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(d) Suppose the earth made a transition to the next lower level (n — 1). How
much energy (in Joules) would be released? What would the wavelength of
the emitted photon (or, more likely, graviton) be? (Express your answer in
light years—is the remarkable answer?? a coincidence?)

4.3 ANGULAR MOMENTUM

As we have seen, the stationary states of the hydrogen atom are labeled by three
quantum numbers: 7, [, and m. The principal quantum number (n) determines the
energy of the state (Equation 4.70); as it turns out, [ and m are related to the orbital
angular momentum. In the classical theory of central forces, energy and angular
momentum are the fundamental conserved quantities, and it is not surprising that
angular momentum plays a significant (in fact, even more important) role in the
quantum theory.
Classically, the angular momentum of a particle (with respect to the origin) is
given by the formula
L=rxp, [4.95]

which is to say,
Ly =yp, —zpy, Ly=12zpx—xp;, L;=2xpy—ypx. [4.96]

The corresponding quantum operators are obtained by the standard prescription
px — —ihd/dx, py — —ihd/dy, p, — —ihd/dz. In the following section we’ll
obtain the eigenvalues of the angular momentum operators by a purely algebraic
technique reminiscent of the one we used in Chapter 2 to get the allowed energies
of the harmonic oscillator; it is all based on the clever exploitation of commutation
relations. After that we will turn to the more difficult problem of determining the
eigenfunctions.

4.3.1 Eigenvalues

The operators L, and L, do not commute; in fact?!

[Lx, Lyl = [yp; — 2Py, 2Px — XP¢]
= [yp;, 2px] — [yPz» x0;) — 2Py, 2Px] + [2py, xP:]. [4.97]

20Thanks to John Meyer for pointing this out.

2INote that all the operators we encounter in quantum mechanics (footnote 15, Chapter 1) are
distributive with respect to addition: A(B + C) = AB + AC. In particular, [A, B + C] = [A, B] +
[A,C].
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From the canonical commutation relations (Equation 4.10) we know that the only
operators here that fail to commute are x with py, y with py, and z with p;. So
the two middle terms drop out, leaving

[(Lx, Lyl = ypxlp:, 21 + xpylz, p;] = iAi(xpy — ypx) = iAL,. [4.98]

Of course, we could have started out with [L, L;] or [L;, L,}, but there is no need
to calculate these separately—we can get them immediately by cyclic permutation
of the indices (x — y, y — z, z > x):

[Ly, L) =ihLy; [Ly, L =ihLy; [L,, L]=ikLy. [4.99]

These are the fundamental commutation relations for angular momentum; every-
thing else follows from them.

Notice that Ly, Ly, and L, are incompatible observables. According to the
generalized uncertainty principle (Equation 3.62),

2 2 1 o,
°L.0L, 2 <E<ihLz>> = Z(Lz) .

or 5
oL 0L, = §|<Lz>|- [4.100]

It would therefore be futile to look for states that are simultaneously eigenfunctions
of L, and L. On the other hand, the square of the total angular momentum,

2 _ 72 2 2
L =1L; +Ly+Lz, [4.101]
does commute with L,:

(L%, L] = (L}, Ll + [L}, L] + (L3, L]
= Ly[Ly, Lyl + [Ly, Lx]Ly + L,[L, L] + [Lz, Ly]L,
= Ly(—ihL;) + (—ihL)Ly + L,(ihLy) + (ihLy)L,
=0.
(I used Equation 3.64 to simplify the commutators; note also that any operator
commutes with itself.) It follows, of course, that L? also commutes with L, and

L,:
(L2, L,]=0, [L* L,]=0, [L* L;]=0, [4.102]
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or, more compactly,
[L%, L] =0. [4.103]

So L? is compatible with each component of L, and we can hope to find simulta-
neous eigenstates of L? and (say) L,:

L*f=xrf and L,f =uf. [4.104]

We’ll use a “ladder operator” technique, very similar to the one we applied to
the harmonic oscillator back in Section 2.3.1. Let

Li=L,*il, [4.105]

The commutator with L, is
(L, L+]1=I[L; Lyl Ti[L,, Lyl=ihLy T i(—ihLy) =t h(Ly £ iLy),

