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changes by only a small amount in a distance as short as a de Broglie wavelength. So
it is also not necessary, in that limit, to speak of averages when discussing potentials.
Thus, in the macroscopic limit we can ignore the bars representing expectation values,
or averages, in the equations just displayed. We then conclude that Newton’s law of
motion can be derived from the Schroedinger equation, in the classical limit of macro-
scopic systems. Newton’s law of motion is a special case of Schroedinger’s equation.

6-3 The Step Potential (Energy Less Than Step Height)

In the next sections we shall study solutions to the time-independent Schroedinger
equation for a particle whose potential energy can be represented by a function V()
which has a different constant value in each of several adjacent ranges of the  axis.
These potentials change in value abruptly in going from one range to the adjacent
range. Of course potentials which change abruptly (i.e., are discontinuous functions
of ) do not really exist in nature. Nevertheless, these idealized potentials are used
frequently in quantum mechanics to approximate real situations because, being
constant in each range, they are easy to treat mathematically. The results we obtain
for these potentials will allow us to illustrate a number of characteristic quantum
mechanical phenomena.

An analogy, that is surely familiar to the student, is found in the procedure used in
studying electromagnetism. This involves treating many idealized systems like the
infinite wire, the capacitor without edges, etc. These systems are studied because they
are relatively easy to handle, because they are excellent approximations to real ones,
and because real systems are usually complicated to treat mathematically since they
have complicated geometries. The idealized potentials we treat in this chapter are used
in the same way and with the same justification.

The simplest case is the step potential, illustrated in Figure 6-3. If we choose the
origin of the » axis to be at the step, and the arbitrary additive constant that always
occurs in the definition of a potential energy so that the potential energy of the particle
is zero when it is to the left of the step, ¥(x) can be written

Vo x>0
V(z) = (6-11)
0 <0

where V) is a constant. We may think of ¥(z) as an approximate representation of the
potential energy function for a charged particle moving along the axis of a system of
two electrodes, separated by a very narrow gap, which are held at different voltages.
The upper half of Figure 6-4 illustrates this system, and the lower half illustrates the
corresponding potential energy function. As the gap decreases, the potential function
approaches the idealization illustrated in Figure 6-3. In Example 6-2 we shall see that
the potential energy for an electron moving near the surface of a metal is very much
like a step potential since it rapidly increases at the surface from an essentially constant
interior value to a higher constant exterior value.

Assume that a particle of mass m and total energy E is in the region » < 0, and
that it is moving toward the point # = 0 at which the step potential ¥(x) abruptly
changes its value. According to classical mechanics, the particle will move freely in
that region until it reaches « = 0, where it is subjected to an impulsive force F =
—dV(x)/dz acting in the direction of decreasing x. The idealized potential, (6-11),
yields an impulsive force of infinite magnitude acting only at the point # = 0. How-
ever, as it acts on the particle only for an infinitesimal time, the quantity | Fdr (the
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V(x)

Vix)=Vp
FIGURE 6-3 Vi) =0
A step potential. 0 *
FIGURE 6-4
Hlustrating a physical system witha ~__ \ A\ _
potential energy function that can be o - *
approximated by a step potential. A =
charged particle moves along the axis
of two cylindrical electrodes held at —"IUM_—
different voltages. Its potential en- V) = V(x)

ergy is constant when it is inside
either electrode, but it changes very
rapidly when passing from one to the
other.

impulse), which determines the change in its momentum, is finite. In fact, the momen-
tum change is not affected by the idealization.

The motion of the particle subsequent to experiencing the force at 2 = 0 depends,
in classical mechanics, on the relation between E and V. This is also true in quantum
mechanics. In the present section we treat the case where E < V,, i.e., where the total
energy is less than the height of the potential step as illustrated in Figure 6-5. (The case
where E > ¥, is treated in the following section.) Since the total energy E is a constant,
classical mechanics says that the particle cannot enter the region « > 0. The reason
is that in that region

E=Z 4 v@ < v
2m

or
2

£ <o

2m
Thus the kinetic energy p?/2m would be negative in the region z > 0, which would
lead to an imaginary value for the linear momentum p in that region. Neither is
allowed, or even makes physical sense, in classical mechanics. According to classical
mechanics, the impulsive force will change the momentum of the particle in such a
way that it will exactly reverse its motion, traveling off in the direction of decreasing
@ with momentum in the direction opposite to its initial momentum. The magnitude
of the momentum p will be the same before and after the reversal since the total
energy E = p%2m is constant.

Vi(x)

FIGURE 6-5 Vix)=Vy
The relation between total and po-
tential energies for a particle incident
upon a potential step with total
energy less than the height of the V(x)=0
step. 0
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To determine the motion of the particle according to quantum mechanics, we must
find the wave function which is a solution, for the total energy E < V,, to the
Schroedinger equation for the step potential of (6-11). Since this potential is inde-
pendent of time, the actual problem is to solve the time-independent Schroedinger
equation. From our qualitative discussion of the previous chapter, we know that an
acceptable solution should exist for any value of E > 0, since the potential cannot
bind the particle to a limited range of the « axis.

For the step potential, the « axis breaks up into two regions. In the region where
x < 0 (left of the step), we have V() = 0, so the eigenfunction that will tell us
about the behavior of the particle is a solution to the simple time-independent
Schroedinger equation

B d*y(x)
2m da’

In the region where x > 0 (right of the step), we have V(z) = V,, and the eigenfunc-
tion is a solution to a time-independent Schroedinger equation which is almost as
simple

= Ey() 2 <0 (6-12)

i d*y(a)
2m da*

The two equations are solved separately. Then an eigenfunction valid for the entire
range of z is constructed by joining the two solutions together at # = 0 in such a way
as to satisfy the requirements, of Section 5-6, that the eigenfunction and its first
derivative are everywhere finite, single valued, and continuous.

Consider the differential equation valid for the region in which V(z) = 0, (6-12).
Since this is precisely the time-independent Schroedinger equation for a free particle,
we take for its general solution the traveling wave eigenfunction of (6-8). We write
that eigenfunction as

+ Voy(2) = Ey(a) x>0 (6-13)

) ) 2mE
p(@) = Ae™* + Be™™*  where k; = NET:

z <0 (6-14)

Next consider the differential equation valid for the region in which V() = ¥,
(6-13). From the qualitative considerations of Section 5-7, we do not expect an
oscillatory function, such as in (6-14), to be a solution since the total energy E is less
than the potential energy ¥, in the region of interest. In fact, those considerations
tell us that the solution will be a function which “‘gradually approaches the = axis.”
The simplest function with this property is the decreasing real exponential, which
can be written

p(z) = e x>0 (6-15)

Let us find out if this is a solution and, if so, also find the required value of k,, by
substituting it into (6-13), which it is supposed to satisfy. We first evaluate

d*p(=)
da®
Then the substitution yields

— 2 Ko@) + Yor(o) = Eyf@)
m

= (—ky)’e™™" = k3y()

This satisfies the equation, and therefore verifies the solution, providing

N

E<V, (6-16)
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The solution we have just verified is not a general solution to the time-independent
Schroedinger equation, (6-13). The reason is that the equation contains a second
derivative, so the general solution must contain two arbitrary constants. However,
if we can find a solution to the equation for the same value of E, which is different
in form from the one we have just found, we can make an arbitrary linear combination
of these two so-called particular solutions. The linear combination will also be a
solution and, since it will contain two arbitrary constants, it will be a general solution.

