0. The interpretation of the remaining 4, B, and C terms is
given in Eq. (7.112). To repeat, A exp (ik,x) represents the incident wave;
Bexp (— ik, x), the reflected wave; and C exp (ik, x), the transmitted wave.

It is important at this time to realize that ¢; and ¢y (with D = 0) represent a
single solution to the Schrodinger equation for all x, for the potential curve depicted
in Fig. 7.18. Since any wavefunction and its first derivative are continuous (see
Section 3.3), at the point x = 0 where ¢; and ¢y join it is required that

o1(0) = ¢u(0)

7.122 0 0
( ) ax o(0) = ax ou(0)

These equalities give the relations

A+B=C
(7.123) A-B:%c
1

Solving for C/A and B/A, one obtains

C 2 B 1—kyfk

7.124 S 0 2 Ttun
(7.124) A 1+ kJky A 1+ kyfky
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1
T
T+R=1
R
1
- /- V FIGURE 7.19 T and R versus k,/k, for the simple-step
E=V E=o ka/ky 1" scattering problem for E > V.

Substituting these values into (7.114) gives

_ 4k, /k, _ s 1 — k,/k,
(1 + (kyo/ky)]* 1+ ky/ky

The ratio k,/k, is obtained from (7.116) and (7.119).

(7.126) (ﬁ)z 1Y

In the presentcase E > V,500 < k,/k; < 1.ForE > V,ky/k; - 1and T—> 1,R - 0.
There is total transmission. For E = V, k,/k; = 0 and T = 0, R = 1. There is total
reflection and zero transmission. The T and R curves for the simple-step potential
are sketched in Fig. 7.19. For all values of (k,/k,) we note that

(7.127) T+R=1

2

(7.125)

The validitiy of this relation for all one-dimensional barrier problems is proved in
Problem 7.39.

In the second configuration for the simple-step barrier, E < V (see Fig. 7.17a).
Again the x domain is divided into two regions, as shown in Fig. 7.20. In region I the
Schrodinger equation becomes

(7.128) O« = —k2¢  inregion I
where

2y 2
(7.129) Wk _ E

2m

In region II the Schrédinger equation is

(7.130) @O = K2@  inregion II
where

2,.2
(7.131) WKy _Eso

2m
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Aelk1x y Ce—Xx
e _—
-ik 1x
Be y
> E
x
Region 1 x=0 Region 11 FIGURE 7.20 Domains relevant
! to the simple-step scattering prob-
121 o1 lem for the case E < V.

The kinetic energy in this domain is negative (—h%*k?/2m). In classical physics
region Il is a “forbidden” domain. In quantum mechanics, however, it is possible for
particles to penetrate the barrier.

Again calling the solution to (7.128) ¢; and the solution to (7.130) ¢y;, we obtain

(pl — Aeik,x + Be—ik,x
(7.132) )
¢on = Ce ™

Continuity of ¢ and ¢, at x = 0 gives

1+2-¢
"4 A
(7.133)
o B_xC
A 'k 4
Solving for (C/A) and (B/A) one obtains
C 2
A 1+ ix/k,
(7.134)
B _1- ix/k,
A1+ ix/k,

The coefficient B/A is of the form z*/z, where z is a complex number. It follows that
|B/A| = 1,s0

(7.135) R= ‘

There is total reflection, hence the transmission must be zero.

To obtain the latter result analytically from our equations above, we must
calculate the transmitted current. The function ¢y, is of the form of a complex amplitude
times a real function of x (7.132). Such wavefunctions do not represent propagating
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waves. They are sometimes called evanescent waves. That they carry no current is
most simply seen by constructing J,.,.. (7.106).

h 0 0
7.1 =_——|C 2f ,—xx ~KX __ p,—KX —Kx
( 36) "Utrans dmi I l <€ Ox 4 e a“x e )
—3 0

We conclude that T = (.

PROBLEMS
7.39 Show that
T+R=1
for all one-dimensional barrier problems.

Answer

Since the scattering process is assumed to be steady-state, the continuity equation (7.101) becomes

ad,
ox

Integrating this equation, one obtains
® (0
I (—x)dx=J+Q—J_m=0
—o\0x

‘J]—co = J]im: - "ﬂrcfl

But

J] +o = J]!rans
so that the equation above becomes
J]lrans + ‘-Drcfl = ‘J]inc

Dividing through by J,,. gives the desired resulit.
7.40 Electrons in a beam of density p = 10'5 electrons/m are accelerated through a potential of
100 V. The resulting current then impinges on a potential step of height 50 V.

