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that the motion is entirely radial in that state. If the Bohr model were modified in a
way that would allow for zero angular momentum states, the orbit for such a state
would be a radial oscillation in which the electron passes directly through the nucleus,
and the oscillation could take place along any direction in space. This would corre-
spond, in a sense, to a spherical symmetrical probability density or charge dis-
tribution, similar to that which is predicted by quantum mechanics and is observed
experimentally. Nevertheless, it is difficult to visualize the motion of an electron in the
ground state of the quantum mechanical atom. That is, it is difficult to make an
analogy to a classical picture, such as the Bohr picture. But this situation is not
unique; it is equally difficult to visualize the motion of an electron traveling through
a two-slit diffraction apparatus.

7-8 Orbital Angular Momentum

We shall now proceed to justify the relations
L, =mjh (7-33)
L=+I{l+ ) (7-34)

between the quantum numbers m, and /, and the z component L, and magnitude L
of the angular momentum of an electron in its “orbital”” motion about the center of
an atom. The justification will take a little effort, but it will be well worth it. We have
just seen that these relations are very useful in interpreting the angular dependence
of the probability density functions for a one-electron atom. As we continue our
study of quantum physics, we shall see that the angular momentum relations are
extremely important in the study of all atoms (and nuclei). The basic reason is that in
most circumstances the z component and magnitude of the angular momenta of the
particles in microscopic systems remain constant. From a classical point of view, this
happens because in most systems the particles move in spherically symmetrical
potentials that cannot exert torques on them. We shall find that, of all the quantities
that can be used to describe atoms (and nuclei), angular momentum and total energy
are about the only ones that do remain constant. A consequence is that most experi-
ments on such systems involve measuring angular momentum and total energy.
Therefore, quantum mechanics must be able to make predictions about angular
momentum, as well as total energy. Another parallel between these two is that both
are quantized. In other words, the relations of (7-33) and (7-34), stating that L, and
L have the precise values m, i and VI(L+ 1) b, are quantization relations just like the
energy quantization relation stating that the total energy E of a one-electron atom
has the precise values —uZ2e'/(4me()?2hn®. Angular momentum quantization is
certainly as important as energy quantization. The only reason that it has not appeared
before in our treatment of Schroedinger quantum mechanics is that the treatment was
restricted to one-dimensional systems. Of course, angular momentum is the dynamical
quantity that sets real three-dimensional systems apart from one-dimensional
idealizations in which it has no meaning.

The angular momentum of a particle, relative to the origin of a certain coordinate
system, is the vector quantity L defined by the equation

L=rxp (7-35a)

where 1 is the position vector of the particle relative to the origin, and p is the linear
momentum vector for the particle. By evaluating the components in rectangular
coordinates of the vector, or cross, product, it is easy to show that the three rectangular
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components of L are

L;c =Yp, — 2Py
L, =zp, —p, (7-35b)
Lz =Xpy — YPy

where x, y, z are the components of r, and p,, p,, p, are the components of p.

In order to study the dynamical quantity angular momentum in quantum mechanics,
we construct the associated operators. This is done by replacing p,, p,, p, by their
quantum mechanical equivalents —ik 0/0x, —ih 9/dy, —ik 00z, according to an
obvious three-dimensional extension of (5-32). Thus the operators for the three
components of angular momentum are

L, = —ih(yg — zi)

0z oy
. 0 0
L, = —lh(25; - xgr;) (7-36)
0 0
L, =—iile— —y—
Zop 1 (x ay y ax)

Because we must use spherical polar coordinates, these expressions must be trans-
formed into these coordinates. Appendix I shows how this can be done. The results are

L., = ih(sin (p% + cotfcos ¢ Bi)

0 ¢
L, = ih(—cos 2 + cot 6 sin i) (7-37)
a0 Yoy
L, = —ih—a'
» a(p

We shall also be interested in the square of the magnitude of the angular momentum
vector L, which is

=L+ L+ L}

As is indicated in Appendix I, in spherical polar coordinates the associated operator is

1 0 0 1 0
L2 = —hﬂ[——( i 6—) ———} 7-38
! sin0ao\" " 3 + sin®  9¢” (7-38)