A clue to the form of another particular solution is found by noting that k, enters
as a square in the equation preceding (6-16). Therefore, its sign is immaterial, and the
increasing exponential

_ J2m(V, = E)

e where ky = -

y(x)=e x>0 (6-17)
should also be a solution to the time independent Schroedinger equation that we are
dealing with. It is equally easy to verify this, by substitution into the equation. But let
us instead verify that the arbitrary linear combination of the two particular solutions

_ y2m(s — E)

w(x) = Ce™™ 4 De™  where k, = ii x>0 (6-18)

and where C and D are arbitrary constants, is a solution to (6-13). We calculate

d? 2m(V, — E
W(x) — Ck;ekzz + D(_k2)2e—k2m — kzz"p(x) — m( 02 )'(/)(x)
da? h
and substitute the result into the equation. We obtain
A2 2m
— —— (Vo — E)p(2) + Vyy(x) = Ey(x)
2m h

Since this is obviously satisfied, we have verified that (6-18) is a solution. Since it
contains two arbitrary constants, it is the general solution to the time-independent
Schroedinger equation for the region of the step potential where V(z) = V,, with
E < V,. Although the increasing exponential part will not actually be used in the
present section, it will be used in a subsequent section.

The arbitrary constants 4, B, C, and D of (6-14) and (6-18) must be so chosen that
the total eigenfunction satisfies the requirements concerning finiteness, single
valuedness, and continuity, of (x) and dy(x)/dx. Consider first the behavior of y(x)
as « — + co. In this region of the z axis the general form of y(z) is given by (6-18).
Inspection shows that it will generally increase without limit as @ — + o0, because
of the presence of the first term, Ce*®. In order to prevent this, and keep y(x) finite,
we must set the arbitrary coefficient C of the first term equal to zero. Thus we find

c=0 (6-19)

Single valuedness is satisfied automatically by these functions. To study their con-
tinuity, we consider the point # = 0. At this point the two forms of y(z), given by
(6-14) and (6-18), must join in such a way that y(z) and dy(z)/dz are continuous.
Continuity of y(x) is obtained by satisfying the relation

D(e* =0 = A(eiklm)aa:o + Ble ™),y

which comes from equating the two forms at z = 0. This relation yields

D=A+B (6-20)
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Continuity of the derivative of the two forms

d
M — _k2De—7€2x x>0
dx
and
d ; %
v@ _ ik, Ae™® — ik, Be="1® <0
x

is obtained by equating these derivatives at = 0. Thus we set

_kzD(e_kzw)aczo = iklA(eikw)x:O - ile(e_ikw)x:o
This yields

D=A-B (6-21)
Adding (6-20) and (6-21) gives
e D(l +ik2) (6:22)
T2 ky
Subtracting gives
D ik,
B= —(1 — -—) (6-23)
2 ky

We have now determined 4, B, and C in terms of D. Thus the eigenfunction for the
step potential, and for the energy E < V,, is

D ; ; D ; —i
= + ikylky)e™® E(1 — iky[k)e™ 2 <0
%) = (6-24)
) De"™ x>0
The one remaining arbitrary constant, D, determines the amplitude of the eigen-
function, but it is not involved in any of its more important characteristics. The
presence of this constant reflects the fact that the time-independent Schroedinger
equation is linear in y(x), and so solutions of any amplitude are allowed by the
equation. We shall see that useful results can be usually obtained without bothering
to carry through the normalization procedure that would specify D. The reason is
that the measurable quantities that we shall obtain as predictions of the theory contain
D in both the numerator and the denominator of a ratio, and so it cancels out.
The wave function corresponding to the eigenfunction is
AeiklwefiEt/h_i_ Be-iklme—iEt/fZ___ Aei(kleEt/h) + Bei(—klva!/ﬁ) 2 <0

F(,0) = De ez —iEn z>0 2
Consider the region x < 0. The first term in the wave function for this region is a
traveling wave propagating in the direction of increasing z. This term describes a
particle moving in the direction of increasing z. The second term in the wave function
for # < 0 is a traveling wave propagating in the direction of decreasing », and it
describes a particle moving in that direction. This information, plus the classical
predictions described earlier, suggests that we should associate the first term with the
incidence of the particle on the potential step and the second term with the reflection
of the particle from the step. Let us use this association to calculate the probability
that the incident particle is reflected, which we call the reflection coefficient R.
Obviously, R depends on the ratio B/ 4, which specifies the amplitude of the reflected
part of the wave function relative to the amplitude of the incident part. But in quantum
mechanics probabilities depend on intensities, such as B*B and A4*4, not on
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amplitudes. Thus, we must evaluate R from the formula
_ B*B
A*A
That is, the reflection coefficient is equal to the ratio of the intensity of the part of the

wave that describes the reflected particle to the intensity of the part that describes the
incident particle. We obtain

(6-26)

R BB _ (L= ikefk)*(1 — iky/ky)
A*A (1 4 iky/k)*(1 + iky/ky)
R = (L ikofk) (L — ikofk))
(I — ikofky)(1 + ikofky)
The fact that this ratio equals one means that a particle incident upon the potential
step, with total energy less than the height of the step, has probability one of being

reflected—it is always reflected. This is in agreement with the predictions of classical
mechanics.

Consider now the eigenfunction of (6-24). Using the relation

or

E<V, (627)

™ = cos kyx + i sin kya (6-28)
it is easy to show that the eigenfunction can be expressed as
ky
Dcosklx—D;smklx <0
x) = 1 6-29
y(2) Dot 2> 0 (6-29)

If we generate the wave function by multiplying ¢(z) by e#!%, we see immediately
that we actually have a standing wave because the locations of the nodes do not change
in time. In this problem the incident and reflected traveling waves for < 0 combine
to form a standing wave because they are of equal intensity. Figure 6-6 illustrates this
schematically.

FIGURE 6-6

MMustrating schematically the combination of an incident and a reflected
wave of equal intensities to form a standing wave. The wave function is
reflected from a potential step atz = 0. Note that the nodes of the traveling
waves move to theright or left, but those of the standing wave are stationary.
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FIGURE 6-7

Top: The eigenfunction y(x) for a particle incident upon a potential step
atx = 0, with total energy less than the height of the step. Note the pene-
tration of the eigenfunction into the classically excluded region z > 0.
Bottom: The probability density ¥'*¥" = p*y = ¢2? corresponding to this
eigenfunction. The spacing between the peaks of ? is twice as close as the
spacing between the peaks of y.

In the top part of Figure 6-7 we illustrate the wave function by plotting the eigen-
function, (6-29), which is a real function of z if we take D real. The wave function can
be thought of as oscillating in time according to e~*#/" with an amplitude whose
space dependence is given by y(x). Here we find a feature which is in sharp contrast
to the classical predictions. Although in the region z > 0 the probability density

PR D*e—kga:e+iEt/h De»k;xg—iEt/h — D*De—zkzm (6-30)
illustrated in the bottom of Figure 6-7, decreases rapidly with increasing =, there is a
finite probability of finding the particle in the region z > 0. In classical mechanics it
would be absolutely impossible to find the particle in the region z > 0 because there
the total energy is less than the potential energy, so the kinetic energy p?/2m is negative
and the momentum p is imaginary. This phenomena, called penetration of the
classically excluded region, is one of the more striking predictions of quantum
mechanics.

We shall discuss later certain experiments which confirm this prediction, but here
we should like to make several points about it. One is that penetration does nof mean
that the particle is stored in the classically excluded region. Indeed, we have seen that
the incident particle is definitely reflected from the step.

Another point is that penetration of the excluded region, which obeys (6-30), is
not in contflict with the experiments of classical mechanics. It is apparent from the
equation that the probability of finding the particle with a coordinate z > 0 is only
appreciable in a region starting at « = 0 and extending in a penetration distance Ax,



Sec. 6-3 THE STEP POTENTIAL (ENERGY LESS THAN STEP HEIGHT) 207

which equals 1/k,. The reason is that e~2%2* goes very rapidly to zero when z is very
much larger than 1/k,. Since k, = \/2m(V0 — E)/h, we have

h
* = omVe = B)

In the classical limit, the product of m and (¥, — E) is so large, compared to 42, that
Az is immeasurably small.