(a) What are the incident, reflected, and transmitted currents?

(b) Design an electrostatic configuration that gives a simple-step potential.
7.41 Show that the reflection coefficients for the two cases depicted in Fig. 7.21 are equal.
742 For the scattering configuration depicted in Fig. 7.20, given that V = 2E, at what value of x
is the density in region IT half the density of particles in the incident beam?
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J inc J inc
E — E

FIGURE 7.21 Reflection coefficients for these two configurations are equal. (See Problem 7.41.)

7.43 Equation (7.123) may be written in the matrix form

—1 1 B/A\ (1
1 ky/k,J\C/A 1
Calling the 2 x 2 matrix 2, the left column vector ¥, and the right column vector % permits this
equation to be more simply written

@V =AU
This inhomogeneous matrix equation has the solution

Y =9 '%

9*19—10
T\ 1

(a) Find 2! and then construct ¥~ using the technique above. Check your answer
with (7.124).
(b) Do the same for (7.133) and (7.134).

where @ ! is the inverse of 2, that is,

7.7 THE RECTANGULAR BARRIER. TUNNELING

The scattering configuration we now wish to examine is depicted in Fig. 7.17b. The
energy of the particles in the beam is greater than the height of the potential barrier,
E > V. For the case at hand there are three relevant domains (see Fig. 7.22):

Region I: x< —a, V=0
(7.137) RegionIl: —a<x< +a, V >0, andconstant.

RegionIll: a<x, V=0
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Aeikx Celkax
—— e o4 Fe i kl x
- B E— B ——
Be—th De‘“‘Zx
> E
V
-a 0 i+a X FIGURE 7.22 Domains rele-
Region I Region II Region I1I vant to the rectangular barrier
scattering problem for the case
L3 n Y E>V.

The solutions to the time-independent Schrédinger equation in each of the three
domains are:

) . h2k,?
o = Aetklx + Be—lhx, 1 E
2m
2 2
on = Ce*?* + De™ e, ks =E—-V
2m
7.138 ) h2k,?
( ) om = Fe;k;x’ ! =E
2m
2ma*Vv 2
(ak,)? — (ak;)? = == &

_ The parameter g contains all the barrier (or well) characteristics. The latter equation
(conservation of energy) reveals the simple manner in which ak, and ak, are related.
In Cartesian ak,, ak, space they lie on a hyperbola (Fig. 7.23). The permitted values of
k, (and therefore E) comprise a positive unbounded continuum. For each such
eigen-k,-value, there is a corresponding eigenstate (¢y, @y, ¢y) Which is determined
in terms of the coefficients, (B/4, C/A, D/A, F/A). Knowledge of these coefficients gives
the scattering parameters
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E=h*k*2m

(ak})? — (aky)? = (g/2)?

FIGURE 7.23 For rectangular-
barrier scattering with E > V, ak,
and ak, lie on a hyperbola.

&/2 ak, > ak, > 0
The energy spectrum #%k,2/2m
aiz comprises an unbounded con-
tinuum.
The coefficients are determined from the boundary conditions at x = aand x = —a,

N e
oo+l - (]
(e B

- -a b

These are four linear, algebraic, inhomogeneous equations for the four unknowns:
(B/A), (C/A), (D/A), and (F/A). Solving the last two for (D/A) and (C/A) as functions
of (F/A) and substituting into the first two permits one to solve for (B/A4) and (F/A).

These appear as
. i (k% + k,? -t
= e*™19| cos (2k,a —i(——l— sin (2k a]
[ (haa) = 5| = sin )

B\  [F\k? —k? .
2(2) = l(z) ﬁ sSin (2k2 a)
The transmission coefficient is most simply obtained from the second of these,
together with the relation

(7.139)

|y

(7.140)

F
7.141 T+R=|-
(7.141) + ’A
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CeKX
Aeiklx +
> De KX Feiklx
B e — B
Be-ikix
> E
—a [0 a ‘Vx
Region | Region 11 Region III
#y 1 P
(a)

FIGURE 7.24 (a) Domains relevant

to the rectangular barrier scattering

m problem, for the case £ < V. (b) Real
part of ¢ for the case above, showing

the hyperbolic decay in the barrier

domain and decrease in amplitude of
(b) the transmitted wave.