SO
(L, Li]=*hLy. [4.106]

And, of course,
[L?,L+]=0. (4.107]

I claim that if f is an eigenfunction of L2 and L., so also is L 4+ f: Equation 4.107
says
LX(Lsf)=LsL*)=Lif) =ML+ ), [4.108]

so L 4 f is an eigenfunction of L2, with the same eigenvalue A, and Equation 4.106
says

L L+ f)=W;Ly —LyL)f+LyiLf=12hLyf+Lyiuf)
=(uth(L+)), [4.109]

so L4 f is an eigenfunction of L, with the new eigenvalue u T h. We call L+
the “raising” operator, because it increases the eigenvalue of L, by 4, and L_ the
“lowering” operator, because it lowers the eigenvalue by 4.

For a given value of A, then, we obtain a “ladder” of states, with each
“rung” separated from its neighbors by one unit of /i in the eigenvalue of L (see
Figure 4.8). To ascend the ladder we apply the raising operator, and to descend, the
lowering operator. But this process cannot go on forever: Eventually we’re going
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FIGURE 4.8: The “ladder” of angular momentum states.

to reach a state for which the z-component exceeds the toral, and that cannot be.22
There must exist a “top rung,” f;, such that?3

Lif =0. [4.110]

ZFormally, (L?) = (L2) + (L?) + (L2), but (L2) = (fIL2 f) = (Lx fILx f) = O (and likewise
for Ly), so & = (L2) + (L2) + u? > 2.

23Actually, all we can conclude is that Ly f; is not normalizable—its norm could be infinite,
instead of zero. Problem 4.18 explores this alternative.
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Let Al be the eigenvalue of L, at this top rung (the appropriateness of the letter
“I” will appear in a moment):

L fi = hif; L fi = Af. [4.111]
Now,

LyLy=(Ly 2iLy)(Ly FiLly) =L} + L} Fi(LyLy — LyL,)

= L% — L2 Fi(hLy),
or, putting it the other way around,
L*=LyLy+L2FhL,. [4.112]
It follows that
L fi = (LoLy + L2+ hL) fr = O+ AP+ 02D f, = RALA + D £,

and hence
A =hAd+ ). [4.113]

This tells us the eigenvalue of L2 in terms of the maximum eigenvalue of L.
Meanwhile, there is also (for the same reason) a bottom rung, fp, such that

L_f,=0. [4.114]
Let Al be the eigenvalue of L at this bottom rung:
Lofo=Hhlfy; L*fo =Afy. [4.115]
Using Equation 4.112, we have
L?fy = (LyL+ L2 —hL) fo = O+ BT — WD) fi, = B30 = 1) i,

and therefore o
A= h{1 - 1). [4.116]

Comparing Equations 4.113 and 4.116, we see that /(I + 1) = [( — 1), so either
I =1+ 1 (which is absurd—the bottom rung would be higher than the top rung!)
or else

1=-1 [4.117]
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Evidently the eigenvalues of L, are mh, where m (the appropriateness of this
letter will also be clear in a moment) goes from —/ to 4/ in N integer steps. In
particular, it follows that [ = —/ + N, and hence / = N/2, so [ must be an integer
or a half-integer. The eigenfunctions are characterized by the numbers / and m:

L2fm =R+ D" Lof = hmf]", [4.118]

where
1=0,1/2,1,3/2,...; m=—I, =l+1,...,1-1, 1 [4.119]

For a given value of [, there are 2/ + 1 different values of m (i.e., 2/ + 1 “rungs”
on the “ladder”).

Some people like to illustrate this result with the diagram in Figure 4.9
(drawn for the case | = 2). The arrows are supposed to represent possible angular
momenta—in units of % they all have the same length +//(/ + 1) (in this case
V6 = 2.45), and their 7z components are the allowed values of m (-2, —1, 0, 1,
2). Notice that the magnitude of the vectors (the radius of the sphere) is greater
than the maximum z component! (In general, /I(/ + 1) > I, except for the “triv-
ial” case [ = 0.) Evidently you can’t get the angular momentum to point perfectly
along the z direction. At first, this sounds absurd. “Why can’t I just pick my axes
so that z points along the direction of the angular momentum vector?” Well, to
do this you would have to know all three components simultaneously, and the