Example é-1. Estimate the penetration distance Ax for a very small dust particle, of radius
r = 10° m and density p = 10* kg/m?, moving at the very low velocity v = 10-2 m/sec, if the
particle impinges on a potential step of height equal to twice its kinetic energy in the region to
the left of the step.

The mass of the particle is

4
m =z mrip ~4 x 107 m? x 10*kg/m3 =4 x 1014 kg

Its kinetic energy before hitting the step is

1 1
Emv2 =5 4 x 107 kg x 107 m?/sec? =2 x 1078 joule

and this is also the value of (V, — E). The penetration distance is

h 10734 joule-sec
X = ~
V2m(Vy —E) V2 x4 x 1079 kg x 2 x 10‘18j0ule
~2 x 10¥9m

Of course, this is many orders of magnitude smaller than could be detected in any possible
measurement. For the more massive particles and higher energies typically considered in
classical mechanics, Az is even smaller. |

Furthermore, we should like to point out that the uncertainty principle shows the
wavelike properties exhibited by an entity in penetrating the classically excluded
region are really not in conflict with its particlelike properties. Consider an experi-
ment capable of proving that the particle is located somewhere in the region z > 0.
Since the probability density for > 0 is appreciable only in a range of length Az, the
experiment amounts to localizing the particle within that range. In doing this, the
experiment necessarily leads to an uncertainty Ap in the momentum, which must be
at least as large as

Ap= -~ [TV, =)
Az

Consequently, the energy of the particle is uncertain by an amount

A 2
AE~ER Ly g
2m

and it is no longer possible to say that the total energy E of the particle is definitely
less than the potential energy V,. This removes the conflict alluded to.

Penetration of the classically excluded region can lead to measurable consequences.
We shall see this later for a potential that steps up to a height ¥, > E, but remains
up only for a distance not much larger than the penetration distance Az, and then
steps down. In fact, the phenomenon has significant practical consequences. One
example, which we shall refer to soon, is the tunnel diode used in modern electronics.
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Example 6-2. A conduction electron moves through a block of Cu at total energy E under
the influence of a potential which, to a good approximation, has a constant value of zero in
the interior of the block and abruptly steps up to the constant value ¥, > E outside the block.
The interior value of the potential is essentially constant, at a value that can be taken as zero,
since a conduction electron inside the metal feels little net Coulomb force exerted by the
approximately uniform charge distributions that surround it. The potential increases very
rapidly at the surface of the metal, to its exterior value V,, because there the electron feels a
strong force exerted by the nonuniform charge distributions present in that region. This force
tends to attract the electron back into the metal and is, of course, what causes the conduction
electron to be bound to the metal. Because the electron is bound, ¥, must be greater than its
total energy E. The exterior value of the potential is constant, if the metal has no total charge,
since outside the metal the electron would feel no force at all. The mass of the electron is
m =9 x 1073 kg. Measurements of the energy required to permanently remove it from
the block, i.e., measurements of the work function, show that ¥, — E = 4 eV. From these
data estimate the distance Ax that the electron can penetrate into the classically excluded
region outside the block.
In the mks system

1.6 x 1071 joule

—E =4¢V
Vo — E eV x Tov

~6 x 1071%joule

So
h

Ar = ————
V2m(Vy — E)

- 10734 joule-sec ~ 10190
V2 x 9 x 1073 kg x 6 x 1072 joule

The penetration distance is of the order of atomic dimensions. Therefore, the effect can be of
consequence in atomic systems. We shall find soon that, in certain circumstances, the effect is
very important indeed. 2|

Let us finally make the point that penetration of the classically excluded region is
nonclassical in the sense that an entity that does it is not behaving like a classical
particle. But it is behaving like a classical wave since, as we shall see later, the
phenomenon has been known to occur with light waves since the time of Newton.
Penetration of the classically excluded region by material particles is just another
manifestation of the wavelike nature of material particles.

Figure 6-8 shows the probability density for a wave function in the form of a group,
for the problem of a particle incident in the direction of increasing  upon a potential
step with an average value of the total energy less than the step height. The wave
function can be obtained by summing, over the total energy E, a very large number of
wave functions of the form we have obtained in (6-25). It can also be obtained by a
direct numerical solution of the Schroedinger equation. Either way involves a large
amount of work on a high-speed computer, as can be guessed from the complications
indicated in the figure. The results of the calculations certainly convey a realistic sense
of the particle motion; but note that these results show, again, that the particle
associated with the wave function is reflected from the step with probability one, and
that there is some penetration of the classically excluded region. The fact that we have
been able to learn these basic resulits from simple calculations, involving only the wave
function of (6-25) which contains a single value of E, is an example of the fact that it is
generally not necessary in quantum mechanics to use wave functions in the form of
groups. Of course, we must be willing to learn how to interpret the simple wave
functions.
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FIGURE 6-8

A potential step, and the probability density ¥*¥ for a group wave
function describing a particle incident on the step with total energy less
than the step height. As time evolves, the group moves up to the step,
penetrates slightly into the classically excluded region, and then is
completely reflected from the step. The complications of the mathematical
treatment using a group are indicated by the complications of its structure
during reflection.

6-4 The Step Potential (Energy Greater Than Step Height)

In this section we consider the motion of a particle under the influence of a step
potential, (6-11), when its total energy E is greater than the height V, of the step. That
is, we take E > V,, as illustrated in Figure 6-9.

In classical mechanics, a particle of total energy E traveling in the region = < 0, in
the direction of increasing z, will suffer an impulsive retarding force F = —dV(xz)/dx
at the point z = 0. But the impulse will only slow the particle, and it will enter the
region z > 0, continuing its motion in the direction of increasing . Its total energy £

Vix)
E
FIGURE 6-9 Vix)= Vs

The relation between total and
potential energies for a particle in-
cident upon a potential step with
total energy greater than the height V(x) =0
of the step. 0
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remains constant; its momentum in the region # < 0 is p;, where p?/2m = E; its
momentum in the region = > 0 is p,, where p3/2m = E — V.

We shall see that the predictions of quantum mechanics are not so simple. If E is not
too much larger than V;, the theory predicts that the particle has an appreciable chance
of being reflected at the step back into the region z < 0, even though it has enough
energy to pass over the step into the region > 0.

One example of this is found in the case of an electron in the cathode of a photo-
electric cell, which has received energy from absorbing a photon, and which is trying
to escape the surface of the metallic cathode. If its energy is not much higher than the
height of the step in the potential that it feels at the surface of the metal, it may be
reflected back and not succeed in escaping. This leads to a significant reduction in the
efficiency of photocells for light of frequencies not far above the cutoff frequency.

A more important example of reflection occurring when a particle tries to pass over
a potential step is found in the motion of a neutron in a nucleus. To a good approxi-
mation, the potential acting on the neutron near the nuclear surface is a step potential.
The potential rises very rapidly at the nuclear surface because a nucleus tends to bind a
neutron. If the neutron has received energy, in one way or another, and is trying to
escape the nucleus, it will probably be reflected back into the nucleus at the surface
if its energy is only a little greater than the step height. This has the effect of inhibiting
the emission of lower energy neutrons from nuclei, and thereby considerably increases
the stability of nuclei in low-lying excited states. The effect is a manifestation of the
wavelike properties of neutrons that is very significant in the processes taking place in
nuclear reactions, as we shall see near the end of this book.