There results

A

1
4 kik,

2 k 2 _ 2\2
=1+1<—~1 kz) sin? (2k, a)

Rewriting k, and k, in terms of E and V as given by (7.138), one obtains

1 1 w2
(7.143) —=1

- sin? E
T +4E(E — V)sm 2k, a) >V

The reflection coefficient is 1 — T.
For the case E < V, as depicted in Fig. 7.24a, we find that the structure of the
solutions (7.138) are still appropriate, with the simple modification

2..2
ik, - K, hz" —V_-E>0

m
(7.144) sy
(ak,)? + (ax)? = '":2 = %
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A ak,
@k + @)? = (/22" E=r%k22mV
’ 1
> S ]
//
{t g/2 —{2a
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\ I] aK
\ /
\\ //
\, 7/
\\ ///

FIGURE 7.25 For rectangular barrier scattering with £ < V, ak, and ax lie on a circle ak, > 0, ax 2 0.
The energy spectrum (i%k,/2m) comprises a bounded continuum.

This latter conservation of energy statement indicates that the variables ak, and ax
lie on a circle of radius g/2 (Fig. 7.25). The permitted eigen-k,-values now comprise a
positive, bounded continuum, so that the eigenenergies

p o
2m
also comprise a positive, bounded continuum.
The algebra leading to (7.140) remains unaltered so that the transmission co-
efficient for this case is obtained by making the substitution of (7.144) into (7.142).
We also recall that sin (iz) = i sinh z. There results

(7.145) =1+

1 1/(k* + x?
T 4

2
) sinh? (2xa)

kix
which, with (7.144), gives

(7.146) Loy LV Gt e
' T~ T4Ew g

(7.147) T= 5 E<V
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indicates that in the domain E < V, T < 1. The limit that E — V deserves special
attention. With

V—E h%? 0
—_— = =(—
v v ¢
one obtains
T = ! + O(¢)
1+ g%4
(7.148)
, _ 2mQ2a)*V
g = _hz—

The expression O(c) represents a sum of terms whose value goes to zero with ¢. We
conclude that for scattering from a potential barrier, the transmission is less than
unity at E = V (Fig. 7.26).

Returning to the case E # V, (7.143) indicates that T = 1 when sin? 2k, a) = 0,
or equivalently when

(7.149) 2ak, = nn n=12..)

Setting k, = 2m/A, the latter statement is equivalent to

(7.150) 2a = n(%)

When the barrier width 2a is an integral number of half-wavelengths, n(4/2), the barrier
becomes transparent to the incident beam; thatis, T = 1. This is analogous to the case
of total transmission of light through thin refracting layers.

0.4

0.2

] | 1 I 1 FIGURE 7.26 Transmission coefficient 7' versus
2 3 4 s 6 7 E/V for scattering from a rectangular barrier with
L5 2m(2a)*V/h* = g* = 16. The additional lines are
EIV=E in references to Problems 7.50 et seq.
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Written in terms of E and V, the requirement for perfect transmission, (7.149),
becomes

2h2
(1.151) E-V= "2(ga2m> - n’E,

where E, is the ground-state energy of a one-dimensional box of width 2a (see Eq.
4.14).

Equations (7.143) and (7.146) give the transmission coefficient T, as a function of
E, V, and the width of the well 2a. The former of these indicates that T — 1 with in-
creasing energy of the incident beam. The transmission is unity for the values of E
given by (7.151). Equation (7.146) gives T for E < V. The transmission is zero for
E = 0and is less than 1 for E = V. A sketch of T versus E/V = E for the case g*> = 16
is given in Fig. 7.26. »

The fact that T does not vanish for E < V is a purely quantum mechanical
result. This phenomenon of particles passing through barriers higher than their own
incident energy is known as tunneling. It allows emission of « particles from a nucleus
and field emission of electrons from a metal surface in the presence of a strong electric
field.

PROBLEMS
7.44 1In terms of the new variables,
ki £ ko B =2k
0y =———> =
£ = T okk, 24

F ) B
= T T Z = _/Re*r
4 “ g ¢

(7.140) may be rewritten in the simpler form

JTe*r = €

cos f + iy sin f

JRe# = ia_ /Te* sin p

2iak,

Use these expressions to show:
(@ T+R=1
by ¢r =g —n(m/2),n=123,....
(c) tan(¢; — 2ka) = a, tan f
(d) What is ¢ for the infinite potential step: V(x) = o0, x = 0; V(x) = 0, x < 0?