The first step in deriving the angular momentum quantization equations involves
using the operators to calculate the expectation values of the z component of L, and
of the square of its magnitude, for an electron in the n, [, m; quantum state of a one-
electron atom. According to the three-dimensional extension of the prescription of
(5-34), the expectation value L, is

o 72T
L, =H f WL, Wrtsin 0 dr d6 dg
000

The quantity r2 sin 0 dr d9 dg is the element of volume in spherical polar coordinates,
and the integrations are taken over the complete ranges of all three coordinates.
Because it will simplify the notation, without causing confusion, we shall write this
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expression as

L_z =f‘F*L Y dr

Zop

Here dr stands for the three-dimensional volume element r2sin 6 dr df dg, and |
stands for the three definite integrals {§f53". The same shorthand notation will be
used in the remainder of this chapter, and in the following chapters. Continuing our

calculation of L,, by expressing the wave function as a product of the eigenfunction
and the exponential time factor we obtain

T iE ik, % —iEnt/h
Lz —je " w’"tmlLZ()pe " ’(pnlml dT

or
—E; =f'/):zm;Lzop1/)nzm; dT (7-39)

Similarly, the expectation value of L* is

2
L =f"/):lm;l‘gpu"nlm; dr (7'40)

To evaluate the integrals in the two numbered equations above, we must first evaluate
2
Lzopwmml and Lopw'nlm,'

Example7-6. Evaluate chptpn;ml, where Lzop = —ihd[dp,and where v, n, isa one-electron
atom eigenfunction.
We have
. a‘lpnlm
LiyVuim, = —il Tq)‘l
Since
Vuim, = Rua(r)01, ()2, (9)
we obtain
L0y _do, (9
—ih _a(p—m’ = an(’)@)zm,(e)[_’h st;jl
According to (7-19) .
D, (p) =e™?
e}
do )
;,,;(@ = ime™® = im,®,, (¢)
Thus

o Wi .
i a—;’ = R, (1O, (O)[ —ifiim;®,,, ()]

= mfiR,,;(r)0 4, (0)P,, (9)
and we obtain the answer
Lzopwnlm, = mlhwnlml (7'41)
|

Although we do not have a concise expression for the functions ©;,,,(6), which must
be differentiated to evaluate L:pzpn,ml, we know that these functions satisfy the differ-
ential equation (7-16). Using this fact, it is not difficult to show that

LEp‘Pan, = l(l + l)hzwmm (7'42)
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Using (7-41) from Example 7-6 in (7-39), which is

L_z = fq)szleopwanl dT

it is trivial to evaluate I: We have

Lz = mlhfw:lmlwnlml dT

But we know that this integral has the value one because it is equal to the probability
density integrated over all space, i.e., the probability of finding the electron some-
where. Thus we obtain

L, =mh (7-43)

In a similar fashion we use (7-42) in (7-40), which is

L2 =J¢:zm,Lian my dT
to obtain

B = 10+ DR [ plinin o
L=+ DA (7-44)
Let us compare the results of our expectation value calculations, (7-43) and (7-44),
with the quantization relations we are trying to verify, that can be written

L, =mh (7-45)
L* = I + DA (7-46)

The former are certainly consistent with the latter, but they are not proofs of the latter.
The quantization relations make stronger statements about the values of L, and L%
These relations say that any measurement of the angular momentum of an electron
in the n, I, m, state of the atom will always yield L, = m/i and L2 = [(/ 4 1)k* since,
in that state, these quantities have precisely the values quoted. But the expectation
value relations say only that the values quoted will be obtained on the average, that
is, when the results of a large number of measurements of L, and L*? are averaged.

To complete the proof of the quantization relations is a matter of continuing along
the line we have been following. For example, by calculating the expectation value of
some power of L, say the square Lz, it is found that L? = (m,h)%. This immediately

leads to the conclusion that not only must L, equal m# on the average, i.e., L, = m,
but that L, must equal mh always, i.e., L, = mi. The point is that if L, fluctuated
about its average m,fi it would not be possible to obtain L? = (mh)? because when
averaging a power of L, higher than the first more weight is given to fluctuations above
the average than to fluctuations below the average. In order to proceed with our
interpretation of the angular momentum of one-electron atoms, we defer the details
of this proof to the following section. There we shall also obtain the interesting
conclusion that L, and L, the  and ¥ components of the orbital angular momentum,
do not obey quantization relations.