In quantum mechanics, the motion of the particle under the influence of the step
potential is described by the wave function

W(a,h) = p(x)e B

where the eigenfunction w(x) satisfies the time-independent Schroedinger equation
for the potential. This equation has different forms in the regions to the left and right
of the potential step, namely

2 2
K avs_ Ey(x) z <0 (6-31)
2m dz?®
and
B d*y(z)
— 5 =(E = Vy(») x>0 (6-32)
2m dx

The eigenfunction p(z) also satisfies the conditions requiring finiteness, single
valuedness, and continuity, for it and its derivative, particularly at the joining point
z = 0.

Equation (6-31) describes the motion of a free particle of momentum 1. 1ts general
solution is

. p(x) = Ae™® 4 Be—ihi® x <0 (6-33)
where

g _V2mE _ps

! ) h

Equation (6-32) describes the motion of a free particle of momentum Pe- Its general
solution is

y(z) = Ce'**® 4 pe=ikee x>0 (6-39)
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where
h h

The wave function specified by these two forms consists of traveling waves of de
Broglie wavelength 4, = h/p; = 2m/k, in the region < 0, and of longer de Broglie
wavelength A, = A/p, = 27[k, in the region x > 0. Note that the functions we deal
with here already satisfy the requirements of finiteness and single valuedness; but we
must explicitly consider their continuity, and we shall do so shortly.

A particle initially in the region x < 0, and moving towards z = 0 would, in
classical mechanics, have probability one of passing the point 2 = 0 and entering
the region x > 0. This is not true in quantum mechanics. Because of the wavelike
properties of the particle, there is a certain probability that the particle will be reflected
at the point 2 = 0, where there is a discontinuous change in the de Broglie wavelength.
Thus we need to take both terms of the general solution of (6-33) to describe the
incident and reflected traveling waves in the region < 0. We do not, however, need
to take the second term of the general solution of (6-34). This term describes a wave
traveling in the direction of decreasing « in the region « > 0. Since the particle is
incident in the direction of increasing x, such a wave could arise only from a reflection
at some point with a large positive  coordinate (well beyond the discontinuity at
x = 0). As there is nothing out there to cause a reflection, we know that there is only a
transmitted traveling wave in the region z > 0, and so we set the arbitrary constant

D=0 (6-35)

The arbitrary constants 4, B, and C must be chosen to make y(z) and dy(z)/dx
continuous at z = 0. The first requirement, that the values of y(z) expressed by
(6-33) and (6-34) be the same at « = 0, is satisfied if

k, E>V

A g + BE )0 = C(€),
or

A+B=C (6-36)
The second requirement, that the values of the derivatives of the two expressions for
w(x) be the same at x = 0, is satisfied if

ik A(™ ),y — ik B(e™™1%) g = ikyC (™),

or
k(A — B) = k,C (6-37)
From the last two numbered equations, we find
kl —_ k2 2k1
B = A and C = (6-38)
kl + kz kl + k2
Thus the eigenfunction is
. ky —ky,
Aezklw + A kl " k2 e~zklz x <0
1 tkox
—e x>0
ki + ke

As before, it will not be necessary to evaluate the arbitrary constant 4 that determines
the amplitude of the eigenfunction.

It is clear that an eigenfunction satisfying the two continuity conditions could not have been
found if we had initially set the coefficient B of the reflected wave equal to zero. We would then
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(16/9) A*A
FIGURE 6-10
The probability density W*¥ for the 1<— (4/9) A*A
eigenfunction of (6-39), when ky =
2k, 0 ¥

have had only two arbitrary constants to satisfy the two continuity conditions, and we would
not have had one left over to play the role, demanded by the linearity of the time-independent
Schroedinger equation, of an arbitrary constant that determines the amplitude of the eigen-
function.

By analogy with our interpretation of the eigenfunction of (6-24), we recognize that
the first term in the expression of (6-39) valid for z < 0 (Ieft of the discontinuity)
represents the incident traveling wave; the second term in the expression valid for
z < 0 represents the reflected traveling wave; and the expression valid for = > 0
(right of the discontinuity) represents the transmitted traveling wave.

Figure 6-10 illustrates the probability density ¥'*(z,)¥ (x,f) = p*(@)p(x) for the
wave function W(x,t) corresponding to the eigenfunction y(z) of (6-39) (in the
representative case k, = 2k,). We do not plot either the eigenfunction or wave function
as both are complex. In the region = > 0 the wave function is a pure traveling wave
(of amplitude 44/3 in this case) traveling to the right, and so the probability density
is constant as in the bottom part of Figure 6-1. In the region z < 0 the wave function
is a combination of the incident traveling wave (of amplitude 4) moving to the right,
and a reflected traveling wave (of amplitude 4/3) moving to the left. As the ampli-
tude of the reflected wave is necessarily smaller than that of the incident wave, the two
cannot combine to yield a pure standing wave. Their sum W(z,?) in that region is,
instead, something between a standing wave and a traveling wave. This is seen in the
behavior of W'*(x,1)¥ (x,f) for z < 0, which looks like something between the pure
standing wave probability density of Figure 6-7 and the pure traveling wave proba-
bility density of Figure 6-1 in that it oscillates but has minimum values greater than
zZero.

The ratio of the intensity of the reflected wave to the intensity of the incident wave
gives the probability that the particle will be reflected by the potential step back into
the region # < 0. This probability is the reflection coefficient R. That is

B*B ky — k\* [k, — k, k; — ky\?
R— =( ( ):( E>V, (6-40)
A4 otk bt k)t h,

We see from this result that R < 1 when E > V,, i.e., when the total energy of the
particle is greater than the height of the potential step. This is in contrast to the value
R =1 when E < V,, that we obtained from the result of Section 6-3. Of course, the
thing that is surprising about the present result is not that R < 1, but that R > 0. It
is surprising because a classical particle would definitely not be reflected if it had
enough energy to pass the potential discontinuity. On the other hand, at a corre-
sponding discontinuity a classical wave would be reflected, as we shall discuss shortly.

Also of interest is the transmission coefficient T, which specifies the probability that
the particle will be transmitted past the potential step from the region z < 0 into the
region z > 0. The evaluation of 7 is slightly more complicated than the evaluation
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of R because the velocity of the particle is different in the two regions. According to
accepted convention, transmission and reflection coefficients are actually defined in
terms of the ratios of probability fluxes. A probability flux is the probability per second
that a particle will be found crossing some reference point traveling in a particular
direction. The incident probability flux is the probability per second of finding a
particle crossing a point at # < 0 in the direction of increasing ; the reflected proba-
bility flux is the probability per second of finding a particle crossing a point at z < 0
in the direction of decreasing ; and the transmitted probability flux is the probability
per second of finding a particle crossing a point at # > 0 in the direction of increasing
x. Since the probability per second that a particle will cross a given point is pro-
portional to the distance it travels per second, the probability flux is proportional not
only to the intensity of the appropriate wave but also to the appropriate velocity of
the particle. Thus, according to the strict definition, the reflection coefficient R is

uB*B _ B*B
v, A*4A  A*4
where v, is the velocity of the particle in the region z < 0. Since the velocities cancel,

what remains is identical to the formula we have used previously for R. For T, the
velocities do not cancel, and we have

(6-41)

0,C*C vz( 2k, )2
nA*A v, \ky + k,
where v, is the velocity of the particle in the region 2 > 0. Now

hik s hk
vl=&=—1 and vz=p—‘=—2
m m m m
So the above expression gives
_ ke (2k)*  4kik,

= = E>V, (642
ky (ky + ka)®  (ky + ky)? ’

It is easy to show by evaluating R and T from (6-40) and (6-42) that
R+T=1 (6-43)

This useful relation is the motivation for defining the reflection and transmission
coefficients in terms of probability fluxes.