Answers (partial)
(a) Solving for T + R from (7.140) gives
1+a_?sin? B

T+R= -
cos? B+ a,?sin?

Substituting the definitions of « . gives the desired result.
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(¢} From the first of the two given equations above, we obtain

ﬁei(¢7~2k‘m — 1
cos B + io, sin
e @
Jcos? B + o, sin® B

Equating the tangents of the phases of both sides gives the desired result.

7.45 Anelectron beam is sent through a potential barrier 1 cm long. The transmission coefficient
exhibits a third maximum at E = 100 V. What is the height of the barrier?

7.46 An electron beam is incident on a barrier of height 10 V. At E = 10 V, T =337 x 1073
What is the width of the barrier?

7.47 Usethe correspondence principle with (7.147) to show that T = Ofor E < V, for the classical
case of a beam of particles of energy E incident on a potential barrier of height V.

7.8 THE RAMSAUER EFFECT

The configuration for this case is depicted in Fig. 7.17c. The relevant domains are
shown in Fig. 7.27. Once again Egs. 7.138 et seq. apply with the modification
2m

(7.152) —E—V=E+|V]|

The transmission coefficient (7.143) becomes, for E > 0,

1 V2
(7.153) = L

l+-—————sin?
T +4E(E+JV|)Sm (k,a)

Again there is perfect transmission when an integral number of half-wavelengths fit
the barrier width.

(7.154) 2ak=nn  (n=12..)

This condition may also be cast in terms of the eigenenergies of a one-dimensional
box of width 2a:

(7.155) E + |V| = n?E,

From (7.153) we see that T — 1 with increasing incident energy. At E=0, T=0.
Thus we obtain an idea of the shape of T versus E. It is similar to the curve shown in
Fig. 7.26. The transmission is zero for E = 0 and rises to the first maximum (unity) at
E = E, — |V|. It has successive maxima of unity at the values given by (7.155), and
approaches 1 with growing incident energy E.
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Aeiklx Ceikzx Feiklx
—_— —_— ——
——————— —~———
Be-ik1x De-ikax
> E
—a a
r—————————————-
b
=Vl
Region 1 Region II Region 111
FIGURE 7.27 Domains relevant to the rec-
#1 i P tangular well scattering problem, E > 0.

The preceding theory of scattering of a beam of particles by a potential well has
been used as a model for the scattering of low-energy electrons from atoms. The
attractive well represents the field of the nucleus, whose positive charge becomes
evident when the scattering electrons penetrate the shell structure of the atomic
electrons. The reflection coefficient is a measure of the scattering cross section.
Experiments in which this cross section is measured (for rare gas atoms) detect a low-
energy minimum which is consistent with the first maximum that T goes through for
typical values of well depth and width according to the model above, (7.153). This
transparency to low-energy electrons of rare gas atoms is known as the Ramsauer
effect.

The student should not lose sight of the following fact. For any of the solutions
to the scattering problems considered in these last few sections, we have in essence
found the eigenfunctions and eigenenergies for the corresponding Hamiltonian.
These Hamiltonians are of the form

2

(7.156) H=L 1y

2m
with the potential V(x) depicted by any of the configurations of Fig. 7.17. In each case
considered, the spectrum of energies is a continuum, E = h*k?/2m. For each value of
k, a corresponding set of coefficient ratios (B/A4, C/A for the simple step and B/A,
C/A, D/A, F/A for the rectangular potential) are determined. The coefficient A4 is
fixed by the data on the incident beam. These coefficients then determine the wave-
function, which is an eigenfunction of the Hamiltonian above. All such scattering
eigenstates are unbound states. A continuous spectrum is characteristic of unbound
states, while a discrete spectrum is characteristic of bound states (e.g., particle in a box,
harmonic oscillator).

! The notion of scattering cross section is discussed in Chapter 14.
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TABLE 7.2 Transmission coefficients for three elementary potential barriers

E o Yhalk

—V,—— Tt + (kpfky)T?
AN
(E) = %

Y [r— T=0, R=1
E
E Lol
= - n
4 T JEE = wyS i (k9
h2k,?
—>|20|'<'—— m =E-V
r Lop Y G
E = 4E(V—E)Sm (2xa)
hZZ
—{ 2a f— 2" “V_E
m
E Lo, L ke
1.1 n
0 T AEE + v Bk
h2k,?
-V 2 _E-V=E+|V]

—>‘2a |<-— 2m

The transmission coefficients corresponding to the one-dimensional potential
configurations considered above are summarized in Table 7.2.