The fact that y,,,,,, does not describe a state with a definite x and y component of
orbital angular momentum, because these quantities are not quantized, is mysterious
from the point of view of classical mechanics. According to the angular momentum
conservation law of classical mechanics, the orbital angular momentum vector of an
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electron moving under the influence of a spherically symmetrical potential ¥(r) of a
one-electron atom in free space would be completely fixed in direction and magnitude,
and all three components of the vector would have definite values. The reason is that
there would be no torques acting on the electron. The fact that this result is not
obtained in the quantum mechanical theory is a consequence of the fact that there is an
uncertainty principle relation which states that no two components of an angular
momentum can be known simultaneously with complete precision. Because the z
component of orbital angular momentum has the precise value m/i, the relation requires
that the values of the x and y components be indefinite. Upon evaluating L, and L, , the
average values of these components, it is found that both equal zero. Thus the orienta-
tion of the orbital angular momentum vector of an electron moving in a spherically
symmetrical potential must be constantly changing in such a way that its # and y
components fluctuate about an average value of zero, while its z component and
magnitude remain fixed. This result might be called the quantum mechanical orbital
angular momentum conservation law.

Many of the properties of the orbital angular momentum can be conveniently
represented in terms of vector diagrams. Consider the set of states having a common
value of the quantum number /. For each of these states the length of the orbital
angular momentum vector, in units of 4, is L/h = \//(l + 1). In the same units, the
z component of this vector is L /h = m,. The z component can assume any integral
value from L /h = —Ito L [h = +I, depending on the value of m, The case of
[ =2 is illustrated in Figure 7-12. The figure depicts the angular momentum vectors
for each of the five states corresponding to the five possible values of m, for this value
of /. Since in any one of these states L, and L, fluctuate about their average values of
zero, the vectors describing the state precess randomly in the conical surface sur-
rounding the z axis, satisfying the quantum mechanical angular momentum conserva-
tion law. The actual orientation in space of the angular momentum vector is known
with the greatest precision for the states with m, = 4-/. But even for these states there
is some uncertainty since the vector can be anywhere on a cone of half-angle

cos™1 [1/\/1(1 <+ 1)]. In the classical limit / — oo, and this angle becomes vanishingly
small. Thus, in the classical limit the angular momentum vector for the states m, =
+/ is constrained to lie almost along the z axis and is therefore essentially fixed in
space. This agrees with the behavior predicted by the classical theory, i.e., with the
classical orbital angular momentum conservation law.

The quantum number m, determines the space orientation of the orbital angular
momentum vector of the one-electron atom. Therefore, in a sense it determines the
orientation in space of the atom itself. As the spherically symmetrical Coulomb
potential implies that there is no preferred direction in the space in which the atom is

FIGURE 7-12

Representing the angular momen-
tum vectors (measured in units of 4)
for the possible states with /= 2.
In each state the vector precesses
randomly about the z axis, main-
taining a constant magnitude and a
constant z component.
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situated, we can understand why the theory predicts that the total energy of the atom
does not depend on m;, which determines this orientation. Thus we can understand
why the eigenfunctions are degenerate with respect to the quantum number m,. The
energy of the atom simply does not depend on its orientation in empty space.

7-9 Eigenvalue Equations

Here we shall complete the derivation, started in the previous section, of the orbital angular
momentum quantization conditions. Then we shall generalize the results of the derivation to
point out an interesting feature of Schroedinger’s theory of quantum mechanics.

To study the quantization of the orbital angular momentum, we focus attention first on its z
component, L,. Now, if the z component quantization condition of (7-45) is valid, then any
measurement of L, will always yield the same precise value specified by that quantization
condition

L, =mph (7-47)

Furthermore, measurements of some higher power of L,, say the square L%, will always yield
the same value Li = (mh)*. As a consequence, the expectation value of the square of L, will

be just Ef = (mh)?. Note that, since we also have L, = mh, this means

_— —2
LE=1L, (7-48)
That is, the expectation value of the square of L, equals the square of the expectation value
of L,, if the quantization condition of (7-47) is valid.