L,

FIGURE 4.9: Angular momentum states (for / = 2).
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uncertainty principle (Equation 4.100) says that’s impossible. “Well, all right, but
surely once in a while, by good fortune, I will just happen to aim my z-axis along
the direction of L.” No, no! You have missed the point. It’s not merely that you
don’t know all three components of L; there simply aren’t three components—a
particle just cannot have a determinate angular momentum vector, any more than it
can simultaneously have a determinate position and momentum. If L, has a well-
defined value, then L, and L, do not. It is misleading even to draw the vectors
in Figure 4.9—at best they should be smeared out around the latitude lines, to
indicate that L, and L, are indeterminate.

I hope you're impressed: By purely algebraic means, starting with the fun-
damental commutation relations for angular momentum (Equation 4.99), we have
determined the eigenvalues of L? and L,—without ever seeing the eigenfunctions
themselves! We turn now to the problem of constructing the eigenfunctions, but
I should warn you that this is a much messier business. Just so you know where
we’re headed, I'll begin with the punch line: f” = ¥;” —the eigenfunctions of
L? and L, are nothing but the old spherical harmonics, which we came upon by
a quite different route in Section 4.1.2 (that’s why I chose the letters [ and m,
of course). And I can now tell you why the spherical harmonics are orthogonal:
They are eigenfunctions of hermitian operators (L? and L,) belonging to distinct
eigenvalues (Theorem 2, Section 3.3.1).

xProblem 4.18 The raising and lowering operators change the value of m by one
unit: i
m
Lyf"=@ANL [4.120]

where A" is some constant. Question: What is A]", if the eigenfunctions are to
be normalized? Hint: First show that L is the hermitian conjugate of L4 (since
L, and Ly are observables, you may assume they are hermitian ... but prove it
if you like); then use Equation 4.112. Answer:

A =h\/l(l+ 1) —mm £ 1) =h\/(lq:m)(lim+ 0. [4.121]

Note what happens at the top and bottom of the ladder (i.e., when you apply L
to fll or L_ to fl—l).

«Problem 4.19

(a) Starting with the canonical commutation relations for position and momentum
(Equation 4.10), work out the following commutators:

[L:, x] =ihy, [Ly, y]l=—ihx, [L;z]=0,

, , 4.122
[L.. p] = ihpy, [Lz.pyl = —ihips, [Lz, ps] =0. [4.122]
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(b) Use these results to obtain [L;, Ly] = iAL, directly from Equation 4.96.

(c) Evaluate the commutators [L, 7%] and [L., p?] (where, of course, r? =

x2 4+ y* + 7% and p? = p2 + p2 + p?).

(d) Show that the Hamiltonian H = (p?/2m) + V commutes with all three
components of L, provided that V depends only on r. (Thus H, L% and L,
are mutually compatible observables.)

* xProblem 4.20

(a) Prove that for a particle in a potential V(r) the rate of change of the expec-
tation value of the orbital angular momentum L is equal to the expectation

value of the torque:
d

7L =(N),

where
N=rx (-VV).

(This is the rotational analog to Ehrenfest’s theorem.)

(b) Show that d{L)/dt = 0 for any spherically symmetric potential. (This is one
form of the quantum statement of conservation of angular momentum.)

4.3.2 Eigenfunctions

First of all we need to rewrite Ly, Ly, and L, in spherical coordinates. Now,
L = (#/i)(r x V), and the gradient, in spherical coordinates, is:%4

P gL 3
a0 rsinf d¢’

a /\1
Z 14
or + r

~>

V = [4.123]

meanwhile, r = rr, so

L h (A><A)8+(A><é)3+(‘><¢3)—1 0
=—-|rF xr)y—+(r —+ — .
i ar 36 sin® 3¢

24George Arfken and Hans-Jurgen Weber, Mathematical Methods for Physicists, 5th ed., Aca-
demic Press, Orlando (2000), Section 2.5.
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But ( x7) =0, (+ x 9) = <z§, and (F x d3) = —0 (see Figure 4.1), and hence

Af~3 4~ 1 2
L=-|¢p—-——-0——}. 4.124
i <¢89 sinf 8(],‘)) [ ]