The probability flux incident upon the potential step is split into a transmitted flux
and a reflected flux. But (6-43) says their sum equals the incident flux; i.e., the proba-
bility that the particle is either transmitted or reflected is one. The particle does not
vanish at the step; nor does the particle itself split at the step. In any particular trial the
particle will go one way or the other. For a large number of trials, the average proba-
bility of going in the direction of decreasing x is measured by R, and the average proba-
bility of going in the direction of increasing z is measured by 7.

Note that R and T are both unchanged in value if &k, and &, are exchanged in (6-40)
and (6-42). A moment’s consideration should convince the student that this means
the same values of R and 7 would be obtained if the particle were incident upon the
potential step in the direction of decreasing x from the region = > 0. The wave
function describing the motion of the particle, and consequently the probability flux,
is partially reflected simply because there is a discontinuous change in V(z), and not
because V(x) becomes larger in the direction of the incidence of the particle. The
behavior of R and 7 when k, and k, are exchanged involves a characteristic property
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1.0 R T
FIGURE 6-11

The reflection and transmission co-
efficients R and T for a particle
incident upon a potential step. The
abscissa E/V is the ratio of the total
energy of the particle to the increase
in its potential energy at the step.
The case ky = 2k,, illustrated in
Figure 6-10, corresponds to E/V, = 0 0.5 1.0 15 20
1.33. E/Vy

RorT —>
=
(6]
[

of all waves that, in optics, is sometimes called the reciprocity property. When light
passes perpendicularly through a sharp interface between media with different indices
of refraction, a fraction of the light is reflected because of the abrupt change in its
wavelength, and the same fraction is reflected independent of whether it is incident
from one side of the interface or from the other. Exactly the same thing happens when
a microscopic particle experiences an abrupt change in its de Broglie wavelength. In
fact, the equations governing the two phenomena are identical in form. We see, once
again, that a microscopic particle moves in a wavelike manner.

In Figure 6-11 the reflection and transmission coefficients are plotted as a function
of the convenient ratio E/V,. By evaluating k, and k, in (6-40) and (6-42), we find
that these expressions for the reflection and transmission coefficients can be written
in terms of the ratio as

1 — /1 — V,/E\? E
1+ /1= V,JE v,

The figure also plots the results

R=1-T=1 E <1
0
obtained in (6-27) of the preceding section for a step potential when E/V, < 1.

As an example, for E/V, = 1.33 the transmission coefficient has the value 7 =
0.88. This E/V, ratio corresponds to the case ky = k,/2 whose probability density
pattern is illustrated in Figure 6-10. Note from that figure that the probability of find-
ing the particle in a given length of the  axis, which is long enough to average over
the quantum mechanical fluctuations in the probability density, is nearly twice as large
to the right of the potential step as it is to the left of the step. From a classical point of
view, which is appropriate to discussing an average over quantum mechanical
fluctuations, it can be said that the reasons for this are: (a) the probability that the
particle will pass the step and proceed into the region to its right is almost equal to one,
and (b) the particle’s velocity is halved when it enters the region to the right of the step
since k = p/h = mu[h and k, = k,/2, so it spends twice as much time in any given
length of the axis in that region.

From Figure 6-11 we see that the energy of the particle must be appreciably higher
than the height of the potential step before the probability of reflection becomes
negligible. However, the case in which E becomes very large is not necessarily the case
of the classical limit for which we know there will be no reflection at all. The point is
that (6-44) says R depends only on the ratio E[V,, so that it will keep the same value
if V, increases as rapidly as E. This seems paradoxical until we realize that, in the
limit of large energies, our basic assumption that the change in the value of the step
potential ¥(z) is perfectly sharp can no longer be even an approximation to a real
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physical situation. If the potential function changes only very gradually with z, then
the de Broglie wavelength will change only very gradually. In this case the reflection
will be negligible because the change in wavelength is gradual, and reflection arises
from an abrupt change in the wavelength. Specifically, if the fractional change in V(x)
is very small when z changes by one de Broglie wavelength, then the reflection
coefficient will be very small. This gives rise to the classical limit since in that limit the
de Broglie wavelength is so short that any physically realistic potential ¥(x) changes
only by a negligible fraction in one wavelength.

For particles in atomic or nuclear systems, the de Broglie wavelength can be long
relative to the distance in which the potential experienced by the particle changes value
significantly. Then the step potential is a very good approximation. For these micro-
scopic particles, the probability of reflection can be large.

Example 6-3. When a neutron enters a nucleus, it experiences a potential energy which
drops at the nuclear surface very rapidly from a constant external value ' = 0 to a constant
internal value of about ¥ = —50 MeV. The decrease in the potential is what makes it
possible for a neutron to be bound in a nucleus. Consider a neutron incident upon a nucleus
with an external kinetic energy K = 5 MeV, which is typical for a neutron that has just been
emitted from a nuclear fission. Estimate the probability that the neutron will be reflected at the
nuclear surface, thereby failing to enter and have its chance at inducing another nuclear
fission.

For an estimate, we may take the neutron-nucleus potential to be a one-dimensional step
potential, as illustrated in Figure 6-12. Because of the reciprocity property of the reflection
coefficient, we may evaluate it from (6-44), using ¥y = 50 MeV and E = 55 MeV for reasons
that can be seen by inspection of the figure. We have

————a\2

1 — /1 —50/55
R=|——"F7———]~029

1+ /1 —50/55
This estimate gives a correct impression of the great importance of the reflection phenomenon
when low energy neutrons collide with nuclei. But the numerical value we have obtained for
the reflection coefficient is not very accurate since the actual neutron-nucleus potential does
not drop quite as rapidly at the nuclear surface, in comparison to the de Broglie wavelength,
as a step potential. <«

6-5 The Barrier Potential

In this section we consider a barrier potential, illustrated in Figure 6-13. The potential
can be written as follows

Vo 0<z<a
V(z) = (6-45)
0 x<0Qorzxz>a
FIGURE 6-12
A neutron of external kinetic energy }
K incident upon a decreasing po-
tential step of depth V4, which ap- i > >
proximates the potential it feels upon 2 = E
entering a nucleus. Its total energy, w0 3 o
measured from the bottom of the Q :E_) )
step potential, is E. kA
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Vix)

Vo

FIGURE 6-13
A barrier potential. 0 a

According to classical mechanics, a particle of total energy E in the region z < 0,
which is incident upon the barrier in the direction of increasing «, will have proba-
bility one of being reflected if £ < ¥, and probability one of being transmitted into
the region x > a if E > V,,.

Neither of these statements describes accurately the guantum mechanical results. If
E is not much larger than V,, the theory predicts that there will be some reflection,
except for certain values of E. If E is not much smaller than ¥, quantum mechanics
predicts that there is a certain probability that the particle will be transmitted through
the barrier into the region z > a.

In “tunneling” through a barrier whose height exceeds its total energy, a material
particle is behaving purely like a wave. But in the region beyond the barrier it can be
detected as a localized particle, without introducing a significant uncertainty in the
knowledge of its energy. Thus penetration of a classically excluded region of limited
width by a particle can be observed, in the sense that the particle can be observed to be
a particle, of total energy less than the potential energy in the excluded region, both
before and after it penetrates the region. We shall discuss some consequences of this
fascinating effect in the present section, as well as some consequences of the reflection
of particles attempting to pass over a barrier. The following section is devoted com-
pletely to examples of tunneling through barriers, and considers three of particular
importance: (1) the emission of o particles from radioactive nuclei through the
potential barrier they experience in the vicinity of the nuclei, (2) the inversion of the
ammonia molecule which provides a frequency standard for atomic clocks, and (3)
the tunnel diode used as a switching unit in fast electronic circuits.