On the other hand, if (7-47) is not valid then measurements of L, can lead to various values,
subject, however, to the constraint that the values average out to yield m /i because we have
proven in (7-43) that L, = m,} in any case. If the measured values of L, fluctuate about the
average value mh, then the expectation value of the square of L, will no longer equal the
square of m,f. The reason is that when averaging a higher power of L;, like its square L2 we
give much more weight to the cases in which L, is larger than L,, and much less weight to the
equally numerous cases in which L, is smaller than L,. In this situation L # (mh)?,

L2 # Lf.

An example is shown in Table 7-3, which applies the ideas just discussed to calculating the
square of the average, and the average of the squares, of the ages of a group of children whose
individual ages are 1, 2, and 3 years. Inspection of the table shows that when the ages are first
squared, and then averaged, a larger result is obtained than when the ages are first averaged,
and then squared. This will be true in any case in which a power of the ages higher than the
first is averaged, and in which the ages fluctuate. But if all the children in the group have ages

TABLE 7-3. The Square of the Average, and the
Average of the Squares, of a Set of Fluctuating

Numbers
A=1,2,3
_ 1 +24+3 6
= —— =2
3 3
A =4
A2 =1,4,9
_ 1+4+4+9 14
T = —46
A 3 3 4.67

M=V L =Vaer -2 =067 =082
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TABLE 7-4. The Square of the Average, and the
Average of the Squares, of a Set of Nonfluctuating

Numbers

A=2,2,2

f_2¥2+2_6_,
3 3

A=

A2 =4,4,4

;5_4 + 4 +4=1_2_=4
3 3

AA s\/ZE—A'2=\/4_4=o

precisely equal to each other, and therefore to the average age, then it makes no difference in
which order the operations are carried out and the average of the squares equals the square of
the averages. An example of that situation is shown in Table 7-4.

For another illustration of these ideas, consider the quantity Ax = \/ 2 — &, As men-
tioned in Example 5-10, this quantity is used as a measure of the fluctuations that would be
observed in measurements of the x coordinate of a particle. If there were no fluctuations, then

#* = &, But the uncertainty principle demands that there be fluctuations in x (which are
larger the smaller the fluctuations in the linear momentum p). As a result 2% > #, and the

. -5 _2. . . . -5 ~2.
difference between 22 and &~ increases as the fluctuations in x increase so \/ x% — Z”is a measure
of these fluctuations.

. _2
Now, it is easy to prove the validity of the relation expressed by (7-48), Li = L, , andthere-
fore also the validity of the quantization condition L, = m /i of (7-47). To do this we twice use

(7-41), Lzop‘/’nlml = mAipyim,, to calculate L_z Accordingto thethree-dimensionalextension of
the prescription for calculating expectation values, we have

L= f Y*LE W dr

This immediately gives

Lz =f‘l’:lmlL§0p'l’nzml dr

The dynamical quantity L2 is the product of two factors of the form L,
L2=L, L,

According to the expectation value prescription, the operator Liop obtained from that
dynamical quantity is thus the product of two operators of the form L, . Therefore

Ljopwnlml =L -L ‘/"nlmt

Zop z()p

In other words, Lzoptpmml means that Lzop operates twice On ¥y;m,. But according to (7-41)
L, ¥rim, = M Yo,

Thus each operation of L, _on ¢yym, yields the same function ,im,, multiplied by a constant
factor m h. Therefore, the result of two operations is simply to multiply ¥, by two factors of
myh. That is

L:ODWnlmL = (mzh)2§"'nlm,
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Knowing this, we immediately obtain
Lz =fw:lml(mlh)2wnlml dr

= (mzh)2f'l’:lml'l’nlml dr

where we have made use of the fact that the integral over all space of $¥im ¥nim, equals
one because of the normalization condition. Since we have verified (7-48), we have completed
our verification of the quantization condition L, = m/. The proof of the validity of the
quantization condition L? = /(I + 1)/® is carried through in a completely parallel manner.
Note that these proofs depend on (7-41) and (7-42), Lz0 Yoim, = MfiWnim, and Lop%zml =
I+ l)hztpnlm The equations state the surprising facts that the result of operating on the
one-electron atom eigenfunction y,,;,», with the differential operator L, _ is simply to multiply
that eigenfunction by the constant m,ﬁ, while the result of operating on it with the differential
operator L3, is simply to multiply it by the constant /(! + 1)42. These results are certainly not
typical of what happens when a differential operator operates on a function. For instance, if
we operate on a function, say f(x) = «2, with the differential operator d/dx, we obtain a very
different function f’(x) = 2x. As another example, it is not difficult to show that the results of
operating on ¥,im, with the operators L, or L, is to produce new functions of r, 6, ¢ in
which these varlables enter quite dlfferently from the way they enter in the function Ynim, That
is
L%p
L