The unit vectors 6 and q§ can be resolved into their cartesian components:

6 = (cos 6 cos )i + (cosf sing)j — (sin 9)12; [4.125]
b = —(sinp)i + (cos @) J. [4.126]
Thus
L " (—sing 7 +cos¢ j) 0
= — [(—sin¢ 1 + cos —
i 50
(cosOcosppi + cosOsing J sin9/€) 1 9
- i — — .
J sind 96
Evidently
L h sin ¢ 0 cos ¢ cotf 9 [4.127]
=—|—sing— — otd— ), .
T 30 EY)
h a , a
Ly= 7 +cos¢% — sm¢cot0% , [4.128]
and
L,= h o [4.129]
T '

We shall also need the raising and lowering operators:
. h . . 0 . d
Ly =LytiL,=~|(-sing ticos¢p)— — (cos¢ T isin¢)cotd —|.
i a0 ap
But cos¢ T ising = eT?, so

(D 9
Ly =T het® <£iicot9£). [4.130]

In particular (Problem 4.21(a)):

LiL_ = —h? 8—2+cotei+cot298—2+ii [4.131]
e 962 Y 32 ' a¢ )’ '



Section 4.3: Angular Momentum 169

and hence (Problem 4.21(b)):

1 9 1 9
L? = —r? [,—— (sin@i> + —2——} : [4.132]

We are now in a position to determine f;" (6, ¢). It’s an eigenfunction of L?,
with eigenvalue R+ 1):

L2fm = —h? 19 (Gnel +Li = R2d + D fm
b sinf 36 30 ) " sine0¢? |7t b

But this is precisely the “angular equation” (Equation 4.18). And it’s also an eigen-
function of L., with the eigenvalue mh:

h o

L. ff"= z_%flm = mmf]",

but this is equivalent to the azimuthal equation (Equation 4.21). We have already
solved this system of equations: The result (appropriately normalized) is the spher-
ical harmonic, Yl’” (8, ¢). Conclusion: Spherical harmonics are eigenfunctions of
L? and L,. When we solved the Schrodinger equation by separation of variables,
in Section 4.1, we were inadvertently constructing simultaneous eigenfunctions of
the three commuting operators H, L2, and L;:

Hy = Ey, L*W =h10+ Dy, L.y =hmy. [4.133]

Incidentally, we can use Equation 4.132 to rewrite the Schrodinger equation (Equa-
tion 4.14) more compactly:

! [-hZi <r23> + L2j| v+ Vi = Ey.

2mr? or or

There is a curious final twist to this story, for the algebraic theory of
angular momentum permits / (and hence also m) to take on half -integer values
(Equation 4.119), whereas separation of variables yielded eigenfunctions only for
integer values (Equation 4.29). You might suppose that the half-integer solutions
are spurious, but it turns out that they are of profound importance, as we shall see
in the following sections.
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«Problem 4.21

(a) Derive Equation 4.131 from Equation 4.130. Hint: Use a test function; other-
wise you're likely to drop some terms.

(b) Derive Equation 4.132 from Equations 4.129 and 4.131. Hint: Use Equa-
tion 4.112.

*Problem 4.22

(a) Whatis Ly Yll? (No calculation allowed!)

(b) Use the result of (a), together with Equation 4.130 and the fact that L, Yll =
leZl, to determine Yll (6, @), up to a normalization constant.

(c) Determine the normalization constant by direct integration. Compare your
final answer to what you got in Problem 4.5.

Problem 4.23 In Problem 4.3 you showed that

Y} (6, ¢) = —/15/87 sinf cosfe'?.

Apply the raising operator to find Y22(0, ¢). Use Equation 4.121 to get the normal-
ization.

Problem 4.24 Two particles of mass m are attached to the ends of a massless rigid
rod of length a. The system is free to rotate in three dimensions about the center
(but the center point itself is fixed).

{a) Show that the allowed energies of this rigid rotor are

_ R+ 1)

E
" ma?

, for n=0,1, 2,...
Hint: First express the (classical) energy in terms of the total angular momen-
tum.

(b) What are the normalized eigenfunctions for this system? What is the degen-
eracy of the nth energy level?