For the barrier potential of (6-45), we know from the qualitative arguments of the
last chapter that acceptable solutions to the time-independent Schroedinger equation
should exist for all values of the total energy E > 0. We also know that the equation
breaks up into three separate equations for the three regions: # < 0 (left of the barrier),
0 < x < g (within the barrier), and > a (right of the barrier). In the regions to the
left and to the right of the barrier the equations are those for a free particle of total
energy E. Their general solutions are

p(z) = Ae™* 4 Be 1® z<0

) ) 6-46
p(z) = Ce™® 4 Deh1® x> a (6-46)

where
2mE
ok
In the region within the barrier, the form of the equation, and of its general solution,

depends on whether E < ¥, or E > V,. Both of these cases have been treated in the
previous sections. In the first case, £ < V,, the general solution is

w(x) = Fe*n® 4 Gekn® 0<z<a (6-47)

kr

where

kyp = ~———— E<V,
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In the second case, E > V,, it is

y(z) = Fe*™m 4 G *m® 0<z<a (6-48)
where

kepy = V2m(E — V) E>V

h
Note that (6-47) involves real exponentials, whereas (6-46) and (6-48) involve complex
exponentials.
Since we are considering the case of a particle incident on the barrier from the left,

in the region to the right of the barrier there can be only a transmitted wave as there is
nothing in that region to produce a reflection. Thus we can set

D=0

In the present situation, however, we cannot set G = 0 in (6-47) since the value of z is
limited in the barrier region, 0 < x < a, so y(z) for E < V, cannot become infinitely
large even if the increasing exponential is present. Nor can we set G = 0 in (6-48)
since p(x) for E > V, will have a reflected component in the barrier region that arises
from the potential discontinuity at x = a.

We consider first the case in which the energy of the particle is less than the height
of the barrier, i.e., the case:

E<V,

In matching y(z) and dy(x)/dz at the points # = 0 and » = q, four equations in the
arbitrary constants 4, B, C, F, and G will be obtained. These equations can be used to
evaluate B, C, F, and G in terms of 4. The value of A determines the amplitude of the
eigenfunction, and it can be left arbitrary. The form of the probability density corre-
sponding to the eigenfunction obtained is indicated in Figure 6-14 for a typical
situation. In the region > a the wave function is a pure traveling wave and so the
probability density is constant, as for z > 0 in Figure 6-10. In the region z < 0 the
wave function is principally a standing wave but has a small traveling wave component
because the reflected traveling wave has an amplitude less than that of the incident
wave. So the probability density in that region oscillates but has minimum values
somewhat greater than zero, as for x < 0 in Figure 6-10. In the region 0 <z < a
the wave function has components of both types, but it is principally a standing wave
of exponentially decreasing amplitude, and this behavior can be seen in the behavior
of the probability density in the region.

The most interesting result of the calculation is the ratio 7, of the probability flux
transmitted through the barrier into the region > a, to the probability flux incident

Y (x, 1) Y(x, t) All ¢

FIGURE 6-14

The probability density function ¥*¥ for a typical barrier penetration
situation.
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upon the barrier. This transmission coefficient is found to be

* ke —kpey2 |t inh? k -1
T=”‘j*c= 1+(3—E—e—) = 1+—SE"'—“" (6-49)
oA 16——(1—£) 4—(1—£)
0 0 Vo Vo
where
_ [2mV,a* E
kua—/\/ 2 (1—;0) E<V0
If the exponents are very large, this formula reduces to
T~ 16 E(1 — E)e‘“”“ ka1 (6-50)
0 0

as can be verified with ease. When (6-50) is a good approximation, 7' is extremely
small.

These equations make a prediction which is, from the point of view of classical
mechanics, very remarkable. They say that a particle of mass m and total energy E,
incident on a potential barrier of height ¥, > E and finite thickness a, actually has a
certain probability T of penetrating the barrier and appearing on the other side. This
phenomenon is called barrier penetration, and the particle is said to runnel through the
barrier. Of course, T is vanishingly small in the classical limit because in that limit
the quantity 2mV,a®/h%, which is a measure of the opacity of the barrier, is extremely
large.

We shall discuss barrier penetration in detail shortly, but let us first finish describing
the calculations by considering the case in which the energy of the particle is greater
than the height of the barrier, i.e., the case:

E> V,

In this case the eigenfunction is oscillatory in all three regions, but of longer wave-
length in the barrier region, 0 < « < a. Evaluation of the constants B, C, F, and G
by application of the continuity conditions at x = 0 and « = g, leads to the following
formula for the transmission coefficient

v,C*C (Mt _ oty sin® kyra -
T= i |' " EE =\ tE | O
1 16——(——1) 4_(__1)
0 0 V Vo
where
2mVya®( E
ka=A/ "(——1) E>V,
111 [r v, 0

Example 6-4. An electron is incident upon a rectangular barrier of height V, = 10 eV and
thickness a = 1.8 x 1072°m. This rectangular barrier is an idealization of the barrier
encountered by an electron that is scattering from a negatively ionized gas atom in the
“plasma” of a gas discharge tube. The actual barrier is not rectangular, of course, but it is
about the height and thickness quoted. Evaluate the transmission coefficient 7 and the
reflection coefficient R, as a function of the total energy E of the electron.

From Example 6-2 we can see that if £is a reasonable fraction of ¥, the penetration length
Az will be comparable to the barrier thickness a. Thus we can expect appreciable transmission
through the barrier. To determine exactly how much, we use the numbers given to evaluate
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FIGURE 6-I5

The reflection and transmission coefficients R and 7 for a particle incident
upon a potential barrier of height V; and thickness a, such that 2m Voa?/h® =
9. The abscissa E/V, is the ratio of the total energy of the particle to the
height of the potential barrier.

the combination of parameters

2mVya® 2 x 9 x 1073 kg x 10eV x 1.6 x 1072 joulefeV x (1.8)* x 1072° m? 9
B 10~ joule?-sec? o

which enters (6-49). From this we can plot T, and also R = 1 — T, versus E/V,, in the range
0 < E/V, < 1. The plot is shown in Figure 6-15. We see that T'is very small when E/V,, < 1.
But, when E[Vis only somewhat smaller than one, so that E is nearly as large as V}, T is not
at all negligible. For instance, when E is half as large as V, so that E[V, = 0.5, the trans-
mission coefficient has the appreciable value T~ 0.05. It is apparent that electrons can
penetrate this barrier with relative ease.

For E/V, > 1, weevaluate T,and R = 1 — T, from (6-51), using the same combination of
parameters as before. The results are also shown in Figure 6-15. For E[V, > 1, the trans-
mission coefficient T is in general somewhat less than one, owing to reflection at the dis-
continuities in the potential. However, from (6-51) it can be seen that 7 = 1 whenever
kipa = =, 27, 3=, ... . Thisis simply the condition that the length of the barrier region, a, is
equal to an integral or half-integral number of de Broglie wavelengths 4,y = 2a/k|;; in that
region. For this particular barrier, electrons of energy £~ 21 ¢V, 53¢V, etc,, satisfy the
condition k;jja = =, 2=, etc., and so pass into the region > a without any reflection. The
effect is a result of constructive interference between reflections at # = 0 and = = a. It is
closely related to the Ramsauer effect observed in the scattering of low-energy electrons by
noble gas atoms, in which electrons of certain energies in the range of a few electron volts pass
through these atoms as if they were not there, and so have transmission coefficients equal
to one. Essentially the same effect is seen in scattering of neutrons, with energies of a few
MeV, from all nuclei. The nuclear effect, called size resonance, will be discussed later in the
book. <

We can bring together the results of the last three sections by comparing the plot
of the energy dependence of the reflection coefficient R for a barrier potential, in
Figure 6-15, with the plot of the same thing for a step potential, in Figure 6-11. The
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comparison shows that for both potentials R — 1 as E/V,-> 0, and R — 0 as E/V; —
oo, with the decrease in R occurring around E/ ¥V, = 1. But for the barrier potential the
reflection coefficient approaches one gradually, at small energies, since the finite
thickness of the classically excluded region allows some transmission. Also, the barrier
potential reflection coefficient oscillates, at large energies, because of interferences in
the reflections from its two discontinuities. As the step potential can be considered to
be a limiting case of a barrier of very great width, we can see from our comparison
the behavior of the barrier potential reflection coefficient in this limit.