PROBLEMS

7.48 The scattering cross section for the scattering of electrons by a rare gas of krypton atoms
exhibits a low-energy minimum at E ~ 0.9 V. Assuming that the diameter of the atomic well
seen by the electrons is 1 Bohr radius, calculate its depth.

7.49 Show that the transmission coefficient for the rectangular barrier may be written in the
form

T=T(E)
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where
_ 2m(2a)*V

2

tryl
11t
</t

Answer (partial)
For E > 1,

1 1 =
T '=1+-=-= sin2, /g*(E — 1
dEE-pSmVeESD
7.50 Using your answer to Problem 7.49, derive an equation for an approximation to the curve
on which minimum values of T fall.

’I:nin = ?;ln(E)

Show that the values of T and E at the first minimum in the sketch of T versus E depicted in
Fig. 7.26 (g* = 16) agree with your equation. [Hint: The minima of T fall at the values of E
where T~ ! is maximum. From Problem 7.49,

~ 1 1 ]
T !'<l+ -7
4EE -1

7.51 For the rectangular barrier:

(a) Write the values of E for which T = 1 as a function of g.

(b) Using your answer to part (a) and the two preceding probiems, make a sketch of T
versus E in the two limits g > 1, g < 1. Cite two physical situations to which these limits pertain.

(c) Show that for an electron, g%/V = 2m(2a)*/h* = 0.26(2a)*(eV)” ', where a is in
angstroms.
7.52 For the case depicted in Fig. 7.26, show that the first maximum falls at a value consistent
with your answer to part (a) of Problem 7.51.

7.53 Write the transmission coefficient for the rectangular well as a function of g and E.

Answer

1 1 =

T_1=1+—t*—_shn2 2E+1

dEE S VOESD
7.54 In the limit g> > 1, show that the minima of T for the rectangular well fall on a curve which
is well approximated by

’I:nin = 4E

Use this result together with (7.155) for the values of E where T = 1to obtain a sketch of T versus
E for the case g% = 10°.

Answer
See Fig. 7.28.
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£ ——" Tmin =4E/V]

0.015 0.030 FIGU!!E 7.28 Reso.nances in the tr':ansmlssmn
_ coefficient for scattering by a potential well for
E/\VI=E g% = 10°. (See Problems 7.54 et seq.)

7.55 Show that the spaces between resonances in T for the case of scattering from a potential well
grow with decreasing g.
7.56 (a) Calculate the transmission coefficient T for the double potential step shown in Fig.
7.29a.

(b) If we call T, the transmission coefficient appropriate to the single potential step V;,
and T, that appropriate to the single potential step V5, show that

T<T, T<T,

Offer a physical explanation for these inequalities. .

(c) What are the three sets of conditions under which T is maximized? What do these
conditions correspond to physically?

(d) A student argues that T is the product T, T, on the following grounds. The particle
current that penetrates the V; barrier is T, J;,.. This current is incident on the V, barrier so that
Ty(T,J;,) is the current transmitted through the second barrier. What is the incorrect assumption
in his argument?

Answer (partial)

Applying boundary conditions to the wavefunctions
o= Ae™* 4 Be"%1*  (region])
o Ce*2* 4 De~*2*  (region II)
oy = Fe** (region III)

at x = 0 and x = a, respectively, and solving for T = (k3/k,)| F/A|* gives the desired result:
4k ks k,?

T= .

ky*(ky + ky)? + (k3 — ky?)(ky? — ky*)sin? (k,a)

7.57 Calculate the transmission coefficient for the potential configuration and energy of incident
particles depicted in Fig. 7.30. (Note: T is easily obtained from the answer given to Problem 7.56.)

(ky = ky 2 k3)



E
V2
V1 J]trans =TJ inc
a X
Region 1 ' Region II Region II1
(a)
1
- E
‘D(rans = leinc
Vi
a %
(b)
- E
Va
JJtrans = T2‘Dinc
- FIGURE 7.29 (a) Double potential step showing
X three regions discussed in Problem 7.56. (b) and (c)
Two related single potential steps: 7, > 7 and
(c) T,>T.
3
14
- P
—d +a X
FIGURE 7.30 Tunneling configuration
—aV for Problem 7.57. The constant « is real

and greater than zero.
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