Ynim, # (CONst)Ypim, (7-49)
Ynim, % (CONS)Ypim, (7-50)

Yop
The ideas that we have developed, in the process of verifying the angular momentum
quantization conditions, can be extended to provide a deeper insight into the theory of
Schroedinger quantum mechanics. They can also be used to lead into the more sophisticated
theories, such as Heisenberg's matrix mechanics. We must leave these matters for more
advanced books. Here we shall say only that the properties associated with (7-41) and (7-42)
are perfectly general. That is, whenever the dynamical quantity f has the precise value F in the
quantum state described by the function v, then that function satisfies the relation

fopy = Fy (7-51)

where f,, is the operator corresponding to f.
We shall also show that the time-independent Schroedinger equation can be written in the
form of (7-51). To do this, consider the time-independent Schroedinger equation in rec-
tangular coordinates
2 2 2 2
B h_ (a y 0%y + o2y
2u

W T T
B2 32 22
|: 2#(3.702 +8—y—2 +8—zz) + V}w = Ey
By comparing (7-3) with (7-4), we see that the square bracket is just the operator ¢, for the
total energy. Thus we have

)+th=Etp

Rewrite it as

e, = Ey

Here E is one of the precise allowed values of the total energy of the system described by the
potential V. The system is also described by the total energy operator e,

The general relation of (7-51) is called an eigenvalue equation, v is said to be an eigenfunction
of the operator f, , and F is said to be the corresponding eigenvalue. This is the same termin-
ology as is used in the particular case of the eigenvalue equation for the total energy operator—
that is, in the case of the time-independent Schroedinger equation. The total energy operator

op 18 sometimes called the Hamiltonian.
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These considerations lead to the important conclusion that, since (7-49) and (7-50) show
Yaim, is not an eigenfunction of the operators er) or Lyon, the corresponding dynamical
quantities L, and L, do not have precise values in the one-clectron atom. That is, L,and L, do
not obey quantization conditions.

QUESTIONS

1. If a hydrogen atom were not at rest, but moving freely through space, how would the
quantum mechanical description of the atom be modified ?

2. Since it is well known that the Coulomb potential has a much simpler form in spherical
polar coordinates, why did we begin our treatment of the one-electron atom in rectangular
coordinates ?

3. In what important equations of classical physics does the Laplacian operator enter?

4. Would the results of the calculations be affected if we took different forms for the
separation constants that arise in the splitting of the time-independent Schroedinger
equation, for the one-electron atom, into three ordinary differential equations?

i

Why must ®(g) be single valued? How does this lead to the restriction that m, must be
an integer?

6. What would happen if we took e~ as the particular solution to the ®(¢) equation?
What about cos m,g or sin mp?

7. Why do three quantum numbers arise in the treatment of the (spinless) one-electron
atom?

8. Can you say what the functions ©(6) and ®(¢) would be like if V were a function of r,
but not proportional to —1/r? (This is the case for the valence electron of an alkali
atom.)

9. Just what is degeneracy?
10. What is the relation between the size of a Bohr atom and the size of a Schroedinger atom?

11. What is the fundamental reason why the size of the hydrogen atom in its ground state has
the value it does?

12. For a one-electron atom in free space, what would-be the mathematical consequences of
changing the choice of direction of the z axis ? The physical consequences? What if the
atom is in an external electric or magnetic field ?

13. Why does a uniform electric or magnetic field define only one unique direction is space?

14, How do the predictions of the Bohr and Schroedinger treatments of the hydrogen atom
(ignoring spin and other relativistic effects) compare with regard to the location of the
electron, its total energy, and its orbital angular momentum?

15. Devise an explanation for the obvious relation between the last two terms of the Laplacian
operator, in spherical polar coordinates, and the operator for the square of the magnitude
of the orbital angular momentum.

16. Using the connection between L and /, explain physically why y*y is very small near
r =0, unless / = 0.

17. Exactly why do we say that for a hydrogen atom in free space the orbitalangular momen-
tum vector precesses randomly about the z axis (ignoring spin)?