Now we shall discuss in some detail the origins of these results. They all involve
phenomena which arise from the wavelike behavior of the motion of microscopic
particles, and each phenomenon is also observed in other types of wave motion. As
we remarked in Chapter 5, the time-independent differential equation governing
classical wave motion is of the same form as the time-independent Schroedinger
equation. For instance, electromagnetic radiation of frequency » propagating through
a medium with index of refraction u obeys the equation

d*y(x) 27y
ey (——— u) p(®) =0 N7

where the function () specifies the magnitude of the electric or magnetic field. When
we compare this with the time-independent Schroedinger equation, written in the
form

Py(@)
d=*
we see that they are identical if the index of refraction in the former is connected with
the potential energy function in the latter by the relation

[E — V(@)]p(x) = 0

) = —— / [E — V(2)] (6-53)

Thus the behavior of an optical system with index of refraction u(x) should be identical
to the behavior of a mechanical system with potential energy V(z), providing the two
functions are related as in (6-53). Indeed, there are optical phenomena which are
exactly analogous to each of the quantum mechanical phenomena that arise in
considering the motion of an unbound particle. An optical phenomenon, completely
analogous to the total transmission of particles over barriers of length equal to an
integral or half-integral number of wavelengths, is used in the coating of lenses to
obtain very high light transmissions and in thin film optical filters.

An optical analogue to the penetration of barriers by particles is found in the imag-
inary indices of refraction that arise in total internal reflection. Consider a ray of light
incident upon a glass-to-air interface at an angle greater than the critical angle 0,.
The resulting behavior of the light ray is called total internal reflection, and it is
illustrated in the top of Figure 6-16. A detailed treatment of the process in terms of
electromagnetic theory shows that the index of refraction, measured along the line
ABC, is real in the region AB but imaginary in the region BC. Note that an imaginary
u(zx) is suggested by (6-53) for a region analogous to one in which £ < V(z). Further-
more, electromagnetic theory shows that there are electromagnetic vibrations in the
region BC of exactly the same form as the decreasing exponential standing wave of
(6-29) for the region where £ < V{z). The flux of energy (the Poynting vector) is
zero in this electromagnetic standing wave, just as the flux of probability is zero in the
quantum mechanical standing wave, so the light ray is totally reflected. However, if a
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FIGURE 6-16

Top: lllustrating total internal re-
flection of a light ray. The angle of
incidence is greater than the critical
angle. Bottom: [llustrating frus-
trated total internal reflection. Some
of the light ray is transmitted through
the air gap if the gap is sufficiently
narrow.

second block of glass is placed near enough to the first block to be in the region in
which the electromagnetic vibrations are still appreciable, these vibrations are picked
up and propagate through the second block. Furthermore, the electromagnetic
vibrations in the air gap now carry a flux of energy through to the second block. This
phenomenon, called frustrated total internal reflection, is illustrated in the bottom of
Figure 6-16. Essentially the same thing happens in the quantum mechanical case when
the region in which E < V() is reduced from infinite thickness (step potential) to
finite thickness (barrier potential). The transmission of light through an air gap, at an
angle of incidence greater than the critical angle, was first observed by Newton
around 1700. The equation relating the intensity of the transmitted beam to the
thickness of the air gap, and other parameters, is identical in form to (6-49), and it
has been verified experimentally.

It is particularly easy to observe frustrated total internal reflection of electro-
magnetic waves, using the microwave region of the spectrum and two blocks of
paraffin separated by an air gap. Furthermore, careful inspection of the “ripple tank”
photographs in Figures 6-17 and 6-18 will show that the phenomenon can even be
observed with water waves. Frustrated total internal reflection, or its quantum
mechanical equivalent barrier penetration, arises from properties common to all forms
of classical or quantum mechanical wave motion.

6-6 Examples of Barrier Penetration by Particles

There are a number of interesting, and important, examples of barrier penetration by
microscopic particles. A widespread, but not widely recognized, example is found in common
household wiring. The usual way for an electrician to join two wires is to twist them together.
Invariably there is a layer of copper oxide between the two wires, and this material is quite an
effective insulator. Fortunately, the layer is extremely thin so the electrons flowing through the
wire are able to tunnel through the layer by barrier penetration.
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FIGURE 6-17

The total internal reflection of water waves. A long vibrating plunger on the
left produces a set of waves in a region of shallow water, the waves being
illuminated so as to make their crests easily visible. The waves are totally
internally reflected at the diagonal boundary of a region where the layer of
water abruptly becomes deeper, this reflection occurring because the
velocity of water waves depends on the depth of the water. Note that
the intensity of the waves decreases rapidly when they try to penetrate into
the region of deeper water, but there is some penetration of that region.
(Courtesy Film Studio, Education Development Center)

Historically, the first application of the quantum mechanical theory of barrier penetration
by particles was to explain a long standing paradox concerning the emission of o particles in
the decay of radioactive nuclei. As a typical example, consider the U3 nucleus. The potential
energy V(r)of an « particle at a distance r from the center of the nucleus had been investigated
around 1910 by Rutherford, and others, who performed scattering experiments. Using as a
probe the 8.8 MeV « particles emitted from the radioactive nuclei of Po?'2, it was observed
that their probability of scattering at various angles from U2 nuclei agreed with the pre-
dictions of Rutherford’s scattering formula (see Chapter 4). The student will recall that that
formula was based on the assumption that the interaction between the « particle and the
nucleus strictly followed the Coulomb law repulsion that would be expected to operate
between the two positively charged spherical objects. Thus Rutherford was able to conclude
that, for the U?*® nucleus, the potential function ¥(r) felt by a neighboring « particle followed
Coulomb’s law, V(r) = 2Ze¢*[4neyr, where 2e is the «-particle charge and Ze is the nuclear
charge—at least for distances greater than r” =3 x 107 m where V(r") = 8.8 MeV, the
probe a-particle energy. It was also known by scattering « particles from nuclei of light atoms
that V(r)eventually departs from a 1/r law when r < r’, the nuclear radius, although the exact
value of r’ was not known for the nuclei of heavy atoms at that time. Furthermore, since «
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FIGURE 6-18

Frustrated total internal reflection of water waves. When the region of
deeper water becomes a sufficiently narrow gap, the waves that have pene-
trated into the deeper water are picked up and transmitted into a second
region of shallow water. (Courtesy Film Studio, Education Development
Center)

particles are occasionally emitted by U2 nuclei, it was assumed that they exist inside such
nuclei, to which they are normally bound by the potential ¥(r). From these arguments it was
concluded that the form of V(r) in the region r < r” must be qualitatively as depicted in
Figure 6-19. This conclusion has been verified by modern experiments involving the scattering
of « particles produced by cyclotrons at energies high enough to allow the investigation of the
potential over the entire range of r.

The paradox was connected with the fact that it was also known that the kinetic energy of «
particles emitted in radioactive decay by U%® was 4.2 MeV. The kinetic energy was, of course,
measured at a very large distance from the nucleus where ¥(r) = 0 and the kinetic energy
equals the total energy E. This value of the constant total energy of the decay « particles
emitted by U is also shown in Figure 6-19. From the point of view of classical mechanics,
the situation was certainly paradoxical. An « particle of total energy E'is initially in the region
r < r'. This region is separated from the rest of space by a potential barrier of height which
was known to be at least twice E. Yet it was observed that on occasion the « particle pene-
trates the barrier and moves off to large values of r.

To put it another way, according to classical mechanics an « particle emitted from a region
where the potential energy function has the form shown in Figure 6-19 must, necessarily, have
a much higher kinetic energy than was actually observed when it is far from the region. The
reason is simply that in classical mechanics the total energy must be greater than the maximum
value of the potential energy, if the particle is to escape the barrier. Consider the following
analogy. You are walking beneath the span of a tall bridge, not looking up. Suddenly a brick
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FIGURE 6-19

The potential energy V acting on an
« particle at a distance r from the
center of a U2 nucleus, and the total
energy E of an « particle emitted
from that radioactive nucleus. The
solid part of the potential curve was
known from scattering measure-
ments to follow Coulomb’s law into
the distance of closest approach r”
of an 8.8 MeV « particle. The dashed
part of the curve shows that the 238
potential was assumed to continue
to follow Coulomb’s law into the

distance r” from the center where its
potential energy ¥ becomes less than
its total energy E.

nuclear radius r’, where it must drop T P‘\
very rapidly to form a binding I \ () Kinetic energy
region. A 4.2 MeV o particle emitted TR at farge r
from the radioactive nucleus must £ ig R E T
penetrate the potential barrier from & 0 | | |
the nuclear radius r’ to the point at  § :r' r”=30x r }
| 107m
|

 hits you on the head, but gently, with a light tap. There is no place for the brick to come from,
other than the bridge, but a brick falling from such a height would have developed enough
kinetic energy to kill you!

In 1928 Gamow, Condon, and Gurney treated o particle emission as a quantum mechanical
barrier penetration problem. They assumed that V(r) = 2Ze*/4meyr for r > r’, where 2e is the
a-particle charge and Ze is the charge of the nucleus remaining after the « particle is emitted.
They also assumed that V(r) < E for r < r', as shown in Figure 6-19. Equation (6-50) was
used to evaluate the transmission coefficient T since the exponent k;,a, which determines T,
has a value large compared to one. In fact, the exponent is so large that the exponential
completely dominates the behavior of T, and it was sufficient to take

3 —24/ y
T ~ ¢=2¥n2 — g2V (@m/RE(V —E) a (6-54)

This expression was derived for a rectangular barrier of height V; and width a, but when the
expression is valid it can be applied to the barrier V'(r) by considering it to be a set of adjacent
rectangular barriers of height V(r;) and very small width Ar,. This reasoning leads, in the
limit, to the expression

T ~ =21/ V @mm)V(r)—E]dr (6-55)

where the integration is taken from the nuclear radius r’, where V(r) rises above E, to the
radius r”, where V'(r) drops below E. The use of (6-54), which was derived for a one-dimen-
sional case, in (6-55) that concerns a three-dimensional problem, was justified because the o
particles are almost always emitted with zero angular momentum. That is, they move out
along essentially linear paths emanating from the nuclear center, obeying equations which are
essentially one dimensional.
The quantity T gives the probability that in one trial an « particle will penetrate the barrier.
The number of trials per second could be estimated to be
v
N~ — (6-56)
2r
if it were assumed that an « particle is bouncing back and forth with velocity v inside the
nucleus of diameter 2r’. Then the probability per second that the nucleus will decay by
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emitting an « particle, called the decay rate R, would be

v o
R ~ F e_zj‘r' \/(2m/ﬁ2)(2Zez/4n€or—E) dr (6-57)

Today we know that (6-56) is not a very accurate estimate, but this function, or its more
correct form, varies so slowly compared to the rapid variation in the exponential that the
result expressed by (6-57) is an accurate estimate.

In applying (6-57) to a particular radioactive nucleus, Gamow, Condon, and Gurney took
all the quantities in the expression as known, except v and r’ (+" can be evaluated from Z
and E). Assuming v to be comparable to the velocity of the « particle after emission (i.e.,
mv*/2 = E), the decay rate R is then a function only of the nuclear radius r’. Using
r’ =9 x 1071% m, which was certainly in line with the values obtained from Rutherford’s
analysis of «-particle scattering from light nuclei, they obtained values of R which were in
good agreement with those measured experimentally, although the decay rate varies over a
tremendously large range. As an example, for U8, the decay rate is R =5 x 1078 sec™™.
An example at the other extreme is Po?'2, for which R = 2 x 108 sec™ . This variation in R is
due primarily to the variation, from one radioactive nucleus to the next, of the energy E of the
emitted o« particles. The height of the barrier and the nuclear radius do not change significantly
for nuclei in the limited range of the periodic table in which a-emitting nuclei are found.
A comparison between experiment and theory is shown in Figure 6-20. The successful
application of Schroedinger quantum mechanics to the «-particle emission paradox provided
one of its earliest, and most convincing, verifications.

Barrier penetration of atoms takes place in the periodic inversion of the ammonia molecule,
NH;. Figure 6-21 illustrates schematically the structure of this molecule. It consists of three H
atoms arranged in a plane, and equidistant from the N atom. There are two completely
equivalent equilibrium positions for the N atom, one on either side of the plane containing
the H atoms. Figure 6-22 indicates the potential energy acting on the N atom, as a function of
its distance « from that plane. The potential function V(x) has two minima, corresponding to
the two equilibrium positions, which are symmetrically disposed about a low maximum
located at « = 0. This maximum, which constitutes a barrier separating the two binding
regions, arises from the repulsive Coulomb forces that act on the N atom if it penetrates the
plane of the H atoms. The forces are strong enough that in classical mechanics the N atom is
not able to cross the barrier, if the molecule is in one of its low-lying energy states; that is, the
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FIGURE 6-20
The probability per second R that a
radioactive nucleus will emit an « 10-15

particle of energy E. The points are
experimental measurements and the
solid curve is the prediction of (6-57), 10-20 I ] | |
a result of barrier penetration 0.3 0.4 0.5
theory. E72 (Mev™12)
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FIGURE 6-2i

A schematic illustration of the NH,
molecule. The light spheres represent
the three Hatomsarranged ina plane,
The dark spheres represent two
equivalent equilibrium positions of
the single N atom.

lower allowed energies of this binding potential are below the top of the barrier, as indicated
in the figure. But penetration of the classically excluded region allows the N atom to tunnel
through the barrier. If it is initially on one side, it will tunnel through and eventually appear on
the other side. Then it will do it again in the opposite direction. The N atom actually oscillates
slowly back and forth across the plane of the H atoms. The oscillation frequency is » =
2.3786 x 10'° Hz, when the molecule is in its ground state. This frequency is much lower than
those found in molecular vibrations not involving barrier penetration, or in other atomic or
molecular phenomena. Due to the resulting technical simplifications, the frequency was used
as a standard in the first atomic clocks which measure time with maximum precision.

A recent, and very useful, example of barrier penetration of electrons is found in the tunnel
diode. This is a semiconductor device, like a transistor, which is used in fast electronic
circuits since its high frequency response is much better than that of any transistor. The
operation of a tunnel diode will be explained in Chapter 13, in the context of a discussion of
semiconductors. So here we shall say only that the device employs controllable barrier
penetration to switch currents on or off so rapidly that it can be used to make an oscillator
that can operate at frequencies above 1011 Hz,

6-7 The Square Well Potential

In the preceding sections we have treated the motion of particles in potentials which
are not capable of binding them to limited regions of space. Although a number of
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FIGURE 6-22

The potential energy of the N atom in the NH; molecule, as a function of
its distance from the plane containing the three H atoms, which lies at
« = 0. In its lower energy states, the total energy of the molecule lies
below the top of the barrier separating the two minima, as indicated by
the eigenvalues of the potential shown in the figure.



